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ABSTRACT
We propose a framework to translate certain subclasses of differ-
ential equation systems into distributed protocols that are prac-
tical. The synthesized protocols are state machines containing
probabilistic transitions and actions, and they show equivalent
stochastic behavior to that in the original equations. The pro-
tocols are probabilistically scalable and reliable, and are derived
from two subclasses of equations with polynomial terms. We
prove the equivalence of protocols to the source equations. Rewrit-
ing techniques to bring equations into the appropriate mappable
form are also described. In order to illustrate the usefulness of
the approach, we present the design and study of scalable and
probabilistically reliable protocols for migratory replication and
majority selection. These two protocols are derived from natu-
ral analogies represented as differential equations - endemics and
the Lotka-Volterra model of competition respectively. Well-known
epidemic protocols are also shown to be an output of the frame-
work. We present mathematical analysis of the protocols, and
experimental results from our implementations. We also discuss
limitations of our approach. We believe the design framework
could be effectively used in transforming, in a very systematic
manner, well-known natural phenomena into protocols for dis-
tributed systems.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed Systems

General Terms
Algorithms, Design, Reliability

Keywords
Science of Protocol Design, Distributed Protocols, Scalabil-
ity, Reliability, Endemic Protocols, Probabilistic protocols.

1. INTRODUCTION
Much attention has been paid to studying the scalabil-

ity and reliability of protocols for peer to peer systems, the

∗Please see Errata list on page 11 of this paper.
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Grid, etc. However, the science of design of efficient and re-
liable protocols for large-scale distributed systems remains
a difficult problem. In this paper, we describe a framework
to translate sets of differential equations (called a “system
of differential equations”, or abbreviated as “equation sys-
tem”) into a protocol for distributed systems. The tech-
niques generate a state machine where states are derived
from variables in the original equations, and actions and
transitions are derived from the terms in the original equa-
tions. The source equation systems are required to be in
a certain form - we describe this through a taxonomy, and
also present equation rewriting techniques to enable conver-
sion of other equation systems to the appropriate mappable
form.

In order to illustrate practical utility of the presented
methodology, we present two case studies where natural pro-
cesses represented as differential equations are used to design
practicable protocols for a dynamic and migratory replica-
tion scheme and for probabilistic majority selection. The
two protocols are respectively called endemic replication and
the Lotka-Volterra (LV) protocol.

Previously, differential equations have been used to study
and analyze algorithmic solutions to problems such as in-
dependent vertex sets and degree distributions [24], 3-SAT
[1], randomized load balancing [18], etc. The analyzed so-
lutions are usually randomized algorithms. However, little
of this work has addressed the converse direction, i.e., a
design methodology to translate differential equations into
distributed protocols. Such a methodology can be invalu-
able because scientists and engineers express their ideas and
results by using the language of differential equations. These
ideas can then be systematically converted into distributed
protocols that consequently have well-known behavior (by
virtue of the original equations).

Our protocols can be seen as probabilistic I/O automata
[25], however the cited work gives a broad specification of
protocols, rather than a framework for building and ana-
lyzing protocols. Several randomized protocols have been
proposed to circumvent the FLP impossibility of consensus
result [10], starting from Rabin’s work in [19]. Distributed
computing with infinitely many processes, and the relation
to finite groups, was studied in [15, 17, 18]. Strogatz’s text-
book [23] gives a thorough coverage for the analysis of non-
linear dynamic systems.

The protocols generated by our framework have the com-
mon characteristics that they offer probabilistic reliability,
utilize low and scalable bandwidth at each process, and have



low convergence times. Most importantly, the distributed
protocol inherits the stochastic behavior of the original dif-
ferential equation system, e.g., the existence of stable equi-
librium points in the original equations implicitly map into
self-stabilizing behavior in the protocol. The mathemati-
cal analysis of these protocols borrows techniques from the
study of non-linear dynamics. Although not new, our par-
ticular style using phase portraits and simple perturbation
analysis is appropriate for our goals, and has not been used
before to study distributed protocols. The protocols are in-
tended for asynchronous network settings, however our anal-
ysis makes certain simplifying assumptions.

In summary, the contributions of this paper are:
(i) A novel framework to translate differential equations,
from two subclasses, into equivalent distributed protocols;
(ii) A natural taxonomy of differential equations, and equa-
tion rewriting techniques that facilitate translation;
(iii) Use of this framework to design new scalable protocols
for majority selection and responsibility migration; and
(iv) Use of analytical techniques from the study of non-linear
dynamics in analyzing distributed protocols.
System Model: We assume a closed group G of N pro-
cesses, communicating over an asynchronous network. The
closed group assumption means that there are no joins by
new processes; simulations show that our protocols work
in open groups. Each process may suffer from crash-stop
or crash-recovery failures. The communication medium is
unreliable, and can drop messages or connections. For sim-
plicity, our analysis assumes that clock drifts are bounded;
however our final results hold for the average clock speed
in the group, allowing the protocols to run among processes
with unsynchronized clocks. Each process also knows about
the maximal group membership, i.e., the other N − 1 pro-
cesses 1. Our protocol analysis assumes that the group size
N is large enough so that variables that denote the fraction
of processes in a given state of a finite state machine can be
assumed to be continuous. This also enables us to assume
that variation of these variables is continuous in time (as
opposed to discrete).
A Motivating Example - Epidemics: Epidemic spread
of diseases and rumors can be represented through differen-
tial equations [3]. In a closed group (i.e., no participant
joins) of N participants, let the fraction of infected and sus-
ceptible processes be y and x respectively; x = 1− y. Then:

dx

dt
= ẋ = −xy

dy

dt
= ẏ = xy

(0)

A pull epidemic protocol can be designed from these equa-
tions. This is done by creating a state machine with two
states - x (susceptible) and y (infected). The actions in
the state machine involve susceptible processes periodically
sampling the group for infectives (protocol period fixed at
all processes), giving exactly the canonical epidemic proto-
col, variants of which are used in systems such as Clearing-
house [9]. For unfamiliar readers, the canonical epidemic
pull algorithm works by having each process p that has not

1Well-known results can be used to reduce this size to log-
arithmic in group size.

received the multicast (i.e., is susceptible) periodically con-
tact one other process selected uniformly at random from
the group. If the remote process has received the multi-
cast (i.e., is infected), it sends the multicast to p, which
then turns infected. The analysis predicts that as t → ∞:
x(t) → 0, y(t) → N , and it takes O(log(N)) rounds to reach
x ' O(1).

