Preprint
UCRL-JC-144755

Large Scale Parallel
Structured AMR
Calculations Using the
SAMRAI Framework

Andrew M. Wissink, Richard D. Hornung, Scott R. Kohn,
Steve S. Smith, Noah Elliott

This article was submitted to
SCO01 Conference on High Performance Networking and
Computing, Denver, CO, November 10-16, 2001

U.S. Department of Energy

Lawrence

Livermore AugUSt 2001
National
Laboratory

N=""

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http://www.ntis.gov/

OR
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.lInl.gov/tid/Library.html

Large Scale Parallel Structured AMR Calculations Using
the SAMRAI Framework -

Andrew M. Wissink, Richard D. Hornung, Scott R. Kohn, Steve S. Smith, Noah Elliott
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
[awissink,hornung,skohn,smith84,elliott22]@lInl.gov

ABSTRACT

This paper discusses the design and performance of the par-
allel data communication infrastructure in SAMRAI, a soft-
ware framework for structured adaptive mesh refinement
(SAMR) multi-physics applications. We describe require-
ments of such applications and how SAMRAI abstractions
manage complex data communication operations found in
them. Parallel performance is characterized for two adap-
tive problems solving hyperbolic conservation laws on up to
512 processors of the IBM ASCI Blue Pacific system. Re-
sults reveal good scaling for numerical and data communica-
tion operations but poorer scaling in adaptive meshing and
communication schedule construction phases of the calcu-
lations. We analyze the costs of these different operations,
addressing key concerns for scaling SAMR computations to
large numbers of processors, and discuss potential changes
to improve our current implementation.

1. INTRODUCTION

Structured adaptive mesh refinement (SAMR) [4, 5] is an
effective technique for focusing computational resources in
numerical simulations of partial differential equations that
span a range of disparate length and time scales [7, 8]. AMR
is used to dynamically increase grid resolution locally to
resolve important fine-scale features in the solution. The
goal is to achieve a more efficient computation than one
in which a globally-uniform fine grid is applied. SAMR is
a particular brand of adaptive mesh refinement technology
in which the locally-refined grid is defined with structured
grid components. Like other dynamic mesh refinement ap-
proaches, SAMR presents complications for parallel com-
puting that are absent in uniform grid calculations. The
complexity of data communication arises from the need to
transfer data between grid regions of differing resolution on

*This work was performed under the auspices of the U.S. De-
partment of Energy by University of California Lawrence
Livermore National Laboratory under contract number W-
7405-Eng-48. UCRL-JC-144755.

(©2001 Association for Computing Machinery. ACM ac-
knowledges that this contribution was authored or co-
authored by a contractor or affiliate of the U.S. Government.
As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

SC2001 November 2001, Denver ©2001 ACM 1-58113-293-
X/01/0011 $5.00

irregular locally-refined grid configurations. Since grid gen-
eration may be performed frequently, the complexity of com-
puting grid-dependent data exchange information cannot be
amortized over an entire calculation. Also, substantial data
transfers may occur as the grid is refined and coarsened.

The SAMRALI (Structured Adaptive Mesh Refinement Ap-
plication Infrastructure) [16, 15] library was developed to
support a wide range of parallel multi-physics SAMR ap-
plications. It provides general adaptive meshing and data
management capabilities as well as a flexible algorithm de-
velopment framework. SAMRAI is similar in spirit to other
libraries that support SAMR computations [3, 18]. However,
it provides novel tools to manage the complexity algorithms
and data management in parallel multi-physics applications.

This paper begins by discussing characteristics of some ap-
plications built using SAMRAI and how the needs of such
problems influenced the design of the framework. Then, we
describe the parallel data communication infrastructure in
the library. Lastly, we investigate the performance of adap-
tive calculations using this infrastructure. We provide a
breakdown of computational costs in example calculations
run on up to 512 processors of ASCI IBM Blue Pacific, and
draw conclusions about overhead, load imbalances, and com-
munication costs.

2. BACKGROUND

The basic features of the SAMR approach are rooted in the
work of Berger, Oliger, and Colella [4, 5]. The computa-
tional grid consists of a collection of structured grid com-
ponents, organized into a hierarchy of nested levels of spa-
tial (and often temporal) grid resolution. Each level in the
hierarchy represents a domain with uniform grid spacing.
The domain on each level is expressed as a disjoint union of
logically-rectangular “patch” regions. A level is defined by
selecting cells for refinement on the next coarser level in the
hierarchy and clustering these cells into a new set of patches.
The selection of cells to refine depends on the needs of each
computation.

SAMR offers potentially large savings in memory and com-
putational effort when compared to globally-uniform static
mesh calculations. However, difficulties associated with its
implementation often make the application of SAMR pro-
hibitive. Apart from the development of numerical methods
for locally-refined grids, the complexity of data management
is a fundamental hurdle. Data must be exchanged among

irregularly configured patch regions on a single level and be-
tween patches on different levels of resolution. These data
communication patterns change whenever the grid changes.
Data management becomes more complex in multi-physics
applications. Such problems typically involve many data
quantities with different centerings on the grid (cell-centered,
node-centered, etc.), irregular data such as particles, and
different solution procedures that share variables and use
distinct data communication patterns.

The SAMRALI framework facilitates the development of par-
allel multi-physics SAMR applications by providing soft-
ware tools to automatically manage the sort of applica-
tion complexity described above. A primary design goal
of SAMRAL is that the framework is extensible to problems
outside the scope of traditional SAMR applications. As a
result, the imprint of any particular SAMR algorithm on
the SAMRAI communication infrastructure has been mini-
mized. The object-oriented software design in SAMRAI cap-
tures the salient features of data communication in SAMR
applications in a general framework. This not only en-
ables extensible and specializable high-level algorithm com-
ponents in SAMRAT [16], but allows application developers
to specialize communication operations for their needs.

