
Asymmetric k-Center is log∗ n-Hard to Approximate

Julia Chuzhoy
Comp. Sci. Dept.

Technion
Haifa 32000, Israel.

cjulia@cs.technion.ac.il

Sudipto Guha
Dept. of Comp. & Inf. Sci.
University of Pennsylvania

Philadelphia, PA 19104

sudipto@cis.upenn.edu

Eran Halperin∗

Int. Comp. Sci. Inst. &
Comp. Sci. Div., UC Berkeley

Berkeley, CA

eran@cs.berkeley.edu

Sanjeev Khanna†

Dept. of Comp. & Inf. Sci.
University of Pennsylvania

Philadelphia, PA 19104

sanjeev@cis.upenn.edu

Guy Kortsarz
Dept. of Comp. Sci.
Rutgers University
Camden, NJ 08102

guyk@camden.rutgers.edu

Joseph (Seffi) Naor‡
Comp. Sci. Dept.

Technion
Haifa 32000, Israel

naor@cs.technion.ac.il

ABSTRACT
In the Asymmetric k-Center problem, the input is an in-
teger k and a complete digraph over n points together with
a distance function obeying the directed triangle inequality.
The goal is to choose a set of k points to serve as centers and
to assign all the points to the centers, so that the maximum
distance of any point to its center is as small as possible.
We show that the Asymmetric k-Center problem is

hard to approximate up to a factor of log∗ n − Θ(1) unless
NP ⊆ DTIME(nlog log n). Since an O(log∗ n)-approximation
algorithm is known for this problem, this essentially resolves
the approximability of this problem. This is the first natural
problem whose approximability threshold does not polyno-
mially relate to the known approximation classes. We also
resolve the approximability threshold of the metric k-Center
problem with costs.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.1 [ Dis-
crete Mathematics]: Combinatorics.
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1. INTRODUCTION
The input to the Asymmetric k-Center problem con-

sists of a complete digraph G with vertex set V , and a weight
(or distance) function c : V × V → R

+ ∪ {0}. The weight
function cmust satisfy the (directed) triangle inequality, i.e.,
cuv + cvw ≥ cuw for all u, v, w ∈ V . The goal is to find a set
S of k vertices, called centers, and to assign each vertex of V
to a center, such that the maximal distance of a vertex from
its center is minimized. That is, we want to find a subset
S ⊆ V of size k, that minimizes

max
v∈V

min
u∈S

cuv. (1)

The quantity in (1) is called the covering radius of the cen-
ters S.
The problem is well-known to be NP-hard [11] and there-

fore it is natural to seek approximation algorithms with
small approximation ratio for the problem. If the function c
is assumed to be symmetric as well, i.e. cuv = cvu, the above
problem is known as the (metric) k-Center problem. This
is one of the early problems for which approximation algo-
rithms were designed, and an optimal approximation ratio of
2 is known from the results of [6, 17, 12, 15, 18]. Subsequent
to the solution of this problem a significant number of other
problems in location theory were solved (see [22]); however,
the approximability of the asymmetric case remained open1,
and was evoked by Shmoys [21].
For any positive integer n, define the iterated log func-

tion log(i) n as follows: log(1) n = log n and log(i+1) n =
log(log(i) n). (All logs are to the base 2.) The function log∗ n
is defined to be the least integer i for which log(i) n ≤ 1. In a

1The problem is inapproximable if the triangle inequality
does not hold.
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significant step, Panigrahy and Vishwanathan [19] designed
an elegant O(log∗ n) approximation algorithm for the
Asymmetric k-Center problem, which was subsequently
improved by Archer [3] toO(log∗ k). Interestingly, [19] showed
that by using at most 2k centers it is possible to approxi-
mate the Asymmetric k-Center problem within a factor
of log∗

(
n
k

)
compared to the optimal solution with k centers.

This approximation ratio tantalized researchers, perhaps be-
cause log∗ n is so close to being a constant (in practice), but
nevertheless no improved approximation ratio was found.
We show that the approximation algorithms of [19, 3] are

asymptotically best possible, unless NP ⊆ DTIME(nO(log log n)).
This is a lower bound for a natural problem that does not
conform to any of the known classes of approximation (see
[1]). Recently, in a sequence of papers [14, 13], it was shown
that the Group-Steiner-Tree Problem is hard to approx-
imate up to a poly-logarithmic factor. However, a hardness
of log∗ n is not even polynomially related with any of the
known approximation classes.

