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pseudo-circles is said to be an empty lens if the closed Jordan region that it bounds does not intersect
any other member of the family. We establish a linear upper bound on the number of empty lenses in
an arrangement of n pseudo-circles with the property that any two curves intersect precisely twice.
We use this bound to show that any collection of n x-monotone pseudo-circles can be cut into O(n8/5)
arcs so that any two intersect at most once; this improves a previous bound of O(n5/3) due to Tamaki
and Tokuyama. If, in addition, the given collection admits an algebraic representation by three real
parameters that satisfies some simple conditions, then the number of cuts can be further reduced to
O(n3/2(log n)O(αs (n))), where α(n) is the inverse Ackermann function, and s is a constant that depends
on the the representation of the pseudo-circles. For arbitrary collections of pseudo-circles, any two
of which intersect exactly twice, the number of necessary cuts reduces still further to O(n4/3). As
applications, we obtain improved bounds for the number of incidences, the complexity of a single level,
and the complexity of many faces in arrangements of circles, of pairwise intersecting pseudo-circles,
of arbitrary x-monotone pseudo-circles, of parabolas, and of homothetic copies of any fixed simply
shaped convex curve. We also obtain a variant of the Gallai–Sylvester theorem for arrangements of
pairwise intersecting pseudo-circles, and a new lower bound on the number of distinct distances under
any well-behaved norm.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics—counting prob-
lems; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—geometric
algorithms, languages, and systems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Arrangements, pseudo-circles, incidence problems

1. Introduction

The arrangement of a finite collection C of geometric curves in R
2, denoted as

A(C), is the planar subdivision induced by C , whose vertices are the intersection
points of the curves of C , whose edges are the maximal connected portions of curves
in C not containing a vertex, and whose faces are maximal connected portions of
R

2 \ ⋃
C . Because of numerous applications and the rich geometric structure that

they possess, arrangements of curves, especially of lines and segments, have been
widely studied [Agarwal and Sharir 2000].

A family of Jordan curves (respectively, arcs) is called a family of pseudo-lines
(respectively, pseudo-segments) if every pair of curves intersect in at most one
point and they cross at that point. A collection C of closed Jordan curves is called
a family of pseudo-circles if every pair of them intersect at most twice. If the
curves of C are graphs of continuous functions everywhere defined on the set of
real numbers, such that every two intersect at most twice, we call them pseudo-
parabolas.1 Although many combinatorial results on arrangements of lines and
segments extend to pseudo-lines and pseudo-segments, as they rely on the fact that
any two curves intersect in at most one point, they rarely extend to arrangements
of curves in which a pair intersect in more than one point. In the last few years,
progress has been made on analyzing arrangements of circles, pseudo-circles, or
pseudo-parabolas by “cutting” the curves into subarcs so that the resulting set
is a family of pseudo-segments and by applying results on pseudo-segments to
the new arrangement; see Agarwal et al. [2003], Alon et al. [2001], Aronov and

1 For simplicity, we assume that every tangency counts as two intersections, that is, if two pseudo-
circles or pseudo-parabolas are tangent at some point, but they do not properly cross there, they do
not have any other point in common.
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FIG. 1. (i) A pseudo-circle γ supporting one lens-face and two lune-faces. (ii) A family of (shaded)
nonoverlapping lenses.

Sharir [2002], Chan [2003], Pinchasi [2001], and Tamaki and Tokuyama [1998].
This article continues this line of study—it improves a number of previous results
on arrangements of pseudo-circles, and extends a few of the recent results on
arrangements of circles (e.g., those presented in Alon et al. [2001], Aronov and
Sharir [2002], and Pinchasi [2001]) to arrangements of pseudo-circles.

Let C be a finite set of pseudo-circles in the plane. Let c and c′ be two pseudo-
circles in C , intersecting at two points u, v . A lens λ formed by c and c′ is the union
of two arcs, one of c and one of c′, both delimited by u and v . If λ is the boundary
of a face of A(C), we call λ an empty lens; λ is called a lens-face if it is contained
in the interiors of both c and c′, and a lune-face if it is contained in the interior
of one of them and in the exterior of the other. See Figure 1. (We ignore, in the
remainder of the article, the case where λ lies in the exteriors of both pseudo-circles,
because there can be only one such face in A(C).) Let µ(C) denote the number of
empty lenses in C . A family of lenses formed by the curves in C is called pairwise
nonoverlapping if the (relative interiors of the) arcs forming any two of them do not
overlap. Let ν(C) denote the maximum size of a family of nonoverlapping lenses in
C . We define the cutting number of C , denoted by χ (C), as the minimum number
of arcs into which the curves of C have to be cut so that any pair of resulting arcs
intersect at most once (i.e., these arcs form a collection of pseudo-segments); thus,
χ (C) = |C | when no cuts need to be made. In this article, we obtain improved
bounds on µ(C), ν(C), and χ (C) for several special classes of pseudo-circles, and
apply them to obtain bounds on various substructures of A(C).

1.1. PREVIOUS RESULTS. Tamaki and Tokuyama [1998] proved that ν(C) =
O(n5/3) for a family C of n pseudo-parabolas or pseudo-circles, and exhibited a
lower bound of 
(n4/3). In fact, their construction gives a lower bound on the
number of empty lenses in an arrangement of circles or parabolas. Subsequently,
improved bounds on µ(C) and ν(C) have been obtained for arrangements of circles.
Alon et al. [2001] and Pinchasi [2001] proved that µ(C) = �(n) for a set of n
pairwise intersecting circles. If C is an arbitrary collection of circles, then ν(C) =
O(n3/2+ε), for any ε > 0, as shown by Aronov and Sharir [2002]. No better bound
is known for the number of empty lenses in an arbitrary family of circles. However,
when C consists of n unit circles, then µ(C) = O(n4/3) [Spencer et al. 1984;
Székely 1997]. Moreover, µ(C) can be lower-bounded by the number of pairs of
circles of C , whose centers lie at distance 2. (Any such pair of circles are tangent to
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each other, and we can regard the tangency as a degenerate empty lens.) As shown
by Erdős [1946], there exist collections C of n such circles with 
(n1+c/ log log n)
pairs at distance 2, for some constant c, showing that µ(C) = 
(n1+c/ log log n).

The analysis in Tamaki and Tokuyama [1998] shows that the cutting number
χ (C) is proportional to ν(C) for collections of pseudo-parabolas or of pseudo-
circles. Therefore one has χ (C) = O(n5/3) for pseudo-parabolas and pseudo-
circles [Tamaki and Tokuyama 1998], and χ (C) = O(n3/2+ε) for circles. Us-
ing this bound on χ (C), Aronov and Sharir [2002] proved that the maximum
number of incidences between a set C of n circles and a set P of m points is
O(m2/3n2/3 + m6/11+3εn9/11−ε + m + n), for any ε > 0. Recently, following
a similar but more involved argument, Agarwal et al. [2003] proved a similar
bound on the complexity of m distinct faces in an arrangement of n circles in
the plane.2 An interesting consequence of the results in Alon et al. [2001]
and Pinchasi [2001] is the following generalization of the Sylvester–Gallai the-
orem: In an arrangement of pairwise intersecting circles, there always exists a
vertex incident upon at most three circles, provided that the number of circles is
sufficiently large and that they do not form a pencil. For pairwise intersecting unit
circles, the property holds when the number of circles is at least five [Alon et al.
2001; Pinchasi 2001].

1.2. NEW RESULTS. In this article, we first obtain improved bounds on µ(C),
ν(C), and χ (C) for various special classes of pseudo-circles, and then apply these
bounds to several problems involving arrangements of such pseudo-circles. Let C
be a collection of n pseudo-parabolas such that any two have at least one point in
common. We show that the number of tangencies in C is at most 2n −4 (for n ≥ 3).
In fact, we prove the stronger result that the tangency graph for such a collection
C is bipartite and planar. Using this result, we prove that µ(C) = �(n) for a set C
of n pairwise intersecting pseudo-circles. Next, we show that χ (C) = O(n4/3)
for collections C of n pairwise intersecting pseudo-parabolas. We then go on
to study the general case, in which not every pair of curves intersect. We first
show, in Section 4, that χ (C) = O(n8/5) for arbitrary collections of n pseudo-
parabolas and for collections of n x-monotone pseudo-circles. This improves the
general bound of Tamaki and Tokuyama [1998], and is based on a recent result of
Pinchasi and Radoičić [2003] on the size of graphs drawn in the plane so that any
pair of edges in a cycle of length 4 intersect an even number of times. Section 4
depends only on the results of Section 2.1. In order to improve this bound further,
we need to make a few additional assumptions on the geometric shape of the given
curves. Specifically, we assume, in Section 5, that, in addition to x-monotonicity,
the n given curves admit a 3-parameter algebraic representation that satisfies some
simple conditions (a notion defined more precisely in Section 5). Three important
classes of curves that satisfy these assumptions are the classes of circles, verti-
cal parabolas (of the form y = ax2 + bx + c), and of homothetic copies of any
fixed simply shaped convex curve. We show that, in the case of such a repre-
sentation, χ (C) = O(n3/2(log n)O(αs (n))), where α(n) is the inverse Ackermann

2 Actually, Agarwal et al. [2003], having been written alongside with the present article, already
exploits the slightly improved bound derived here.



Lenses in Arrangements of Pseudo-Circles and Their Applications 143

function and s is a constant depending on the algebraic parametrization; s = 2
for circles and vertical parabolas. This bound gives a slightly improved bound on
χ (C), compared to the bound proved in Aronov and Sharir [2002], for a family
of circles.

In Section 6, we apply the above results to several problems. The better bounds
on the cutting number χ (C) lead to improved bounds on the complexity of levels,
on the number of incidences between points and curves, and on the complexity
of many faces, in arrangements of several classes of pseudo-circles, including the
cases of circles, parabolas, pairwise-intersecting pseudo-circles, homothetic copies
of a fixed convex curve, and general pseudo-parabolas and x-monotone pseudo-
circles. The exact bounds are stated in Section 6. We also obtain a generalized
Gallai–Sylvester result for arrangements of pairwise-intersecting pseudo-circles,
and a new lower bound for the number of distinct distances determined by n points
in the plane and induced by an arbitrary well-behaved norm.

2. Pairwise Intersecting Pseudo-Circles

Let C be a set of n pseudo-circles, any two of which intersect in two points. We
prove that µ(C), the number of empty lenses in A(C), is O(n). The proof pro-
ceeds in three stages: First, we reduce the problem to O(1) instances of counting
the number of empty lenses in an arrangement of at most n pairwise intersect-
ing pseudo-circles, all of whose interiors are star shaped with respect to a fixed
point o. Next, we reduce the latter problem to counting the number of tangen-
cies in a family of pairwise intersecting pseudo-parabolas. Finally, we prove that
the number of such tangencies is O(n). For simplicity, we provide the proof in
the reverse order: Section 2.1 proves a bound on the number of tangencies in a
family of pairwise intersecting pseudo-parabolas; this provides the main geomet-
ric insight of this article, on which all other results are built. Section 2.2 proves
a bounds on µ(C) for a family C of pairwise-intersecting star-shaped pseudo-
circles, by using the result in the previous subsection; Section 2.3 supplies the
final reduction, and shows that the number of empty lenses in a family of arbi-
trary pairwise-intersecting pseudo-circles can be counted using the result obtained
in Section 2.2.

2.1. TANGENCIES OF PSEUDO-PARABOLAS. Let � be a set of n pairwise inter-
secting pseudo-parabolas, that is, graphs of totally defined continuous functions,
each pair of which intersect, either in exactly two crossing points or in exactly one
point of tangency, where no crossing occurs.3 We also assume that no three of these
curves have a point in common. This general position assumption is made in order
to simplify our analysis. Later on, we will show how to extend our analysis to sets
of curves that are not in general position. Note also that considering tangencies,
rather than empty lenses, is just another simplifying step: Since no three curves are
concurrent, any tangency can be deformed into a small empty lens and vice-versa.

3 The requirement that the number of intersections of every pair be exactly two can be relaxed to that
of requiring that every pair intersect at least once: A family satisfying the latter condition can easily
be extended to a family that satisfies the former condition.
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FIG. 2. (i) Illustrating the drawing rule. (ii) Drawing the graph G for an arrangement of five pairwise
intersecting pseudo-parabolas with three tangencies.

Let T denote the set of all tangencies between pairs of curves in �. Our goal is to
bound the size of T .

We associate a graph G with T , whose vertices are the curves of � and whose
edges connect pairs of tangent curves. A pseudo-parabola in � is called lower
(respectively, upper) if it forms a tangency with another curve that lies above
(respectively, below) it. We observe that a curve γ ∈ � cannot be both upper and
lower because the two other curves forming the respective tangencies with γ would
have to be disjoint, contrary to assumption. Hence, G is bipartite. In the remainder
of this section we show that G is planar, and this will establish a linear upper bound
on the size of T .

2.1.1. The Drawing Rule. Let � be a vertical line that lies to the left of all the
vertices of A(�). We draw G in the plane as follows: Each γ ∈ � is represented by
the point γ ∗ = γ ∩ �. Each edge (γ1, γ2) ∈ G is drawn as a y-monotone curve that
connects the points γ ∗

1 , γ ∗
2 . We use (γ ∗

1 , γ ∗
2 ) to denote the arc drawn for (γ1, γ2).

The arc has to navigate to the left or to the right of each of the intermediate vertices
δ∗ between γ ∗

1 and γ ∗
2 along �.

We use the following rule for drawing an edge (γ1, γ2): Assume that γ ∗
1 lies below

γ ∗
2 along �. Let W (γ1, γ2) denote the left wedge formed by γ1 and γ2, consisting

of all points that lie above γ1 and below γ2 and to the left of the tangency between
them. Let δ ∈ � be a curve so that δ∗ lies on � between γ ∗

1 and γ ∗
2 . The curve δ has to

exit W (γ1, γ2). If its first exit point (i.e., its leftmost intersection with ∂W (γ1, γ2))
lies on γ1, then we draw (γ1, γ2) to pass to the right of δ∗. Otherwise, we draw it to
pass to the left of δ∗; see Figure 2(i). Note that a tangency also counts as an exit point
(with immediate re-entry back into the wedge). Except for these requirements, the
edge (γ1, γ2) can be drawn in an arbitrary y-monotone manner.