2.1 Application Characteristics

In this section, we briefly describe two multi-physics appli-
cations built using SAMRAI. Each is a research effort under
development to explore the utility of SAMR technology in
it respective problem domain. Parallel performance results
involving these efforts will be presented in the future. Here,
we introduce them to describe the characteristics of applica-
tions built with SAMRAT and to motivate the discussion of
the SAMRAI communication infrastructure which appears
later.

Multi-physics applications often couple different algorithmic
components, each of which provides a distinct part of an
overall solution scheme. An example of this is the ALPS
(Adaptive Laser Plasma Simulator) [9] code under devel-
opment in the Center for Applied Scientific Computing at
Lawrence Livermore National Laboratory. ALPS uses SAMR
to simulate laser-plasma instabilities, using three numerical
models to represent different physical processes. Integration
of the full system of equations uses separate advance steps
for the plasma fluid variables (density, pressure, velocity,
and temperature), the light variables (amplitude and inten-
sity), and a nonlinear potential equation that couples ions
and electrons. ALPS developers specialized parts of SAM-
RAI (via class inheritance) and created application-specific
routines [16]. The application takes advantage on the abil-
ity of the SAMRAI communication framework to coordinate
complex data transfer, involving several solution variables
and coarsen/refine operations during the different phases of
the solution process.

Multi-physics applications also require data quantities hav-
ing different centerings on the grid and possibly new data
structures that are not part of the underlying support frame-
work. A hybrid continuum-particle application [14] code de-
veloped as a collaboration between the SAMRAI team and
A. Garcia of San Jose State University uses SAMR to couple
an Eulerian fluid model to a Direct Simulation Monte Carlo

(DSMC) [1] particle model. The goal of this simulation ef-
fort is to explore hybrid methods for modeling complex fluid
interface dynamics, such as the Richtmeyer-Meshkov insta-
bility. This code extends previous continuum-DSMC hybrid
work [12] by allowing multiple DSMC regions, and support-
ing full adaptive mesh capabilities for particles in parallel.
This application uses the ability of SAMRALI to support new
data representations, including irregular structures like par-
ticles, that are not already provided by the framework. Be-
cause particle density changes throughout the calculation,
the communication operations must also dynamically han-
dle messages with varying size.

These applications provide a glimpse into the sort of ap-
plication and algorithm space that SAMRALI is designed to
explore. SAMRALI provides robust, flexible software support
for managing complex algorithm and data coordination op-
erations in these and other SAMR applications.

2.2 Design Goals

To support applications having the characteristics described
in Section 2.1, the SAMRAI communication infrastructure
possesses the following features:

1. Users can easily describe a data transfer phase of a
computation by specifying communication operations
that involve a collection of variables and operations
to be performed on the associated data. Such oper-
ations include copying, temporal and spatial interpo-
lation (including user-defined), and the application of
user-defined physical boundary conditions. The de-
scriptions of variable quantities and operations are in-
dependent of the grid configuration.

2. The communication framework automatically manages
data transfers on a given SAMR patch hierarchy in-
volving data with different mesh centerings (cell, node,
etc.), types (integer, float, complex, etc.), and user-
defined irregular structures such as particles.

3. New user-defined data types may be introduced with-
out modifying or recompiling the SAMRALI framework.

3. COMMUNICATION INFRASTRUCTURE

SAMR solution algorithms may be represented as set of
phases involving numerical computations on individual patches
and inter-patch data transfers such as copying, coarsening,
and refining. The SAMRAI data communication framework
centers on four basic abstractions: a communication algo-
rithm, a communication schedule, patch data, and a mes-
sage stream. These concepts are used to partition SAMR
data communication operations into procedures that are ex-
pressed at the application level using notions of variables
and operators, procedures that manage transfers of variable
data on a given SAMR patch hierarchy, and procedures that
define data manipulation operations for specific data types.
In the following sections, we discuss the role and implemen-
tation of each abstraction and how they work together.

3.1 Communication Algorithm
In SAMRALI a communication algorithm is used to describe
a data communication phase of a computation in terms of

the variables and operations involved. There are two types
of communication algorithms, a coarsen algorithm and a re-
fine algorithm. The names are indicative of the sort of com-
munication operations these objects describe. One moves
data from a finer level to a coarser level. The other moves
data from coarser levels to a finer level or between patches
on the same level (a special case of refinement).

A developer constructs a communication algorithm by spec-
ifying the variables involved and the operators needed to
perform the desired coarsening or refining operations. For
example, in the ALPS application, a communication algo-
rithm is used to represent the filling of ghost cell data before
the advance of the plasma fluid variables (density, pressure,
temperature), and another communication algorithm repre-
sents the inter-patch exchange of light variable during the
solution of the light equations. In general, such operations
involve different spatial refinement and time interpolation
operations for each variable, some of which may be user-
defined.

In SAMRALI, the notion of a variable is distinct from storage.
Variables define the quantity involved, such as centering on
the grid (for array-based types) and the type of the under-
lying data (e.g., int, float, complex). Variables are used to
create data on the mesh via an “abstract factory” mecha-
nism [11]. Usually, a variable object will persist through-
out an entire computation, but storage associated with that
variable will change as the grid changes. Similarly, a com-
munication algorithm represents a communication phase of
a computation independently of any particular mesh con-
figuration. Thus, a communication algorithm is typically
constructed during the initialization portion of a computa-
tion and is used throughout a calculation.

To summarize, a communication algorithm helps to manage
the complexity of SAMR data transfer operations by sep-
arating grid-dependent details from the variables and op-
erations involved. That is, a communication algorithm de-
pends only on the variables and operations involved and is
independent of a particular grid configuration. This allows
an application developer to formulate the communication
phases of a numerical solution process independently of the
complex details of data movement on an adaptive mesh.

3.2 Communication Schedule

A communication schedule manages the data transfer op-
erations required to perform the operations described by a
communication algorithm on a particular mesh configura-
tion. A communication schedule computes and stores trans-
actions required to move data between patches. Thus, a
schedule depends on a communication algorithm and a par-
ticular layout of patches on a SAMR hierarchy.