1.1 Our results
Our main result is a log∗ n − O(1) hardness of approxi-

mation for the Asymmetric k-Center problem. More pre-
cisely, we show that:

• Asymmetric k-Center cannot be approximated within
a factor of log∗ n − α, for some constant α, unless
NP ⊆ DTIME(nlog log n).

• The above result holds also for bicriteria algorithms,
that are allowed to use O(k) centers while their solu-
tion is compared against an optimum that uses only k
centers. This is tight since the algorithm of [19], us-
ing 2k centers can achieve an approximation factor of
log∗

(
n
k

)
.

Finally, we show that the (metric) k-Center problem
with (non-uniform) vertex costs is hard to approximate within
ratio better than 3. This matches the 3–approximation of
Hochbaum and Shmoys [17].

1.2 Techniques
Our results build on a sequence of recent papers leading

to a hardness of (d− 1− ε) on the approximation factor for
d-Hypergraph Cover [16, 10, 9, 7, 8] (the vertex cover
problem on hypergraphs where each hyperedge contains ex-
actly d vertices). In order to optimize our leading constant
we use one of the results of Dinur, Guruswami and Khot [7],
which they call “the simple construction”. This result can
be viewed as a construction of an instance of Set-Cover
from an instance of a Gap-3SAT(5) problem – the hyper-
graph vertices correspond to sets while the hypergraph edges
correspond to elements. As shown by Arora et al. [2], there
is some 0 < ε < 1, such that it is NP-hard to distinguished
between the yes-instances of Gap-3SAT(5) (where the in-
put formula is satisfiable) and the no-instances (where at
most a fraction (1− ε) of the clauses are simultaneously sat-
isfiable). The construction of [7] achieves a strong bicriteria
gap: If the input 3SAT(5) formula is a yes-instance then
an O(1/d)-fraction of the sets are sufficient to cover all the
elements. If the formula is a no-instance then any collection
of (1− 2/d)-fraction of the sets covers at most a (1− f(d))-

fraction of the elements with f(d) = 1/2poly(d). Suppose we
were to “compose” it with another Set-Cover instance, in
the sense that the elements of the first instance are actually

the sets of the second instance. Then any (1− 2/d)-fraction
of the sets in the first instance covers at most (1 − f(d))-
fraction of the sets of the second instance. If the second
Set-Cover instance is constructed using d′ = 2/f(d), then
the already covered sets of the second instance are not suf-
ficient to cover all the elements of the second instance. In
other words, no (1 − 2/d)-fraction of the sets in the first
instance can “cover within distance 2” all the elements of
the second instance. This process can be continued further,
with the limitation being the rapid growth in the construc-
tion size since the value of d in successive instances must
grow as 2poly(d).
More specifically, our reduction works as follows. Given an

instance ϕ of Gap-3SAT(5), we build a directed graph, with
h+2 layers of vertices. The number of vertices is O(nlog log n)
and the parameter h is log∗ n−Θ(1). For each pair of con-
secutive layers i, (i+1), there are directed edges from some
layer i vertices to some layer (i + 1) vertices. This graph
is transformed into an instance of Asymmetric k-Center
as follows. The set of vertices remains the same and the
distance c(v, u) is the length of the shortest path from v to
u.
Layer 0 of the vertex set consists of only one vertex which

is connected to every vertex in layer 1. For any two other
consecutive layers i, (i+1), we build a Set-Cover instance,
where layer i vertices serve as sets, and layer (i+1) vertices
as elements. There is a directed edge from layer i vertex v to
layer i+1 vertex u if and only if the element corresponding
to u belongs to the set corresponding to v.
If the formula ϕ is a yes-instance, all the vertices can

be covered by k centers with radius 1, i.e., apart from the
vertex at level 0 (which we include in our solution), we find
solutions to all the Set-Cover instances, using in total only
k − 1 sets.
If ϕ is a no-instance, we prove that it is impossible to

