Addressing the Shortcomings of One-Way Chains

Abstract

One-way hash chains have been the preferred choice, oveytmetric and asymmetric key cryptog-
raphy, in security setups where efficiency mattered; despé& ephemeral confidentiality and authentication
they assure. Known constructions of one-way chains (fomge, SHA-1 based), only ensure the forward
secrecy and have limitations over their length i.e., a pknowledge of chain’s length is necessary before
constructing it. In this paper, we will see how our approdedsed on chameleon functions, leads to the
generation of practically unbounded one-way chains withstant storage and computational requirements.
We provide the construction and advantages of our propaffatiae help of a secure group communication
setup. We also provide the implementation details of oustraition and argue its suitability for security

setups, where one cannot a priori determine the longevitiye$etup.
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1 Introduction

Entity authentication is one of the core primitives thatdgquired to build dependable and secure systems [11].
Several cryptographic protocols have been proposed th teacgoal. These protocols use cryptographic primi-
tives based on symmetric or asymmetric key crypto-systeme.appropriateness of a cryptographic protocol for
an application also depends on the storage and computatiosis it incurs. In general, entity authentication
is achieved using asymmetric cryptography leading to datdigdentiality using computationally less expen-
sive symmetric cryptography. But, to realize such a meadmnan underlying security framework is required,
called PKI (Public Key Infrastructure). Integration of PKI computationally constrained environment or in
dynamically changing setups is not practical due to the aodtcomplexity of the framework [7, 12].

A widely accepted approach is the use of SHA-1 or MD5 baseenwmehash chains [16, 14] (alternatively
referred as Lamport chain, in this paper), that providegisbte data authentication in an efficient way. Much

recent work [20], even tries to achieve the characterigifosided by asymmetric cryptography with the help



of one-way hash chains and loose time synchronization legtvilee communicating principals [19], where
ephemeral data confidentiality (forward) is ensured bukWwacd secrecy (i.e., confidentiality of previously
communicated data) is absent. Though these approaches agdtess a particular domain of applications
(e.g., [19]), the philosophy can be extended to much comgtexarios (e.g., group membership, secure multi-
cast communication and key management, etc.,), in distibenvironment. Lamport chains achieve these
objectives efficiently, but with few limitations, such asoumded chain length and no support for backward
secrecy.

In this paper, we propose a construction of one-way chainpitvides all the properties supported under
traditional SHA-1 based one-way chain, apart from unbodrdagth and support for backward secrecy. Our
construction is based on chameleon functions [15, 4, 9,tBa},were originally proposed for undeniable sig-
natures. In comparison with the traditional one-way chatlresnes, our solution: allows to generate practically
un-bounded one-way chain, whose length is only limited fithite-ness of the field over which the values are
generated; has constant storage and computation requitgonevides forward as well as backward secrecy of
communications; and does not require generation of complein before starting its use, since generation and
usage of the chain proceed in same direction, where theg@reprocess is at least one step ahead of the later.

The paper is organized as follows: In the next section, weflgrprovide a background and related work,
followed by the properties of the basic building block of @anstruction, chameleon functions, and their use
in constructing one-way chains of any length in Section 3Séttion 4, we argue the importance of the ad-
ditional properties (unbounded length and backward sgrmovided by our construction in a secure group
communication setup. The implementation details of thiferdnt ways to construct the chameleon chains are

organized in Section 5, followed by conclusions in Section 6

2 Background and Related Work

The chameleon hash functions stem from a non-interactigeneleon-commitment scheme [8]. An implemen-
tation of the chameleon hash, based on the discrete logmrishprovided in [6]. The first implementation of a
chameleon hash function designed with the goal of communatiefficiency is given in [15], which is a specific
and efficient implementation of a general claw-free pertrantroduced in [13]. These algorithms have been
employed with digital signature to buildot transferablesignature. The non-transferability property is conve-
nient in many scenarios in which the signer has a legitimatést in controlling subsequent disclosures of the

signed information. One application suggested in [3] isgid auctions. However, that first effective proposal



of chameleon hash functions [15] suffered from a key exmgogsuoblem: revealing two colliding chameleon
hash values would reveal the trapdoor, the chameleon hastidn is built upon. To address this problem an
identity-based scheme was proposed in [3], while a key-sx@ofree construction, based on the elliptic curves
with pairings, appeared later in [9]. The much recent wolld|rprovides several constructions of exposure-free
chameleon hash functions based on different cryptograggdsomptions, such as RSA and the discrete logarithm
assumptions. These algorithms also show an improvemeheindomputational efficiency. The rising interest
in chameleon functions will probably bring forward more @#nt constructions.