A communication schedule is constructed using a commu-
nication algorithm, which defines the variables and opera-
tions involved in moving data, and knowledge of the hier-
archy configuration. A schedule is valid as long as the grid
configuration used to create it remains unchanged. When
the grid changes during adaptive meshing, the schedule is
no longer valid and must be regenerated. For example, a
communication algorithm can describe how to refine a set
of variables between any pair of grid levels in a hierarchy.

A different schedule is needed to move the data whenever
the grid changes. While the patches in the grid hierarchy
are distributed among processors, box information (i.e., the
bounding-box region of the patch) and variable information
are known to all processors. Thus, a different schedule ob-
ject is composed on each processor and involves only those
transactions involving data on that processor.

The notion of a schedule for managing data communication
operations on parallel processors has been described in other
work, such as multi-block PARTT [19] and KeLP [2, 10]. The
goal of this approach is to amortize the cost of computing
complex data dependencies when a set of communication
operations may be used multiple times on a given mesh con-
figuration. Although the mesh usually changes frequently
in SAMR computations, there are many situations in which
schedules are used multiple times before they must be regen-
erated. SAMRALI borrows ideas from these other efforts but
adds extensions to handle multiple data types and variable-
length data within the same schedule.

3.3 Patch Data

The communication algorithm and schedule implementa-
tions in SAMRAI work with arbitrary collections of variables
and coarsen and refine operations, including user-defined
variables and operations. To achieve this flexibility, all patch
data types in SAMRAI inherit from the same interface. This
includes data types provided by the library as well as new
types linked to the library when an application is built. The
features of this design are described elsewhere [16, 15]. For
the purposes of this paper, we note that a patch is a con-
tainer for all simulation data defined over a box region on the
grid. During the execution of a communication schedule, lo-
cal copy operations and operations that marshal/unmarshal
data to message streams for parallel communication are in-
voked through the patch data interface. We describe these
in more detail in the next section.

3.4 Abstract Message Streams

The parallel communication framework in SAMRAI uses
asynchronous MPI message exchanges. We generate large
messages by packing as much data as possible into a single
message to minimize startup costs. The result is that a sin-
gle message exchange occurs between each pair of processors
that communicate during the execution of a schedule.

To support variable-length data from multiple sources (i.e.,
variables and patches) in a single message, SAMRATI utilizes
the notion of an abstract message stream. Each patch data
object provides packStream() and unpackStream() opera-
tions to pack and unpack data to a message stream. When
the size of an irregular data type cannot be determined solely
from the box region in which it resides, a getStreamSize ()
operation must also be supplied. Thus, array-based contin-
uum data and “grid-less” particle data are communicated
using the same message stream; see Figure 1. The full gen-
erality of the SAMRAI message streams and patch data
support is used is the Euler-DSMC application discussed
in Section 2.1.

A key motivation for abstract message streams in SAMRAI
is to make it easier to add new data types without modi-
fying or recompiling existing SAMRAI framework code. It

Cell Centered
° En
o[e] \

Particles

message buffer

=—> MPI| send

User defined

Figure 1: Abstract message streams in SAMRAI
support variable-length data from different sources.
Packing and unpacking operations are provided by
each patch data type.

also eliminates the need for users who may wish introduce
new types to work with MPI calls directly. The use of large
messages in SAMRAI amortizes message start-up costs over
all data that are passed from one processor to another. This
may yield significant savings over alternative approaches
that use many messages. We remark that our approach uses
more copy operations to pack and unpack data from mes-
sage streams than other approaches that use MPI buffers
more directly or use MPI derived datatypes. However, de-
rived datatypes are difficult to use for dynamically changing
and variably structured data. In Section 5, we show that
data communication is a small portion of overall simulation
cost. As a result, we focus our efforts to improve parallel
performance on other aspects of SAMR computations.

4. HYDRODYNAMICS APPLICATION

We evaluate SAMRALI performance for standard SAMR, ap-
plications that utilizes the well-known explicit hydrodynam-
ics algorithm of Berger and Colella [4]. The algorithm uses
both spatial and temporal mesh refinement during time in-
tegration and applies numerical flux correction operations
to maintain global conservation across multiple refinement
levels. Object-oriented features of the SAMRAI implemen-
tation of this algorithm and its use in other applications are
described elsewhere [16]. Here, we focus on aspects relevant
to our analysis of parallel performance.

During time advancement on an SAMR patch hierarchy, re-
meshing operations are interleaved with integration steps.
During re-meshing, computational cells are selected to iden-
tify regions where refinement is needed. Cell-tagging is per-
formed on each patch separately and is therefore quite scal-
able. We use the signature pattern recognition algorithm of
Berger and Rigoutsos [6] to cluster tagged cells into logically-
rectangular patch regions. Note that re-meshing and inte-
gration operations are performed on level at-a-time. Thus,
each level is load balanced separately from the others.

The Berger-Rigoutsos algorithm implementation in SAM-
RAI [17] performs parallel array reductions over the irreg-
ular grid structure to build tag signature arrays on each
processor. The accumulation of the tagged cells into sig-
nature arrays uses global all-reduce operations. These col-
lective communication operations synchronize the procedure
on each processor so that the processors construct identical
box regions from which to build new patches. This algo-

rithm was designed for small numbers of processors where
the cost of global all-reduce operations are negligible.

The boxes constructed by the Berger-Rigoutsos algorithm
are further massaged for load balancing. For example, a
large box may be chopped into a set of smaller boxes to
make it easier to assign the boxes to processors. Each box is
chopped until its size is less than the per-processor average
size, computed by dividing the total number of computa-
tional cells by number of processors. Boxes are then ordered
according to their spatial location using a Morton space fill-
ing curve algorithm [13] which places a curve through the
box centers and partitions the curve. The goal of this last
step is to maximize the assignment of adjacent patches to
the same processor. The boxes assigned to each processor
are used to generate patches on that processor.