cover all the vertices by k centers with radius h. To do this,
it is enough to show that it is impossible to choose k − 1
vertices in layer 1 that cover (with radius h) all the vertices
in layer h + 1. Indeed, we can assume that every solution
uses only vertices in layers 0 and 1, since any solution must
contain the layer 0 vertex (because it is impossible to cover
this vertex otherwise), and this vertex covers (with radius
h) all the vertices except for layer h+ 1. As we are allowed
to use radius h, there is no point in taking any vertex v of
some layer i > 1 to the solution – any predecessor of v in
layer 1 can cover all the vertices v can cover.

Organization
The rest of the paper is organized as follows. Section 2
presents the bicriteria hardness for Set-Cover that we re-
quire. The reduction to Asymmetric k-Center is given
in Section 3. The hardness proof also provides an explicit
construction of an integrality gap of log∗ n − O(1) for the
linear program used by Archer [3]. In Section 4 we show
tight lower bounds for the (metric) k-Center problem with
(non-uniform) vertex costs.

2. A BICRITERIA HARDNESS RESULT
FOR HYPERGRAPH COVER

In this section we set up the stepping stone for the hard-
ness of Asymmetric k-Center problem. We will use the
d-Hypergraph Cover problem which is defined as follows.
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Given a set of M vertices and a collection of N hyperedges
(i.e., subsets of vertices) of cardinality d, the goal is to find
a minimum set of vertices S such that every hyperedge con-
tains at least one vertex from S. This problem can also be
viewed as a Set-Cover instance where the vertices of the
hypergraph correspond to sets and the hyperedges corre-
spond to elements. Each element belongs to exactly d sets.
The reduction is performed from the Gap-3SAT(5) prob-

lem, which is defined as follows. The input is a CNF for-
mula ϕ on n variables and 5n

3
clauses. Each clause contains

exactly 3 literals and each variable appears in 5 different
clauses. Formula ϕ is called a yes-instance if it is satisfiable.
It is called a no-instance (with respect to some ε) if at most
a fraction (1 − ε) of clauses are simultaneously satisfiable.
As shown by Arora et al. [2], there is ε : 0 < ε < 1, such
that it is NP-hard to distinguish between the yes and the no
instances of the problem.
The goal of this section is to prove the following theorem:

Theorem 2.1. Given a Gap-3SAT(5) formula ϕ and in-
teger d, we can construct a d-Hypergraph Cover instance
with the following properties:

• If ϕ is a yes-instance, then all the hyperedges in the
hypergraph can be covered using a fraction 3

d
of the

vertices.

• If ϕ is a no-instance, then no subset containing at most
a (1− 1

d
)-fraction of the vertices covers all the hyper-

edges.

• The hypergraph size is nO(log d)2dβ

for some sufficiently
large constant β > 0 and it can be constructed in time
polynomial in it its size. Moreover, if M denotes the
number of vertices and N is the number of hyperedges,

then N ≤ 2dβ

M .

We note that the above theorem follows directly from [7,
8]. The reduction presented below is identical to the one
called “simple construction” in [7]. However, we find it more
convenient to change the parameter p of the construction
(which is explained below) to (1− 3

d
) and to use the bound

on the size of s-wise t-intersecting families which appears in
[8]. We provide the construction for the sake of completeness
and also because we use some of its properties which are not
proven explicitly in [7, 8].

2.1 s-wise t-intersecting families
Suppose we are given a ground set R. A family F of sub-

sets of R is called s-wise t-intersecting if for every collection
of s sets F1, F2, ..., Fs ∈ F , we have |F1 ∩ F2... ∩ Fs| ≥ t.
Following [7, 8], define the weight of a set F ⊆ R to be

p|F |(1 − p)|R\F |, i.e., the probability of obtaining F when
each element of R is chosen independently at random with
probability p. The weight of a collection F of sets is defined
to be the sum of the weights of the sets in the collection.

Lemma 2.1 (Lemma 2.5, [8]). Let s, t be some inte-
gers, and let p < 1 − 1

s
. Then the weight of any s-wise

t-intersecting family is at most

e−2t(1− 1
s
−p)2

1− e−2s(1− 1
s
−p)2

Setting s = d
2
, p = 1− 3

d
, the bound simplifies to e−2t/d2

1−e−1/d .