As for authentication in multicast communication, the megls [19, 20] are efficient; however they work
under the assumption of loose time synchronization betwleersender and the receiver. Relaxing these as-
sumptions results in possible violation of the packet antibity. Whereas in our proposal, violating the loose
time synchronization assumption results in the violatibfresh-ness, without compromising on the key’s au-
thenticity. Related work addressing these problems ofeantitation over a lossy channel appeared in [18, 17].
These proposals are mainly based over the amortizationighatare over several packets. Similar analogy can
be exploited in our approach. However, addressing isslggdenith the transmission over unreliable channels

is not our main concern in this paper.

3 Construction of Chameleon Chain

In this section, we provide a brief overview of chameleorcfions [15, 3, 9, 4] and their properties followed by
our construction of chameleon one-way chain. We shall atptagn functioning of our construction in contrast
to the traditional SHA-1 based one-way chains.

Assume that a principal chooses an asymmetric key-pairreti&g denotes the public-key ar@Kg de-
notes its corresponding private-key (also called traprdoé chameleon hash function is associated with a
unique public-key. Le€Hg(.,.) be the chameleon hash function derived from public{Ké§g.

Given a message and a random seeg, CHg(m;, ri) provides an image (hash value) satisfying the follow-

ing properties:

 Collision resistance:There is no efficient algorithm that on input the public kég can find pairsmn, ry

andmy, r, wheremy # my, such thaCHg(my,r1) = CHg(mp,r2), except with negligible probability.

» Trapdoor Collision: There is an efficient algorithm that on input the secret®&y, any pairmy,r1, and

any additional message,, finds a value, such thaCHg(my,r1) = CHr(mp,r2).



 Uniformity: All messagesninduce the same probability distribution @Hg(m,r) for a givenr chosen

uniformly at random [15].

Therefore,

1. the knowledge of public keldKg allows a user to derive the corresponding chameleon hasttidan

CHg(.,.)

2. only the owner oHKg's corresponding private key/trap-door, i€Kg, can efficiently find a collision for

any given output, and

3. for others, the functio@Hg(.,.) offers strong collision-resistance, i.e., it is computaélly infeasible to

find two inputs with the same image.

Traditional constructions of one-way hash chains using SH#ke cryptographic primitives involves ran-
domly choosing a seed value and successively applying teevary hash function (SHA-1) on the seed value

until a desired length of one-way chain is achieved [16]. Sl lauchain of lengtim is:

H"(k), ..., HH(H(K))), HH(K)), H(k), k. (1)

Therefore, giverH"'(k), it is easy to computel"~"+1(k), wherei = 1, ..., n— 1; but not vice versa. To
use this chain values as encryption keys for secure comiatimnic the owner of the chain at first communicates
H"(k), calledanchor, securely (generally, using asymmetric cryptographicmatsm) to the recipient of the
intended communication. Let us refer to the owner of therchai“Sender” and as “Receiver” to the recipient
of key and data. Once after providing thachorto the “Receiver”, “Sender” uses subsequent values in the
chain as encryption keys for data communication. The atitiignof new encryption key can be checked
by “Receiver” by performing one hash application on this rewryption key and checking it against the old
encryption key [16, 19]. As mentioned in previous sectidhi approach suffers from the bounded length of
the chain and requires generation of new chains and comatingdheanchorto the “Receiver.” The drawback
of this approach is more starking if one uses it in group comination where backward secrecy is nhecessary to
restrain newly added members from knowing past commupitcsttamong the group members.