We remark that the drawing rule perse is still somewhat arbitrary, and does
not necessarily imply that the resulting drawing is noncrossing. Instead, it has the
property that every pair of edges without a common vertex cross an even number
of times, which, using the Hanani–Tutte theorem, implies that G is indeed planar;
see below for details.

LEMMA 2.1. Suppose that the following conditions hold for each quadruple
γ1, γ2, γ3, γ4 of distinct curves in �, whose intersections with � appear in this
y-increasing order:

(a) If (γ1, γ4) and (γ2, γ3) are edges of G, then both γ ∗
2 and γ ∗

3 lie on the same side
of the arc (γ ∗

1 , γ ∗
4 ).
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FIG. 3. The allowed and forbidden configurations in conditions (a) and (b).

(b) If (γ1, γ3) and (γ2, γ4) are edges of G and the arc (γ ∗
1 , γ ∗

3 ) passes to the left
(respectively, right) of γ ∗

2 , then the arc (γ ∗
2 , γ ∗

4 ) passes to the right (respectively,
left) of γ ∗

3 .

Then G is planar.

PROOF. Figure 3 shows the configurations allowed and forbidden by conditions
(a) and (b). We show that the drawings of each pair of edges of G without a common
endpoint cross an even number of times. (With additional care, this property can
also be enforced for pairs of edges with a common endpoint, as will be shown later.
This extension is not needed for the main result, Theorem 2.4, but is needed for the
analysis in Section 4 involving general pseudo-parabolas and x-monotone pseudo-
circles.) This, combined with Hanani–Tutte’s theorem [Tutte 1970] (see also Hanani
[1934] and Lovász et al. [1997]), implies that G is planar. Clearly, it suffices to
check this for pairs of edges (with distinct endpoints) for which the y-projections
of their drawings have a nonempty intersection. In this case, the projections are
either nested, as in case (a) of the condition in the lemma, or partially overlapping,
as in case (b).

Consider first a pair of edges e = (γ1, γ4) and e′ = (γ2, γ3), with nested projec-
tions, as in case (a). Regard the drawing of e as the graph of a continuous partial
function x = e(y), defined over the interval [γ ∗

1 , γ ∗
4 ], and similarly for e′. Part (a)

of the condition implies that either e is to the left of e′ at both γ ∗
2 and γ ∗

3 , or e is to
the right of e′ at both these points. Since e and e′ correspond to graphs of functions
that are defined and continuous over [γ ∗

2 , γ ∗
3 ], it follows that e and e′ intersect in

an even number of points.
Consider next a pair of edges e = (γ1, γ3) and e′ = (γ2, γ4), with partially

overlapping projections, as in case (b). Here, too, part (b) of the condition implies
that either e is to the left of e′ at both γ ∗

2 and γ ∗
3 , or e is to the right of e′ at both

these points. This implies, as above, that e and e′ intersect in an even number of
points.

This completes the proof of the lemma.

We next show that the conditions in Lemma 2.1 do indeed hold for our drawing
of G.

LEMMA 2.2. Let γ1, γ2, γ3, γ4 be four curves in �, whose intercepts with �
appear in this increasing order, and suppose that (γ1, γ4) and (γ2, γ3) are tangent
pairs. Then it is impossible that the first exit points of γ2 and γ3 from the wedge
W (γ1, γ4) are at opposite sides of the wedge.
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FIG. 4. Edges of G with nested projections: (i) γ2 passes below v14 and γ3 passes above v14; (ii) both
γ2 and γ3 pass on the same side of v14.

PROOF. Suppose to the contrary that such a configuration exists. Then, except
for the respective points of tangency, γ3 always lies above γ2, and γ4 always lies
above γ1. This implies that if the first exit point of γ2 from W (γ1, γ4) lies on γ4,
then the first exit point of γ3 also has to lie on γ4, contrary to assumption. Hence,
the first exit point of γ2 lies on γ1 and, by symmetric reasoning, the first exit point
of γ3 lies on γ4. See Figure 4. Let v14 denote the point of tangency of γ1 and γ4. We
distinguish between two cases:

(a) γ2 passes below v14 and γ3 passes above v14: See Figure 4(i). In this case,
the second intersection point of γ1 and γ2 must lie to the right of v14, for otherwise
γ2 could not have passed below v14. Similarly, the second intersection point of γ3
and γ4 also lies to the right of v14. This also implies that γ2 and γ4 do not intersect
to the left of v14, and that γ1 and γ3 also do not intersect to the left of v14. Let u13
(respectively, u24) denote the leftmost intersection point of γ1 and γ3 (respectively,
of γ2 and γ4), both lying to the right of v14. Suppose, without loss of generality,
that u13 lies to the left of u24. In this case, the second intersection of γ1 and γ2
must lie to the right of u13. Indeed, otherwise γ2 would become “trapped” inside
the wedge W (γ1, γ3) because γ2 cannot cross γ3 and it has already crossed γ1 at
two points. The second intersection of γ3 and γ4 occurs to the left of u13. Now, γ2
and γ4 cannot intersect to the left of u13: γ2 does not intersect γ4 to the left of its
first exit w12 from W (γ1, γ4). To the right of w12 and to the left of u13, γ2 remains
below γ1, which lies below γ4. Finally, to the right of u13, γ2 lies below γ3, which
lies below γ4 (since it has already intersected γ4 twice). This implies that γ2 cannot
intersect γ4 at all, a contradiction, which shows that case (a) is impossible.

(b) Both γ2 and γ3 pass on the same side of v14: Without loss of generality, assume
that they pass above v14. See Figure 4(ii). Then γ2 must cross γ1 again and then
cross γ4, both within ∂W (γ1, γ4). In this case, γ3 cannot cross γ1 to the left of v14,
because to do so it must first cross γ4 again, and then it would get “trapped” inside
the wedge W (γ2, γ4). But then γ1 and γ3 cannot intersect at all: We have argued
that they cannot intersect to the left of v14. To the right of this point, γ3 lies above
γ2, which lies above γ1. This contradiction rules out case (b), and thus completes
the proof of the lemma.

LEMMA 2.3. Let γ1, γ2, γ3, γ4 be four curves in �, whose intercepts with �
appear in this increasing order, and suppose that (γ1, γ3) and (γ2, γ4) are tangent
pairs. Then it is impossible that the first exit point of γ2 from the wedge W (γ1, γ3)
and the first exit point of γ3 from the wedge W (γ2, γ4) both lie on the bottom sides
of the respective wedges, or both lie on the top sides.
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FIG. 5. Edges of G with partially overlapping projections.

PROOF. Suppose to the contrary that such a configuration exists. By symmetry,
we may assume, without loss of generality, that both exit points lie on the bottom
sides. That is, the exit point u12 of γ2 from W (γ1, γ3) lies on γ1 and the exit point
u23 of γ3 from W (γ2, γ4) lies on γ2. See Figure 5. By definition, γ2 and γ3 do not
intersect to the left of u12. So, u23 occurs to the right of u12 and, in fact, also to the
right of the second intersection point of γ1 and γ2. Again, by assumption, γ3 and γ4
do not intersect to the left of u23. Hence γ1 and γ4 also do not intersect to the left of
u23, because γ1 lies below γ3. But then γ1 and γ4 cannot intersect at all, because to
the right of u23, γ4 lies above γ2, which lies above γ1. This contradiction completes
the proof of the lemma.

Lemmas 2.2 and 2.3 show that the conditions in Lemma 2.1 hold, so G is planar
and bipartite and thus has at most 2n − 4 edges, for n ≥ 3. Hence, we obtain the
following.

THEOREM 2.4. Let � be a family of n pairwise intersecting pseudo-parabolas
in the plane, that is, each pair intersect either in exactly two crossing points or in
exactly one point of noncrossing tangency. Assume also that no three curves of �
meet at a common point. Then, there are at most 2n − 4 tangencies between pairs
of curves in �, for n ≥ 3.

2.2. EMPTY LENSES IN STAR-SHAPED PSEUDO-CIRCLES. The main result of
this section is:

THEOREM 2.5. The number of empty lenses in an arrangement of n ≥ 3 pair-
wise intersecting pseudo-circles, no pair of which are tangent and no three concur-
rent, so that all their interiors are star shaped with respect to a point o, is at most
2n − 3. This number is 3 for n = 2. Both bounds are tight in the worst case.

The lower bound, for n = 5, is illustrated in Figure 6. It is easy to generalize
this construction for any n ≥ 3. The case n = 2 is trivial: A pair of intersecting
circles form three empty lenses (ignoring the unbounded face), of which two are
lune-faces and one is a lens-face, containing o.

Assume then that n ≥ 3. At most, one empty lens contains o. We will show
that the number of empty lenses not containing o is at most 2n − 4. By definition,
each of these lenses is a lune-face (whereas the empty lens containing o, if any, is
a lens-face).

We deform the pseudo-circles of C , so as to turn each lune-face into a tangency
between the two corresponding pseudo-circles. This is easy to do, by deforming the
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FIG. 6. Lower-bound construction: Five convex pseudo-circles with a common interior point forming
seven empty lenses.

FIG. 7. Transforming an empty lens into a tangency.

two pseudo-circles bounding such an empty lens, using the facts that no two empty
lenses share an arc or a vertex; see Figure 7 for an illustration. We can deform the
pseudo-circles in this manner without losing the star-shapedness property.

Draw a generic ray ρ that emanates from o and does not pass through any vertex of
A(C); in particular, it does not pass through any empty lens, each now reduced to a
point of tangency between the respective pseudo-circles. Without loss of generality,
assume that ρ has orientation 0, that is, it points to the direction of the positive x-
axis. Regard each curve of C as the graph of a function in polar coordinates, and map
the open interval (0, 2π ) of orientations onto the real line (e.g., by x = − cot θ/2).
This transforms C into a collection � of pairwise intersecting pseudo-parabolas,
that is, graphs of totally defined continuous functions, each pair of which intersect
exactly twice. The ray ρ is mapped to the vertical lines at x = ±∞.

The problem has thus been reduced to that of bounding the number of tangencies
among n pairwise intersecting pseudo-parabolas, no three of which are concurrent.
By Theorem 2.4, the number of tangencies is at most 2n − 4, for n ≥ 3, so the
number of lune-faces is at most 2n − 4. This completes the overall proof of the
theorem.

2.3. REDUCTION TO PAIRWISE INTERSECTING STAR-SHAPED PSEUDO-CIRCLES.
Let C be a family of n pseudo-circles, any two of which intersect each other in
two points. We refer to the interiors of these pseudo-circles as pseudo-disks. We
bound µ(C) by reducing the problem to a constant number of subproblems, each
of which is ultimately reduced to counting the number of empty lenses in a family
of pairwise intersecting star-shaped pseudo-circles. We continue to assume that the
curves in C are in general position, as in the preceding section.

We need the following easy observation.

LEMMA 2.6. Among any five pseudo-disks bounded by the elements of C, there
are at least three that have a point in common.

PROOF. Indeed, if this were false, then there would exist five pseudo-disks
such that any two of them intersect in an empty lens (in the arrangement of the five
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corresponding boundary curves). This is easily seen to imply (see, e.g., Kedem et al.
[1986]) that the intersection graph of these disks can be drawn in a crossing-free
manner. However, this graph is K5, the complete graph with five vertices, which is
not planar.

The following topological variant of Helly’s theorem [Helly 1930] was found by
Molnár [1956]. It can be proved by a fairly straightforward induction.

LEMMA 2.7. Any finite family of at least three simply connected regions in the
plane has a nonempty simply connected intersection, provided that any two of its
members have a connected intersection and any three have a nonempty intersec-
tion. Consequently, the intersection of any subfamily of pseudo-disks bounded by
elements of C is either empty or simply connected and hence contractible.

Let p ≥ q ≥ 2 be integers. We say that a family F of sets has the (p, q) property
if among every p members of F there are q that have a point in common. We say
that a family of sets F is pierced by a set T if every member of F contains at least
one element of T . The set T is often called a transversal of F . Fix p ≥ q ≥ d + 1.
Alon and Kleitman [1992] proved that there exists a transversal of size at most
k = k(p, q, d) for any finite family of convex sets in R

d with the (p, q)-property.
Recently, Alon et al. [2002] extended this result to any finite family F of open
regions in d-space with the property that the intersection of every subfamily of F
is either empty or contractible. Their result, combined with Lemmas 2.6 and 2.7,
implies the following.

COROLLARY 2.8. There is an absolute constant k such that any family of
pseudo-disks bounded by pairwise intersecting pseudo-circles can be pierced by at
most k points.

Fix a set O = {o1, o2, . . . , ok} of k points that pierces all pseudo-disks bounded
by the elements of C . Let Ci consist of all elements of C that contain oi in their
interior, for i = 1, 2, . . . , k.

It suffices to derive an upper bound on the number of empty lenses formed by
pairs of pseudo-circles belonging to the same class Ci , and on the number of empty
lenses formed by pairs of pseudo-circles belonging to two fixed classes Ci , C j .
We begin by considering the first case and then reduce the second case to the
first one.

Let C be a family of pseudo-circles, so that any two of them intersect and each
of them contains the origin o in its interior. We wish to bound µ(C). Obviously,
there exists at most one empty lens-face formed by elements of C , namely, the
face containing o. Therefore, it is sufficient to bound the number of lune-faces
determined by C . The combinatorial structure of an arrangement is its face lattice.
We call two arrangements combinatorially equivalent if the face lattices of their
arrangements are isomorphic. For a face f , we say that an edge e bounding f
is pointing inside (respectively, outside) if f is in the interior (respectively, the
exterior) of the pseudo-disk whose boundary includes e.

We need the following technical lemma to prove the main result.

LEMMA 2.9. Let C be a family of pseudo-circles such that all of them have an
interior point o in common. Then the union of any set of pseudo-disks bounded by
the elements of C is simply connected.
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PROOF. For any γi ∈ C , let Di denote the pseudo-disk bounded by γi . Using
stereographic projection, we can map each Di into a simply connected region D′

i
of a sphere S

2 touching the plane at o, where the center of projection is the point
o′ ∈ S

2 antipodal to o. Clearly, we have

S
2 \

⋃
1≤i≤k

D′
i =

⋂
1≤i≤k

(S2 \ D′
i ).