Using 1 − e−x ≥ x
2

for 0 ≤ x ≤ 1
2

the bound becomes

2de−2t/d2
.

Corollary 2.1. Let p = 1 − 3
d
and t = 4d2 ln d. Then

the weight of any d
2
-wise t-intersecting family is at most 1

2d
.

2.2 The d-Hypergraph Cover Hardness
Our starting point is the Raz Verifier for Gap-3SAT(5)

with ! repetition, which is defined as follows. Given an
instance ϕ of Gap-3SAT(5), the verifier chooses indepen-
dently at random l clauses C1, . . . , C� from ϕ. In each clause
Ci, 1 ≤ i ≤ !, one variable αi (called a distinguished vari-
able) is chosen. Prover 1 receives the collection of clauses
C1, . . . , C� and is expected to answer with an assignment
to all the variables appearing in the clauses, and prover 2
receives the collection of distinguished variables α1, . . . , α�

and is expected to answer with an assignment to all the
distinguished variables. The verifier then checks that the
assignment of prover 1 satisfies all the clauses and that the
answers of the two provers are consistent.
Let X and Y denote the collections of all the possible

queries of prover 1 and 2 respectively. Given query x ∈ X,
let Rx be the set of all the possible answers of prover 1 that
satisfy all the clauses in x. Clearly, |X| = nO(l) and for all
x ∈ X, |Rx| = 7l. Similarly, for each y ∈ Y , Ry denotes
the set of all the possible answers of prover 1 to query y.
Each random string r defines a constraint ϕ which depends
on the queries x ∈ X, y ∈ Y corresponding to r. Note that
for every ax ∈ Rx assigned to x there is exactly one value
ay ∈ Ry that satisfies the constraint ϕ. For convenience, the
constraint ϕ is viewed as a function ϕx→y : Rx → Ry. The
set of constraints is denoted by Φ. Note that every x ∈ X
appears in exactly 3� constraints and every y ∈ Y appears
in 5� constraints.

Theorem 2.2 ([4, 2, 20]). Given a set of nO(�) con-
straints Φ as above, there exists an universal constant α > 0
such that:

• If ϕ is a yes-instance, then there is an assignment that
satisfies all the constraints.

• If ϕ is a no-instance, then no assignment satisfies more
than a 2−α� fraction of the constraints.

Given a Gap-3SAT(5) instance ϕ, we build a d-hypergraph
H = (V,E). The vertex set is V = {〈x, F 〉 | x ∈ X,F ⊆ Rx}.
The set of hyperedges is defined as follows. Suppose x, x′ ∈

X, such that for some y ∈ Y , ϕx→y, ϕx′→y ∈ Φ. Let a ∈ Rx,
a′ ∈ Rx′ be some assignments to x, x′. We say that these
assignments are consistent if they imply the same assign-
ment to every y′ such that ϕx→y′ , ϕx′→y′ ∈ Φ, that is,
ϕx→y′(a) = ϕx′→y′(a′).
Now for any pair x, x′ ∈ X, such that for some y ∈

Y , ϕx→y, ϕx′→y ∈ Φ, consider any d vertices of the form
〈x,A1〉, 〈x,A2〉, . . . , 〈x,A d

2
〉 and 〈x′, B1〉, 〈x′, B2〉, . . . , 〈x′, B d

2
〉.

Then there is a hyperedge between these vertices if and only

if there is no pair of consistent assignments a ∈ ⋂ d
2
i=1 Ai,

a′ ∈ ⋂ d
2
i=1 Bi. It will be useful to make the following obser-

vation about the construction:
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Proposition 2.1. Consider a collection 〈x,A1〉, . . . , 〈x,A d
2
〉,

〈x′, B1〉,. . .,〈x′, B d
2
〉 of d vertices. Suppose now that for

some y the constraints ϕx→y, ϕx′→y exist and there is no
hyperedge containing the d vertices 〈x,A1〉, . . . , 〈x,A d

2
〉 and

〈x′, B1〉,. . .,〈x′, B d
2
〉. Then there must be an ax ∈ ⋂ d

2
j=1 Aj

and an ax′ ∈ ⋂ d
2
j=1 Bj such that assigning ax to x and ax′

to x′ is consistent with some assignment b to y.

