
Modified Booth Truncated Multipliers

Alok A. Katkar and James E. Stine
VLSI Computer Architecture, Arithmetic, and CAD Research Laboratory

Department of Electrical and Computer Engineering
Illinois Institute of Technology
Chicago, Illinois 60616, USA

{akatkar,jstine}@ece.iit.edu

ABSTRACT
Truncated multiplication provides an efficient method for
reducing the power dissipation and area of rounded parallel
multipliers in digital signal processing systems. With this
technique, the products of parallel multipliers are rounded
to a shorter word size and the least-significant columns of
the multiplication matrix are not used. This technique pro-
vides significant savings in terms of power dissipation for un-
signed multiplication. Although previous implementations
involved unsigned and signed array and tree multipliers, this
technique can be equally applied to multiplication using
Booth-encoding. This paper presents the design and im-
plementation of parallel and truncated multipliers that use
Booth-encoding and compressors for signed multiplication.
Initial estimates indicate that truncated parallel multipliers
dissipate less power than standard parallel multipliers for
operand sizes of 16 bits.

Categories and Subject Descriptors
B.2.4 [Arithmetic and Logic Structures]: High-Speed
Arithmetic; B.5.1 [Register-Transfer-Level Implemen-
tation]: Design; B.7.1 [Integrated Circuits]: Types and
Design Styles—algorithms implemented in hardware, VLSI

General Terms
Algorithms, Performance, Design

Keywords
Arithmetic, VLSI

1. INTRODUCTION
Digital signal processing (DSP) is used in a variety of

applications such as cellular telephones, radios, and video
applications. According to the semiconductor industry as-
sociation’s economic forecast, the growth for DSP processors
will continue to grow at an increasing rate [1]. However, as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’04, April 26–28, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-853-9/04/0004 ...$5.00.

the demand for new, smaller, and faster processors appear,
the need for processors which can handle fast arithmetic is
apparent [2].

Most DSP computations involve the use of high-speed par-
allel multipliers to accumulate numbers, therefore, the de-
sign of fast and efficient multipliers is imperative [3]. In fact,
approximately 8.72% of all instructions in typical scientific
programs are multiplies [4]. Thus, hardware designers have
recognized this and have devoted considerable silicon area
to building high-speed multipliers [5]. However, multipliers
are a major source of power dissipation in digital signal pro-
cessors [6], [7]. Therefore, the design of parallel multipliers
for DSP applications should be efficient while still being able
to handle low-power applications.

There are a variety of different implementations for par-
allel multipliers. However, most algorithms involve a shift
and an add technique where the multiplicand is condition-
ally added to the obtain the final result. Although there
are many algorithms for accomplishing this, there is no re-
duction in the height of partial products that need to be
summed to produce the final result. The Booth algorithm
attempts to reduce the number of partial-products by re-
coding the multiplier so that groups of its bits select mul-
tiples of the multiplicand [8]. Although, Booth encoding
can typically reduce 45% to 80% the number of operations
in a typical DSP application [9], Booth-encoded multipliers
typically dissipate more power than multipliers that are not
Booth-encoded [10], [11].

Although there have been many techniques to reduce the
power dissipation of parallel multipliers, one technique that
is well-suited for digital signal processing systems is trun-
cated multiplication [12], [13], [14]. In [15], truncated mul-
tiplication is shown to significantly reduce the power over
standard parallel multiplier for different operand sizes. This
paper examines further reductions in power dissipation that
can be achieved through the use of truncated multiplica-
tion using Booth-encoding. Section 2 gives an overview of
truncated multipliers, and Section 3 discusses the proposed
method. Section 4 gives results using a AMI 0.6 µm stan-
dard cell library. Finally, Section 5 presents conclusions.

2. TRUNCATED MULTIPLIERS
Parallel multipliers are typically implemented as either

carry-save array or tree multipliers [16]. In many computer
systems, the (n+m)-bit products produced by parallel mul-
tipliers are rounded to r bits to avoid growth in word size.
As presented in [17], truncated multiplication provides an
efficient method for reducing the hardware requirements of

444

rounded parallel multipliers. With truncated multiplication,
only the r+k most-significant columns of the multiplication
matrix are used to compute the product. The error pro-
duced by omitting the m+n−r−k least-significant columns
and rounding the final result to r bits is estimated, and
this estimate is added along with the r + k most-significant
columns to produce the rounded product. Although this
leads to additional error in the rounded product, various
techniques have been developed to help limit this error.