The sets D′
i = S

2 \ D′
i form a collection of pseudo-disks in the “punctured” sphere

S
2 \{o}, isomorphic to the plane, and they all contain o′. Thus, applying Lemma 2.7

(clearly, the intersection of two pseudo-disks is always connected), we obtain that
the right-hand side of the above equation is simply connected. Therefore, S

2 \⋃
1≤i≤k D′

i is also simply connected, which implies that the union of the pseudo-
disks bounded by the elements of C is simply connected.

By Lemma 2.9, R
2 \ ⋃

i Di consists of only one (unbounded) cell in A(C). An
immediate corollary of the above lemma is the following.

COROLLARY 2.10. Every bounded face of A(C) has an edge that points inside.

PROOF. Let f be a bounded face of A(C). Denoting by si and Di , for
i = 1, 2, . . . , k, the edges of f and the respective pseudo-disks whose bound-
aries contain these edges, and assuming that every si is pointing outside, we ob-
tain that f lies in the exterior of all pseudo-disks Di , for i = 1, 2, . . . , k. How-
ever, this would imply that f is a bounded cell of the complement of

⋃
1≤i≤k Di ,

contradicting Lemma 2.9, which states that
⋃

1≤i≤k Di is a simply connected
bounded set.

We now prove the main technical result of this section.

LEMMA 2.11. Let C be a finite family of pseudo-circles in general position,
such that all of them have an interior point o in common. Then, there exists a
combinatorially equivalent family C ′ of pseudo-circles, all of which are star-shaped
with respect to o.

PROOF. We perform an “angular” topological sweep of A(C) with respect to
o by a semi-infinite arc r̃ that has o as an endpoint, and intersects, at any time,
each pseudo-circle of C exactly once. The ordering of the intersections of r̃ with
the members of C gives a permutation of C , and the sweep produces a circular
sequence � of permutations, each differing from the preceding one by a swap
of two adjacent elements. We then construct a family C ′ of pseudo-circles, all of
which are star-shaped with respect to o, so that the angular sweep of A(C ′) by a
ray emanating from o produces the same sequence �; this will imply that C ′ is
combinatorially equivalent to C .

First, we show how to construct an initial instance of the curve r̃ . Let f1 be the
cell ofA(C) containing o. Clearly, all edges of f1 point inside. Start drawing a curve
r̃ from o so that it first crosses an edge e1 of f1, pointing inside f1. Let f2 denote
the cell on the other side of e1, and let e2 be an edge of this cell pointing inside;
clearly, e2 �= e1. Extend r̃ through f2 until it crosses e2. Proceeding in this way, we
reach, after n steps, the unique unbounded cell fn+1; see Figure 8(i). This follows
by noting that at each step we exit a different pseudo-disk, and never enter into
any pseudo-disk. Let γi ∈ C denote the pseudo-circle whose boundary contains ei .
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FIG. 8. Converting C into a star-shaped family by a counterclockwise topological sweep: (i) The
original curves; (ii) The transformed curves. � = (123, 213, 231, 321, 312, 132, 123).

FIG. 9. (i) el and ek have a common endpoint counterclockwise to r̃ ; (ii) advancing the sweep curve.

Clearly, the sequence π1 = (γ1, . . . , γn), where γi is the curve containing the edge
ei , is a permutation of C .

The following claim shows that there always exists a “local” move that advances
the sweep of the curve r̃ around o. It is reminiscent of a similar result given in
Snoeyink and Hershberger [1991].

CLAIM 1. There exist two consecutive edges ei , ei+1 that are crossed by r̃
and have a common endpoint counterclockwise to r̃ , that is, the triangular region
enclosed by ei , ei+1, and r̃ is contained in a face of A(C) and lies (locally) on the
counterclockwise side of r̃ .

PROOF. Let j(i), for each 1 ≤ i ≤ n, denote the index of the first element of C
that intersects γi counterclockwise to r̃ . Let Ti denote the triangular region bounded
by γi , γ j(i), and r̃ . We say that Ti is positive (respectively, negative), if j(i) < i
(respectively, j(i) > i). Let k be the smallest integer for which Tk is positive, and
put l = j(k); see Figure 9(i). Observe that Tn is positive, so k is well defined. No
curve whose index is greater than k can intersect Tk because such a curve would
have to intersect γl at more than two points (it has to “enter” and “leave” Tk through
γl , but to reach the entry point it has to cross γl once more, counterclockwise to
Tk). Since j(l) > l, it follows that, if l = k − 1, then el and ek satisfy the property
in the claim. The proof is completed by noting that this is the only possible case: If
l < k − 1, then γk−1 cannot exit Tk at all, which is impossible. Indeed, γk−1 cannot
intersect any curve of C in the interior of Tk , because then Tk−1 would be positive,
as the index of any curve intersecting the interior of Tk is smaller than k. If γk−1
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exits Tk by intersecting γl , then again Tk−1 would be positive. Finally, γk−1 cannot
exit Tk by crossing γk because k − 1 �= l = j(k). This contradiction implies that
l = k − 1, and the claim holds with el, ek .

Assume that ei and ei+1 share an endpoint w counterclockwise to r̃ . Now fix a
pair of points u, v ∈ r̃ , close to the points where r̃ crosses ∂Ti and lying outside
Ti , and continuously sweep the portion of the curve r̃ between u and v , keeping the
other parts fixed, pushing the crossing points with ∂Ti towards w , and finally pull
it through w , so that r̃ no longer intersects Ti ; see Figure 9(ii). In this new position,
r̃ meets γi+1 before it meets γi . We obtain a new permutation π2, which is the same
as π1 except that the positions of γi and γ j are swapped.

We repeat the above procedure for the new curve r̃ . Continuing in this manner,
we obtain a sequence � = (π1, π2, . . . ) of permutations of the elements of C ,
corresponding to the different orders in which r̃ crosses the curves.

We now construct a family of pseudo-circles that realize the same sequence � if
we sweep their arrangement by a ray around o. This is done similar to the procedure
described by Goodman and Pollack [1993] for realizing an allowable sequence by
an arrangement of pseudo-lines. Roughly speaking, we draw n concentric circles
σ1, σ2, . . . , σn around o, and draw a ray ρi from o for each permutation πi in �.
If πi+1 is obtained from πi by swapping γ j and γ j+1, we erase small arcs of σ j
and σ j+1 near their intersection points with ρi+1 and connect the endpoints of
the two erased arcs by two crossing segments; see Figure 8(ii). Let C ′ denote the
set of n curves, obtained by modifying the circles σ1, . . . , σn in this manner. By
construction, each curve in C ′ is star-shaped with respect to o and C ′ produces the
sequence � if we sweep it around o with a ray. By induction on the length of �,
one can show that C and C ′ are combinatorially equivalent, which implies that C ′
is a family of pseudo-circles, any pair of which intersect in exactly two points.

Lemma 2.11 implies that the number of empty lenses in C is the same as that in
C ′. Hence, by Theorem 2.5, we obtain the following.

COROLLARY 2.12. Let C be a family of n ≥ 3 pairwise-intersecting pseudo-
circles in general position whose common interior is not empty. Thenµ(C) ≤ 2n−3.
For n = 2, µ(C) = 3.

We are now ready to prove the main result of this section.

THEOREM 2.13. Let C be a family of n pairwise-intersecting pseudo-circles in
general position. Then µ(C) = O(n).

PROOF. By Corollary 2.8, there exists a covering {C1, . . . , Ck} of C by O(1)
subsets, so that all the pseudo-circles in Ci contain a point oi in their common
interior, for i = 1, . . . , k. Corollary 2.12 implies that the number of empty lenses
induced by two pseudo-circles within the same family Ci is at most 2|Ci | − 1,
for a total of at most O(n). It thus remains to consider the case in which the
given family of pairwise intersecting pseudo-circles is the union of two subfamilies
C ′

i ⊂ Ci , C ′
j ⊂ C j , such that the interiors of all pseudo-circles in C ′

i (respectively,
in C ′

j ) contain the common point oi (respectively, o j ), but no circle of C ′
i contains

o j in its interior and no circle of C ′
j contains oi in its interior. We wish to bound the

number of “bichromatic” empty lenses, that is, empty lenses in A(C ′
i ∪ C ′

j ) formed
by a pseudo-circle in C ′

i and a pseudo-circle in C ′
j . Any bichromatic lune-face in
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A(C ′
i ∪ C ′

j ) must contain either oi or o j , so there can be at most two such faces.
Thus, it suffices to bound the number of bichromatic lens-faces.

Apply an inversion of the plane with respect to oi . Then each bichromatic lens-
face is mapped into a lune-face, which lies outside the incident pseudo-circle of
C ′

i and inside the incident pseudo-circle of C ′
j Moreover, all the pseudo-circles of

both families now contain o j in their interior. Hence, by Theorem 2.5, the number
of these lune-faces (i.e., the original lens-faces) is at most 2n − 4, for n ≥ 3; it is 2
for n = 2. Summing this bound over all pairs of sets in the covering, the theorem
follows.

2.4. PAIRWISE NONOVERLAPPING LENSES. Let C be a family of n pairwise-
intersecting pseudo-parabolas or pseudo-circles in general position, and let L be a
family of pairwise nonoverlapping lenses in A(C). In this section, we obtain the
following bound for the size of L .

THEOREM 2.14. Let C be a family of n pairwise-intersecting pseudo-parabolas
or pseudo-circles in general position. Then the maximum size of a family of pairwise
nonoverlapping lenses in A(C) is O(n4/3).

We begin by considering the case of pseudo-parabolas; we then show that the
other case can be reduced to this case, using the analysis given in the preceding
subsections. We first prove several lemmas.

LEMMA 2.15. Let C and L be as above, and assume further that the lenses in
L have pairwise disjoint interiors. Then |L| = O(n).

PROOF. For each lens λ ∈ L , let σλ denote the number of edges of A(C) that
lie in the interior of λ (i.e., the region bounded by λ), and set σL = ∑

λ∈L σλ. We
prove the lemma by induction on the value of σL . If σL = 0, that is, all lenses in L
are empty, then the lemma follows from Theorem 2.13. Suppose σL ≥ 1.

Let λ0 be a lens in L with σλ0 ≥ 1, and let K0 be the interior of λ0. Let γ, γ ′ ∈ C
be the pseudo-parabolas forming λ0, and let δ ⊂ γ and δ′ ⊂ γ ′ be the two arcs
forming λ0. Let ζ ∈ C be a curve that intersects K0; clearly, ζ ∈ C cannot be fully
contained in K0, so it must cross λ0. Up to symmetry, there are two possible kinds
of intersection between ζ and λ0:

(i) |ζ ∩ δ′| = 2, and ζ ∩ δ = ∅.
(ii) ζ intersects both δ and δ′. In this case, either ζ intersects each of δ, δ′ at a single

point, or it intersects each of them at two points.

Suppose K0 is crossed by a curve ζ ∈ C of type (i). Let λ1 be the lens formed by
ζ and γ ′. We replace λ0 with λ1 in L . See Figure 10(i). The new set L ′ still consists
of lenses with pairwise disjoint interiors, so in particular the lenses in L ′ are still
pairwise nonoverlapping. Moreover, the interior of λ1 is strictly contained in K0
and contains fewer edges of A(C) than K0, so σL ′ < σL . The lemma now holds by
the induction hypothesis. We may thus assume that no curve of type (i) crosses K0,
so all these curves are of type (ii). In this case, we deform γ or γ ′, thereby shrinking
K0 to an empty lens between γ and γ ′. For example, we can replace δ′ by an arc that
proceeds parallel to δ and outside K0, and connects two points on γ ′ close to the
endpoints of δ′, except for a small region where the new δ′ crosses δ twice, forming
a small empty lens; see Figure 10(ii). Since only curves of type (ii) cross K0, it is
easy to check that C is still a collection of pairwise-intersecting pseudo-parabolas.
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FIG. 10. (i) Replacing λ0 by a “smaller” lens if it intersects a type (i) curve. (ii) Shrinking λ0 to an
empty lens when it is crossed only by type (ii) curves.

Moreover, since the lenses in L are pairwise nonoverlapping and no pair of them
share an endpoint, the deformation of δ′ can be done in such a way that no other
lens in L is affected. The lens λ0 is replaced by the new lens λ1 formed between δ
and the modified δ′. Since σλ1 = 0, we have reduced the size of σL , and the claim
follows by the induction hypothesis. This completes the proof of the lemma.

A pair (λ, λ′) of lenses in L is called crossing if an arc of λ intersects an arc
of λ′. (Note that a pair of lenses may be nonoverlapping and yet crossing.) A pair
(λ, λ′) of lenses in L is said to be nested if both arcs of λ′ are fully contained in the
interior of λ. Let X be the number of crossing pairs of lenses in L , and let Y be the
number of nested pairs of lenses in L .

LEMMA 2.16. Let C, L, X and Y be as above. Then

|L| = O(n + X + Y ). (1)

PROOF. If L contains a pair of crossing or nested lenses, remove one of them
from L . This decreases |L| by 1 and X + Y by at least 1, so if (1) holds for the new
L , it also holds for the original set. Repeat this step until L has no pair of crossing
or nested lenses. Every pair of lenses in (the new) L must have disjoint interiors.
The lemma is then an immediate consequence of Lemma 2.15.

We next derive upper bounds for X and Y . The first bound is easy:

LEMMA 2.17. X = O(n2).

PROOF. We charge each crossing pair of lenses (λ, λ′) in L to an intersection
point of some arc bounding λ and some arc bounding λ′. Since the lenses of L are
pairwise nonoverlapping, it easily follows that such an intersection point can be
charged at most O(1) times (it is charged at most once if the crossing occurs at a
point in the relative interior of arcs of both lenses), and this implies the lemma.

We next derive an upper bound for Y , with the following twist:

LEMMA 2.18. Let k < n be some threshold integer parameter, and suppose
that each lens of L is crossed by at most k curves of C. Then Y = O(k|L|).

PROOF. Fix a lens λ′ ∈ L . Let λ ∈ L be a lens that contains λ′ in its interior,
i.e., (λ, λ′) is a nested pair. Pick any point q on λ′ (e.g., its left vertex), and draw
an upward vertical ray ρ from q; ρ must cross the upper boundary of λ. It cannot
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cross more than k other curves before hitting λ because any such curve has to cross
λ (as mentioned in the proof of Lemma 2.15, no curve can be fully contained in the
interior of a lens of L). Because of the nonoverlap of the lenses of L and the general
position assumption, the crossing point ρ ∩ λ uniquely identifies λ. This implies
that at most O(k) lenses in L can contain λ′, thereby implying that the number of
nested pairs of lenses in L is O(k|L|).