We remind the reader that epidemics are only a motivat-
ing example, and are not the focus of this paper; epidemics
were analyzed by Demers et al. in [9].

Section 2 gives a taxonomy of differential equation sys-
tems, and Sections 3, 6, present mapping techniques. Sec-
tions 4 and 5 show how the framework can be applied, and
present experimental results. Section 7 presents equation
rewriting techniques, and Section 8 concludes.

2. A TAXONOMY OF DIFFERENTIAL
EQUATION SYSTEMS

In order to clearly classify the differential equation classes
that can be converted into distributed protocols, we first de-
scribe a taxonomy of differential equation systems. We first
consider systems of equations that have a single differential
per equation, and are of order and degree 1. Section 7 dis-
cusses translations for equations of higher order and degree.

Let X denote a set of m independent variables. Let X̄ be a
finite-sized vector of these variables. We are concerned only

with systems of differential equations in the form ˙̄X = f̄(X̄).
Here, f̄ refers to an m-sized vector of functions (each in

m variables), and ˙̄X refers to a vector of the m variables
in X̄, each differentiated once with respect to time, i.e.,
˙̄X = d

dt
(X̄). We also denote the equation for variable x ∈ X

as fx(X̄). Each of these equations is thus of order 1 (highest
derivative) and degree 1 (power of highest derivative).

We define two properties of equation systems:

Complete Equation Systems: An equation system ˙̄X =
f̄ (X̄) is said to be complete if and only if
Σx∈X ẋ = Σx∈Xfx(X̄) = 0. In other words, the right hand
sides all sum to zero. Without loss of generality, we will
henceforth assume Σx∈Xx = 1.
Completely Partitionable Equation Systems: An equa-

tion system ˙̄X = f̄(X̄) is said to be completely partitionable
if and only if (i) it is complete, and (ii) all terms occurring
in f̄(X̄) can be grouped into pairs so that each pair sums
to zero. For example, equation system (0) is completely
partitionable.

Based on the nature of f̄ , we can define the following two
subclasses of equation systems:
Polynomial: For each equation ẋ = fx(X̄) in the system,
fx(X̄) can be written as a sum of polynomial terms. Each
term T is of the form ±cT Πy∈Xyiy,fx,T , where all iy,fx,T ’s
are non-negative integers. cT is a positive constant specific
to the term.
Restricted Polynomial: An equation system ˙̄X = f̄ (X̄) is
restricted polynomial if it is polynomial, and for each fx(X),
it is true that each negative term −T = −cT Πy∈Xyiy,fx,T

that occurs in it (cT > 0) has ix,fx,T >= 1.

3. MAPPING AN EQUATION SYSTEM
THAT IS POLYNOMIAL AND
COMPLETELY PARTITIONABLE

The key idea in translating a given different equation sys-
tem that is completely partitionable, into a distributed pro-



tocol, involves creating a state machine that contains (a)
one state per basic variable in the original equation system,
and (b) actions mapped onto these states. We denote the
corresponding state for a given variable x simply as “state
x”.

Behaviorally, a given variable x is mirrored in the protocol
as the fraction of processes in the system that are in state
x. Each term in the equation system is mapped to a set of
actions that ensure there is a corresponding rate of outflow
(or inflow) of processes in the distributed group of processes.

3.1 Generating Actions from Terms
Below, we describe two techniques to convert terms into

actions. All actions are executed periodically, once at the
beginning of every protocol period. The protocol period
duration is fixed at all processes. Protocol periods start at
arbitrary times at different processes. Although we assume
all clock drifts are negligible, our analysis holds for average
period across the group. The protocols do not require either
global clocks, or global synchronization, or agreement.
Flipping: A term of the type −c.x (where c is a constant)
occurring on the right hand side (r.h.s.) of ẋ = fx(X̄) is
mapped to a flipping action. A process in state x period-
ically (i.e., once every protocol period) and locally tosses
(“flips”) a biased coin that has heads probability p.c. p is a
normalizing constant chosen throughout the system so that
p ≤ 1, pc ≤ 1. The process transitions out of state x (and
into the corresponding state y where ẏ = fy(X̄) contains
the corresponding +c.x term, and y 6= x) only when the
coin turns up heads.
One-Time-Sampling: A term −T of the type
−T = −c.xix,fx,T .Πy∈X−{x}yiy,fx,T occurring on the r.h.s.
of ẋ = fx(X̄) with ix,fx,T >= 1 is mapped into a peri-
odic action (executed once every protocol period) as fol-
lows. A process in state x periodically samples (ix,fx,T −
1+Σy∈X−{x}(iy,fx,T )) other processes uniformly at random
from across the group. In addition, the process also flips
locally a biased coin that has heads probability p.c, where p
is the same normalizing constant as above chosen so pc ≤ 1.
Let the variables y ∈ X be ordered lexicographically. Then
the process makes a transition out of state x (and into the
corresponding state with the +T term) if and only if (a)
each of the first ix,fx,T − 1 target choices happen to be in

state x; and (b) for each j, 1 ≤ j ≤Σy∈X−{x}iy,fx,T , the jth

process sampled is in the same state as the jth variable in
Πy∈X−{x}yiy,fx,T (when ordered lexicographically); and (c)
the flipped local coin falls heads 2.

Theorem 1: Flipping and One-time Sampling are suffi-
cient in mapping equation systems that are restricted poly-
nomial and completely partitionable, into distributed proto-
cols that have equivalent behavior in infinite sized groups.
Proof: See [12].