Generation of chameleon chain Generating each value that constitutes chameleon chailvas; com-
puting a chameleon hash (cf. Appendix A for discrete-logedagpproach), such that the new value collides

with the old value in the chain. Unlike SHA-1 based one-wagichwe do not need to compute the whole
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Figure 1: Life spans of SHA-1 and chameleon one-way chains
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Figure 2: Generation of chameleon one-way chain by the sende

chain a priori to use it. As shown in Figure 1, in our constiargtthe chain generation and spending sequence
proceed in same direction. The crux of our chain constroaiad its use is enumerated below, with the help of

Figure 2, in step-wise fashion:

* Sender:

1. randomly choosesy . ; andri 1, and creates new key,1 = CHr(mi;1,ri+1),
2. chooses ;1 such thatki = CHg(m,ri) = CHr(ki+1,S+1), and

3. sends the message-= {ki;1,5:1} to the user.
* Receiver:

1. receives the message pacget

2. authenticatek; 1 by checking ifk, = CHgr(ki+1,S+1), otherwise discardk 1.

Complexity - Our construction, based on schemes proposed in [15, 2lgweshkey authenticity ifistor-

age*computationgomplexityO(1), since;

* on sender side:



— it only needs tcstorethe values of current kely, next generated ke, 1, the public keyH K and

corresponding secret k&Kg, and

— needs t@wompute @max{ |m; 1], |ri+1]}) modular multiplications to perforiq 1 = CHr(Mi;1,ri11),
andO(max{ |m;|,|ri|}) modular multiplications to find a collisiok = CHr(my, i) = CHgr(Ki+1,S+1)-

Note that,/m1| and|ri,1| are constants irrespective of the chain length.
* on receiver side:

— needs testorethe values of public kel Kg, current keyk;, andk; . ; sent by the server;

— needs tocompute @max |kit1|,|S+1|}) modular multiplications to verifyki = CHr(ki+1,S+1)-

Note that,|ki-1| and|s1| are also constants.

Use of SHA-1 based one-way hash chains as a tool for impratimefficiency of a variety of practical and
valuable security applications is well rooted. The fact tBHA-1 based chains have to be a priori computed
before starting their use forces its user (the sender) tiedet a storage versus computation trade-off. For
example, given th@nchorof the chain and an intermediate valke the task to compute next vallg ; in
the chain either take§ + 1) SHA-1 computations, or has a storage requiremer®(of) of a chain of length
n. All straightforward combinations of these two technigwes be shown to have (gtorage*computation)
complexity of O(n), which can be a substantial computational burden for masguree-constrained devices,
such as wireless sensor networks or hand-held devices\ld have provided a detailed performance analysis
of our implementation in Section 5. Let us bring forward ethdvantages of our construction, i.e., unbounded
chain length and backward secrecy with the help of a typipplieation setup. In next section we provide an

application of chameleon chain in key management for LKHgjtal Key Hierarchy) setups.

4 Application to Multicast Communication

One-way hash chains have been exploited in multicast conwations (e.g., in TESLA [19]) to achieve effi-
cient source authentication and data confidentiality. H@nehe nature of multicast communication is a group
communication where the data transmitted by a member (bastel) should be available to the members of that
group only while ensuring source authentication and datdidentiality. For example, in TESLA, these prop-
erties are achieved with the help of one-way hash chain uhéeassumption that group members are loosely

time-synchronized with the broadcaster. Another moretjmacapproach for secure group communication is



using “Key Graphs” [22] that provides a mechanism to dynaithicadd (join group) and delete (leave group)
users from a group. This approach, also called LKH (Logicay Klierarchy), works under the assumption
that users are honest and there exists one or more trustedd@ygement servers that act (update keys in the
LKH) on each join or leave operation in the group. In [10], LK#ishown to be prone to session disruption,
session hijack, replay attacks and had been shown robuistsadfgese attacks using values of one-way hash
chain as values for the auxiliary key nodes in LKH setup. Ia ffection, we briefly review this proposal [10],
its drawbacks, and the necessity of chameleon chains irfigaditional SHA-1 based one-way chains. Note
that, application to LKH setup is just one of the applicasi@f our construction and it can stand a great enabler
in a variety of other applications that demand one-way (unded) chains with backward secrecy.