PROOF OF THEOREM 2.14. Continue to assume that C is a collection of pairwise
intersecting pseudo-parabolas, and let L be a family of pairwise nonoverlapping
lenses in A(C). Let k be any fixed threshold parameter, which will be determined
later. First, remove from L all lenses which are intersected by at least k curves of
C . Any such lens contains points of intersection of at least k pairs of curves of C .
Since these lenses are pairwise nonoverlapping, and there are n(n − 1) intersection
points, the number of such “heavily intersected” lenses is at most O(n2/k). So, we
may assume that each remaining lens in L is crossed by at most k curves of C .

Draw a random sample R of curves from C , where each curve is chosen inde-
pendently with probability p, to be determined shortly. The expected number of
curves in R is np, and the expected size |L ′| of the subset L ′ of lenses of L that
survive in R (i.e., both curves bounding the lens are chosen in R) is |L|p2. Here
L refers to the set after removal, within A(C), of the heavily intersected lenses.
The expected number Y ′ of nested pairs (λ, λ′) in L ′ is Y p4 (any such pair must
be counted in Y for the whole arrangement, and its probability of surviving in R
is p4). Similarly, the expected number X ′ of crossing pairs (λ, λ′) in L ′ is X p4. By
Lemmas 2.16 (applied to A(R)), 2.17, and 2.18, we have

|L|p2 ≤ c(np + n2 p4 + k|L|p4),

for an appropriate constant c. That is, we have

|L|(1 − ckp2) ≤ c

(
n

p
+ n2 p2

)
.

Choose p = 1/(2ck)1/2, to obtain |L| = O(nk1/2 + n2/k). Adding the bound on
the number of heavy lenses, we conclude that the size of the whole L is

|L| = O

(
nk1/2 + n2

k

)
.

By choosing k = n2/3, we obtain |L| = O(n4/3), thereby completing the proof of
the theorem for the case of pseudo-parabolas.

Suppose next that C is a collection of pairwise intersecting pseudo-circles. We
apply the sequence of reductions used in Section 2, and keep track of the “fate” of
each lens in L , ensuring that they remain pairwise nonoverlapping. The transforma-
tions effected by Lemma 2.11 and Theorem 2.13 clearly do not violate this property.
Moreover, when we pass to the subcollections Ci or Ci ∪ C j , the remaining lenses
continue to be pairwise nonoverlapping. Finally, “opening-up” the pseudo-circles
into pseudo-parabolas by cutting them with a ray may destroy some lenses of L ,
but the number of lenses of L that are cut by the ray is clearly only O(n), so we can
remove them from L and consider only the surviving lenses, to which the analysis
just presented can be applied.
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FIG. 11. Perturbing arrangements in degenerate position: (i) Straightening the curves in the vicinity
of a degenerate point p. (ii) Deforming the curves near p. (Note that c2 and c3 cross at p, while every
other pair is tangent at p.)

2.5. CUTTING PAIRWISE INTERSECTING PSEUDO-CIRCLES INTO PSEUDO-
SEGMENTS. Let C be a family of n pairwise intersecting pseudo-parabolas or
pseudo-circles that are not necessarily in general position. (This is the first time
that we treat degenerate situations as well.) Recall that χ (C) denotes the minimum
number of subarcs into which the curves in C need to be cut so that any two arcs
intersect at most once. As noted, the analysis of Tamaki and Tokuyama [1998]
implies that χ (C) = O(ν(C)). Hence, if the curves in C are in general position,
Theorem 2.14 implies that χ (C) = O(n4/3).

Remark. For the analysis of Tamaki and Tokuyama [1998] to apply, one has
to assume that the properties of C that are needed for the derivation of a bound on
ν(C) also hold for any (random) sample of C . For example, here we assume that
every pair of curves in C intersect, and this clearly holds for any subset of C . In
later applications, similar hereditary behavior also has to be verified, but we will
not do it explicitly, as it will trivially hold in all cases.

2.5.1. Handling Degeneracies. Suppose that the curves in C are in degenerate
position. For technical reasons, we assume that, for the case of pseudo-circles, the
curves are x-monotone. We will first deform them into a collection of curves in
general position, then apply Theorem 2.14 to obtain the bound O(n4/3) on ν(C ′),
for the deformed collection C ′, then apply the analysis of Tamaki and Tokuyama
to cut the curves of C ′ into O(n4/3) pseudo-segments, and finally deform the cut
curves of C ′, together with the cutting points, back to their original position.

In more detail, we proceed as follows: Let p be a point at which at least three
curves of C are incident or at least two curves of C are tangent; any number of
pairs of curves incident to p may be tangent to each other at p.4 Draw a small
axis-parallel rectangle γ = γp centered at p, so that (i) the interior of γ does not
contain any vertex of A(C) except for p; (ii) each curve incident to p intersects γ in
exactly two points, which lie on the left and right edges of γ ; and (iii) no curve that
is not incident to p intersects γ . The x-monotonicity and continuity of the curves
of C are easily seen to imply that such a γ exists. For each curve c that is incident to
p, we replace the (connected) portion of c inside γ by the pair of straight segments
connecting p to the two points of c ∩ γ . See Figure 11(i).

4 Note that it may be the case that (c1, c2) and (c1, c3) are two pairs of tangent curves at p, but c2 and
c3 are not tangent; see Figure 11(i).
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For each curve ci ∈ C passing through p, let λi (respectively, ρi ) denote the
intersection of ci with the left (respectively, right) edge of γ . Order the curves
incident to p as c1, . . . , c j , so that λ1, . . . , λ j appear in this increasing y-order
along the left edge of γ . Replace p by a sequence of j distinct points p1, . . . , p j
lying on the vertical line passing through p, and arranged along it in this decreasing
y-order. For each i = 1, . . . , j , replace the portion of ci within γ by the two straight
segments connecting λi and ρi to pi ; see Figure 11(ii).

It is easily verified that (i) each pair of original curves that were tangent at p are
replaced by a pair of curves that cross twice within γ and (ii) each pair of original
curves that crossed at p are replaced by a pair of curves that cross once within
γ . This implies that the resulting curves are still a family of pairwise-intersecting
pseudo-parabolas or x-monotone pseudo-circles, and, with an appropriate choice of
the points p1, . . . , p j , the portions of these curves within γ are in general position.

We repeat this perturbation in the neighborhood of each point that is incident to
at least three curves or to at least one tangent pair. The final perturbed collection C ′
is still a family of pairwise intersecting pseudo-parabolas or x-monotone pseudo-
circles, and they are now in general position. Applying, as above, the analysis of
Tamaki and Tokuyama and Theorem 2.14, we can cut the curves in C ′ into O(n4/3)
pseudo-segments. Moreover, the cuts can be made in such a way that, for any
curve c incident to a degenerate point p, its perturbed version c′ is cut within the
corresponding surrounding rectangle γp only if c′ participates in a lens that is fully
contained in γp, which is equivalent to the original curve c being tangent to some
other curve(s) at p.

Finally, after having cut the perturbed curves, we deform them back to their
original positions. If a perturbed curve c′ was cut within some rectangle γp, we
cut the original curve c at the center p itself. It is easily verified that the resulting
collection of arcs is indeed a family of pseudo-segments. No two arcs are tangent
to each other (in their relative interiors), but an endpoint of an arc may lie on
(the relative interior of) another arc. We summarize this analysis in the following
theorem.

THEOREM 2.19. Let C be a collection of n pairwise intersecting pseudo-
parabolas or x-monotone pseudo-circles, not necessarily in general position. Then
χ (C) = O(n4/3). (x-monotonicity need not be assumed for pseudo-circles in gen-
eral position.)

3. Bichromatic Lenses in Pseudo-Parabolas

In this section, we consider the following bichromatic extension of the problems
involving empty and pairwise-nonoverlapping lenses, which is required as a main
technical tool in the analysis of the general case, treated in Section 5, where not
all pairs of the given pseudo-circles necessarily intersect. (We remark, though, that
we handle in Section 5 only certain special classes of pseudo-circles and pseudo-
parabolas.)

We consider in this section only the case of pseudo-parabolas, which is simpler to
handle. The case of pseudo-circles will be treated indirectly in Section 5. Moreover,
we return to our initial assumption that the given curves are in general position.
Degenerate cases will be treated later on. Let � = A ∪ B be a family of n pseudo-
parabolas in general position, where A ∩ B = ∅ and each pseudo-parabola of A
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FIG. 12. Discarding one of the nested pseudo-parabolas: (i) a is discarded, (ii) b is discarded.

intersects every pseudo-parabola of B twice; a pair of pseudo-parabolas within A
(or B) may be disjoint. A lens formed by a pseudo-parabola belonging to A and
another belonging to B is called bichromatic.

We first extend Theorem 2.4 to the bichromatic case, and show that the number
of empty bichromatic lenses, in the setup assumed above, is O(n). Then we obtain
a bound of O(n4/3) on the maximum size of a family of bichromatic pairwise
nonoverlapping lenses. These results are obtained by pruning away some curves
from �, so that the remaining curves are pairwise intersecting, and no lens in the
family under consideration is lost. More specifically, we proceed as follows.

THEOREM 3.1. Let � = A ∪ B be a family of n pseudo-parabolas in general
position, where A∩ B = ∅ and each pseudo-parabola of A intersects every pseudo-
parabola of B twice. Then the number of empty bichromatic lenses in A(�) is O(n).

PROOF. It suffices to estimate the number of empty bichromatic lenses formed
by some a ∈ A and by some b ∈ B so that a lies above b within the lens. The
complementary set of empty bichromatic lenses is analyzed in a fully symmetric
manner.

We apply the following pruning process to the curves of �. Let a, a′ be two
disjoint curves in A so that a′ lies fully below a. Then no empty bichromatic lens
of the kind under consideration can be formed between a and any pseudo-parabola
b ∈ B, because then a′ and b would have to be disjoint; see Figure 12(i). Hence, we
may remove a from A without affecting the number of empty bichromatic lenses
under consideration. Similarly, if b and b′ are two disjoint curves in B, with b lying
fully below b′, then, for similar reasons, no empty bichromatic lens of the kind
under consideration can be formed between b and any pseudo-parabola a ∈ A; see
Figure 12(ii). Hence, b may be removed from B without affecting the number of
lenses that we are after.

We keep applying this pruning process until all pairs of remaining curves in A∪B
intersect each other. By Theorem 2.4, the number of empty lenses in A(A ∪ B) is
O(n). As discussed above, this completes the proof of the theorem.

In order to bound the maximum number of bichromatic pairwise-nonoverlapping
lenses in �, we need the following lemma.

LEMMA 3.2. Let � = A ∪ B be a family of n pseudo-parabolas in general
position, where A∩ B = ∅ and each pseudo-parabola of A intersects every pseudo-
parabola of B twice. Let L be a family of pairwise-nonoverlapping bichromatic
lenses in A(�) that have pairwise disjoint interiors. Then |L| = O(n).

PROOF. As earlier, it suffices to estimate the number of lenses in L that are
formed by some a ∈ A and by some b ∈ B so that a lies above b within the lens. As
in the proof of Theorem 3.1, we argue that if there are two disjoint curves a, a′ ∈ A
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FIG. 13. Transforming a lens into an empty lens.

so that a′ lies fully below a, then a can be pruned away. Let λ ∈ L be a lens formed
by a and by some curve b ∈ B. Let δ ⊂ b be the arc of b forming λ (see Figure 13).
Since b \ δ lies fully above a and thus above a′, the curve a′ must intersect δ at two
points. Replace λ by the lens λ′, formed between a′ and b. Since the lenses in L
have disjoint interiors, λ′ is not a member of L , and, after the replacement, L is still
a family of bichromatic lenses with pairwise-disjoint interiors (and thus pairwise
nonoverlapping), of the same size. Hence, by applying this replacement rule to each
lens in L formed along a, we construct a family of pairwise-nonoverlapping lenses
in which no lens is bounded by a, so we delete a from A. Hence, we can assume
that all pairs of curves in A intersect. By applying a symmetric rule for pruning
the curves of B, we can assume that every pair in B also intersect. Since every two
curves in � intersect, the lemma follows from Theorem 2.4.

By proceeding as in Section 2.4 but using the above lemma instead of
Lemma 2.15, we obtain the following result.

LEMMA 3.3. Let � = A ∪ B be a family of n pseudo-parabolas in general
position, where A∩ B = ∅ and each pseudo-parabola of A intersects every pseudo-
parabola of B twice. Let L be a family of pairwise-nonoverlapping bichromatic
lenses in A(�). Then the size of L is O(n4/3).

As a result, we obtain the main result of this section.

THEOREM 3.4. Let � = A ∪ B be a family of n pseudo-parabolas, not nec-
essarily in general position, where A ∩ B = ∅ and each pseudo-parabola of A
intersects every pseudo-parabola of B twice. Then one can cut the curves in � into
O(n4/3) arcs, so that each arc lying on a curve of A intersects every arc lying on a
curve of B at most once.

PROOF. If the curves are in general position, this is an immediate corollary of
the analysis of Tamaki and Tokuyama [1998], in a similar manner to the application
in Section 2.5. (As remarked there, we need to verify that the conditions assumed
in the theorem also hold for subsets of A, B, which is clearly the case.) If A and B
are in degenerate position, we apply the perturbation scheme used in Section 2.5.
It is easily checked that this scheme maintains the property that each curve in A
intersects every curve in B, so the bound on the number of cuts remains O(n4/3) in
this case too.

4. Improving the Tamaki–Tokuyama Bound

In this section, we improve the bound of Tamaki and Tokuyama [1998] for arbitrary
collections C of pseudo-parabolas or x-monotone pseudo-circles, and show that
ν(C) = O(n8/5) in these cases.
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FIG. 14. Illustrating the refined drawing rule for the plane embedding of G ′. The lenses of L all
appear along the bottommost curve, and each hollow circle designates the left endpoint of a lens, and
the apex of the corresponding wedge.

4.1. THE CASE OF PSEUDO-PARABOLAS.

THEOREM 4.1. Let � be a family of n pseudo-parabolas (not necessarily in
general position). Then χ (�) = O(n8/5).