For every subset A ⊆ RX , define its weight to be the
probability of being chosen if each element of RX is chosen
independently with probability p = 1 − 3

d
. The weight of a

vertex 〈x,Ai〉 is the weight of Ai.

Lemma 2.2 (Lemma 3.5, [7]). If Φ is satisfiable then
there exists a hypergraph cover of weight at most (1−p)|X| =
(3/d)|X|.

The above lemma follows from choosing all vertices 〈x, F 〉
where F does not include the correct assignment to x. The
next lemma follows from the contrapositive of Corollary 2.1,
that is, if a collection of sets {Ai} has large weight then there
must be s = d

2
sets in the collection whose intersection is at

most 4d2 lnn.

Lemma 2.3 (Implicit in proof of Lemma 3.6, [7]).
Suppose we are given a collection A of subsets of RX . If the
set of vertices {〈x, F 〉|F ∈ A} has weight greater than 1

2d
,

then there are d
2
sets Ax(1), . . . , Ax(

d
2
) in the collection A

such that if T (x) =

d
2⋂

j=1

Ax(j) then |T (x)| ≤ t = 4d2 ln d.

Lemma 2.4 (Lemma 3.6, [7]). If there exists a hyper-
graph cover of weight less than (1− 1

d
)|X| then we can satisfy

1
32d5 ln2 d

of the constraints Φ.

Proof. The proof follows the proofs of Proposition 3.4
and Lemma 3.6 in [7]. We present the proof here for the
sake of completeness.
For each variable x, let I(x) be the set of vertices 〈x,A〉,

A ⊆ Rx, which are not in the cover. Define X ′ to be the set
of variables x ∈ X for which the weight of I(x) is at greater
than 1

2d
.

It follows from a simple averaging argument that at least
1
2d

fraction of the variables in X belong to X ′. From now on,
we will focus only on the variables in X ′. Since each variable
in X participates in the same number of the original x → y
constraints, the variables in X ′ participate in at least 1

2d
fraction of Φ.
For each x ∈ X ′ define Ax = {F |〈x, F 〉 ∈ I(x)}. By

Lemma 2.3, there exists sets A1(x), A2(x), A d
2
(x) in Ax such

that ∣∣∣∣∣∣
d
2⋂

i=1

Ai(x)

∣∣∣∣∣∣ ≤ t = 4d2 ln d

Define T (x) =

d
2⋂

i=1

Ai(x). We show an assignment to X ∪ Y

that satisfies a large fraction of constraints. For x ∈ X ′, pick

any of t assignments in T (x) randomly as an assignment for
x.
For a variable y ∈ Y , pick an arbitrary xy ∈ X ′ such

that the constraint ϕxy→y exists. Choose a random element
a ∈ T (xy) and give y the assignment ϕxy→y(a).
Now let us evaluate the fraction of constraints {ϕx→y|x ∈

X ′} which are satisfied. If x = xy then the probability we
satisfy ϕx→y is 1

t
.

Suppose x �= xy then since there is no hyperedge between
the d vertices 〈x,A1(x)〉, . . . , 〈x,A d

2
(x)〉, and 〈xy, A1(xy)〉,

. . . , 〈xy, A d
2
(xy)〉 (otherwise we would contradict that we

have a cover), by Proposition 2.1, there must be an assign-
ment a ∈ T (x) and a′ ∈ T (xy) such that assigning a to
x and a′ to xy imply the same assignment to y. Now the
probability that y was assigned the value consistent to the
assignment of a′ to xy is 1

t
and further the probability that

x was assigned the value a is 1
t
. Therefore with probability

at least 1
t2

the constraint ϕx→y is satisfied.
Since the fraction of constraints involving variables in X ′

is at least 1
2d
, we satisfy (in expectation) a fraction 1

32d5 ln2 d
of the constraints in Φ. Thus the lemma follows.