Once a new patch level is constructed and load balanced, the
integration algorithm constructs new communication sched-
ules using its communication algorithms and the new patch
configuration. The time integration routines for the hyper-
bolic problems discussed in Section 5, including the con-
struction of the communication algorithms and schedules,
are provided by SAMRAI. Numerical kernels to integrate
the variables on each patch are supplied by users of the li-
brary. While SAMRALI uses the object-oriented capabilities
of C*++ to manage application complexity, object-orientation
is not introduced into computationally-intensive operations.
Users of SAMRAI write patch-based numerical kernels in
FORTRAN or C for simplicity and efficiency.

5. PERFORMANCE RESULTS

We investigate parallel performance of two adaptive prob-
lems implemented using SAMRAI The first models a 3D
propagating spherical shock with the Euler equations of gas
dynamics. This problem is not scaled; that is, the same sized
problem is run on all processor partitions. The second prob-
lem models a 3D sinusoidal advecting front with the scalar
linear advection equation. This problem is scaled, in that
the problem size increases proportionately with number of
processors. We use the non-scaled problem to investigate
how SAMR calculation perform when processors are added
to a fixed problem. We use the scaled problem study trends
as problem size is increased as more processors are applied.

Both problems employ the hyperbolic time integration algo-
rithm supplied by SAMRALI. They differ only in the number
of variables involved and the operations performed in the
numerical kernels. One solution variable appears in the lin-
ear advection application while a system of five variables
represents the solution in the Euler case. Because the com-
putational effort to update the numerical solution in the lin-
ear advection case is less, the linear advection problem has
higher data communication and re-meshing costs relative to
total computation time than the Euler case.

The remainder of this section is comprised of four parts.
The first two describe our analysis of the performance of
the non-scaled and scaled problems. We report wallclock
time in different phases of each calculation across a range
of processors to determine trends in parallel performance of
each phase. We find that two operations, load balance and
communication schedule construction, tend to have compet-

Figure 2: Density contours overlaid on adaptive grid
system for spherical shock calculation.

ing interests with respect to parallel scaling. The last two
sub-sections provide details about these operations and de-
scribe our observations regarding our attempts to minimize
their costs and how cost reduction in one affects the perfor-
mance of the other.

All calculations are performed on the IBM ASCI Blue Pa-
cific system. This system is an IBM machine constructed
of 256 four processor SMP nodes, 244 of which are avail-
able for typical batch runs. Each processor is a 332 MHz
PowerPC 604e. Each node has 1.5 GB memory. An omega
topology interconnect network supports up to 150Mbytes/s
bi-directional bandwidth between nodes.

5.1 Non-scaled Problem

In this section, we discuss the performance of the non-scaled
spherical shock Euler problem. The adaptive problem uses
three levels of mesh resolution where the mesh is refined
by a factor of four between successive levels; see Figure 2.
Figure 3 shows how the number of computational cells on
each level changes with simulation time. The number of
cells on the finest level constitutes 94% — 96% of the total
cells in the calculation. Of the total time spent in the time
integration portion of the solution process, 97% — 98% is
spent on the finest level for all processor partitions. Problem
size grows roughly linearly as the simulation advances during
the course of the 15 coarsest grid timesteps over which we
ran the computation. This growth is due from the fine mesh
adapting to resolve the spherically-expanding shock. The
same problem size is used on all processor partitions.

The two primary phases of the calculation are grid gener-
ation and time integration. Grid generation involves three
major steps: construction of new patch regions from tagged
cells (Berger-Rigoutsos procedure plus load balance), con-
struction of communication schedules, and data movement
from the old mesh configuration to the new configuration.
Time integration uses numerical routines outside of SAM-
RAI. Data movement to fill ghost cell regions during time
integration and to redistribute data during re-meshing is
performed by SAMRAI

Problem Size on Each Adaptive Level
(Spherical Shock Calculation)

7000000

—&—Level 0
6000000 —&-Level 1

——Level 2

5000000

4000000

Gridcells

3000000

2000000

1000000 A

o N R e+
0 0.01 0.02 0.03 0.04 0.05 0.06
Simulation Time

Figure 3: The number of cells on the finest level
grows during the coarse of the simulation. The num-
ber of cells on the two coarser levels remains roughly
the same.

Table 1 shows wallclock time measurements for time inte-
gration and grid generation. In the table, total integration
time includes time in numerical kernels, wait time due to
load imbalance, and communication overhead. Grid gener-
ation time includes time spent in Berger-Rigoutsos, sched-
ule generation, and data redistribution. The entry labeled
“other” includes parts of the calculation that fell outside
these six phases, such as cell-tagging, level data initializa-
tion, and load balancing. The times reported are averages
across processors; That is, times are summed over all pro-
cessors and then divided by the number of processors. They
also represent an average of several runs on the fully-loaded
system performed at different times over the course of two
weeks.

Figure 4 shows a plot of the data in Table 1. In the time in-
tegration phase, the two main parallel implementation over-
heads are load imbalance and communication. Of these, we
find load imbalance to be most significant. Further anal-
ysis reveals that the imbalance is not caused by inefficient
distribution of cells to processors. Rather, it results from
numerical operations with different costs performed in dif-
ferent regions of the flow. This is discussed in more detail
in Section 5.3.