PROOF. Let us first assume that the given collection is in general position,
and handle the degenerate case towards the end of the proof, as in the preceding
sections. Let � be a collection of n pseudo-parabolas in general position, and let L
be a family of pairwise nonoverlapping lenses in �. Consider the graph G = (�, L)
as in Section 2.1. We draw G in the plane using the same drawing rule described in
Section 2.1.5 We partition � into two subsets �1, �2 of size at most �n/2� each so
that for all (γ1, γ2) ∈ �1 × �2, γ ∗

1 lies above γ ∗
2 . Let G ′ be the bipartite subgraph

of G in which E(G ′) = E(G) ∩ (�1 × �2). Then |L| ≤ ν(�1) + ν(�2) + |E(G ′)|.
By refining the rule described in Section 2.1, we draw G ′ so that the drawings

of every pair of edges in G ′ that belong to a cycle of length 4 intersect an even
number of times. By a result of Pinchasi and Radoičić [2003], a graph on n vertices
with this property has at most O(n8/5) edges. Put ν(n) = max� ν(�), where the
maximum is taken over all sets � of n pseudo-parabolas in general position. Since
|�1|, |�2| ≤ �n/2�, we obtain the recurrence

ν(n) ≤ 2ν
(⌈n

2

⌉)
+ O

(
n8/5

)
,

whose solution is ν(n) = O
(
n8/5

)
. This implies that |L| = O

(
n8/5

)
. This, plus the

analysis in Tamaki and Tokuyama [1998] implies that χ (�) = O(n8/5).
We first describe how to refine the drawing of G ′. The drawing rule of Section 2.1

only specifies how the edges of G ′ have to “navigate” around intermediate vertices
along the vertical line �, but the rule does not specify the order in which edges
emanate from a vertex. Let f ∗ be a vertex of the drawn graph G ′. Let g∗

1 , . . . , g∗
k be

all the vertices above f ∗ that are connected to it by an edge. For each 1 ≤ i ≤ k, let
xi be the x-coordinate of the leftmost intersection point between f and gi . Order the
gi ’s so that xi < x j whenever i < j . We then draw the edges ( f ∗, g∗

1), . . . , ( f ∗, g∗
k )

so that they emanate from f ∗ upward in this clockwise order. See Figure 14.6

5 We make a small technical modification in the statement of the rule: the wedge W (γ1, γ2) is now
defined to terminate on the right at the left intersection point of γ1 and γ2 (rather than at their tangency,
as in Section 2.1).
6 Note that in this figure, unlike Figure 2(ii), we do not draw the lenses as tangencies, since they need
not be empty.
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FIG. 15. Illustrating the proof that adjacent edges of G ′ intersect an even number of times. (i) The
case where ( f ∗, h∗) passes to the left of g∗. (ii) The case where ( f ∗, h∗) passes to the right of g∗.

Symmetrically, for any given vertex f ∗ let h∗
1, . . . , h∗

m denote all the vertices
below f ∗ that are connected to it by an edge. Order them, as above, in the left-to-
right order of the leftmost intersection points between h1, . . . , hm and f . We draw
the edges ( f ∗, h∗

1), . . . , ( f ∗, h∗
m) so that they emanate from f ∗ downward in this

counterclockwise order. We call two edges of G ′ adjacent if they share an endpoint.

CLAIM 2. The drawings of every pair of adjacent edges in G ′ cross an even
number of times.

PROOF. We prove this only for two adjacent edges whose drawings go upward
from a common vertex f ∗; the argument for edges that go downward is fully
symmetric. Let the other endpoints of these edges be g∗ and h∗, and assume,
without loss of generality, that h∗ lies above g∗.

If the arc ( f ∗, h∗) passes to the left of g∗, then the leftmost intersection vgh
between h and g is to the left of the leftmost intersection v f h between h and f
(clearly, both intersections exist); see Figure 15(i). We claim that in this case v f h
lies to the left of the leftmost intersection v f g between f and g. Indeed, assume
to the contrary that v f h lies to the right of v f g. Then g must intersect h twice to
the left of v f h and then intersect f at least once to the left of v f h . Moreover, since
the lenses ( f, g) and ( f, h) are nonoverlapping, the rightmost intersection v ′

f g of
f and g must also lie to the left of v f h; see Figure 15(i). But then, immediately to
the right of v ′

f g, the curve g is “trapped” in the wedge W ( f, h), since it has already
intersected each of these curves twice. This contradiction implies that v f h lies to the
left of v f g, and our modified drawing rule thus implies that ( f ∗, g∗) lies clockwise
to ( f ∗, h∗) near f ∗. Regarding the two edges as graphs of functions of y, and using
the mean-value theorem, as in Section 2.1, we conclude that ( f ∗, g∗) and ( f ∗, h∗)
intersect an even number of times.

If the arc ( f ∗, h∗) passes to the right of g∗, then the leftmost intersection v f g of
f and g lies to the left of the leftmost intersection v f h of f and h. See Figure 15(ii).
Then our modified drawing rule implies that ( f ∗, g∗) lies counterclockwise to
( f ∗, h∗) near f ∗. Arguing as above, this implies that these two edges intersect an
even number of times, thus completing the proof of our claim.

CLAIM 3. If ( f, p, g, q) is a cycle of length four in G ′, then the curves f, p, g,
and q are pairwise intersecting.

PROOF. This clearly holds for each pair of curves whose corresponding vertices
are adjacent in the cycle, so the only pairs that need to be analyzed are the pair f, g



162 P. K. AGARWAL ET AL.

FIG. 16. (i) All the pairs of curves that correspond to the given 4-cycle must intersect. (ii) The lenses
that correspond to the 4-cycle are all empty relative to the four curves f, p, g, q.

and the pair p, q. We show that f, g must intersect each other, and the argument
for p, q is similar. Assume to the contrary that f and g are disjoint and, without
loss of generality, that f lies always above g. Trace the curve p from left to right.
It starts above f, g and it creates a lens with each of f and g. Clearly, p must first
intersect f , but then it cannot intersect g before it intersects f again, for otherwise
the lenses (p, f ) and (p, g) would be overlapping. However, after p intersects f
for the second time, it cannot intersect g anymore, since f now separates these
two curves. See Figure 16(i). This contradiction implies that f, p, g, q are pairwise
intersecting.

CLAIM 4. If ( f, p, g, q) is a cycle of length four in G ′, then the four lenses
corresponding to the cycle are empty with respect to the arrangement of these four
curves.

PROOF. Consider any of these four lenses, say ( f, p), and assume that either g
or q intersects it. Since the two cases are similar, we only consider the case where
g intersects ( f, p). g cannot intersect the arc of ( f, p) that belongs to p, for then
( f, p) and (g, p) would be overlapping. It follows that g must intersect twice the
arc of ( f, p) that belongs to f ; see Figure 16(ii). In this case, since g starts below p,
g must intersect p once to the left of the lens ( f, p) and once to its right, in which
case the two lenses ( f, p) and (g, p) are overlapping, a contradiction that implies
the claim.

Finally, let ( f, p, g, q) be a cycle of length four in G ′. By Claim 2, the drawings
of each of the four pairs of adjacent edges intersect an even number of times. By
Claims 3 and 4, the lenses ( f, p) and (g, q) are empty in the family of the four
pairwise intersecting pseudo-parabolas f, p, g, q. It now follows from the analysis
of Section 2.1 that the drawings of ( f ∗, p∗) and (g∗, q∗) intersect an even number
of times. Similarly, we can argue that the drawings of ( f ∗, q∗) and (g∗, p∗) intersect
an even number of times, thereby implying that the drawings of every pair of edges
in the above cycle intersect in an even number of times. Hence, |E(G ′)| = O(n8/5),
by the result in Pinchasi and Radoičić [2003].

This completes the proof of the theorem for curves in general position. In the
degenerate case we proceed exactly as in Section 2.5, concluding that χ (�) =
O(n8/5) in these cases too.

4.2. THE CASE OF PSEUDO-CIRCLES. We next extend Theorem 4.1 to the case
of x-monotone pseudo-circles, that is, any line parallel to the y-axis intersects any
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FIG. 17. Converting a pseudo-circle into two pseudo-parabolas.

of the pseudo-circles in at most two points. The corresponding extension to the
case of arbitrary pseudo-circles remains an open problem, although we expect it to
hold just as well. Let C be a family of n x-monotone pseudo-circles. Informally, we
want to turn these curves into a collection of pseudo-parabolas, by cutting each of
them at its leftmost and rightmost points, and by completing each of the resulting
top and bottom arcs into the graph of a totally defined continuous function by
extending it to the left and to the right by two sufficiently steep rays (as depicted
in Figure 17). However, these extensions may be degenerate if many curves share
a common leftmost or rightmost endpoint. To simplify the analysis, we discard on
each curve a sufficiently small neighborhood of its x-extreme points, and extend
the remaining top and bottom portions to pseudo-parabolas as before.

More formally, we proceed as follows. Let c ∈ C , and denote by λc (respectively,
ρc) the leftmost (respectively, rightmost) point of c; our x-monotonicity assumption
implies that these points are well defined. Consider the intersection points of c with
the other curves in C ; there are at most 2(n − 1) such points. Then there exist
sufficiently small arcs N (λc), N (ρc) ⊆ c that contain respectively λc, ρc and are
free from all other intersection points that do not lie at λc, ρc. Removing these arcs
from c, it is partitioned into two x-monotone arcs, called upper and lower arcs and
denoted as c+, c−, respectively; see Figure 17(i).

We convert C into a family of pseudo-parabolas. For each c ∈ C , we extend its
upper arc c+ to an x-monotone curve γ +

c by adding a downward (almost vertical)
ray l↓c (respectively, r↓

c ) of sufficiently large positive (respectively, negative) slope
from λc (respectively, ρc); all rays emanating from the left (respectively, right)
endpoints of the pseudo-circles are parallel. Similarly we extend every c− to an
x-monotone curve γ −

c by attaching upward (almost vertical) rays l↑c and r↑
c to λc

and ρc, respectively. We assume that the rays are chosen sufficiently steep so that
a downward (respectively, upward) ray intersects a pseudo-disk of C only if it lies
vertically below (respectively, above) the apex of the ray. Since the x-extremal
endpoints of all the arcs c+, c− are all distinct, by construction, the slopes of the
extension rays can be chosen in such a way that no two rays lie on the same line.
We now prove that the resulting curves form a family of pseudo-parabolas.

LEMMA 4.2. For a finite family C of x-monotone pseudo-circles,

� = {γ +
c , γ −

c | c ∈ C}
is a family of pseudo-parabolas.

PROOF. For simplcity, we prove the lemma for the case in which the x-
coordinates of the extremal points of the top and bottom portions of the curves
of C are all distinct. This can clearly be enforced by an appropriate choice of the
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FIG. 18. Two extended upper arcs intersect at most twice: (A) ρa lies to the left of λb; (B) λb lies
above a+: (B.1) a+, b+ intersect at two points or they intersect at one point but ρb lies to the right
of ρa ; (B.2) a+ and b+ intersect at one point and ρb lies to the left of ρa ; (B.3) a+ and b+ do not
intersect. (C) λb lies below a+: (C.1) a+ and b+ intersect at two points and ρb lies to the left of ρa ;
(C.2) a+ and b+ intersect at one point; (C.3) a+ and b+ do not intersect.

cutting points. Let a and b be two pseudo-circles in C . We first prove that γ +
a and

γ +
b intersect in at most two points. For simplicity, for a curve c ∈ C , we will use

lc, rc to denote the rays l↓c and r↓
c , respectively. Also, with some abuse of notation,

we now denote by λa and ρa the leftmost and rightmost points of a+, and similarly
for b+. Without loss of generality, assume that λa lies to the left of λb; then the ray
la does not intersect γ +

b . There are three cases to consider:

Case (A). λb lies to the right of ρa. In this case the only intersection between
γ +

a and γ +
b is between the rays lb and ra (see Figure 18(A)).

Case (B). λb lies above a+. In this case lb intersects a+, so we show that
there is at most one additional intersection point between γ +

a and γ +
b . If a+ and

b+ intersect at two points or if a+ and b+ intersect at one point but ρb lies to
the right of ρa , then a and b intersect in at least four points (see Figure 18(B.1)),
contradicting the assumption that C is a family of pseudo-circles. If a+ and b+
intersect at one point and ρb lies to the left of ρa (and, necessarily, below a+), then
neither ra intersects γ +

b (ra lies to the right of b+) nor rb intersects γ +
a (rb lies below

a+); see Figure 18(B.2). Hence, there are only two intersection points between γ +
a

and γ +
b .

If a+ and b+ do not intersect, then ra cannot intersect γ +
b , as it lies below b+.

Hence, only rb may intersect γ +
a (if ρa lies to the right of ρb), thereby showing that

there are at most two intersection points between γ +
a and γ +

b ; see Figure 18(B.3).

Case (C): λb lies below a+. In this case lb does not intersect a+. If a+ intersects
b+ at two points and ρb lies to the right of ρa , then a and b intersect in at least four
points, a contradiction (the situation is similar to that shown in Figure 18(B.1)). If
they intersect at two points but ρb lies to the left of ρa , then neither ra intersects b+
nor rb intersects a+, so there are at most two intersection points between γ +

a , γ +
b ;

see Figure 18(C.1).
If a+ and b+ intersect at one point, then ra cannot intersect γ +

b (see
Figure 18(C.2)), so the number of intersection points between γ +

a and γ +
b is easily

seen to be at most two. Finally, if a+ and b+ do not intersect, then there is at most
one intersection between γ +

a and γ +
b , namely between ra and b+ (if ρb lies to the

right of ρa); see Figure 18(C.3).
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FIG. 19. An extended upper arc and an extended lower arc intersect at most twice: (A) ρa lies to
the left of λb; (B) λb lies above a+: (B.1) a+, b− intersect at two points; (B.2) a+ and b− intersect at
one point; (B.3) a+ and b− do not intersect. (C) λb lies below a+: (C.1) a+ and b− intersect at two
points (an impossible configuration); (C.2) a+ and b− intersect at one point; (C.3) a+ and b− do not
intersect.

Hence, in all cases, there are at most two intersection points between γ +
a and γ +

b .
A symmetric argument shows that γ −

a and γ −
b also intersect at most twice. Finally,

a similar case analysis, depicted in Figure 19, shows that γ −
a and γ +

b also intersect
at most twice. We leave it to the reader to fill in the fairly straightforward details,
similar to those given above.

THEOREM 4.3. Let C be an arbitrary family of n x-monotone pseudo-circles
in the plane. Then χ (C) = O(n8/5).

