Computer Science > Data Structures and Algorithms
[Submitted on 4 Apr 2006]
Title:Minimum-Cost Coverage of Point Sets by Disks
View PDFAbstract: We consider a class of geometric facility location problems in which the goal is to determine a set X of disks given by their centers (t_j) and radii (r_j) that cover a given set of demand points Y in the plane at the smallest possible cost. We consider cost functions of the form sum_j f(r_j), where f(r)=r^alpha is the cost of transmission to radius r. Special cases arise for alpha=1 (sum of radii) and alpha=2 (total area); power consumption models in wireless network design often use an exponent alpha>2. Different scenarios arise according to possible restrictions on the transmission centers t_j, which may be constrained to belong to a given discrete set or to lie on a line, etc. We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points t_j on a given line in order to cover demand points Y in the plane; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover Y; (c) a proof of NP-hardness for a discrete set of transmission points in the plane and any fixed alpha>1; and (d) a polynomial-time approximation scheme for the problem of computing a minimum cost covering tour (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.