Message Complexity: The message complexity of the
protocol is bounded by the size of the original equations.
The number of sampling messages sent out by a process in
state x, per protocol period, equals the sum of the number
of occurrences of all variables in negative terms in fx(X̄),

2The idea behind this condition is of course similar to that
behind the well-known Law of Mass Action. Flipping is in
fact a special case of One-time-sampling; we differentiate the
two for purposes of clarity.

less the number of negative terms in fx(X̄).
The Effect of Failures: Message delivery losses and pro-
cess failures modify the equation that is modeled by the pro-
tocol. If fractions x ∈ X are fractions of alive processes in re-
spective states, each original term T for a one-time-sampling
action takes on a multiplicative factor of ( 1

1−f
)|T |−1, where

f is the group-wide failure rate per connection attempt, and
|T | is the total number of variable occurrences in term T . In
order to faithfully model the original equations for a system
with a known f , it is enough to increase the heads proba-
bility of the flipped coin for one-time-sampling terms by a
multiplicative factor of ( 1

1−f
)|T |−1. The normalizing con-

stant p may need to be reduced so that in all the terms, the
biased coins’ heads probability is smaller than 1.0.

4. TRANSLATION CASE STUDIES
We explore two case studies to demonstrate application

of the design framework. This section describes protocols
for probabilistic responsibility migration and probabilistic
majority selection.

4.1 Case Study I: Responsibility Migration
We define a responsibility migration problem that aims at

selecting a subgroup of processes from the group and migrat-
ing membership of this subgroup. The subgroup members
could be used to share responsibility for a task, e.g., stor-
ing replicas of a given file, buffering multicasts received by
the group, running consensus, etc. In this paper, we dis-
cuss the responsibility migration problem in the context of
partial replication of files, and specifically, for a persistent
distributed file system. The problem can be formally stated
as follows:
Distributed Responsibility Migration Problem:

At any point of time in a group G of processes, each pro-
cess is either a responsible process, or not. A non-responsible
process can turn responsible only after contacting one that
is responsible. Further,
Safety: The number of responsible processes in the sys-
tem never becomes zero.
Liveness: A process that is currently responsible will
eventually become non-responsible.
Fairness (optional): Over a long time of running, each
process in the system bears responsibility for an equal frac-
tion of time.

For a persistent distributed file system application (e.g.,
a concept similar to the eternity storage service introduced
by Anderson in [2]), where each object is a file, each file
has a responsibility migration protocol running on its be-
half. At any time, the responsible processes for a file are
the only ones storing replicas of the file. Safety ensures
that a file, once inserted, never disappears from the system.
Liveness ensures that a responsible process deletes the file
eventually3.

Partial data replication has been studied for many years,
e.g., in databases [9, 11], email and file systems [14, 21, 22],
and more recently, in peer to peer systems [6]. Gray et al.
[11] argue against the dangers of large-scale replication and
warn that maintaining consistency among a large number
of replicas might counter the goal of scalability. Replica-
tion has two tasks: (a) replica location (placement), and (b)
replica management. Replica location decides, for a given

3This does not preclude the process from becoming respon-
sible again at some later point of time.



object, “how many” and “where” replicas of the object are
located. Replica management deals with how replicas are
accessed and updated in a consistent manner, e.g, active
and passive replica management are well known techniques
[7].

In this paper, we focus only on replica location - these
strategies can be combined with appropriate replica man-
agement strategies, although such issues are the subject of a
future article. Most existing solutions to replica location [20,
21] locate replicas statically and reactively, i.e., the subset
of hosts selected to hold replicas of a given object does not
change unless a special event happens, e.g., one of the hosts
could crash. This has the following three disadvantages:
(1) they can be expensive in systems containing millions of
hosts, where a large fraction have short lifetimes (O(several
minutes)) and rejoin multiple times (6.4 times/day as re-
ported in the Overnet system [4]) 4; (2) From a security
stand-point, static and reactive strategies allow an attacker
to easily locate and attack all the individual replicas of an
object. A malicious host could track the current replicas
for a given object, and then subject each of them simulta-
neously to a kind of directed attack (e.g., a DOS attack on
each host, sustained until the host crashed, would suffice) in
such a way that all copies of the object are destroyed; (3)
Static and reactive strategies attempt to satisfy safety but
neither liveness nor fairness.

Dynamic and migratory replication strategies can avoid
the above drawbacks, and provide other interesting proper-
ties. These strategies proactively move replicas of the object
among different hosts in the system. Thus, an attacker finds
it difficult to locate all the replica hosts, and even if the at-
tacker does locate them, it has only a short window before
the subgroup membership changes. Further, the availability
of the object is not affected by either short host availabil-
ity periods or massive failures in the system. Contrary to
intuition, endemic protocols can offer scalable and reliable
behavior w.r.t. liveness, safety, and fairness, while incur-
ring only a constant message overhead at each process in
the group. This paper focuses on the scalability and per-
formance of migratory replication strategies and not on a
security analysis.

Theorem 2 (Impossibility of achieving Safety): No re-
sponsibility migration protocol can achieve Safety. This is
because there exists a run where at some instant of time, all
responsible processes crash simultaneously.

4.1.1 A Simple Solution, and its Drawback
Consider a replica migration protocol where a process

storing an object replica hands it off to another process af-
ter a while and immediately deletes the object. A crash-stop
failure of the former process before the transfer effectively
destroys an object replica. Over time, the number of repli-
cas of a given object will then go down to zero (unless there
is a periodic refresh).

4.1.2 Endemic Protocol
We present an endemic protocol for probabilistic respon-

sibility migration, designed from differential equations for
endemic infectious diseases in a closed human population.

4One could restrict replicas to be stored only on hosts with
at least a threshold availability [5], but this does not address
the issue (2).
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Figure 1: An Endemic Protocol.

