[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Mean value coordinates for arbitrary planar polygons

Published: 01 October 2006 Publication History

Abstract

Barycentric coordinates for triangles are commonly used in computer graphics, geometric modeling, and other computational sciences because they provide a convenient way to linearly interpolate the data that is given at the corners of a triangle. The concept of barycentric coordinates can also be extended in several ways to convex polygons with more than three vertices, but most of these constructions break down when used in the nonconvex setting. Mean value coordinates offer a choice that is not limited to convex configurations, and we show that they are in fact well-defined for arbitrary planar polygons without self-intersections. Besides their many other important properties, these coordinate functions are smooth and allow an efficient and robust implementation. They are particularly useful for interpolating data that is given at the vertices of the polygons and we present several examples of their application to common problems in computer graphics and geometric modeling.

References

[1]
Arad, N., Dyn, N., Reisfeld, D., and Yeshurun, Y. 1994. Image warping by radial basis functions: Application to facial expressions. CVGIP: Graph. Models and Image Proc. 56, 2, 161--172.
[2]
Beatson, R. K., Light, W. A., and Billings, S. 2000. Fast solution of the radial basis function interpolation equations: Domain decomposition methods. SIAM J. Sci. Comput. 22, 5, 1717--1740.
[3]
Beatson, R. K. and Newsam, G. N. 1992. Fast evaluation of radial basis functions: I. Comput Math. Appl. 24, 12, 7--19.
[4]
Buhmann, M. 2000. Radial basis functions: The state-of-the-art and new results. Acta Numer. 9, 1--37.
[5]
Ceva, G. 1678. De lineis rectis se invicem secantibus, statica constructio. Ludovici Montiae, Mediolanum.
[6]
Chai, J., Miyoshi, T., and Nakamae, E. 1998. Contour interpolation and surface reconstruction of smooth terrain models. In Proceedings of the Conference on Visualization. 27--33.
[7]
Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. 173--182.
[8]
Farin, G. 1990. Surfaces over Dirichlet tessellations. Computer Aided Geom. Des. 7, 1--4, 281--292.
[9]
Farin, G. 2002. Curves and Surfaces for CAGD: A Practical Guide, 5th ed. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco.
[10]
Floater, M. S. 1997. Parameterization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14, 3, 231--250.
[11]
Floater, M. S. 2003. Mean value coordinates. Comput. Aided Geom. Des. 20, 1, 19--27.
[12]
Floater, M. S., Hormann, K., and Kós, G. 2006. A general construction of barycentric coordinates over convex polygons. Adv. Comp. Math. 24, 1--4, 311--331.
[13]
Floater, M. S., Kós, G., and Reimers, M. 2005. Mean value coordinates in 3D. Comput. Aided Geom. Des. 22, 7, 623--631.
[14]
Glasbey, C. A. and Mardia, K. V. 1998. A review of image warping methods. J. Appl. Statistics 25, 2, 155--171.
[15]
Gross, L. and Farin, G. 1999. A transfinite form of Sibson's interpolant. Disc. Appl. Math. 93, 1, 33--50.
[16]
Hiyoshi, H. and Sugihara, K. 2000. Voronoi-Based interpolation with higher continuity. In Proceedings of the 16th Annual Symposium on Computational Geometry. 242--250.
[17]
Hormann, K. and Tarini, M. 2004. A quadrilateral rendering primitive. In Graphics Hardware 2004. T. Akenine-Möller and M. McCool, Eds. Eurographics Association, 7--14.
[18]
Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566.
[19]
Ju, T., Schaefer, S., Warren, J., and Desbrun, M. 2005. A geometric construction of coordinates for convex polyhedra using polar duals. In Geometry Processing 2005. M. Desbrun and H. Pottmann, Eds. Eurographics Association, 181--186.
[20]
Kounchev, O. 2001. Multivariate Polysplines: Applications to Numerical and Wavelet Analysis. Academic Press, Orlando, FL.
[21]
Lee, S., Chwa, K.-Y., Shin, S. Y., and Wolberg, G. 1995. Image metamorphosis using snakes and free-form deformations. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. 439--448.
[22]
Lee, S., Wolberg, G., and Shin, S. Y. 1997. Scattered data interpolation with multilevel B-splines. IEEE Trans. Visual. Comput. Graph. 3, 3, 228--244.
[23]
Malsch, E. A. and Dasgupta, G. 2004a. Interpolations for temperature distributions: A method for all non-concave polygons. Int. J. Solids and Structures 41, 8, 2165--2188.
[24]
Malsch, E. A. and Dasgupta, G. 2004b. Shape functions for polygonal domains with interior nodes. Int. J. Numer. Method Eng. 61, 8, 1153--1172.
[25]
Malsch, E. A. and Dasgupta, G. 2005. Algebraic construction of smooth interpolants on polygonal domains. Mathematica J. 9, 3, 641--658.
[26]
Malsch, E. A., Lin, J. J., and Dasgupta, G. 2005. Smooth two dimensional interpolants: A recipe for all polygons. J. Graph. Tools 10, 2, 27--39.
[27]
Meyer, M., Lee, H., Barr, A. H., and Desbrun, M. 2002. Generalized barycentric coordinates on irregular polygons. J. Graph. Tools 7, 1, 13--22.
[28]
Milliron, T., Jensen, R. J., Barzel, R., and Finkelstein, A. 2002. A framework for geometric warps and deformations. ACM Trans. Graph. 21, 1, 20--51.
[29]
Möbius, A. F. 1827. Der Barycentrische Calcul. Johann Ambrosius Barth, Leipzig.
[30]
Nürnberger, G. and Zeilfelder, F. 2000. Developments in bivariate spline interpolation. J. Comput. Appl. Math. 121, 1--2, 125--152.
[31]
Pinkall, U. and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2, 1, 15--36.
[32]
Ruprecht, D. and Müller, H. 1995. Image warping with scattered data interpolation. Comput. Graph. Applics. 15, 2, 37--43.
[33]
Sibson, R. 1980. A vector identity for the Dirichlet tesselation. Math. Proc. Combridge Phil. Soc. 87, 151--155.
[34]
Sibson, R. 1981. A brief description of natural neighbour interpolation. In Interpolating Multivariate Data. V. Barnett, Ed. Wiley, New York, 21--36.
[35]
Sukumar, N. and Malsch, E. A. 2006. Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Meth. Eng. 13, 1, 129--163.
[36]
Wachspress, E. L. 1975. A Rational Finite Element Basis. Academic Press, New York.
[37]
Warren, J. 1996. Barycentric coordinates for convex polytopes. Advances in Comput. Math. 6, 2, 97--108.
[38]
Warren, J. 2003. On the uniqueness of barycentric coordinates. In Topics in Algebraic Geometry and Geometric Modeling. R. Goldman and R. Krasauskas, Eds. Contemporary Mathematics, vol. 334. American Mathematical Society, 93--99.
[39]
Warren, J., Schaefer, S., Hirani, A. N., and Desbrun, M. 2004. Barycentric coordinates for convex sets. Tech. Rep., Rice University.
[40]
Wolberg, G. 1990. Digital Image Warping. IEEE Computer Society Press, Los Alamitos, CA.