In the framework proposed for secure group communicatiey-(kiented setup, i.e., LKH) [22], a secure
group is denoted by a tripldJ, K, R) whereU denotes a set of usel, a set of keys held by the users, and
R C U x K a user-key relation which specifies keys held by each uskk. ifcach user is given a subset of
keys which includes user’s individual key, a group key, anld-group keys based on the configuration of the
LKH. The setK is maintained (updated upon each join/leave) by the grouprastrator i.e., root node of LKH.
However, this framework is susceptible to attacks broughtérd in [10] and can be made resistant against
these attacks by making auxiliary keys self verifiable wiith help of one-way hash chain values as keys.

Herein, we briefly present the re-keying mechanism in LKHigdhat uses one-way hash chain values as
keys for auxiliary nodes. Therefore, the auxiliary key fodei isk; ;; wherej; keeps track of index of one-way
chain assigned to node Ong" re-keying, the key of thé" auxiliary node will change e i/, wherej/ = g.
Theanchos of the chains used for auxiliary nodes, are provided to@pfate users by the group administrator
through a secure channel as in original LKH protocol [22].thWWhe help of Figure 3, and Table 1, we show
a leave operation under the LKH setup described in [10]. feidy) shows a LKH setup fdd = {uy, .., ug},
controlled by group administratar The leaf nodes of the tree are the users belongingd. t&ach user has to
store the keys that are on the path from itself (leaf-noddhe¢oroot. Letk,, be the a key shared by the user
u, with the center. A communication messagdlowing from c to u is shown asc — u: p. Table 1, gives
sequence of messages broadcastedtbyevict use; from the secure group. We employ following notations;
{string}ey indicates that, the messasfeing is encrypted using symmetric-key encryption and key

Messagg is broadcasted for the users of the right sub-tree andiosritee new session kéy j, 1 encrypted
with k j,. Messag2 andMessag8 are used to change the old keys, , ks j, that the useu; shared with the

usersuy, Uz, Us.
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Figure 3: LKH setup and notations

Message 1- ¢ — Us, Us, Uz Us * {Kojos1c,,
Message 2 - C— Ug,Us : {k17j1+1}k4.j4’ {k07jo+1}k1.j1+1
Message 3- C— Uy : {k3-,1'3+1}kuz7 {k171'1+1}k3‘j3+17 {k07jo+l}k1‘jl+1

Table 1: Eviction ofu; under key-oriented protocol

As already mentioned, the classical re-keying protocoliijext to attacks that are pointed out in [10], and
these highlighted attacks are addressed using self-\seifieys (i.e., one-way hash chain values as auxiliary
keys). However, two issues still stand: 1) overcoming thiefiness of the traditional one-way hash chains,
and 2) enforcing backward secrecy. Indeed, in [10], usimgLthmport's scheme, if a new user receives key
ki, then the user can locally compute all the previously gdedraalues of the hash chain and can decrypt
the previously communicated data within the secure groups tlemanding backward confidentiality to the
communication. This justifies the need for our one-way clwinstruction. We show the above re-keying
protocol using chameleon one-way chains.

To set up the secure group using chameleon one-way chagnsetitiec computes the keylg j; = CHr(mj;, rj;)
for all auxiliary nodes in the setup. Lkg j, be the session key of the group. Then, the group administgto
distributes these keys to appropriate users (that is, toidkes that include the auxiliary node on their path to
the root of the tree). This initial key distribution is domed secure fashion, as done in [22, 23]. Let us analyze
the re-keying under this setup. Assume ugeneeds to be removed from the secure group. The center needs
to renew the entire set of keys that are on the path betweand the root. The internal details of chameleon

chain while performing renewal of auxiliary kéy;, tok; j .1 are enumerated below.