PROOF. Assume first that the curves in C are in general position. Let L be a
family of pairwise-nonoverlapping lenses in C . We convert C into a family � =
{γ +

c , γ −
c | c ∈ C} of 2n pseudo-parabolas, as described above. There are at most 4n

lenses in L that contain the original x-extreme points λc or ρc of some curve c ∈ C
on their boundary, as the lenses in L are nonoverlapping. For any remaining lens,
each of its two arcs is fully contained in the trimmed portion of the upper or the lower
arc of a pseudo-circle in C , and therefore it appears as a lens in the transformed
collection � of pseudo-parabolas. By Theorem 4.1, the number of such lenses is
O(n8/5). Hence, |L| = O(n8/5), which implies the claim for curves in general
position. The case of degenerate position is handled exactly as in Section 2.5.

5. Curves with 3-Parameter Algebraic Representation

In this section we further improve the bound obtained in the previous section, and
derive a bound close to n3/2 for a few important special cases, in which the curves
possess what we term as a 3-parameter algebraic representation. As in Sections 2
and 4, we first prove the bound for pseudo-parabolas and then reduce the case of
pseudo-circles to that of pseudo-parabolas.

5.1. THE CASE OF PSEUDO-PARABOLAS. Let � be a family of n pseudo-
parabolas. We say that � has a 3-parameter algebraic representation if � is a finite
subset of some infinite family P of pseudo-parabolas so that each curve γ ∈ P can
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be represented by a triple of real parameters (ξ, η, ζ ), which we regard as a point
γ ∗ ∈ R

3, so that the following three conditions are satisfied.

(AP1) For each point q in the plane, the locus of all curves in P that pass through
q is, under the assumed parametrization, a 2-dimensional surface patch in R

3,
which is a semialgebraic set of constant description complexity, that is, it is
defined as a Boolean combination of a constant number of polynomial equations
and inequalities of constant maximum degree. For any two distinct points p
and q in the plane, the locus of all curves in P that pass through both p and q
is, under the assumed parametrization, a 1-dimensional semialgebraic curve of
constant description complexity.

(AP2) For each curve γ ∈ P, the set of all curves g ∈ P that intersect γ maps
to a 3-dimensional semialgebraic set Kγ of constant description complexity.
The boundary of Kγ , denoted by τγ , is the locus of all curves in P that are
tangent to γ (and, being pseudo-parabolas, do not meet γ at any other point);
τγ partitions R

3 into two regions, one of which is Kγ and the other consists of
points representing curves that are disjoint from γ .

(AP3) Each curve in P is a semialgebraic set of constant description complexity
in the plane, and the family P is closed under translations.

We remark that condition (AP1) is not needed for obtaining bounds on ν(�) and
χ (�). It is used for obtaining improved bounds for the number of incidences between
points and the curves in �, and for the complexity of many faces in A(�); see
Section 6 for details. The class of vertical parabolas, given by equations of the form
y = ax2+bx+c, is an example of pseudo-parabolas having a 3-parameter algebraic
representation, where each parabola is represented by the triple of its coefficients.

Suppose then that P is a fixed collection of pseudo-parabolas that have a 3-
parameter algebraic representation, and let � ⊂ P be a family of n pseudo-
parabolas.

Our plan of attack, similar to those employed in Alon et al. [2001] and Aronov
and Sharir [2002], is to decompose the intersection graph H of � (whose edges
represent all intersecting pairs of curves in �) into a union of complete bipartite
graphs {Ai × Bi }i , so that, for each a ∈ Ai , b ∈ Bi , a intersects b. We then use
Theorem 3.4 to derive an upper bound on the number of cuts needed to eliminate all
bichromatic lenses in Ai × Bi . We repeat this process for each complete bipartite
graph Ai × Bi , and add up the numbers of cuts to derive the overall bound on χ (�).

In more detail, we proceed as follows: Let �∗ = {γ ∗ | γ ∈ �}, and �̂ = {τγ | γ ∈
�}. We describe a recursive scheme to generate the desired bipartite decomposition
of the intersection graph of �. At each step, we have two families A, B ⊆ �, of size
m and n, respectively. Let χ (A, B) denote the minimum number of cuts needed
to eliminate all bichromatic lenses in A(A ∪ B). Set χ (m, n) = max χ (A, B)
where the maximum is taken over all families of m and n pseudo-parabolas of P,
respectively. Set χ (m) = χ (m, m). We need to introduce a few concepts before
beginning with the analysis of χ (m).

For any constant integer q, let λq(r ) denote the maximum length of Davenport-
Schinzel sequences of order q composed of r symbols [Sharir and Agarwal 1995].
Put βq(r ) = λq(r )/r . In what follows, we sometimes drop the parameter q, and
write βq(r ) simply as β(r ). Assuming q to be even, we have βq(r ) = 2O(α(r )(q−2)/2),
where α(r ) is the extremely slowly growing inverse Ackermann function. See Sharir
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and Agarwal [1995] for more details. Let τ ⊆ R
3 be a simply connected region

of constant description complexity. For a set G of surfaces in R
3, we define the

conflict list Gτ ⊆ G of τ with respect to G to be the set of surfaces that intersect τ
but do not contain τ . Each surface in Gτ either crosses τ , or it is tangent to τ .

LEMMA 5.1. For any m, n and for any given parameter 1 ≤ r ≤ min{m1/3, n},
χ (m, n) ≤ cr3βq(r )

[
χ

( m

r3
,

n

r

)
+ O

(
(m + n)4/3

)]
, (2)

where q is a constant that depends on the family P, and c is an absolute constant.

PROOF. Let A, B ⊂ P be two families of m and n pseudo-parabolas, respec-
tively. Let B̂ = {τb | b ∈ B}. For a parameter 1 ≤ r ≤ n, a (1/r )-cutting � of the
arrangement A(B̂) is a decomposition of R

3 into relatively open and simply con-
nected cells of dimensions 0, 1, 2, 3, each having constant description complexity,
so that the size of the conflict list of each cell with respect to B̂ is at most n/r . Since
each τb is a two-dimensional algebraic set of constant description complexity, it
follows from the results in Agarwal et al. [1999] and Agarwal and Matoušek [1994]
that there exists a (1/r )-cutting � of size O(r3βq(r )), where q is 2 plus the maxi-
mum number s ′ = s ′(γ1, γ2, γ3, γ4), over all quadruples of curves γ1, γ2, γ3, γ4 in
P, of vertical lines � that pass through both intersection curves τγ1 ∩τγ2 and τγ3 ∩τγ4

in R
3. More precisely, s ′(γ1, γ2, γ3, γ4) is the number of connected components

of the union of all these vertical lines; equivalently, it is the number of connected
components of the intersection of the vertical projections of τγ1 ∩ τγ2 and τγ3 ∩ τγ4 .

We construct such a (1/r )-cutting � of B̂. For each cell � ∈ �, let A� =
{γ ∈ A | γ ∗ ∈ �}. If |A�| > m/r3, we cut � further into subcells (e.g., by
planes parallel to some generic direction), each containing at most m/r3 points.
The number of cells remain asymptotically O(r3βq(r )). For each (new) cell �, let
B̃� = {b ∈ B | � ⊆ Kb}, that is, any curve in B̃� intersects all curves of A� (if
� ⊆ ∂Kb, then b is tangent to all curves in A�), and let B� be the set of curves
corresponding to the conflict list of � with respect to B̂.

It follows by construction that

χ (A, B) ≤
∑
�∈�

[χ (A�, B�) + χ (A�, B̃�)].

Since every pair of pseudo-parabolas in A� × B̃� intersect, by Theorem 3.4,
χ (A�, B̃�) = O((|A�| + |B̃�|)4/3) = O((m + n)4/3). Since |A�| ≤ m/r3 and
|B�| ≤ n/r (the latter inequality holds for the original cells of �, before any cell
with two many points of A∗ has been split, and it thus also holds for each split cell),
we have χ (A�, B�) ≤ χ (m/r3, n/r ). This completes the proof of the lemma.

Flipping the roles of A and B, that is, mapping B to a set of points and A to a
set of surfaces in R

3, and applying the same decomposition scheme, we obtain

χ (m, n) ≤ cr3βq(r )
[
χ

(m

r
,

n

r3

)
+ O((m + n)4/3)

]
. (3)

Substituting (3) into the right-hand side of (2), we obtain

χ (m) ≤ c2r6β2
q (r )χ

( m

r4

)
+ O(m4/3r6β2

q (r )).
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Choosing r = m1/36, we obtain

χ (m) ≤ c1m1/6β2
q (m)) · χ (m8/9) + c1m3/2β2

q (m) (4)

for an appropriate constant c1 ≥ 1. We claim that the solution of this recurrence is

χ (m) ≤ m3/2(log m)c′ log βq (m) (5)

where c′ ≥ 1 is a sufficiently large constant. This can be proved by induction on m,
as follows. We may assume that (5) holds for all m ≤ m0, where m0 is a sufficiently
large constant that satisfies (log m)c′ log βq (m) ≥ 2c1β

2
q (m) for all m > m0. Plugging

(5) into (4), we obtain, for m > m0,

χ (m) ≤ c1m1/6β2
q (m)m4/3

(
log(m8/9)

)c′ log βq (m) + c1m3/2β2
q (m)

≤ c1m3/2(log m)c′ log βq (m)β2
q (m)

(
8

9

)c′ log βq (m)

+ c1m3/2β2
q (m)

≤ m3/2(log m)c′ log βq (m)

(
c1β

2+c′ log(8/9)
q (m) + 1

2

)
≤ c1m3/2(log m)c′ log βq (m),

provided that the constant c′ is chosen sufficiently large. This establishes the in-
duction step and thus proves (5). Recall that βq(n) = 2O(αs (n)), where α(n) is the
inverse Ackermann function and s = �(q − 2)/2� is a constant. Putting

κs(n) = (log n)O(αs (n))

and using the fact that, initially, |A|, |B| ≤ n, we obtain the following main result
of this section:

THEOREM 5.2. Let P be a collection of pseudo-parabolas that admits a 3-
parameter algebraic representation. Then χ (�) = O(n3/2κs(n)), for any subset �
of n elements of P, and for some constant parameter s that depends on the algebraic
representation of the curves in P.

Remark. In what follows, we will sometimes raise κs(n) to some fixed power,
or multiply it by a polylogarithmic factor, or replace n by some fixed power of n.
These operations do not change the asymptotic form of the expression—they merely
affect the constant of proportionality in the exponent. For the sake of simplicity,
we use the notation κs(n) to denote these modified expressions as well. We allow
ourselves this freedom because we strongly believe that the factor κs(n) is just an
esoteric artifact of our analysis, and has nothing to do with the real bound, which
we conjecture to be o(n3/2).

5.2. THE CASE OF VERTICAL PARABOLAS. As a first application of Theorem 5.2,
consider the family V of vertical parabolas, each of which is given by an equation
of the form y = ax2 + bx + c. Every vertical parabola has a natural 3-parameter
representation, by the triple (a, b, c) of its coefficients, and V trivially satisfies
(AP3).

For a fixed point p = (α, β) ∈ R
2, the set of vertical parabolas y = ξ x2 +ηx +ζ

passing through p is the plane

α2ξ + αη + ζ = β,
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which is obviously a two-dimensional semialgebraic set of constant description
complexity. Similarly, the locus of parabolas that pass through two distinct points
p, q is either empty or a 1-dimensional curve of constant description complexity.
Thus, (AP1) is satisfied.

Finally, for a fixed parabola γ : y = ax2 + bx + c, another vertical parabola
y = ξ x2 + ηx + ζ is tangent to γ if and only if

(η − b)2 − 4(ξ − a)(ζ − c) = 0.

Hence, the surface τγ is given by the equation

(η2 − 4ξζ ) − 2bη + 4cξ + 4aζ + (b2 − 4ac) = 0, (6)

which is a quadric in R
3, and thus (AP2) is also satisfied. In order to estimate

the value of s = �s ′/2�, recall that s ′ satisfies the following condition: Given any
four curves γ1, . . . , γ4 ∈ P, there are at most s ′ intersection points between the
ξη-projections of the intersection curves σ12 = τγ1 ∩ τγ2 and σ34 = τγ3 ∩ τγ4 .

It follows from (6) that the intersection curve σ12 of two surfaces τγ1 and τγ2 is
a planar curve, whose projection on the ξη-plane (ζ = 0) is a quadric. Hence, the
projections of σ12 and σ34 on the ξη-plane intersect in at most four points, implying
that s ′ ≤ 4 and s ≤ 2. Letting

κ(n) = κ2(n) = (log n)O(α2(n)),

we obtain the following:

THEOREM 5.3. Let � be a set of n vertical parabolas in the plane; then χ (�) =
O(n3/2κ(n)).

5.3. THE CASE OF PSEUDO-CIRCLES. We now prove a near n3/2-bound on the
maximum number of pairwise-nonoverlapping lenses for a few special classes of
pseudo-circles. In addition to the condition of 3-parameter algebraic representation,
which we define in a slightly different manner, we also require, as in Section 4, that
the pseudo-circles be x-monotone. We say that an infinite family C of x-monotone
pseudo-circles has a 3-parameter algebraic representation if every curve c can be
represented by a triple of real parameters (ξ, η, ζ ), which we regard as a point
c∗ ∈ R

3, so that the following three conditions are satisfied.

(AC1) For each point q in the plane, the locus of all curves in C that pass through
q is, under the assumed parametrization, a 2-dimensional semialgebraic set σq
of constant description complexity. For any two distinct points p and q in the
plane, the locus of all curves in C that pass through both p and q is, under
the assumed parametrization, a 1-dimensional semialgebraic curve of constant
description complexity.

(AC2) For each curve c ∈ C and for each of the following conditions, the locus of
all curves g ∈ C satisfying that condition is a 3-dimensional semialgebraic set
of constant description complexity:
(AC2.1) The x-projection of g is disjoint from that of c.
(AC2.2) The upper arc c+ of c intersects g+ (respectively, g−).
(AC2.3) The lower arc c− of c intersects g+ (respectively, g−).
(AC2.4) One of the x-extremal endpoints of c lies inside (respectively, vertically

above, vertically below) g (respectively, g+, g−).
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(AC2.5) One of the x-extremal endpoints of g lies inside (respectively, vertically
above, vertically below) c (respectively, c+, c−).