Cited By

View all
  • (2024)Nonnegative moment coordinates on finite element geometriesMathematics in Engineering10.3934/mine.20240046:1(81-99)Online publication date: 2024
  • (2024)C^0 Generalized Coons Patches for High-order Cage-based DeformationACM Transactions on Graphics10.1145/368797243:6(1-15)Online publication date: 19-Dec-2024
  • (2024)Stochastic Computation of Barycentric CoordinatesACM Transactions on Graphics10.1145/365813143:4(1-13)Online publication date: 19-Jul-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 25, Issue 4
October 2006
243 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1183287
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 October 2006
Published in TOG Volume 25, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Barycentric coordinates
  2. interpolation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)56
  • Downloads (Last 6 weeks)5
Reflects downloads up to 12 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Nonnegative moment coordinates on finite element geometriesMathematics in Engineering10.3934/mine.20240046:1(81-99)Online publication date: 2024
  • (2024)C^0 Generalized Coons Patches for High-order Cage-based DeformationACM Transactions on Graphics10.1145/368797243:6(1-15)Online publication date: 19-Dec-2024
  • (2024)Stochastic Computation of Barycentric CoordinatesACM Transactions on Graphics10.1145/365813143:4(1-13)Online publication date: 19-Jul-2024
  • (2024)A Survey on Cage‐based Deformation of 3D ModelsComputer Graphics Forum10.1111/cgf.1506043:2Online publication date: 30-Apr-2024
  • (2024)Polygon Laplacian Made RobustComputer Graphics Forum10.1111/cgf.1502543:2Online publication date: 30-Apr-2024
  • (2024)Flow2Mesh: A flow-guided data-driven mesh adaptation frameworkPhysics of Fluids10.1063/5.018869036:3Online publication date: 8-Mar-2024
  • (2024)An improved high-precision polyhedron SBFEM with combinatorial interpolation strategiesEngineering Analysis with Boundary Elements10.1016/j.enganabound.2024.105991169(105991)Online publication date: Dec-2024
  • (2024)A new stable method to compute mean value coordinatesComputer Aided Geometric Design10.1016/j.cagd.2024.102310111:COnline publication date: 1-Jun-2024
  • (2024)High-order shape interpolationComputer Aided Geometric Design10.1016/j.cagd.2024.102301111(102301)Online publication date: Jun-2024
  • (2024)Genuine multi-sided parametric surface patches – A surveyComputer Aided Geometric Design10.1016/j.cagd.2024.102286110:COnline publication date: 1-May-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media