Setting ! = Θ(log d), so that 1
32d5 ln2 d

> 2−α� holds, we
ensure that for a no-instance, no cover of weight less than
(1− 1

d
)|X| exists.

The above constructs a weighted instance of a hypergraph
cover. The number of vertices in the construction is M =
|X| · 27�

and the number of edges is N ≤ |X| · 15� · 27�d

(since for each x ∈ X, there are at most 15� queries x′ ∈ X
such that ϕx→y, ϕx′→y ∈ Φ for some y ∈ Y ). The instance
can be converted into an unweighted instance by repeating
vertices appropriately along the lines of [10, 7, 8]. This

will increase the construction size by a factor of 2poly(d).
Therefore, for some constant sufficiently large β, the size

of the construction is bounded by nO(log d) · 2dβ

, and N ≤
2dβ

M .
This completes the proof of Theorem 2.1.

Corollary 2.2. In the above hypergraph, in the no-instance
case, no subset containing at most a (1− 2

d
)-fraction of the

vertices covers more than a 1 − 1

d2dβ fraction of the hyper-

edges.

Proof. Assume for contradiction that we can choose 1−
2
d
fraction of the vertices that covers a fraction 1− 1

d2dβ of the

hyperedges. We can then cover the remaining hyperedges by

using a vertex for each edge. But since N/d2dβ ≤ M/d, we
would be using less than (1− 2

d
)M+M

d
= (1− 1

d
)M vertices to

cover all the hyperedges, which contradicts Theorem 2.1.

In what follows, we refer to the Set-Cover instances used
in the above corollary as the basic Set-Cover instances with
parameter d.

3. HARDNESS OF ASYMMETRICK-CENTER
We now use the machinery of Section 2 to present our

hardness result for Asymmetric k-Center.

The reduction
We will use the basic Set-Cover instances to build a di-
rected graph with h + 2 layers of vertices. For each pair of
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consecutive layers i, (i + 1), there are directed edges from
some layer i vertices to some layer (i + 1) vertices corre-
sponding to encoding of basic Set-Cover instances with
suitably chosen parameters. This graph is transformed into
an instance of Asymmetric k-Center as follows. The set
of vertices remains the same and the distance c(v, u) is the
length of the shortest path from v to u.
Layer 0 of vertices consists of only one vertex, which is

connected to each vertex in layer 1. For each pair of con-
secutive layers (i, i+ 1), 1 ≤ i ≤ h, we use multiple disjoint
copies of the basic Set-Cover instance, denoted by SCi,
as constructed in Section 2, with a parameter di that will
be chosen later. In this Set-Cover instance, the sets are
represented by the vertices of layer i and the elements are
represented by vertices of layer (i + 1). There is a directed
edge from layer i vertex v to layer i + 1 vertex u if and
only if the element corresponding to u belongs to the set
corresponding to v.
Let Mi and Ni denote the number of sets and elements

in the basic Set-Cover instance with parameter di. Layer
i Set-Cover instance, SCi, consists of ci disjoint copies of
the basic Set-Cover instance with parameter di. Since the
vertices of layer i are both the sets of SCi and the elements
of SCi−1, we need to ensure that ciMi = ci−1Ni−1. To this
end, we set ci =

∏i−1
j=1 Nj ·∏h

j=i+1 Mj . Let the number of
vertices in layer i be denoted by Vi. The number of vertices
in layer 1 is therefore V1 = c1M1 =

∏h
j=1 Mj .

We define the parameters di as follows. d1 is a sufficiently

large constant, and di+1 = 2d
2β
i (where β is the constant

from Section 2). The number of layers h is the maximum

integer for which dh ≤ log(3) n holds.

Proposition 3.1. For all i ≥ 1, β ≥ 3, and d1 ≥ 3,

log(i) di ≤ 3β log d1.

Proof. For every i ≥ 2, it suffices to prove that log(j) di ≤
d3β

i−j for all 1 ≤ j ≤ i − 1. We prove this by induction
on j. The case j = 1 is immediate. For the inductive
step, observe that log(j+1) di ≤ log(d3β

i−j) = 3βd2β
i−j−1, where

the inequality is due to the induction hypothesis for j and
the equality is by definition of di−j . Since d1 ≥ 3 and

β ≥ 3, we have 3β ≤ dβ
1 ≤ dβ

i−j−1, which yields the de-

sired log(j+1) di ≤ d3β
i−j−1.