This natural analogy is appropriate because the desired be-
havior of the protocol bears resemblance to the persistent
survival of folklores in human society, and common cold in
human populations, both for centuries and in a manner that
resists the death of individuals. Let x, y, z be the fractions of
susceptible, infected, and immune individuals, respectively.
We consider a new variant of endemic equations:

ẋ = −βxy + αz

ẏ = βxy − γy

ż = γy − αz

(1)
Here, β, γ, α respectively stand for the rates of infection,

recovery, and susceptibility. α and γ each lie in the interval
(0, 1]. We assume that β is a small even integer, and β > γ.

This equation system is restricted polynomial and com-
pletely partitionable. Using the framework of Section 3, the
state machine derived has three states - x (susceptible or
receptive), y (infected or stash), z (immune or averse). A
process is responsible if and only if it is in the stash state.
The protocol, depicted in Figure 1, is derived using the rules
in Section 3.

The protocol uses a parameter b(= β). State actions are
executed periodically, i.e., once every protocol period. (i)
(γy term) A process p in the stash state periodically tosses
a coin with a biased heads probability γ - if the coin falls
heads, process p changes its state to averse. This transition
is accompanied by a deletion of the object replica at p. (ii)
(αz term) A process p in the averse state periodically tosses a
coin with heads probability α, and changes state to receptive
if this coin falls heads up. (iii) (βxy term) A process p in
the receptive state periodically chooses b targets uniformly
at random, and if any of these targets is in the stash state,
process p changes its state to stash (after an object transfer).

In order to make the protocol more efficient, we add a
fourth action and modify b = β/2. (iv) (βxy term) A pro-
cess p in the stash state periodically chooses b processes
uniformly at random; any of the selected target processes
that is receptive immediately transitions to the stash state
(after an object transfer). This does not change the dif-
ferential equations modeled. β is the contact rate and is
= N(1 − (1 − b

N
)2) ' 2b. One can also account for aborted

file transfers with an extra multiplicative factor for b.
The third averse state ensures that there is a time interval

after a process deletes a replica when it will not store the file
again. As we will see in Section 5, this helps the protocol
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Figure 2: Phase Portrait of an Endemic Protocol - Stable
Spiral: The plot shows the phase portrait obtained by simul-
taneously plotting the numbers of susceptibles and infectives
(X, Y ) = (Nx, Ny) over time, in a system with N = 1000
processes. This plot shows the system started at these ini-
tial points - (X, Y, Z)=blank square (999,1,0), dark square
(0,1,999), blank circle (0,1000,0), dark circle (500,500,0),
blank triangle (500,1,499), dark triangle (1,500,499), and
blank inverted triangle (333,333,334). For the parameter
setting N = 1000, α = 0.01, β = 4, γ = 1.0, the non-trivial
equilibrium point above is a stable spiral.

perform even when some processes are chronically averse.

4.1.3 Endemic Protocol Analysis
We analyze the endemic protocol5, with the goal of demon-

strating how the generated protocols are to be studied. First,
we note that the endemic protocol of Figure 1 satisfies
Liveness if γ > 0. Since the protocol is symmetric across
processes, it also satisfies Fairness. The probabilistic safety
of the protocol is discussed at the end of this section.

Equilibrium in the endemic equations occur when
(ẋ, ẏ, ż) = 0. Substituting in the above equations gives us
two equilibria: (x∞, y∞, z∞) = (N, 0, 0)

(x∞, y∞, z∞) = (γ/β, N−γ/β
1+γ/α

, N−γ/β
1+α/γ

) (2)

The first equilibrium results in all copies of the object
disappearing; all processes eventually turn receptive. The
second equilibrium is more desirable, since it guarantees
Safety. We study stability and convergence properties of
these equilibrium points. Since an explicit solution is diffi-
cult, we resort to an indirect analysis.
Are the Equilibria Self-Correcting? We study this
through a perturbation analysis. Let us assume a small de-
viation from the equilibrium point. Let us start the system
in the state:

(x0, y0, z0) = (x∞(1 + u), y∞(1 + v), z∞(1 + w))

where 0 ≤ u, v, w � 1. Substituting this into equations (1)
and simplifying, we get:

u̇ = βN−γ
1+γ/α

(w − u − v) (3a)

v̇ = γu (3b)
ẇ = α(v − w) (3c)

where the uv term is ignored (as u, v � 1), and where we

5To the best of our knowledge, equation (1) has not been
analyzed elsewhere in the literature.

have assumed that y∞ = N−γ/β
1+γ/α

6= 0. Eliminating w and v

from equations (3(a-c)), and introducing a new variable t,
we get in matrix form:

Ṫ = A · T , (4)
where σ = βN−γ

1+γ/α
and

T =

[

t
u

]

, A=

[

−(σ + α) −σ(γ + α)
1 0

]

Lemma 1: The only equilibrium point in equation system
(4) is (t, u) = (0, 0).
Proof: u̇ = 0 ⇒ t = 0, and then ṫ = 0 ⇒ u = 0.

Corollary: The equation system (3(a,b,c)) has only one
equilibrium point (u, v, w) = (0, 0, 0). This is easy to see by
substitution of the equilibrium value u = 0 into equations
(3(b,c)).

Theorem 3 (All paths lead to the Second Equilibrium):
For the system of differential equations (1), the equilibrium

point (x∞, y∞, z∞) = (γ/β, N−γ/β
1+γ/α

, N−γ/β
1+α/γ

) is always stable,

if both α, γ > 0 and N > γ
β
.

Proof: The stability of the equilibrium point (u, v, w) =
(0, 0, 0) depends on the trace and determinant of matrix A.
If the trace is negative and the determinant is positive, the
equilibrium point is stable. However, if the trace and deter-
minant were both positive, the equilibrium would be unsta-
ble. Finally, if the determinant is negative, the equilibrium
is a saddle point (i.e., some trajectories in the vicinity con-
verge to it, and the rest diverge) [23].