One method to compensate for truncation is Constant
Correction Truncated (CCT) Multipliers [12]. In this method,
a constant is added to columns n+m−r−1 to n+m−r−k
of the multiplication matrix. The constant helps compen-
sate for the error introduced by omitting the n + m− r − k
least-significant columns (called reduction error), and the
error due to rounding the product to r bits (called rounding
error). The expected value of the sum of these error Etotal

is computed by assuming that each bit in A, B and P has
an equal probability of being one or zero. Consequently,
the expected value of the total error is the sum of expected
reduction error and the expected rounding error as

Etotal = Ereduction + Erounding

Etotal =
1

4

S−k−1X

q=0

(q + 1) · 2−m−n+q +
1

2
·

S−1X

z=S−k

2−m−n+z

where S = m + n − r [14]. The constant Ctotal is obtained
by rounding Etotal to r + k fractional bits, such that

Ctotal = −round(2r+k · Etotal)

2r+k

where round(x) indicates that x is rounded to the nearest
integer. Although the value of k can be chosen to limit the
maximum absolute error to a specific precision, this paper
assumes the maximum absolute error is limited to one unit
in the last place (i.e., 2−r).

Another method to compensate for the truncation is using
the Variable Correction Truncated (VCT) Multiplier [13].
With this type of multiplier, the values of the partial product
bits in column m+n−r−k−1 are used to estimate the error
due to leaving off the m+n−r−k least-significant columns.
This is accomplished by adding the partial products bits in
column m + n − r − k − 1 to column m + n − r − k. To
compensate for the rounding error, a constant is added to
columns m+n− r−2 to m+n− r−k of the multiplication
matrix. The value for this constant is

Ctotal = 2−S−1(1 − 2−k+1)

which corresponds to the expected value of the rounding
error truncated to r + k bits.

Another method, called a Hybrid Correction Truncated
(HCT) Multiplier, uses both constant and variable correc-
tion techniques to reduce the overall error [14]. In order to
implement a HCT multiplier, a new parameter is introduced,
p, that represents the percentage of variable correction to use
for the correction. This percentage is utilized to choose the
number of partial products from column m + n − r − k − 1
to be used to add into column m + n − r − k. The calcula-
tion of the number of variable correction bits is the following
utilizing the number of bits used in the variable correction
method, NHCT

NHCT = floor(NV CT × p)

Similar to both the CCT and the VCT multipliers, a HCT
multiplier uses a correction constant to compensate for the
error. However, since the correction constant will be based
on a smaller number bits than a VCT multiplier, the cor-
rection constant is modified as follows

CV CT
′ = 2−r−k−2 · NHCT

This produces a new correction constant based on the differ-
ence between the new variable correction constant and the
constant correction constant.

Ctotal =
round((CCCT − CV CT

′) · 2r+k)

2r+k

Most DSP and embedded systems involve the use of signed
and unsigned binary numbers. Therefore, multiplication re-
quires some mechanism to compute two’s complement mul-
tiplication. A common implementation for two’s comple-
ment multipliers is to use the basic mathematical equation
for multiplication and use algebra to formalize a structure.
The most popular of these implementation are called Baugh-
Wooley multipliers [18]. Each structure utilizes the same
tree structure, however, several columns require complemen-
tation as well as adding compensation constants for sign-
extension.

3. BOOTH-ENCODED TRUNCATED
MULTIPLIER IMPLEMENTATIONS

Booth’s algorithms can also be used to handle negative bi-
nary representations by utilizing a Signed-Digit (SD) num-
ber system [8]. Signed-Digit (SD) number systems allow
both positive and negative digits within the number For ex-
ample, the value 5 in radix 10 can be represented in binary as
0111. The main idea behind Booth’s algorithm is to elim-
inate long strings of ones by changing or recoding the bit
representation.