Thus, for some constant γ we have log∗ dh ≤ h+γ. Let us
choose h so that h+γ ≤ log∗ n−3. Then log∗ dh ≤ log∗ n−3
and thus dh ≤ log(3) n holds. Therefore, we can choose h as
large as log∗ n−Θ(1).

The size of the construction
The total number of vertices in this instance is

|V | =
h+1∑
i=1

Vi ≤ h

(
h∏

i=1

Ni ·
h∏

i=1

Mi

)

≤ h
h∏

i=1

(
nO(log di)2d

β
i

)2

≤ h ·nO(h log dh) · 22hd
β
h ≤ nlog log n.

Notice that log∗ n = log∗ |V | − Θ(1), and so h = log∗ |V | −
Θ(1) as well.

Analysis of the reduction
We now show that our Asymmetric k-Center reduction
creates a gap between a yes-instance and a no-instance.

Lemma 3.1 (Yes-Instance). Suppose ϕ is a yes-instance.
Then k = 4V1/d1 + 1 centers can cover all the vertices with
radius 1.

Proof. Consider the following centers. At layer 0 take
the single vertex, and at every layer 1 ≤ i ≤ h take ki =
ci

3Mi
di

= 3Vi
di

vertices according to the solution of SCi (which

is ci disjoint basic Set-Cover instances). Clearly, these
centers cover every vertex in V within radius 1.
To bound the number of centers, we first show that the

sequence ki decreases geometrically, namely, ki ≤ ki−1
d1

. In-
deed, for all i ≥ 2,

ki

ki−1
=

3Vi

di
· di−1

3Vi−1

≤ ci−1Ni−1

ci−1Mi−1
· di−1

di

(since Vi−1 = ci−1Mi−1 and Vi = ci−1Ni−1 )

≤ 2d
β
i−1 · di−1

di
(since Ni−1 ≤ 2d

β
i−1Mi−1)

<
1

d1
(since di = 2d

2β
i−1).

Therefore, the total number of vertices we use in the so-
lution is k = 1 +

∑
i ki < 1 + k1(1 +

1
d1−1

) < 1 + 4V1
d1

. (The

last inequality assumes d1 ≥ 4.)

Lemma 3.2 (No-Instance). If the formula ϕ is a no-
instance, then it is impossible to cover all the vertices with
radius h, using k = 4V1/d1 + 1 centers.

To prove this lemma, it suffices to show that no k − 1
vertices in layer 1 cover (with radius h) all the vertices in
layer h + 1. Indeed, any solution must contain the vertex
in layer 0 (as this is the only way to cover it). This vertex
covers within radius of h, all the vertices except for those
in layer h + 1. In order to cover the layer h + 1 vertices
(with radius h), there is no point selecting centers in any
layer other than 1, since for any center v in a layer i > 1,
we can cover the same vertices by choosing a predecessor of
v in layer 1.
It is therefore straightforward that the proof of Lemma 3.2

would be completed once we show the following.

Lemma 3.3. Let S be a set of k − 1 centers in layer 1.
Then in every layer i, the fraction of vertices unreachable
from S is at least δi = 3/di.

Proof. Proceed by induction on i. For i = 1 this is clear
since the fraction of vertices in layer 1 that are not in the
solution is 1− k−1

V1
= 1− 4

d1
≥ 3

d1
assuming d1 ≥ 7. Consider

now i ≥ 1, and assume the fraction of vertices in layer i that
are reachable from S is at most 1− δi.
Consider the Set-Cover instance SCi. The fraction of

vertices in Vi (the sets for SCi) that are reachable from S is
at most 1−δi. The fraction of basic Set-Cover instances in
SCi in which these sets constitute more than a 1− 2

di
fraction

is thus at most (1− 3
di
)/(1− 2

di
) = 1− 1

di−2
. The remaining
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basic Set-Cover instances comprise at least a 1
di−2

fraction

of the ci basic instances in SCi. In each of these, at least

1/di2
d

β
i fraction of the elements are not reachable from S,

by Corollary 2.2. Thus, in total, the fraction of vertices of
layer i+ 1 that are unreachable from S is at least

1

di − 2
· 1

di2d
β
i

≥ 3

di+1
.