We can calculate:
τ = trace(A) = sum of leading diagonal elements in A

= −(σ + α), and
∆ = det(A) = σ(γ + α) (5)

By our choice of parameters, σ > 0 and α, γ > 0. There-
fore, we always have that τ < 0, ∆ > 0. This means that the
solution of u = 0 for equations (4) is always stable.

From equations (3(b,c)), Lemma 1 and the corollary, we
can say that any perturbations ((u, v, w) in the values of
(x, y, z)) around the second non-trivial equilibrium point
will die out, and the system is self-stabilizing around the
second equilibrium point. 2

Corollary: If N < γ
β

and α, γ > 0, then given that x, y, z >

0, the system of equations (1) has the (stable) equilibrium
point (N, 0, 0).
Corollary (First Equilibrium is a Saddle Point): If α, γ, σ >
0 and N > γ

β
, the first equilibrium point (x, y, z) = (N, 0, 0)

is a saddle point. This means that it is partly stable; as long
as y remains 0, the system converges back to the equilib-
rium. However, inclusion of even a single stasher will drive
the system towards the second, more stable equilibrium with
a larger, non-zero number of replicas for the object.

Convergence Complexity (Definition): The conver-
gence complexity for an equilibrium point P of a protocol
state machine with m states is an m−sized vector of func-
tions in variable t that describe the variation of fractions of
processes in the m respective states, if the system is started
in some neighborhood of point P .

For endemics, the nature of the trajectories around the



second stable equilibrium point, as well as the time taken by
the protocol for convergence, both depend on the eigenvalues
and eigenvectors of the matrix A. The eigenvalues of A are

λ1 =
τ+

√
τ2−4∆

2
, and λ2 =

τ−
√

τ2−4∆

2
.

From equations (5) in the last section, we can calculate
and simplify:

τ 2 − 4∆ = ( βN−γ
1+γ/α

− α)2 − 4 βN−γ
1+γ/α

γ

Three cases arise:
1. τ 2 − 4∆ < 0 (eigenvalues distinct and complex): The
variation of the displacement u in the number of susceptibles
x, as a function of time, can be calculated as:

u = u0e
−

t(σ+α)
2 cos(t

√

σγ − (σ−α)2

4
)

where u0 is the initial value of u. Notice that with time, u
decreases exponentially fast to 0. The cosine term causes a
(damped) oscillation in the value of u. This leads to a stable
spiral, which means that the convergence takes the form of
a damped oscillation.

2. τ 2−4∆ > 0 (eigenvalues distinct and real): The variation
of u as a function of time is given by

u = u̇0−λ2u0
λ1−λ2

etλ1 + u̇0−λ1u0
λ2−λ1

etλ2

where u0 and u̇0 are the initial values of u and u̇ respectively.
3. τ 2−4∆ = 0 (eigenvalues equal and real): The variation of

u as a function of time can be calculated as u = u0e
−t σ+α

2 ,
where u0 is the initial value of u.

Thus, the system converges exponentially quickly from the
neighborhood of the second equilibrium point. Figure 2 il-
lustrates a phase portrait, the simultaneous variation of three
variables x, y, z from several initial points. The equilibrium
point in the plot is a stable spiral.
Probabilistic Safety - Longevity of Object Replicas:
In any computer system, there is always a non-zero proba-
bility of all replicas of a object disappearing completely. We
present a back of the envelope calculation of the likelihood
of this happening in an endemic protocol that is at equilib-
rium. Each of the y∞ stashers creates new stashers at a rate
βx∞1 = γ. Each stasher is also turning averse at the same
rate γ, thus it is equally likely to die before creating any
new stashers. The likelihood that none of the y∞ stashers
create any new replicas is = ( 1

2
)y∞ .

If protocol parameters α, γ, b are chosen so that y∞ =
c.log2N , the probability of all stashers dying before creating
new ones is 1

Nc . If a protocol period is 6 minutes long, N =
1024 and 50 replicas gives us an expected object longevity
of 1.28× 1010 years. With N = 220 and 100 replicas, we get
an object lifetime of 1.45 × 1025 years.
4.2 Case Study II: Majority Selection Problem

Implementations of distributed systems often need to se-
lect between two choices (e.g., two differing types of file
replicas with the same filename) based on the majority of
voting processes in the system, e.g., in a distributed digi-
tal library application such as LOCKSS [16], for distributed
replica management, etc. We state the problem as:
Majority Selection: In a distributed group of N processes,
each process initially proposes either 0 or 1. The Majority
Selection protocol ensures that all processes agree on which
of the two values (0 or 1) has a majority of non-faulty pro-
posers.

This problem is related to the Consensus problem [10],
where each of N processes initially proposes a value (0 or
1), but eventually sets its output variable exactly once, and

x y z

change self’s state to x
if target in state x and local coin flip falls heads with prob. 3*p, 

select one target at random;

select one target at random;

select one target at random;

if target in state y and local coin flip falls heads with prob. 3*p

change self’s state to y

select one target at random;
if target in state x and local coin flip falls heads with prob. 3*p

change self’s state to z

if target in state y and local coin flip falls heads with prob. 3*p
change self’s state to z

Figure 3: The LV protocol for Probabilistic Majority Se-
lection.

to the same value as other non-faulty processes. Ref. [10]
shows that consensus is impossible to solve in an
asynchronous system.
Observation: Majority selection is impossible to solve in an
asynchronous system, since a solution could be used to im-
plement consensus.

Below, we give a specification for probabilistic majority
selection. The probabilistic majority selection runs forever,
and it maintains a running decision variable with possible
values 0 or 1 or b (undecided).
Probabilistic Majority Selection: In a distributed group
of N processes, each process initially proposes either 0 or
1. The Majority Selection protocol ensures that decision
variables at all non-crashed processes eventually agree, and
w.h.p. this is the same as the initial majority value.

Probabilistic majority selection is useful for applications
where the decision value is allowed to be set multiple times,
e.g., LOCKSS [16]6.