A disadvantage to Booth’s algorithm is that the algorithm
is inefficient when zeroes and ones are interspersed randomly
within a given input. This can be improved by examining
three bits of the multiplier at a time instead of two [19], [20].
This reduces the number of partial products and is called
radix 4 Modified Booth’s Algorithm [19]. Instead of utilizing
a controlled adder or subtractor, a multiplexor is utilized to
choose a 0 or a multiple of the multiplicand. The output of
the multiplexor can then be fed into an adder tree. Radix 4
Booth encoded digits have values from {2, 1, 0, 1, 2}.

Radix 4 digits can be obtained directly from two’s comple-
ment values. In this case, groups of three bits are examined,
with one bit overlap between groups. The general idea is to
reduce the number of partial products by grouping the bits
of the multiplier into pairs and selecting the partial prod-
ucts from the set {0, M, 2M} where M is the multiplicand.
Because this implementation typically outputs 2 bits for de-
coding the bits, it sometimes is called a Booth 2 multiplier.
Each partial product is shifted two bit positions with respect
to the previous row. In general, there will be �n+2

2
� partial

product rows where n is the operand length [19].
One of the interesting components to Booth multipliers is

that it employs sign extension to make sure that the sign
is propagated appropriately. Since SD notation is utilized,
the sign of the most-significant bit must be sign extended to
allow the proper result to occur. Figure 1 shows an 8-bit by
8-bit signed radix-4 modified Booth multiplier dot diagram

445

illustrating how sign extension is utilized within the partial
product matrix where each partial product is represented as
a dot. Each partial product is 9 bits since numbers as large
as two times the multiplicand can be handled.

1 E3

1 E2

E1 E1 E1

S4
S3

S2

S1

E4

56 0123415 13 10 914 12 11 8 7

Figure 1: Dot Diagram of Signed Booth 2 Multiplier
with n = m = 8.

Sign extension is shown in Figure 1 by two values SX
and EX where X represents the row in the partial product
matrix. The sign extension is handled by S which indicates
whether the recoded Booth value is negative or positive.
Each S term is then added to the unit in the last place (ulp)
for proper two’s complement conversion. It is important to
note that sign extension can clear out the bits in the partial
product matrix when the multiplicand is negative and the
multiplier selects a negative value. Consequently, a simple
EXCLUSIVE-NOR between the sign bit of the multiplicand
and the high order bit of the partial product selection bits
in the multiplier generates the one to clear the leading ones
correctly as indicated by the E in Figure 1 [19]. Moreover,
since the most-significant bit of the input operands is the
sign bit, Booth 2 multipliers reduce the number of partial
product rows to �n

2
�.

Truncated Booth multipliers can utilize the same meth-
ods discussed in Section 2. However, since truncation can
remove the bits from the two’s complement conversion, the
constant has to be modified. For example, Figure 2 shows
the block diagram of a truncated 8 by 8 Booth 2 multiplier
that uses the constant correction method (i.e. CCT) with
r = 9, k = 2. A truncated multiplier removes S1, S2, and
S3 from the partial product matrix causing the total error to
be altered. Therefore, the total error for a CCT Booth mul-
tiplier is modified by adding an extra term, Eulp to account
for removing these bits:

Etotal = Ereduction + Erounding + Eulp

Etotal =
1

4

S−k−1X

q=0

�q + 1

2
� · 2−m−n+q +

1

2
·

S−1X

z=S−k

2−m−n+z

3

8
·

min{� S−k−1
2 �,�n

2 −1�}X

q=0

2−m−n+q·2

The value of 3/8 is the probability mass function that Booth
recoding requires sign-extension. The constant that pro-
vides the correction, Ctotal, is obtained by rounding Etotal

to r+k fractional bits as before. For example, the correction
constant shown in Figure 2, indicated by the circled dot, is
Ctotal = 0.5 × 2−9.

Tree multipliers are excellent structures for summing par-
tial products. Unfortunately, tree multipliers can have ir-
regular interconnections due to non regularity within the
reduction matrix. Compressors are sometimes utilized in-
stead of counters to make interconnections more regular. A

E4

E1E1E1

E2

E3

S4

1

1

78111214 91013 6 515

Figure 2: Dot Diagram of Truncated Signed Booth 2
Multiplier with n = m = 8, r = 9, and k = 2.