Our main result now follows from Lemmas 3.1 and 3.2 (in
conjunction with Section 2).

Theorem 3.1. Asymmetric k-Center cannot be approx-
imated within ratio log∗ n − α for some constant α, unless
NP ⊆ DTIME(nlog log n).

We note that this hardness result holds even for algo-
rithms that are allowed to use a constant times k centers –
one only needs to change accordingly the constants in the
proof (e.g., d1). In addition, there is no constant factor ap-
proximation for Asymmetric k-Center, unless P = NP.
This follows immediately by using our construction with a
constant h.

3.1 Integrality Gap
Our reduction also provides an explicit construction of an

integrality gap of log∗ n − Ω(1) with respect to the linear
program used by Archer [3].2 Indeed, the no-instance yields
an instance for which any solution with k centers whose opti-
mum solution has value (radius) log∗ n−Ω(1). On the other
hand, the reduction of [7] constructs a d-Hypergraph Cover
instance, and thus every layer i + 1 vertex in our construc-
tion is adjacent to exactly di layer i vertices. It follows that
a fractional solution where every vertex at layer i is taken
to be a center to the extent of 1

di
, covers all the vertices of

layer i + 1 within distance 1. (See [3] for the precise linear
program formulation.) Hence, all vertices in all the layers
can be fractionally covered within a distance 1, and the total
number of fractional centers is (similar to the yes-instance)
only 1 +

∑
i

Vi
di

≤ k
3
.

This integrality gap instance construction does not actu-
ally require the reduction of [7]. We can simply replace every
SCi instance by a random d-Hypergraph Cover instance,
i.e., let every vertex in layer i+1 have incoming edges from
di (distinct) random vertices in layer i. It can be verified
using a union bound that with high probability, the result-
ing d-Hypergraph Cover instance satisfies the properties
that we require from Section 2.

4. IMPLICATIONS FOR SYMMETRIC
DISTANCE FUNCTIONS

The same reduction (but with h = 2) shows another in-
teresting hardness result, namely, for metric k-Center with
costs (sometimes called weighted k-center). In this problem
we are given a distance metric c over the vertices, a nonneg-
ative cost function w for the vertices, and a cost bound k.
(Note that being a metric, c is symmetric.) The goal is to

2This is under a slightly nonstandard notion of integrality
gap, because the linear program is actually not a relaxation
of Asymmetric k-Center.

choose a subset S of the vertices having total cost at most
k so as to minimize

max
v∈V

min
u∈S

cuv. (2)

Here, too, the vertices of S are called centers and the quan-
tity in (2) is called the covering radius of S.
This problem specializes to the familiar metric k-Center

problem when all vertices have unit cost. Hochbaum and
Shmoys [17] show a factor 3 approximation algorithm for this
problem (metric k-center with costs). If we were allowed to
discard a small fraction of points, a lower and upper bound
of 3 was known [5]. In what follows we show that the result
of [17] is tight.

Theorem 4.1. It is NP-hard to approximate the metric
k-Center problem with costs to a factor less than 3.

Proof. We construct the same layered instance as in
Asymmetric k-Center, but with h = 2. Since the number
of layers is constant the instance can be constructed in poly-
nomial time. The edges in this case are however undirected.
The vertices in the last layer (h+ 1 = 3) have arbitrarily

large weight (greater than k suffices) to rule out choosing
them in any solution. The weight of any other vertex is 1.
If the formula ϕ is a yes-instance, then by Lemma 3.1

we can cover all the vertices within radius 1 using at most
4V1/d1 centers from layers 0, 1 and 2.
If ϕ is a no-instance, then by Lemma 3.2 we know that by

allocating the entire budget to centers in layer 1, one cannot
cover all the vertices in layer 3 within radius 2. For the
purpose of covering layer 3 within radius 2, we can replace
any center in layer 2 with a neighbor of it from layer 1, and
thus no set of centers of total cost k can cover all of layer 3
with radius smaller than 3.
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