4.2.1 The LV Protocol
The Principle of Competitive Exclusion says that “Two

species competing for the same limited resource typically
cannot coexist” [23]. The classic Lotka-Volterra (LV) model
presents a mathematical modeling of the above phenomenon.
In the model, a variable x denotes the number of rabbits, and
variable y denotes the number of sheep, in a given ecosystem.
The LV model encapsulates the competition in a system of
differential equations. We use the following new equations
because they are appropriate to our purpose7:

ẋ = 3.x.(1 − x − 2y)

ẏ = 3.y.(1 − y − 2x)

(6)
To make this equation system complete, we add a new

variable z = 1 − x − y, and the equation

ż = −ẋ − ẏ

6However, consensus cannot be achieved using this as it can-
not be known when to finalize decision variable.
7These have not been presented elsewhere in literature.
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Figure 4: Phase Portrait of the LV Protocol: The
plot shows the phase portrait obtained by simultaneously
plotting (X, Y ) = (Nx, Ny) over time. This plot shows
a system of N = 1000 processes started at these ini-
tial points - (X, Y, Z)=blank square (100,200,700), dark
square (200,100,700), blank circle (300,500,200), dark circle
(500,300,200), blank triangle (100,800,100), dark triangle
(800,100,100), and blank inverted triangle (100,100,800).
All initial points with x < y converge to (0,1000,0), and
all initial points with x > y converge to (1000,0,0). Ini-
tial points with x = y move towards (333.3,333.3,333.3),
but may then move arbitrarily towards one of the two stable
points.

A glance at equation system (6) shows a +3x term on
the r.h.s. of ẋ, indicating that the equations may not be
partitionable. However, let us rewrite these equations as:

ẋ = +3xz − 3xy

ẏ = +3yz − 3xy

ż = −3xz − 3yz + 3xy + 3xy

(7)
These equations are both restricted polynomial, and com-

pletely partitionable. We can now apply Flipping and One-
time-Sampling to generate the state machine shown in Fig-
ure 3. This uses a normalizing paramter p. We call this
state machine as the “LV protocol”.

4.2.2 Analysis of the LV Protocol
The exact source equations used for the LV protocol are

not analyzed anywhere else in the literature.
Assuming the fractions of processes in different states to

be x, y, z respectively, the equilibrium points for equation
(6) (equivalent to equation (7)) are (x, y) = (0, 0), (0, 1),
(1, 0), and (1/3, 1/3). The proof of the following theorem
appears in [12].
Theorem 4 (Correctness of LV protocol): (x, y) = (0, 1)
and (1, 0) are stable points, while (0, 0) is an unstable point
and (1/3, 1/3) is a saddle point. Further:
1. If the system starts from any initial point that is to the
right of x = y, i.e., has x0 > y0 ≥ 0, x0 + y0 ≤ 1, it will
eventually converge towards (1, 0).
2. If the system starts from any initial point that is to the
left of x = y, i.e., has x0 < y0 ≥ 0, x0 + y0 ≤ 1, it will
eventually converge towards (0, 1).
3. If the system starts from any initial point that lies on
x = y, i.e., has x0 = y0 ≥ 0, x0 + y0 ≤ 1, it will eventually
converge towards (1/3, 1/3).

Thus, an infinite-sized system eventually self-stabilizes.2

Figure 4 depicts the phase portrait of the system for sev-
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Figure 5: Endemic Protocol - Massive Failures: In a set-
ting with N = 100, 000, b = 2, α = 10−6, γ = 10−3, the
number of stashers and replicas in a 100, 0000 host system
is very small. Massive failure of 50% of the hosts at time
t=5000 causes the system to stabilize quickly. However, we
do notice that the stabilization is more sluggish than in set-
tings with higher values of α, γ.

eral initial operating points.
In a finite-sized group of processes, the x = y = 1/3

point is unsustainable, because randomization will eventu-
ally push the system into either x < y or x > y. Section 5
studies LV protocol in finite (large) sized group.
Self-Stabilization, Open Groups: Since the LV proto-
col runs forever, it is also self-stabilizing. Even in an open
group, it proactively continues to converge back to an equi-
librium point in spite of dynamic changes (e.g., new pro-
cesses) that may perturb the operation point.
Convergence Complexity: For the LV state machine of
Figure 3, we calculated the convergence complexity of stable
point (0, 1) as (x(t), y(t)) = (u0e

−3t, 1 − (6u0t + v0)e
−3t),

in the neighborhood 0 ≤ u, v � 1. A symmetric result
holds for (1, 0). The LV protocol thus has an exponential
convergence complexity, implying that from an operating
point in the vicinity of a stable point (e.g., (0, 1)), it takes
O(log(N)) protocol periods to reach a global state where
O(1) processes are in the minority.

5. EXPERIMENTAL STUDIES
We now present initial results from C implementations of

an endemic protocol (designed for the application of a dis-
tributed file system for persistent storage of files), and an LV
protocol. The protocols were tested in a simulated environ-
ment, with multiple instances running synchronously over a
simulated network, all on a single machine (1.7 Ghz Intel
Celeron CPU, 256 MB RAM, WinXP Pro). We are able
to report numbers in 100,000-host groups. The Mersenne
Twister pseudorandom generator is used for random num-
ber generation. In all the plots, the “Time” variable on the
horizontal axis is normalized in protocol periods (6 minute
intervals).