» Sender (Center):

1. generates a new kéyj ;1 such thak; j .1 = CHR(M; 1,1} +1) andmj, # My 1,15, # 41



Message 1 - ¢ — Us,Us,U7,Us : {Ko jo+1,Sjo+1}ko ),
Message 2 - ¢ — Uz, Us * {K1,jy+1,Sj1+1 ks, 1K0,jo+15 Sjo+1 ke ;11
Message 3- ¢ — Uz @ {Kgjs+1,Sjs+1 ks {KLj1+1:Sii+1tkajy i1 1K jo+ 15 Sjot 1tk ia

Table 2: Re-keying steps for eliminating in LKH with chameleon one-way chains

2. chooses;; .1, using the trapdoor collision property, such tkgf = CHr(ki j,+1,Sji+1),

3. sends the re-keying messages (e.g., as enumerated éZlabl

* Receiver:

1. receives the re-keying message,

2. decrypts the message containing the new keys using thhemjaie keys, according to the LKH

setup.

3. checks for each newly received kiy .1, if the new key verifiess j, = CHr(ki ji+1,Sj+1). If the

match succeeds, the new Key .1 is authentic.

Our solution for secure group communications overcomeditthigations arising in [10]. In general, our
construction provides the following additional propesti¢o exploit, for the applications that use traditional
one-way chains: backward secrecy, key authenticity, undbed chain with constant storage and computation
requirement, and no need of even loose synchronizationgestthe sender and the receivers. Thus, relieving
the group manager from tracking one-way chains for eacHiarxkey in the setup. One should also note that,

re-keying is carried out even when there are no join/leawsaipns in the setup, to desist cryptanalytic attacks

[1].

5 Experimental Analysis

In this section, we argue that the proposed scheme is vialdl@tiers good trade-off of computation between
sender and receiver of the chain. Before that, we shall gistloe environment under which we carried our
experiments, provide the results and discuss the sutiabfliour approach to a class of applications.
Experimental SetupThe implementation is carried out on GNU/Linux (i486) pdeith with gcc-3.3.5,
OpenSSL 0.9.7e library for cryptographic primitives (vaitth any external cryptographic acceleration) and nu-
merical analysis. To get a fair computational estimatior,did not use any code optimization of gcc while

building our executables.



5.1 Approach to Compute Execution Time

Various approaches are possible to audit the process @éwetinbe. We employed the method of tracking CPU
cycles consumed during execution of a function of our irgier&he experiments are carried out on an AMD
750MHz machine, that complies IA32 architecture (whichves cycle counter; a 64-bit, unsigned number).
The IA32 counter is accessed with thét sc (read time stamp counter) instruction. This instructidketano
arguments. It sets registéedx to the high-order 32 bits of the counter and regiétax to the low-order 32
bits. Based on this methodology, a pair of functions aregiatied with our code that allows us to measure the

total number of cycles that elapse between any two time gioint

#include "clock.h"
void start_counter(); /* Starts the counter */

doubl e get _counter(); /* Returns: Nunber of cycles since last call to start_counter */

To verify the precision of this approach we marked the caumeéore and aftes! eep(sl eepti me); func-
tion call (where sleeptime equals to one). We obtained B866R4.0 as return value (i.e., 756.2 MHz). We
run each function of our interest for 101 times and discattledirst value of execution time in favor of cache
warming process. Furthermore, results are gathered imexgh-1; to minimize interference from other pro-
cesses. To plot all the results into graphs with common seadéntroduced dummy 164and 1029 entries in

our results with values equal to -1 and 200,000,000 resfdgti

5.2 Comparative Analysis

We implemented Chameleon scheme with three different ndsthamely: Simple Factorization (SF), Discrete
Logarithm (DL) (both from [15]), and Advanced FactorizatiGAF) [21]. Implementation of these schemes can
be categorized into two phases: Hash Generation (HG) antirgiiCollision (FC). They produce hash of length
160-bits. Lamport scheme (SHA-1) is realized using OpenESP library, and gives 160-bit digest as value
of intermediate unit of the one-way chain. Our results ararsarized in Figure 5, and Table 3. The values in
Table 3, for chameleon implementations, are the averagm taker 100 runs.