(AC3) Each curve in C is a semialgebraic set of constant description complexity in
the plane, and the family C is closed under translations.

Let C be a family of x-monotone pseudo-circles having a 3-parameter algebraic
representation, and let C ⊆ C be a subset of n pseudo-circles. We replace C by
the collection � = {γ +

c , γ −
c | c ∈ C}, where γ +

c (respectively, γ −
c ) is the extension

of the (appropriately trimmed) upper arc c+ (respectively, the lower arc c−) of c,
as defined in Section 4. By Lemma 4.2, � is a collection of pseudo-parabolas. In
order to apply Theorem 5.2, we need to argue that the set of all resulting pseudo-
parabolas satisfies the condition (AP2). Strictly speaking, the precise shape of a
pseudo-parabola in � depends on the set C , so it seems that the resulting pseudo-
parabolas might not have a 3-parameter algebraic representation. However, whether
two pseudo-parabolas in � intersect does not depend on the slope of their extension
rays, nor on the precise places where a pseudo-circle in C has been cut. Instead, it de-
pends only on the two pseudo-circles c and g from which the two pseudo-parabolas
were derived. More precisely, fix a pseudo-circle c ∈ C, and consider the locus of
all pseudo-circles g ∈ C such that one of the following four conditions holds:

(i) The x-projections of c and g are disjoint,
(ii) c+ and g+ intersect,

(iii) an x-extremal point of c lies vertically above g+, or
(iv) an x-extremal point of g lies vertically above c+.

Here c+ and g+ refer to the full (untrimmed) top boundaries of c and g, respectively.
By (AC2.1)–(AC2.5), the locus of pseudo-circles g satisfying at least one of these
four conditions can be written as the union of four semialgebraic sets, each of
constant description complexity. Therefore, the resulting set, denoted τc, is also
a semialgebaric set of constant description complexity. A similar argument holds
for the other three cases, replacing c+ and/or g+ by c−, g−, respectively.

Now consider the actual finite subset C ⊆ C, and run the analysis of Section 5.1,
using the sets τc, as just defined, in the proof of Lemma 5.1. We end up with
pairs (A�, B̃�), so that each point representing a curve a in A� is contained in
the region τb for every b ∈ B̃�. In other words, the pseudo-circles a and b satisfy
one of the above conditions (i)–(iv). We replace a and b by the pseudo-parabolas
γ +

a , γ −
a , γ +

b , γ −
b , and note that any of the conditions (i)–(iv) implies that γ +

a and γ +
b ,

as trimmed in the conversion process of Section 4.2, intersect. In other words, each
pseudo-parabola γ +

a , for a ∈ A�, intersects every pseudo-parabola γ +
b , for b ∈ B̃�.

Hence, by Theorem 3.4, the number of cuts needed to eliminate all bichromatic
lenses formed between such pairs of pseudo-parabolas, is O((|A�| + |B̃�|)4/3).
Continuing as in the proof of Theorem 5.2, we conclude that χ (�) = O(n3/2κs(n)),
for an appropriate parameter s. We now cut the curves in C at the same points where
their top or bottom boundaries have been cut in �, and, in addition, cut each curve
c ∈ C at the two extreme points λc, ρc. It follows trivially that the resulting subarcs
form a collection of pseudo-segments. We thus have:

THEOREM 5.4. Let C be a collection of pseudo-circles that satisfies (AC1)–
(AC3). Then χ (C) = O(n3/2κs(n)), for any subset C of n elements of C, and for
some constant parameter s that depends on C.
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5.4. THE CASE OF CIRCLES. The most obvious application of Theorem 5.4 is
to the family C of all circles in the plane. C trivially satisfies condition (AC3). We
map each circle c : (x − ξ )2 + (y − η)2 = ζ 2 to the point c∗ = (ξ, η, ζ ) ∈ R

3.
The set of points c∗ = (ξ, η, ζ ) ∈ R

3 corresponding to circles c that pass through
a fixed point p = (α, β) is the region

σp = {(ξ, η, ζ ) | (ξ − α)2 + (η − β)2 = ζ 2},
which is a 2-dimensional cone in 3-space. Moreover, using a standard transforma-
tion [Edelsbrunner 1987], we can map these surfaces into planes, without changing
the incidence pattern between points and surfaces. Similarly, the locus of circles
that pass through two distinct points p, q is, in the new representation, the line of
intersection of the two corresponding planes. Hence, (AC1) is satisfied.

Concerning condition (AC2), it can be verified that the set of (points in R
3

representing) circles that satisfy the each of (AC2.1)–(AC2.5) is a semialgebraic
set of constant description complexity. It can be shown that the surfaces bounding
these regions are planes or quadrics, so the intersection curves of any two of them
are in general of degree four, and a naı̈ve bound on the number of intersection points
between the ξη-projections of a pair of such curves is s1 ≤ 42 = 16, yielding s = 8.
For mostly aesthetic reasons, using a more sophisticated, but tedious, analysis, one
can lower the constants to s ′ = 4 and s = 2. The details of this analysis are given
in Appendix A.

Writing, as above, κ(n) for κ2(n), we thus obtain:

THEOREM 5.5. Let C be a set of n circles in the plane; then χ (C) =
O(n3/2κ(n)).

5.5. THE CASE OF HOMOTHETIC COPIES OF A STRICTLY CONVEX CURVE.
Theorem 5.4 can also be applied to the family C of homothetic copies of a fixed
strictly convex curve γ0 having constant description complexity. Without of loss of
generality we can assume that the line segment connecting its leftmost and rightmost
points is a horizontal segment with origin as its midpoint. Let 2h be the length of
this segment, that is, the leftmost and the rightmost points of γ0 are (−h, 0) and
(h, 0), respectively.

First, as already noted in Kedem et al. [1986], C is indeed a family of pseudo-
circles (this does not necessarily hold if γ0 is not strictly convex). Clearly, condition
(AC3) is satisfied. Each homothetic copy of γ0 has the form

(ξ, η) + λγ0 ≡ {(ξ, η) + λ(x, y) | (x, y) ∈ γ0},
for some triple of real parameters ξ, η ∈ R, λ ∈ R

+. We represent each copy by the
corresponding triple (ξ, η, λ) ∈ R

3. Condition (AC1) is easy to establish: For a fixed
point p, the condition p ∈ (ξ, η) + λγ0 is equivalent to 1

λ
(p − (ξ, η)) ∈ γ0, which

clearly defines a semialgebraic surface patch of constant description complexity.
For a pair p, q of distinct points, each homothetic copy of γ0 that passes through

p and q satisfies 1
λ
(p− (ξ, η)) ∈ γ0, 1

λ
(q − (ξ, η)) ∈ γ0. Hence, (p−q)/λ is a chord

of γ0. Since λ0 is strictly convex, for each fixed λ there is a unique chord equal to
(p − q)/λ, so ξ, η are also uniquely determined. Hence, the locus of copies of γ0
that pass through p and q is a 1-dimensional curves, which clearly has constant
description complexity.
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FIG. 20. (i) The x-projections of two homothetic copies of γ0 are disjoint. (ii) Upper arcs of two
homothetic copies of γ0 intersecting at a point.

Establishing condition (AC2) is a bit more technical. We need to argue the semi-
algebraicity property for each of (AC2.1)–(AC2.5). For a fixed homothetic copy
γ1 = (α, β, µ) of γ0, the condition that the x-projection of another homothetic copy
γ = (ξ, η, λ) is disjoint from that of γ1 holds if and only if

(α + µh < ξ − λh) ∨ (ξ + λh < α − µh)

(see Figure 20(i)), thereby implying that the locus of homothets of γ0 that satisy
(AC2.1) is a semialgebraic set of constant description complexity. Similarly, the
condition that the upper arc ofγ meets the upper arc ofγ1 can be expressed by the fol-
lowing predicate: There exists w ∈ R

2 such that w ∈ γ1∩γ and y(w) ≥ max{β, η}.
See Figure 20(ii). Using the fact that γ0 is a semialgebraic set of constant descrip-
tion complexity, it follows that the above predicate also defines a semialgebraic
set of constant description complexity; see Basu et al. [2003] and Bochnak et al.
[1998] for properties of real semialgebraic sets that imply this claim. The remain-
ing conditions of (AC2) can be argued the same way. Theorem 5.4 thus implies the
following.

THEOREM 5.6. Let γ0 be a strictly convex curve of constant description com-
plexity, and let C be a set of n homothetic copies of γ0. Then, χ (C) = O(n3/2κs(n)),
for some constant s that depends on γ0.

6. Applications

The preceding results have numerous applications to problems involving inci-
dences, many faces, levels, distinct distances, and results of the Gallai-Sylvester
type, which extend (and also slightly improve) similar applications obtained for the
case of circles in Agarwal et al. [2003], Alon et al. [2001], and Aronov and Sharir
[2002].

6.1. LEVELS. Given a collection C of curves, the level of a point p ∈ R
2 is

defined to be the number of intersection points between the relatively-open down-
ward vertical ray emanating from p and the curves of C . The kth level of A(C),
for a fixed parameter k, is the (closure of the) locus of all points on the curves
of C , whose level is exactly k. The k-level consists of portions of edges of A(C),
delimited either at vertices of A(C) or at points that lie above an x-extremal point
of some curve. The complexity of the k-level is the number of edge portions that
constitute the level.

The main tool for establishing bounds on the complexity of levels in arrangements
of curves is an upper bound, given by Chan [2003, Theorem 2.1], on the complexity
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of a level in an arrangement of extendible pseudo-segments, which is a collection
of x-monotone bounded curves, each of which is contained in some unbounded x-
monotone curve, so that the collection of these extensions is a family of pseudo-lines
(in particular, each pair of the original curves intersect at most once).

Chan showed that the complexity of a level in an arrangement of m extendible
pseudo-segments with ξ intersecting pairs is O(m + m2/3ξ 1/3). Chan also showed
that a collection of m x-monotone pseudo-segments can be turned, by further cut-
ting the given pseudo-segments into subsegments, into a collection of O(m log m)
extendible pseudo-segments.

Thus, the bounds on χ (n) lead to the following result (where, in part (b), the
extra logarithmic factor incurred in turning our pseudo-segments into extendible
pseudo-segments, as well as the power 2/3 to which we raise the number of pseudo-
segments, are absorbed in the factor κs(n)).

THEOREM 6.1

(a) Let C be a set of n pseudo-parabolas or n x-monotone pseudo-circles. Then
the maximum complexity of a level in A(C) is O(n26/15 log2/3 n).

(b) If, in addition, C admits a 3-parameter algebraic representation that satisfies
(AP1)–(AP3) for the case of pseudo-parabolas, or (AC1)–(AC3) for the case of
pseudo-circles, then the maximum complexity of a single level is O(n5/3κs(n)),
where s is a constant that depends on the algebraic representation of the curves
in C; s = 2 for circles and vertical parabolas.

(c) If all pairs in C intersect, then the bound improves to O(n14/9 log2/3 n) (with
no further assumption on these curves).

Remark. Recently, Chan [2003] has studied the complexity of levels in arrange-
ments of graphs of polynomials of constant maximum degree s ≥ 3. His bound
relies on cutting the given graphs into subarcs that constitute a collection of pseudo-
segments, which is achieved by repeated differentiation of the given polynomials,
eventually reducing to the problem of cutting an arrangement of pseudo-parabolas
(actually, of pseudo-parabolic arcs) into pseudo-segments. In the earlier conference
version of his article, the bound on the number of the desired cuts was obtained by
applying the Tamaki–Tokuyama result as a “black box.” In the new version, Chan
uses a more sophisticated variant of the Tamaki–Tokuyama technique, which leads
to improved bounds on the number of cuts. It is not clear whether our new bounds
can be used to further improve his new bounds.

The above theorem implies the following result in the area of kinetic geometry,
which improves upon an earlier bound given in Tamaki and Tokuyama [1998]. This
problem was one of the motivations for the initial study of Tamaki and Tokuyama
[1998].

COROLLARY 6.2. Let P be a set of n points in the plane, each moving along
some line with a fixed velocity. For each time t, let p(t) and q(t) be the pair of
points of P whose distance is the median distance at time t. The number of times
in which this median pair changes is O(n10/3κ(n)). The same bound applies to any
fixed quantile.

6.2. INCIDENCES AND MARKED FACES. Let C be a set of n curves in the plane,
and let P be a set of m points in the plane. Two closely related and widely studied
problems concern two kinds of interaction between C and P: (i) Assuming that
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the points of P lie on curves of C , let I (C, P) denote the number of incidences
between P and C , that is, the number of pairs (c, p) ∈ C × P such that p ∈ c. (ii)
Assuming that no point of P lies on any curve of C , let K (C, P) denote the sum
of the complexities of the faces of A(C) that contain at least one point of P; the
complexity of a face is the number of edges of A(C) on its boundary. The results
in Agarwal et al. [2003], and Aronov and Sharir [2002] imply the following bounds.

LEMMA 6.3. Let C be a set of n curves in the plane, and let P be a set of m
points in the plane. Then

I (C, P) = O(m2/3n2/3 +m +χ (C)), K (C, P) = O(m2/3n2/3 +χ (C) log2 n).

Hence, Theorems 3.4, 4.3, 5.2, and 5.4 imply the following.

THEOREM 6.4.
(a) Let C be a set of n pairwise-intersecting pseudo-circles, and P a set of m points

in the plane. Then

I (C, P) = O(m2/3n2/3 + m + n4/3), K (C, P) = O(m2/3n2/3 + n4/3 log2 n).

(b) Let C be a set of n pseudo-parabolas or n x-monotone pseudo-circles, and P
a set of m points in the plane. Then

I (C, P) = O(m2/3n2/3 + m + n8/5), K (C, P) = O(m2/3n2/3 + n8/5 log2 n).

We note that these bounds are worst-case tight when the first term dominates the
last term, which is the case when m is larger than n or n log3 n in part (a), and larger
than n7/5 or n7/5 log3 n in part (b).

Similarly, if C is a set of n pseudo-parabolas or n x-monotone pseudo-circles
that are not pairwise intersecting but admit a 3-parameter algebraic representation
with corresponding parameter s, as above, then we can obtain the following bounds
by plugging Theorems 3.4 and 4.3 into Lemma 6.3.