5.1 Endemic Replication - Experiments
This is an implementation of the protocol from Section 4.1.

The protocol period is fixed at 6 minutes at each host. Val-
ues of b, γ, α vary for different experiments. All numbers are
for a single file only.
Overhead, Fault-tolerance and Self-Stabilization: A
100,000 host system initially at equilibrium is subject to fail-
ure of a random 50% of the hosts. b = 2, α = 10−6, γ = 10−3

are used. After the failure at time t = 5000, the number of
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Figure 6: Endemic Protocol - File Flux Rate = number
of file transfers per protocol period. Same experiment as in
Figure 5. Occurrence of a massive number of failures at time
t = 5000 does not affect file flux rate drastically.
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Figure 7: Endemic Protocol - Accuracy of Continuous
Time Analysis: The experimental results from the simula-
tion match well with those predicted by the mathematical
analysis. With b = 2, γ = 0.1, α = 0.001, the above plot
shows the median number (over a time interval 2000 periods
long) and the analytically expected numbers of both recep-
tives and stashers. The minimum and maximum measured
values over this interval are also shown.
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Figure 8: Endemic Protocol - Replica Untraceability and
Load Balancing: For a population of N = 1000 hosts and
b = 2, γ = 0.1, α = 0.001, the plot shows which hosts are
stashers at the end of every protocol period. The absence
of significant horizontal lines indicates good load balancing
(no hosts store a replica for very long). The absence of any
correlations w.r.t. time or hostid in the figure shows the dif-
ficulty faced by an attacker who seeks to destroy all replicas
of the file.

stashers (Figure 5) and the number of averse (not shown)
each drop by a factor of about two. The number of re-
ceptives does not change since after the failure, 50% of the
contacts initiated by any alive host are directed at a crashed
host, and are hence fruitless (this reduces the effective value
of b by 2, thus doubling the original equilibrium fraction
x∞ = γ

β
). Figure 6 also shows that the overhead stays low,

there is no wild variation in the number of stashers in spite
of the massive failure, and that this number converges to
the equilibrium value rather quickly.

The oscillation in the numbers of stashers and receptives,
occurring due to random choice of contacts in the endemic
protocol, eventually die out. The oscillations are more slug-
gish after the massive failure as fewer contacts are fruitful.

Notice that the behavior at times t > 2500 is also char-
acteristic of a heterogeneous setting, where half the hosts
are chronically averse to storing the file or even perhaps to
running the protocol.
Reality Check: In a 100,000-host system, each host would
be storing a given file for 0.1% of the time (since number
of stashers ' 100), effectively once every 100,000 hundred
hours, or 4166 hours. The file would be stored for an average
duration of 100 hours (a little over four days) each time
(expected time for a stasher to turn averse is 1

γ
= 1000

periods). If one assumes an average file size of 88.2 KB
as in [20], a 6 minute protocol period implies a bandwidth
utilization of 3.92 × 10−3 bps per file per host.
Analysis vs. Real Behavior: Our analysis in Sec-
tion 4.1.3 assumed an infinitely large group. Figure 7 com-
pares this with the results for large but finite groups. The
two tally very closely, thus verifying that the considered
group sizes are large enough for the analysis to apply.
Untraceability of Replicas: Figure 8 shows the distri-
bution of stashers over time in a population of N = 1000
hosts, with protocol parameters b = 2, γ = 0.1, α = 0.001.
The stable number of stashers is 88.63. The distribution of
the stashers (dark dots) does not appear to have correlations
either in time or across the host id. Unless the attacker
knows about the location of all the replicas of a file at a
given point of time and destroys all these copies before any
new stashers are created (with the current parameters, one
stasher is created every 40.6 seconds), the file will survive
inside the system. The plot also illustrates load balancing.
Trace-based simulations - Effect of Host Churn: Real
protocol deployments are also required to tolerate dynamic
stresses such as host churn, i.e., rapid arrival and depar-
ture. We model the worst effect of host failure - a host
loses all stored file replicas when it fails or departs. When
it rejoins the system, it is in the receptive state towards
all files but does not participate in any startup file trans-
fers. Figures 9 and 10 show the behavior of endemic replica-
tion in a 2000 host system under host churn, injected in the
form of availability traces taken from the Overnet system
[4]. The original availability traces were taken once every
hour; for our experiments, these were spread out over each
hour. The protocol period was set to 6 minutes, and the val-
ues of α = 0.005, γ = 0.1, b = 32 used. Hourly churn rates
were 10% to 25% of the system size. The endemic protocol
is seen to maintain a stable number of stashers and low file
flux rate, and is thus churn-resistant.

5.2 LV Protocol - Experiments
We present excerpts from simulation results of our LV

protocol implementation of Section 4.2 - further numbers
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Figure 9: Endemic Protocol - Effect of Host Churn A:
Churn traces were injected hourly into the system with the
protocol period set to 6 minutes at each host. N = 2000, b =
32, γ = 0.1, α = 0.005. This plot shows that the numbers of
stashers, averse and receptives remain stable in the system,
and the the number of stashers stays low.
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Figure 10: Endemic Protocol - Effect of Host Churn B:
For the experiment in Figure 9, this plot shows the number
of state transitions, per protocol period, across hosts.
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Figure 11: LV Protocol - Variation of Populations: In
a 100,000 process group, starting with 60,000 processes in
state x and 40,000 processes in state y.
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Figure 12: LV Protocol - Effect of Massive Failures: For
the same initial conditions as in Figure 11, half the processes
(selected at random) are caused to fail at time t = 100. Con-
vergence still occurs, although a little late (at time t = 862).

are in [13]. The normalizing parameter p = 0.01.
Convergence: Figure 11 shows that a 100,000 process
group started with 60,000 processes in state x and 40,000
processes in state y converges quickly towards having every-
one in the initial majority state x. The convergence time
is less than 500 rounds; with a protocol period of (say) 1 s,
this means convergence within 8 minutes.
Effect of Massive Failures: For the same initial condi-
tions as in Figure 11, half the processes, selected at random,
are caused to crash at time t = 100. Figure 12 shows that
the system converges nevertheless. The convergence time is
delayed, at t = 862.

6. MAPPING EQUATION SYSTEMS
THAT ARE POLYNOMIAL

Flipping and one-time-sampling may not suffice to trans-
late equation systems that are polynomials but not restricted
polynomials, even if they are completely partitionable. For
example, an equation ẋ = fx(X̄) might contain a +c term,
or a term −Πy∈Xyiy,fx,T term with ix,fx,T = 0.