(p, q) compressor takes p inputs and produces q outputs.
In addition, it takes k carry-in bits and produces k carry-
out bits. The (4, 2) compressor, which is probably the most
common type of compressor, takes 4 input bits and 1 carry-
in bit, and produces 2 output bits and 1 carry-out bit [21].
The fundamental difference between compressors and tradi-
tional multi-operand adders is that the carry-out bit does
not depend on the carry-in bit.

Compressors must be interconnected properly so that it
can compute the correct values for the final carry-propagate
adder. Unfortunately, trees create three dimensional struc-
tures and interconnections between each row for a given par-
tial product matrix can be difficult to manage. Fortunately,
(4:2) compressors can be placed to reduce the overall height
so it linear and more manageable. The overall idea is to
partition each column into groups of four sub arrays and
use (4:2) compressor to combine the sub array. Compressor
trees organize each row into groups of four and connect each
output in parallel to form a tree structure. Since the organi-
zation of compressors is more regular, they lend themselves
to efficient implementations at the custom-level, thereby, be-
ing popular choices in many datapaths.

4. RESULTS
Several designs were implemented to examine the impact

upon a typical Application Specific Integrated Circuit (ASIC)
designs. A sub-micron standard-cell libraries is selected to
examine the impact of these designs [22]. Synthesis is per-
formed with Synopsys Design Compiler and Cadence Silicon
Ensemble is used in script mode and performs both place-
ment and routing. Verilog netlists are generated for several
truncated and non-truncated multipliers.

Layouts are generated for each multiplier and parasiti-
cally extracted to obtain accurate numbers for area, delay,
and speed in AMI 0.6 µm technology. Delay numbers are ob-
tained utilizing Synopsys’ Pathmill. Pathmill is a cell-based
static timing tool that utilizes netlists to achieve accurate
delay estimates. Power dissipation is obtained using Synop-
sys’ Powermill and simulated for 20, 000 ns. The stimuli to
the simulator is pseudo-random, time-based vectors. Each
simulator accepts transistor level netlists along with para-
sitic resistor and capacitor extraction.

Table 1 gives power, delay and area estimates for trun-
cated Booth 2 multipliers with operand sizes of 16 bits.
Again, the values for k are chosen to limit the maximum ab-
solute error to one unit in the last place. Compared to non-
truncated Booth 2 multipliers, truncated multipliers dissi-
pate between 19 and 27 percent less power, and has between

446

Truncation Power Delay Area
Method k p (mW) (ns) (mm2)

- - - 273.12 18.70 0.837
CCT 4 - 199.41 17.20 0.689
VCT 3 - 220.61 17.47 0.639
HCT 3 0.7 205.14 17.46 0.625

Table 1: Post-layout Estimates for n = m = r =
16 Signed Booth 2 Truncated and Non-Truncated
Multipliers.

18 and 25 percent less area. The worst-case delay is not af-
fected because the critical path is not dramatically altered.
Similar designs can be also be utilized for higher-radix and
unsigned Booth multipliers.

5. SUMMARY
For multimedia and digital signal processing application

that do not require correctly rounded multiplication, trun-
cated multipliers offer a significant hardware savings while
introducing a small amount of additional error. Simulations
indicate that for applications where correct rounding of the
result is not needed, truncated multipliers have significant
savings in terms of area, delay, and power.

This paper examines modified Booth-encoded multipli-
ers utilized with compressors. Power, delay, and area es-
timates are made to compare standard parallel tree multi-
pliers against truncated multipliers. The value of k is chosen
to limit the maximum absolute error to one unit in the last
place, however, the correction constant is altered to handle
additional error introduced during sign extension. Other
methods for reducing power dissipation can be applied to
truncated Booth multipliers to further improve their power
dissipation such as canonical operand encodings and optimal
(4:2) compressor structures.

6. REFERENCES
[1] ITRS, “International technology roadmap for

semiconductors,” tech. rep., ITRS, 2003.

[2] G.-K. Ma and F. J. Taylor, “Multiplier Policies for
Digital Signal Processing,” IEEE ASSP Magazine,
vol. 7, no. 1, pp. 6–19, 1990.