Grid generation shows poorer scaling than the time integra-
tion. Of the operations used in the grid generation, com-
munication schedule generation is the most dominant cost
and Berger-Rigoutsos operations have the most detrimen-
tal effect on scaling performance. Recall that the Berger-
Rigoutsos implementation, which was designed for smaller
numbers of processors, performs all-reduce operations to
construct signature arrays. While it is efficient on 64 proces-
sors, requiring only 1% of the total time, its cost grows with
the number of processors due to use of the all-reduce opera-
tions. It requires up to 22% of the total time on 512 proces-
sors. Global all-reduce operations on ASCI Blue Pacific are
particularly slow and is an acknowledged problem. Hence,
the observed growth in the cost of the Berger-Rigoutsos al-

Processors 64 128 256 512

Total 1874.3 1087.3 729.1 652.1

Time Integration 1570.1 84% | 868.9 80% | 510.1 70% | 335.1 51%
Computation - num kernels | 1031.4 55% 516.6 48% | 259.8 36% | 131.0 20%
Wait time - load imb 431.1 23% 284.8 26% 202.1 28% 165.8 25%
Communication overhead 107.8 6% 67.5 6% 48.2 7% 38.3 5%
Grid Generation 269.8 14% | 181.4 17% | 172.5 24% | 241.7 37%
Berger-Rigoutsos 13.6 1% 19.0 2% 42.1 6% | 145.1 22%
Schedule construction 245.4 13% 157.0 14% 126.2 17% 93.0 14%
Data re-distribution 10.8 1% 6.9 1% 7.8 1% 17.7 3%
Other 35.3 2% 36.7 3% 46.5 6% 71.6 11%

Table 1: Timing results for non-scaled spherical shock calculation. Results show wallclock time for each
operation and percentage of total wallclock time for the different phases of the calculation.

Measured Solution Time on Various Processors
(Non-Scaled Spherical Shock Problem)
10000

—ideal

=&—Total

—&—Time Integration
—a—Berger Rigoutsos
—8—Schedule Construction

1000 A

Wallclock Time

10
64 128 256 512

Processors

Figure 4: Wallclock time measurements in Table 1
for the non-scaled spherical shock calculation.

gorithm may be less on other architectures. We have yet to
perform detailed tests on other systems.

The results reveal interesting characteristics about the com-
munication vs. computation costs for this calculation. In-
cluding data re-distribution after re-meshing and inter-level
data transfers performed during time integration, the total
cost of data movement remains roughly constant at about
7% of total on all processor counts tested. Thus, the appli-
cation is not communication bound and our object-oriented
design (Section 3) does not impeded performance. The
most inefficient parts of the computation are instead re-
lated to adaptive gridding. In particular, the cost of gen-
erating communication schedules and the Berger-Rigoutsos
algorithm are the largest parallel performance bottlenecks.
While communication schedule generation is performed by
the SAMRALI infrastructure, the dominant part of their cost
are due to algorithmic inefficiencies in their implementation,
not from a misuse of object-orientation. We will address
these algorithmic concerns in future work. This point is
discussed further in Section 5.4.

5.2 Scaled Problem

In this section, we discuss the performance of the scaled
advecting sinusoidal front problem. In this experiment, we
artificially control the mesh generation process by manually
scaling the mesh so that the number of gridcells per proces-
sor remains constant for the duration of each computation.
To do this, we first run a problem on P processors and store
the mesh after each re-meshing step. This mesh is then re-
fined as we increase the number of processors. To go from
P to 2P processors, we double the number of cells in one
direction. To go from 2P to 4P, we double the cells in an
additional direction, and so on. The use of the linear ad-
vection equation allows us to force the same time-stepping
sequence on all refined grids. The use of a sinusoidal front
helps us make grid configurations more representative of typ-
ical SAMR problems.

The adaptive problem uses three levels of mesh resolution
where the mesh is refined by a factor of four between lev-
els, as shown in Figure 5. Figure 6 shows how the number
of computational cells on each level changes with simula-
tion time. As was the case with the non-scaled spherical
shock problem, the vast majority of cells are on the finest
refinement level. However, note that the overall problem
size remains roughly constant over the course of the com-
putation. The calculation is run over a total of 25 coarsest
grid timesteps.

The scaled problem is run from 32 to 512 processors. Table 2
shows wallclock time measured for time integration and grid
generation, and the associated operations within each. The
entry labeled “other” includes parts of the calculation that
fell outside the time integration and grid generation phases,
as cell-tagging, level data initialization, and load balancing.
This information is plotted in Figure 7.

As we observed for the non-scaled problem, communica-
tion costs (i.e., MPI communication) including both inter-
level data updates during the time integration and data-
redistribution during re-meshing, scale well and constitute
a relatively small percentage of the overall execution time.
Although the communication to computation ratio of this
problem is greater than in the Euler problem, we still expe-
rience low communication overheads with respect to overall
computation time. This is further evidence that the object-
oriented implementation is not detrimental to performance.

Processors 32 64 128 256 512

Total 1458.2 1451.5 1687.9 1772.6 2123.7

Time Integration 1206.8 83% | 1209.1 83% | 1485.8 88% | 1452.2 82% | 1516.5 71%
Computation - num kernels | 982.1 67% | 950.8 66% 981.9 58% | 945.6 53% | 954.8 45%
Wait time - load imb 91.2 6% 123.7 9% 369.1 22% 381.2 22% 428.6 20%
Communication overhead 133.5 9% 134.6 9% 134.8 8% 125.4 7% 133.1 6%
Grid Generation 213.9 15% | 193.3 13% 121.1 7% 188.7 11% | 369.4 17%
Schedule construction 197.4 13% 174.0 12% 104.4 6% 175.5 10% 363.1 17%
Data re-distribution 12.9 1% 15.0 1% 18.1 1% 18.7 1% 19.8 1%
Other 37.5 3% 49.0 3% 80.7 5% 131.6 7% 237.7 11%

Table 2: Timing results for non-scaled advecting front calculation.

Results show wallclock time for each

operation and percentage of total wallclock time for the two main phases of the calculation, time integration

and grid generation.

Figure 5: Scaled advecting sinusoidal front problem
- density contours overlaid on adaptive grid.