It would be inappropriate to compare the computational fayggenerating one unit value of one-way chain
in our construction and SHA-1 based construction, becauseanstruction has constant storage and computa-
tional costs due to the unidirectional propagation of itsegation and spending (cf. figure 1). While, SHA-1

approach wins over our approach using storage versus catiggutrade-offs. To normalize the comparison,
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Figure 4: SHA-1 versus chameleon SF, DL, and AF

we assess both schemes in Table 3 with constant storageer@guit and comparing them based on their pure
computational costs. That means for a SHA-1 chain of len§001the sender of the chain can store only the
seed value of the chain and its associated counter and cer@pf value by performing 999 hash operations
and so on. Since initial key distribution (i.e., securelyntounicating theanchos of one-way chains to in-
tended users) costs are the same for both, SHA-1 based @rainshameleon chains, we do not provide the
actual cost for this phase. Here, our one-way chain has sayawver SHA-1 based one-way chain as SHA-1
based approach may need as many such operations as newaftfaéed length are generated. Note that, in the
LKH application shown in this paper, it is impossible to agpridetermine, either the longevity of the setup or
the number of possible join/leave operations for any aarilnode.

In the following, we show how one-way hash chain can placeaatheomputational burden on the center,
where it stores only the seed and the corresponding couotarisains. In a one way chain of length to
compute thg!" value on-the-fly, the center needs to perfarm j hash operations. Hence, to exhaust the one-
way chain (i.e., aften authentications), the number of hash operatidtisl performed by the center is given

by the following equation;

NH :ii - n(n; ) 2)

Therefore, if we compare the computational costs incuroeithé center while using all the four (SHA-1,

SF, DL, AF) hash operations, we obtain the graph shown inrEigu In this graph, the axis represents the
length of one-way chain, angaxis represents the time (in milliseconds), needed by theecéo exhaust that

chain. It is evident from Figure 4, that the three implemgoies of chameleon hash functions provide better
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performances over the SHA-1 scheme, in long run. The cortipotd advantage of SHA-1 disappears when

the chain length is around 9,000. Thereafter, SHA-1 basednay chains incur more cost. The computational
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Figure 5: Run time analysis of chameleon one-way chain implgations

cost for chameleon based schemes are given kyCostFind Collision) + CostHash Gen)|, and for the

SHA- 1 based scheme, it is given I®(n?) x Cost(hash (cf. Eq. 2). To compare amongst chameleon based

implementations, DL based implementation is the leastieffic while the SF and AF show overall similar

performances (the two curves almost overlap in Figure 4np&i factorization based implementation of our
construction is suitable for setups where end users havtetincomputational capabilities. Also note that;
SHA-1, MD5 etc., are the most optimized implementationsiynstandard cryptographic suit, unlike chameleon
functions. We hope that the importance, and capability ahodleon schemes will bring forward more efficient
implementations to existence. Furthermore, as we can sgeTable 3, and Figure 5, hash generation phase

requires a random number (that is provided by OpenSSL PRN@uirimplementation); this phase can be

considerably improved if the underlying application hasarse of random numbers [5].

Nevertheless, even for a chain of small length (eng=,5000), the average cost of an authentication under
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SHA-1 scheme is higher than the cost of a hash under chamstd@mme. Note that, the computational cost

advantage chameleon chain over SHA-1 chain increases &altleeofn increases (cf. Figure 4).

Chameleon SF DL AF
scheme|| Hash Gen, Find Collision || Hash Gen.| Find Collision | Hash Gen.| Find Collision
14.375ms 46.503ms 140.881ms 0.887ms 56.139ms 0.720ms
SHA-1 based the average cost (for the sender) to perform authenticatory a chain
scheme with 5000 elements #Mgwu) x0.0322 /5000= 80.516 ms
where, 0.0322nsis the cost of one SHA-1 hash

Table 3: Comparative analysis of chameleon and SHA-1 clised on their computational cost

5.3 Trade-offs between the SHA-1 based and the Chameleon leasSchemes

These two schemes can be compared in terms of chain lengthpmerersus computational cost incurred
to use the chains, durability of the message authentiqity,extra settings like time synchronizations, between
communicating peers to realize the setup. Let us enumenatarideniable advantages of our chain construction

over the SHA-1 based one-way chains.