[3] Y. N. Chang, J. H. Satayanarayana, and K. K. Parhi,
“Systematic design of high-speed and low-power
digit-serial multipliers,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal
Processing, vol. 45, no. 12, pp. 1585–1596, 1998.

[4] S. F. Oberman, H. Al-Twaijry, and M. J. Flynn, “The
SNAP Project: Design of Floating-Point Arithmetic
Units,” in Proceedings of the 13th Symposium on
Computer Arithmetic, pp. 156–165, 1997.

[5] H. Al-Twaijry and M. J. Flynn, “Multipliers and
Datapaths,” Tech. Rep. CSL-TR94-654, Stanford
University, 1994.

[6] S. S. Mahant-Shetti, P. T. Balsara, and C. Lemonds,
“High performance low power array multiplier using
temporal tiling,” IEEE Transactions on VLSI, vol. 7,
no. 1, pp. 121–124, 1999.

[7] C. J. Nicol and P. Larsson, “Low power multiplication
for FIR filters,” in Proceedings of the 1997

International Symposium on Low Power Electronics
and Design, pp. 76–79, 1997.

[8] A. D. Booth, “A signed binary multiplication
technique,” Q. J. Mech. Appl. Math., vol. 4,
pp. 236–240, 1951.

[9] K. Muhammad and K. Roy, “On complexity reduction
of FIR digital filters using constrained least squares
solution,” in Proceedings of the 1997 International
Conference on Computer Design, pp. 196–201, 1997.

[10] T. K. Callaway and E. E. Swartzlander, Jr.,
“Power-delay characteristics of CMOS multipliers,” in
Proceedings of the 13th IEEE Symposium on
Computer Arithmetic, pp. 26–32, 1997.

[11] J. H. Satyanarayana and K. K. Parhi, “A theoretical
approach to estimation of bounds on power
consumption in digital multipliers,” IEEE
Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 44, no. 6, pp. 473–481,
1997.

[12] M. J. Schulte and E. E. Swartzlander, Jr., “Truncated
multiplication with correction constant,” in VLSI
Signal Processing VI, pp. 388–396, October 1993.

[13] E. J. King and E. E. Swartzlander, Jr.,
“Data-dependent truncated scheme for parallel
multiplication,” in Proceedings of the Thirty First
Asilomar Conference on Signals, Circuits and
Systems, pp. 1178–1182, 1998.

[14] J. E. Stine and O. M. Duverne, “Variations on
truncated multiplication,” in Euromicro Symposium
on Digital System Design, pp. 112–119, 2003.

[15] M. J. Schulte, J. G. Hansen, and J. E. Stine, “Reduced
power dissipation through truncated multiplication,”
in IEEE Alessandro Volta Memorial International
Workshop on Power Design, pp. 61–69, 1998.

[16] K. Bickerstaff, M. J. Schulte, and E. E. Swartzlander,
Jr., “Parallel Reduced Area Multipliers,” Journal of
VLSI Signal Processing, vol. 9, pp. 181–192, April
1995.

[17] Y. C. Lim, “Single-precision multiplier with reduced
circuit complexity for signal processing applications,”
IEEE Transactions on Computers, vol. 41, no. 10,
pp. 1333–1336, 1992.

[18] C. R. Baugh and B. A. Wooley, “A two’s complement
parallel array multiplication algorithm,” IEEE
Transactions on Computers, vol. C-22, pp. 1045–1047,
1973.

[19] G. W. Bewick, Fast multiplication: algorithms and
implementation. PhD thesis, Stanford University,
1994.

[20] O. L. MacSorley, “High-Speed Arithmetic in Binary
Computers,” IRE Proceedings, vol. 49, pp. 67–91,
1961.

[21] A. Weinberger, “A 4:2 carry-save adder module,” IBM
Technical Disclosure Bulletin, vol. 23, no. 8,
pp. 3811–3814, 1982.

[22] J. Grad and J. E. Stine, “A Standard Cell Library for
Student Projects,” in International Conference on
Microelectronic Systems Education, pp. 98–99, IEEE
Computer Society Press, 2003.

447

	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index