Problem Size on Each Adaptive Level
(Advecting Front Calculation - 32 processors)

10000000

9000000 -

7000000

8000000

6000000 { [—a—Level 0

5000000 | | “®-levell

Gridcells

——Level 2

4000000 A
3000000 A
2000000 A
1000000

o v ——— — — — —"—— _—— — ————————

0 # * T e r
0 0.1 0.2 0.3 0.4 0.5
Simulation Time

Figure 6: The number of computational cells on each
level for the 32 processor case of the scaled advecting
front calculation. For the 64, 128, 256, and 512 pro-
cessor cases, the pattern is identical but the number
of cells increases proportional to the processor count
increase.

Measured Solution Time on Various Processors
(Scaled Advecting Front Problem)

2500

—ideal
=&—Total
2000 4 —&—Time Integration

—8—Schedule Construction

-
13
o
o

o [

Wallclock Time
=
o
o
o

500

32 64 128 256 512
Processors

Figure 7: Wallclock time measurements in Table 2
for the scaled advecting front calculation.

Note that the cost of the Berger-Rigoutsos algorithm is not
included because we generate the grid hierarchy manually.

The two primary sources of inefficiency in these computa-
tions are load imbalance and the cost of generating com-
munication schedules. In analyzing this problem, we found
that these two operations have competing efficiency require-
ments. Attempts to improve the efficiency in one cause a
decrease in the other. The next two sub-sections describe
our observations in more detail.

5.3 Load Balance

Achieving good load balance is challenging for adaptive cal-
culations due to the dynamic and non-uniform (in space)
nature of the workload. Load imbalance is a dominant cost
in both the non-scaled and scaled problems discussed in pre-
vious sections. In this section, we analyze the observed im-
balance and propose techniques for its remedy.

The load balance strategy outlined in Section 4 attempts to
distribute patches to processors to balance the number of
computational cells on each processor. We refer to this as
predicted load balance. The assumption is that the amount

Processors | 64 128 | 256 | 512
predicted 94% | 87% | 7% | 64%
measured 1% | 66% | 55% | 48%

Table 3: Predicted vs. Measured overall load bal-
ance efficiency for non-scaled spherical shock calcu-
lation. The disparity arises from different numerical
operations being performed in the numerical kernels
in different computational cells.

of computational work is proportional to the number of com-
putational cells. However, we find this is not always the case.
Table 3 shows predicted and measured load balance for the
non-scaled spherical shock calculation. Since load balance
changes after each re-meshing step, the overall load balance
reported is is computed by averaging over steps. That is,
predicted load balance o at a particular step is computed
as:

L XpnP "
n(p)maac
where n(p) is the number of cells on processor p and P is the
total number of processors, and n(p)mae is the maximum
number of cells on all processors. Predicted load balance
(the values shown in Table 3) is computed as:

Y (n(i) - o(i)

Ooverall = Z'.Stelps n(l)
i=

(2)

where n(7) is the total number of computational cells at step
7 and o(4) is the load balance efficiency at the step. This for-
mula weights the load balance on each level and at each step
by the number of computational cells on the level. Thus, we
factor the amount of computational work into determination
of the overall average load balance. Overall measured load
balance is computed in exactly the same way, except that
n(p) represents the computed time in the numerical kernels
on processor p, and n(i) is the computed time across all
processors at step 1.

The disparity in predicted and measured load balance results
from different operations in the numerical kernels performed
in different regions of the flowfield. For example, in regions
near shocks and rarefactions, flux computations are more
expensive. The non-uniform operation distribution breaks
the uniform workload assumption (i.e. that computational
work on each cell is uniform). To reinforce this point, Table
4 shows the overall predicted and measured load balance
for the scaled advecting front calculation. This calculation
performs identical operations in each cell and the disparity
between predicted and measured efficiency is much less.

Table 4 also shows the average number of patches per proces-
sor per step on the finest level in the scaled advecting front
calculation. The drop in predicted load balance efficiency
corresponds to the decreasing number of patches on each
processor. We try to restrict the growth of the total num-
ber of patches in the problem as we scale up the number of
processors because increasing the total number of patches
adversely affects the efficiency of communication schedule
construction. This is discussed in more detail in Section 5.4.
As the number of patches per processor decreases, the pre-

Processors 32 64 | 128 | 256 | 512
predicted 95% | 92% | 80% | 73% | 70%
measured 93% | 91% | 75% | *— *—
avg patches/proc | 26.6 | 15.7 | 6.6 | 52 | 4.5

Table 4: Predicted vs. Measured overall load bal-
ance efficiency for scaled advecting front calculation.
* Instrumentation in the code to record computed load bal-
ance efficiency performs an extra global communication op-
eration at each step, which polluted timing results on large

numbers of processors.

Processors 32 64 128 | 256 | 512
predicted 95% | 95% | 94% | 93% | 92%
avg patches/proc | 26.6 | 25.0 | 23.7 | 21.9 | 19.5

Table 5: Predicted load balance efficiency for scaled
advecting front calculation for case where total num-
ber of patches is scaled proportionately with the
number of processors.

dicted efficiency decreases. That is, it becomes more difficult
to distribute patches to processors using a bin-packing al-
gorithm (discussed in Section 4) to balance the workload
as the number of bins increases and the relative number of
patches per bin decreases. We also remark that the use of
a space-filling curve to enhance locality places further re-
strictions on the potential bins to which each patch may be
assigned. However, we have not analyzed the impact of this
constraint on load balance efficiency.

We found that we can achieve more efficient load balance
when the number of patches is scaled proportionally with the
number of processors. Table 5 shows predicted load balance
for the scaled advecting front calculation when the number
of patches is increased in a manner roughly proportional
to the number of processors. The number of patches per
processor per step for the finest level is also shown. The
table shows that load balance remains good across the range
of processors as long the number of patches per processor is
held roughly constant.