« Practically unbounded one-way chain -Unlike Lamport’'s one-way chain, this scheme provides a one-
way hash chain whose length is restricted by the finitenettgedfeld the chain is built upon. As we have
seen earlier, one-way chains using chameleon functionahaeys generated and used in same direction
(i.e., the generator of the chain is just a few steps aheadthigdast revealed value), whereas in Lamport’s
one-way chain the generation and usage proceed in oppasttichs, therefore limiting the length of

the chain.

» Unit storage and computation requirement -In one-way chains derived using SHA-1 hash function
the applications require a trade-off between storage ohtteal chain values and/or re-computation of
the values (at the chain-owner’s side). Such a constraies dot exist for chains based on chameleon

functions because there is no need to compute the chain @meen order to get thenchorof the chain.

« Backward secrecy -Knowing a value of any unit from the SHA-1 one-way chain, lete derive all
the values between that point up to @wechorof the chain. This eventually leads to the exposure of all
previous communications secured using the hash valuexhfasahain. Whereas, in case of chameleon
based one-way chains, one can derive (for authenticatiorewfy received unit of the chain) only the

previous value in the chain; not beyond that. This is an ingmrequirement while using one-way chains
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for managing group memberships. A newly joined/evicted tmemnshould not get undue privileges, other
than the assigned ones, when the membership action is pexdorWe have shown this mechanism in

section 4.

 Time synchronization requirement - The applications that use Lamport chains need to time-sgpncte
the communicating ends to establish authenticity of thieidiged keys. In short, such a setup temporarily
provides properties of asymmetric cryptography; whereathammetry is introduced by the time differ-
ence between the sender and the receivers. In our construsiys are self-verifiable and it is not
possible to trace backward into the chain, the time synébation between communicating peers is not

necessary.

All the above mentioned properties can be realized withrraditiere mechanisms (possibly by the combina-
tion of SHA-1 chains and asymmetric cryptographyathhocfashion, with increased costs and complexity.

Among the three Chameleon implementations we carried dupe®forms better in “Hash Computation”
whereas AF performs fair in “Finding Collisions”. With thabservation, one can accommodate SF and AF
into applications involving computationally weak veriigffor instance, sensor networks) and computationally

weak communication originator (a satellite engaging mldtbase-stations), respectively.

6 Conclusions

In this paper, we have derived an analogy between Lampangsway chain and one-way chains based on
chameleon functions. Our construction has the followingeathges over the former: i) practically unbounded
length, ii) backward secrecy, iii) constant storage andmatational requirements, and iv) no time synchroniza-
tion requirement for multicasts. Our construction is mdfieient than SHA-1 based one-way chain, in storage
constrained setups. Our scheme, in comparison with SHAsg&dane-way chain, has a linear overhead in
computation, while the latter has quadratic scaling. Weehtbat the importance, and capability of chameleon
schemes will bring forward more efficient implementationgxistence.

Note that, we have explored chaining as one of the possibistrats, and shown its application for a
typical scenario. There are several other security sehgisequire the properties provided by our construction.
Chaining is only important if causality of signatures is de@. Furthermore, chameleon hash functions can be
used just as easily to construct trees or even simplerikeagcbnstructs that would eliminate the need for the

verifier to store intermediate values.
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A Chameleon Hash Algorithm (based on Discrete Logarithm)

Setting: Choose primeg = 3 mod 8 and q =
7 mod8.
LetHKr=c=qq andCKr =< q,q >

Input: Messageny = mp[1]...mo[l];
Output: The valudnash A chameleon hash afy;

HKgr = n as defined above
Choose random valug € Z;;
hash=r3 mod c
fori=1tol

hash= (4™lhasl¥) mod c
nexti
returnpash

Table 4: An example of chameleon hash generation based wrfrda permutations [15].
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