We describe how to map equations that are both polyno-
mial and completely partitionable.
Tokenizing: In a completely partitionable and polynomial
equation system, consider a term −T = −cT .Πy∈Xyiy,fx,T

that occurs on the r.h.s. of the equation for variable ẋ. Fur-
ther, ix,fx,T = 0. Otherwise, flipping or one-time-sampling
can be used. A Tokenizing action can be combined with
Flipping or One-time-sampling to map this term into an ac-
tion. This is done as follows - choose a variable w ∈ X such
that iw,fx,T 6= 0. If no such variable exists, term T is a con-
stant c - in that case, rewrite +T as +c.(Σv∈Xv) and −T as
−c.(Σv∈Xv), and repeat these steps.

Now, create an appropriate flipping or one-time-sampling
action for processes in state w. This action is created in a
similar manner as in Section 3. However, modify the action
as follows: when all conditions are satisfied by the flipping or
one-time-sampling action (coin turns up heads, or three con-
ditions are true, respectively), then the process in question
does not transition, but instead creates a token specifying
the action. It immediately passes the token on to another
process that it knows is in state x. On receipt of the token,
the process in state x transitions to the state of the variable
that has the corresponding +T term. If no processes in the
system are in the state x, the token is dropped.
Theorem 5: Flipping, One-time-sampling and Tokenizing
are sufficient in mapping, into distributed protocols, equa-
tion systems that are polynomial.
Proof: Similar to Theorem 1.
Limitations of Tokenizing: After a token is generated
at a process p, the ability to pass this on to another pro-
cess that is in the needed target state for the token, requires
continuous maintenance of knowledge (at p) of which states
other processes are in (or at least one process for each possi-
ble state). This could be achieved by using a scalable mem-
bership protocol such as SWIM [8], yet may require opti-
mization especially if transitions are occurring very rapidly.

An alternative is to associate each token with an integer-
valued time-to-live (TTL) and pass it along a random walk
among the processes until a process in the target state is
encountered. A finite TTL has a probability of expiring
before an appropriate target is met, while an infinite TTL
may cause state transitions to occur too late. In either case,
the behavior of the protocol may be different from the orig-



inal equation system. However, the new behavior can still
be analyzed by modifying the original equation system with
multiplicative terms in tokenized actions that account for
the likelihood of the generated token being effective.

7. REWRITING EQUATIONS
We describe techniques that translate an equation system

into a mappable form, i.e., completely partitionable, and
either polynomial or restricted polynomial.
Rewriting an equation into a Complete form: Any

equation system ˙̄X = f(X̄) can be rewritten into an equiv-
alent equation system that is complete, by (i) introducing a
new variable z /∈ X so that z = 1 −Σx∈Xx, and (ii) consid-
ering instead the modified equation system, for variables in
X ′ = X∪{z}, consisting of the union of the original equation

system ˙̄X = f(X̄) and the equation ż = Σx∈X(−fx(X̄)).
E.g., LV equation rewriting in Section 4.2.
Normalizing: A completely partitionable system of dif-

ferential equations of the form ˙̄X = f(X̄) may not satisfy
Σx∈Xx = 1. Each variable may need to be normalized by
multiplying it with a constant quantity N = Σx∈Xx. N is a
constant since the sum of fractions of processes in different
states does not change in a complete system, but it may
appear as a constant in the modified equations.
E.g., The epidemic equation system (0) in Section 1 were de-
rived from the original system ẋ = − 1

N
xy, ẏ = 1

N
xy, where

x and y are the numbers of susceptibles and infectives. The
normalizing constant is N = x + y, the (fixed) group size.
Mapping Differential equations of higher Orders:
Some equation systems of higher order (all derivatives w.r.t.
t only) can be rewritten, e.g., an equation in a single vari-
able, that has arbitrary order k ≥ 1 (highest derivative of a
variable) and degree 1 (power of highest derivative), can be
rewritten as an equivalent equation system by introducing
new variables for higher order terms. If the original equa-
tion has m variables, the equation system of equations may
contain up to mk extra variables.
E.g., ẍ + ẋ = x can be rewritten as the completely parti-
tionable system: ẋ = u; u̇ = x − u; ż = −x.

Finally, some equations of arbitrary degree and order can
be rewritten. For example, ẍ2 +5ẍ+ ẋ−3 = 0 can be solved
for ẍ, and then the above techniques applied.

8. CONCLUSION
We have proposed a systematic framework that translates

systems of differential equations into practical distributed
protocols. The equation systems initially considered are of

the form ˙̄X = f(X̄), with polynomial terms on the right
hand side. The protocols are equivalent to the equations,
in the sense that their behavior in an infinite-sized system
is the same as that of the differential equations. We have
also given techniques that can be used to rewrite differential
equations of higher order and degree into a form that allows
translation. We have shown the usefulness of this design
framework by using it to design probabilistic protocols for
endemic migratory replication and majority selection. We
believe that the framework can be very useful in the de-
sign of distributed protocols, because many fields of science
represent ideas and results through differential equations.
Other Questions: (1) What is a comprehensive set of
rewriting techniques? (2) [12] presents mapping techniques
for arbitrary non-polynomial equation systems - are these
sufficient? (3) Can one formalize the relation between pro-
tocol performance at infinite group size and finite group size,

as in [15, 18]? (5) Is complete=completely partitionable?
Acknowledgements: We thank Steve Bond for useful dis-
cussions.
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Errata. The above version of the paper is identical to the
one presented in Proceedings of the 23rd Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Comput-
ing (PODC), 2004. The following corrections apply to the
ACM PODC version of the paper.

• The protocol in Figure 1 is a variant of that obtained
through the methodology of Section 3.

• Section 4.1.3 changes notation: x, y, z become numbers
of processes in different states. And β = 2b/N (rather
than 2b). Figure 2 reflects the earlier notation of Sec-
tion 4.1.2,

• Theorem 5 should read as Flipping, One-time-sampling
and Tokenizing are sufficient in mapping, into distributed
protocols, equation systems that are both polynomial
and completely partitionable.