In summary, we find two primary causes of poor load bal-
ance. First, the assumption that computational work is uni-
form in all computational cells does not always hold, leading
to imbalance in the distribution of workload. We will ad-
dress this in the future by developing a non-uniform load bal-
ancing approach that accounts for the spatially non-uniform
distribution of work when chopping boxes and distributing
patches to processors. For example, the workload can be
computed by estimating the time to update each cell. Since
the large-scale features of the flowfield change slowly rela-
tive to the frequency of re-meshing, this should be a good
prediction of workload for the next integration step. The
second source of inefficiency occurs from restricting the to-
tal number of patches in the problem. We verified that we
can maintain good load balance across a wide range of pro-
cessors by scaling the total number of patches proportion-
ately with the number of processors. Although increasing
the total number of patches can improve load balance, it
has a detrimental effect on communication schedule genera-

tion costs, which is the subject of Section 5.4.

5.4 Schedule Generation costs

Communication schedule generation costs can have a large
performance impact on the SAMR problems we investigated
on large numbers of processors. This section discusses our
observations. In particular, we look at how effectively their
construction costs were amortized through re-use and eval-
uate problem characteristics that affect their cost.

Communication schedules compute the data dependencies
between patches in the hierarchy. They are generated when-
ever the grid changes after a re-meshing operation. In the
results reported earlier, schedule generation cost is signifi-
cant (up to 17%) in both the scaled and non-scaled calcu-
lations. A goal of maintaining schedules as separate objects
is to amortize the cost of their generation. Table 6 shows
how effective this amortization is for the non-scaled spherical
shock calculation. This calculation was run for 15 coarse-
grid timesteps. The table shows how many times schedules
are generated for a particular communication phase of the
computation, how many times schedules are used to com-
municate data, and their generation cost as a percentage of
total computation time. The range in percentage of time
reported reflects the different percentages measured across
the range of processors, from 64 to 512 processors.

Communication | # times | # times cost
operation sched sched % total

created used time

time adv-refine 33 259 7-8%

time adv-coarsen 61 61 1-3%

regrid-data redist 32 32 1-3%

Table 6: Communication schedule re-use statistics
for the non-scaled spherical shock calculation. The
columns indicate the number of times schedules are
constructed, number of times it is used to invoke
communication, and cost of construction as a per-
centage of the total cost.

The most expensive schedules to generate are the ones used
to refine data between levels and set boundary conditions
to fill ghost cells before each integration step on each level.
Each of these schedules is used an average 8 times before
it had to be re-generated. However, not all schedules are
re-used. Each data re-distribution schedule, which moves
data to the new grid configuration after re-meshing, is used
only once. It cannot be reused since the grid is differ-
ent each time this communication phase is invoked. The
schedules that coarsen data at synchronization steps dur-
ing time integration are also generated each time they are
used. We could reuse these coarsen schedules. However,
since these schedules are relatively inexpensive to build and
their reuse frequency is much less than the first ghost cell
filling schedules (every step on a level vs. every step on the
next coarser level), we chose to simplify our implementation
and re-generate these schedules each time they are used.

We find the cost of constructing communication schedules
goes up with the number of patches in the problem. As dis-
cussed in Section 3.2, a schedule is constructed separately by

each processor to form a list of data transactions involving
patches on that processor. Construction of the transaction
list is a local operation on each processor. However, the need
to fill ghost regions from coarser levels requires intersection
of each patch against all others in the problem. The cost
of schedule construction grows therefore roughly as O(N?),
where N is the total number of patches used in the problem.
This causes a tradeoff in the optimization strategies for load
balance and communication schedule generation cost. We
show in Section 5.3 that it is possible to achieve nearly ideal
load balance by scaling N proportionately with P, but this
benefit is outweighed by an increase in the cost of perform-
ing schedule construction with increasing V.

In summary, we can amortize the construction cost of some
schedules by using them multiple times and see a definite
cost advantage in doing so. The most important issue,
however, is that with the current implementation, sched-
ule generation costs grow as O(N?) with the total number
of patches in the problem. In future work, we will explore
techniques to reduce the cost of this process by exploiting
spatial relationships between patches in the schedule con-
struction process. For example, octree data structures used
to efficiently traverse spatial data structures could reduce
the computational complexity of schedule construction to
O(NlogN).

6. CONCLUDING REMARKS

In this paper, we described the parallel communication in-
frastructure in the SAMRALI library and explored its perfor-
mance for structured AMR applications. We observed that,
in general, complex algorithms and data communication op-
erations found in AMR computations do not preclude scal-
ing application codes to large number of processors. How-
ever, there are fundamental AMR operations that require
special attention to achieve scalable performance. We draw
several conclusions from the parallel performance analysis
carried out in this work. First, the use of object-oriented
abstractions in SAMRAI does not impede large-scale par-
allel performance. Second, the parallel implementation of
the Berger-Rigoutsos cell clustering algorithm we use ex-
hibits unacceptably-large costs on large processor counts.
Third, AMR applications must treat spatially non-uniform
computational cost distributions to achieve good parallel
load balance. Fourth, the implementation of communication
schedule generation in SAMRATI currently prohibits scaling
applications to large numbers of processors due to O(N?)
computational complexity in certain operations.

The object-oriented design of the parallel communication
framework in SAMRAI (Section 3) is based on a survey
of the data management needs of a broad range of multi-
physics applications. To assess the parallel performance of
this infrastructure, we studied scaling efficiency of a stan-
dard hyperbolic SAMR algorithm over a range of processors
on the distributed memory IBM ASCI Blue Pacific paral-
lel platform. Timing measurements for both non-scaled and
scaled adaptive problems reveal that total data communica-
tion cost (i.e., MPI message exchanges) is 8% or less when
run on up to 512 processors. Thus, the test applications
are not bound by communication costs. Although the test
applications do not exploit the full flexibility of the frame-
work, we find that use of object-oriented abstractions in the

implementation of these applications do not detrimentally
impact performance.

Most of the scaling inefficiencies that we observed are as-
sociated with adaptive gridding operations. For example,
the Berger-Rigoutsos cell clustering algorithm is efficient on
small numbers of processors; it constitutes only about 1%
of the total execution time on 64 processors. However, the
cost of this algorithm grows to about 22% on 512 proces-
sors. The primary source of the performance degradation is
the use of global reduction operations in our implementation
of the algorithm. This algorithm was originally developed
for smaller-scale parallel systems with fewer processors and,
under these circumstances, it incurs acceptable costs. How-
ever, the collective communication operations are a bottle-
neck on large numbers of processors. We plan to investigate
alternative algorithms and other approaches that rely less
on global reductions.

The two other major sources of inefficiency that we observed
are poor load balance and costly communication schedule
construction. Interestingly, these operations represent com-
peting interests. We verified that good load balance may
be achieved if we grow the total number of patches IV in
the problem proportionately with the number of processors.
However, in our current implementation schedule creation
costs uses operations with O(N 2) computational complex-
ity. Thus, the benefit of improved load balance efficiency can
be overwhelmed by the increase in communication schedule
generation cost. In future work, we plan to explore ways to
exploit information about the spatial relationships among
patches into the schedule construction process. For exam-
ple, octree data structures, which efficiently traverse spatial
data structures, may prove useful.

Finally, we observed significant disparities between predicted
and measured load balance efficiency in our computations.
Judicious code instrumentation revealed that this was due
to different operations being used in different regions of the
flow. For example, the computation of numerical flux terms
near rarefactions and shocks is more computationally com-
plex, and hence more expensive, than in regions of nearly
constant flow. Our load balance procedure that assumed
that the computational expense to update each cell is inap-
propriate under these circumstances. This is an important
issue to consider in any computation in which numerical op-
erations are not uniformly distributed. We are currently
investigating more robust non-uniform load balance tech-
niques that weight individual cells according to computa-
tional work.

7. ACKNOWLEDGMENTS

We gratefully acknowledge the assistance of Dr. Jeff Vet-
ter and Dr. John May from the parallel tools group in the
Center for Applied Scientific Computing at Lawrence Liver-
more National Laboratory in assisting with tools to better
understand the parallel performance of our codes.

8. REFERENCES

[1] F. Alexander and A. Garcia. Direct simulation Monte
Carlo. Computers in Physics, 11:588, 1997.

[2] S. B. Baden, P. Colella, D. Shalit, and B. V. Straalen.

(10]

(11]

(13]

(14]

Abstract KeLP. In 10th SIAM Conference on Parallel
Processing for Scientific Computing, Portsmouth,
Virginia, March 2001.

J. Bell and P. Colella. AMR software packages. See
http://seesar.lbl.gov/AMR/index.html.

M. J. Berger and P. Colella. Local adaptive mesh
refinement for shock hydrodynamics. Journal of
Computational Physics, 82:64-84, 1989.

M. J. Berger and J. Oliger. Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
Computational Physics, 53:484-512, 1984.

M. J. Berger and I. Rigoutsos. An algorithm for point
clustering and grid generation. IEEE Transactions on
Systems, Man., and Cybernetics, 21:1278-1286,
September 1991.

G. Bryan and M. L. Norman. Simulation x-ray clusters
with adaptive mesh refinement. In Proceedings of the
12th Kingston meeting on Theoretical Astrophysics:
Computational Astrophysics (ASP Conference Series,
128), 1997. eds. D. A. Clarke and M. J. West, p. 363.

A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell,
G. Henry, P. MacNeice, K. Olson, P. Ricker,

R. Rosner, F. X. Timmes, H. M. Tufo, J. W. Truran,
and M. Zingale. High-performance reactive fluid flow
simulations using adaptive mesh refinement on
thousands of processors. In SC00 Proceedings, 2000.
See http://www.sc2000.org/proceedings.

M. R. Dorr, F. X. Garaizar, and J. A. F. Hittinger.
Simulation of laser plasma filamentation using
adaptive mesh refinement. Technical Report
UCRL-JC-138330, LLNL, 2001. Submitted to J.
Comput. Phys.

S. J. Fink, S. B. Baden, and S. R. Kohn. Flexible
communication schedules for block structured
applications. In Third International Workshop on
Parallel Algorithms for Irregularly Structured
Problems, Santa Barbara, California, August 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of reusable Object-Oriented
Software. Addison-Wesley Publishing Co., Menlo
Park, CA, 1995.

A. Garcia, J. Bell, W. Crutchfield, and B. Alder.
Adaptive mesh and algorithm refinement using direct
simulation Monte Carlo. Journal of Computational
Physics, 154:134-155, 1999.

Gutman. Use of morton space-filling curve for load
balance. Dr. Dobb’s Journal, pages 115-121, July
1999.

R. Hornung. A hybrid model for gas dynamics:
Continuum-dsmc with amr. In First SIAM Conference
on Computational Science and Engineering,
Washington D.C., Sept 21-23 2000. Also available as
Lawrence Livermore National Laboratory technical
report UCRL-VG-139774.

[15]

[16]

[17]

[18]

[19]

R. D. Hornung and S. R. Kohn. The use of
object-oriented design patterns in the SAMRAI
structured AMR framework. In Proceedings of the
First Workshop on Object Oriented Methods for
Inter-operable Scientific and Engineering Computing,
1998. See http://www.1llnl.gov/CASC/SAMRAI.

R. D. Hornung and S. R. Kohn. Managing application
complexity in the SAMRAI object-oriented
framework. Concurrency: Theory and Practice, 2001.
(to appear).

S. R. Kohn. A parallel software infrastructure for
dynamic block-irregular scientific calculations, Ph.D
thesis. Technical Report CS95-429, Dept. of Computer
Science and Engineering, University of California San
Diego, 1995.

M. Parashar and J. C. Browne. A common data
management infrastructure for parallel adaptive
algorithms for pde solutions. In Proceedings of
Supercomputing 97, 1997.

J. Saltz, H. Berryman, and J. Wu. Multiprocessors
and run-time compilation. Concurrency: Practice and
Ezxperience, 3(6):573-592, 1991.

University of California

Lawrence Livermore National Laboratory
Technical Information Department
Livermore, CA 94551