I (C, P) = O(m2/3n2/3 + m + n3/2κs(n)), K (C, P)
= O(m2/3n2/3 + n3/2κs(n)). (7)

As above, these bounds are worst-case tight when m is sufficiently large (larger than
roughly n5/4) Agarwal et al. [2003], Aronov and Sharir [2002]. We can improve
these bounds for smaller values of m, by exploiting properties (AP1) or (AC1) of
the definition of 3-parameter algebraic representation, following the approaches
in Agarwal et al. [2003] and Aronov and Sharir [2002]. We describe the argument
for the case of incidences and briefly discuss how to handle the case of marked
faces.

We map the pseudo-circles γ ∈ C to points γ ∗ in R
3, and the points in P

to surfaces σp in R
3, so that incidences between points and curves correspond to

incidences between the dual surfaces and points, and so that one halfspace bounded
by the surface σp corresponds to pseudo-circles that contain the point p in their
interior. Let P∗ be the resulting set of surfaces in R

3, and let C∗ be the resulting
set of points in R

3.
We fix a parameter r > 1. Roughly speaking, as in Agarwal et al. [2003]

and Aronov and Sharir [2002], we wish to compute a (1/r )-cutting of P∗. However,
since we are dealing with an arrangement of surfaces instead an arrangement of
planes, a (1/r )-cutting for P∗ is not a cell complex and the incidence structure
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between C∗ and P∗ is more involved. Consequently we rely on a random-sampling
argument similar to the one in Clarkson et al. [1990].

6.2.1. Sampling Lemma. For a subset R ⊆ P∗, we define a partition � = �(R)
of R

3 into relatively open and simply connected 0-, 1-, 2-, and 3-dimensional cells,
which is very similar to the vertical decomposition of A(R) [Clarkson et al. 1990;
Chazelle et al. 1989]. Specifically, we add all vertices and edges of A(R) into �.
For each (open) 2-face f of A(R), we compute the vertical decomposition f ∗ of
f , as described in Clarkson et al. [1990], and add the relatively open edges and
pseudo-trapezoids to �. (The newly created vertices, which lie on the edges of
f , are not added to �.) Finally, for each (open) 3-face φ of A(R), we compute
its vertical decomposition as described in Clarkson et al. [1990], and we add the
vertical edges, 2-faces, and 3-dimensional pseudo-prisms to �; none of these cells
lie in any surface of R. Let �A ⊆ � be the set of vertices and edges of A(R),
which were added to �, let �E ⊆ � be the set of 1-dimensional cells that lie in
exactly one surface of R, and let �� ⊆ � be the set of vertical edges that were
added to � in the last step. For each cell � ∈ �, let C� = {c ∈ C | c∗ ∈ �},
P� = {p ∈ P | p∗ ∈ P∗

�}, where P∗
� is the conflict list of � (with respect to P∗),

and P̃� = {p ∈ P | � ⊆ p∗}. Set n� = |C�|, m� = |P�|, and m̃� = |P̃�|. The
result in Chazelle et al. [1989] implies that |�| = O(r3βq(r )), where βq(r ) is the
function defined in Section 5.1.

LEMMA 6.5. For a given parameter r > 1, there exists a set R ⊆ P∗ of O(r )
surfaces with the following properties:

(i)
∑
�∈�

n2/3
� = n and m� ≤ m

r
log r , for any � ∈ �.

(ii)
∑

�∈�A
m̃� = O(mr2).

(iii) m̃� ≤ m

r
log r , for any � ∈ �E ∪ ��.

PROOF. We choose a random subset R ⊆ P∗ of size cr , for a sufficiently large
constant parameter c, where each subset is chosen with equal probability. Since �
is a partition of R

3,
∑

� n� = n. By the theory of ε-nets, an appropriate choice of c
guarantees that, with high probability, m� ≤ (m/r ) log r , for any � ∈ � [Haussler
and Welzl 1987]. This proves part (i). As for (ii), observe that if p ∈ P̃�, for a
vertex or edge � in A(R), then � is also a vertex or an edge, respectively, in the
arrangement of the intersection curves {p∗ ∩ r∗ | r∗ ∈ R}. Since this arrangement
has O(r2) vertices and edges, the bound in part (ii) follows. A vertical edge � ∈ ��
does not lie in any surface of R, therefore by the theory of ε-nets and with an
appropriate choice of c, m̃� ≤ (m/r ) log r with high probability, for all such �’s.
Similarly, one can argue that m̃� ≤ (m/r ) log r for each cell � ∈ �E , as such a
cell lies in exactly one surface of R. See Clarkson et al. [1990] and Haussler and
Welzl [1987] for details. This completes the proof of the lemma.

6.2.2. Bounding Incidences. Let R be a subset of P∗ satisfying the conditions
of Lemma 6.5. We compute � as defined above. Then

I (C, P) =
∑
�∈�

I (C�, P�) + I (C�, P̃�).
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Since each point in P̃� lies on every curve in C� and two curves in C intersect in
at most two points, m̃� > 2 implies that n� ≤ 1. Hence,

I (C�, P̃�) = O(n� + m̃�).

Note that
∑

� n� = n, m̃� = 0 for any 3-dimensional cell � ∈ �, and m̃� ≤ 1
for any 2-dimensional cell � ∈ � because, by conditions (AC1) and (AP1), two
surfaces intersect along a 1-dimensional curve. Hence,∑

�∈�

I (C�, P̃�) = O(n + mr2βq(r ) log r ).

In order to bound
∑

� I (C�, P�), we refine the cells of � as follows. If n� >

n/(r3βq(r )) for a cell � ∈ �, we split it further so that each new cell contains at
most n/(r3βq(r )) points. The number of refined cells in the resulting partition �′

is still O(r3βq(r )). Therefore, using the bound (7) for I (C�, P�), we obtain∑
�∈�′

I (C�, P�) =
∑
�∈�′

O(m2/3
� n2/3

� + m� + n3/2
� κs(n�))

= O(r3β(r ))

((
m log r

r

)2/3( n

r3β(r )

)2/3

+ m log r

r

+
(

n

r3β(r )

)3/2

κs

(
n

r3

))

= O

(
m2/3n2/3r1/3β1/3(r ) log2/3 r

+ mr2β(r ) log r +
(

n

r

)3/2

κs

(
n

r3

))
.

Hence,

I (C, P) = O

(
m2/3n2/3r1/3β1/3(r ) log2/3 r

+ mr2β(r ) log r +
(

n

r

)3/2

κs

(
n

r3

)
+ n

)
.

We choose r = �n5/11/m4/11�, which is in the range 1 ≤ r ≤ m when n1/3 ≤ m ≤
n5/4. If m > n5/4, we take r = 1, and if m < n1/3 we take r = m. It follows easily,
as in Aronov and Sharir [2002], that

I (C, P) = O(m2/3n2/3 + m6/11n9/11κs(m3/n) + m + n),

where s is a constant depending on the representation of C .

6.2.3. Bounding the Complexity of Marked Faces. We use the approach
in Agarwal et al. [2003] to prove an improved bound on the complexity of marked
faces. There is one significant difference in the proof for this case compared with the
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case of incidences. Here we need a hierarchical cutting7 of A(R). The best known
algorithm for computing such a hierarchical (1/r )-cutting returns a cutting of size
O(r3+ε), for any ε > 0. Plugging this weaker bound on the size of hierarchical
cuttings in the analysis of Agarwal et al. [2003], the bound on the marked faces
increases by a factor O(mε). We refer the reader to the articles just cited for further
details, and omit the description of the modifications of the analysis given there
that need to be performed.

Putting everything together, we obtain the following results on the number of
incidences and the complexity of marked faces.

THEOREM 6.6. Let C be a set of n pseudo-parabolas or n x-monotone pseudo-
circles that admit a 3-parameter algebraic representation, and let P be a set of m
points in the plane.

(i) I (C, P) = O(m2/3n2/3 + m6/11n9/11κs(m3/n) + m + n), where s is a constant
depending on the representation, and

(ii) K (C, P) = O(m2/3n2/3 + m6/11+εn9/11 + n log n), for any ε > 0.
If the pseudo-parabolas or pseudo-circles in C are also pairwise intersecting,
then (we do not need to require that the pseudo-circles be x-monotone in this
case)

(iii) I (C, P) = O(m2/3n2/3 + m1/2n5/6β(n/m) + m + n), and

(iv) K (C, P) = O(m2/3n2/3 + m1/2+εn5/6 log1/2 n + n log n), for any ε > 0.

For the cases of circles and of vertical parabolas, the relevant surfaces are (or can
be transformed into) planes, so there is no extra β(r ) factor, and efficient hierarchical
cuttings can be constructed (for the analysis of many faces). Hence, the analysis in
Agarwal et al. [2003] and Aronov and Sharir [2002] yields the following improved
bounds. (The bound in Theorem 6.7(ii) has actually been proven in Agarwal et al.
[2003] for the case of circles; we state it here for the sake of completeness.)

THEOREM 6.7. Let C be a set of n circles or n vertical parabolas and P a set
of m points in the plane. Then

(i) I (C, P) = O(m2/3n2/3 + m6/11n9/11κ(m3/n) + m + n), and

(ii) K (C, P) = O(m2/3n2/3 + m6/11n9/11κ(m3/n) + n log n).
In addition, if the curves in C are pairwise intersecting, then

(iii) I (C, P) = O(m2/3n2/3 + m1/2n5/6 + m + n), and

(iv) K (C, P) = O(m2/3n2/3 + m1/2n5/6 log1/2 n + n log n).

Remark. Using a standard sampling technique, such as the one used in Agarwal
et al. [2003], Aronov and Sharir [2002] and Chan [2003], we can also obtain versions
of these bounds that are sensitive to the number of intersecting pairs of the given
curves (for parts (i) and (ii) of both theorems).

7 For a set � of surfaces, a (1/r )-cutting � of � is called hierarchical if there exist a constant r0 and
a sequence of cuttings �0, �1, . . . , �u = �, for u = �logr0

r�, where �i is a (1/r i
0)-cutting of � and

each cell of �i lies inside a cell of �i−1.
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6.3. DISTINCT DISTANCES UNDER ARBITRARY NORMS. An interesting applica-
tion of Theorem 6.6(i) is the following result.

THEOREM 6.8. Let Q be a compact strictly convex centrally symmetric semi-
algebraic region in the plane, of constant description complexity, which we regard
as the unit ball of a norm ‖ · ‖Q. Then, any set P of n distinct points in the plane
determines at least 
(n7/9/κs(n)) distinct ‖ · ‖Q-distances, where s is a constant
that depends on Q. (If Q is not centrally symmetric, it defines a convex distance
function, and the same lower bound applies in this case too.) This is also a lower
bound on the number of distinct ‖ · ‖Q-distances that can be attained from a single
point of P.

PROOF. The proof proceeds by considering nt homothetic copies of Q, shifted
to each point of P and scaled by the t possible distinct ‖ · ‖Q-distances that the
points in P determine. There are n2 incidences between these curves and the points
of P . Using Theorem 6.6(i), the bound follows easily (here too the constant in the
exponent of the expression for κs(n) is changed).

Remarks.

(1) The proof technique is identical to an older proof for distinct distances under
the Euclidean metric, given in Clarkson et al. [1990, Sect. 5.4]. Meanwhile,
the bound for the Euclidean case has been substantially improved (see [Tardos
2003] for the current “record”), but, as far as we know, the problem has not
been considered at all for more general metrics.

(2) (Theorem 6.8 is false if Q is not strictly convex. For example, let Q be the unit
ball of the L1-norm, and let P be the set of vertices of the

√
n × √

n integer
lattice. There are only 2

√
n distinct L1-distances among the points of P .

6.4. A GENERALIZED GALLAI–SYLVESTER THEOREM. A collection C of
pseudo-circles is called a pencil, if there are two points A and B which belong
to every pseudo-circle in C . In this case, of course, A and B are the only intersec-
tion points of pseudo-circles from C .

In Alon et al. [2001], it is shown (Theorem 4.1) that if C is a family of n pairwise
intersecting circles which is not a pencil, and n is large enough, then there exists an
intersection point through which at most three circles from C pass. This is a weak
analogue to the celebrated Gallai–Sylvester Theorem for lines in the plane. The
only tool, apart from Euler’s formula, which is used in the proof of this theorem
in Alon et al. [2001] is a linear bound on the number of empty lenses created by a
family of pairwise intersecting circles in the plane. In view of Theorem 2.13, which
generalizes this bound for pseudo-circles we can now generalize the result in Alon
et al. [2001] as follows:

THEOREM 6.9. Let C be a family of n pairwise intersecting pseudo-circles
in the plane. If n is sufficiently large and C is not a pencil, then there exists an
intersection point incident to at most three pseudo-circles of C.

7. Conclusion and Open Problems

In this article we obtained a variety of results involving lenses in arrangements of
pseudo-circles, with numerous applications to incidences, levels, and complexity
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of many faces in arrangements of circles, vertical parabolas, homothetic copies of
a fixed convex curve, pairwise intersecting pseudo-circles, and arbitrary pseudo-
parabolas and x-monotone pseudo-circles. We also obtained a Gallai–Sylvester
result for arrangements of pairwise-intersecting pseudo-circles, and a new lower
bound on the number of distinct distances in the plane under fairly arbitrary norms.
The main tool that facilitated the derivation of all these results is the somewhat
surprising property that the tangency graph in a family of pairwise intersecting
pseudo-parabolas is planar (Theorem 2.4).

This article leaves many problems unanswered. We mention a few of the more
significant ones:

(i) Obtain tight (or improved) bounds for the number of pairwise nonoverlapping
lenses in an arrangement of n pairwise intersecting pseudo-circles. We con-
jecture that the upper bound of O(n4/3), given in Theorem 2.14, is not tight,
and that the correct bound is O(n) or near-linear.

(ii) Obtain tight (or improved) bounds for the number of empty lenses in an ar-
rangement of n arbitrary circles or more general classes of pseudo-circles.
There is a gap between the lower bound 
(n4/3), which follows from the con-
struction of 
(n4/3) incidences between n points and n lines, and which can be
realized by circles, and the upper bound of O(n3/2κ(n)), given in Theorem 5.2
and Corollary 5.5. Even improving the upper bound to O(n3/2), for the case of
circles, seems a challenging open problem. A related and harder problem is to
obtain an improved bound for the number of pairwise nonoverlapping lenses
(and for the cutting number) in an arrangement of n arbitrary circles.

(iii) One annoying aspect of our analysis is the difference between the analysis
of pairwise intersecting pseudo-circles, which is purely topological and re-
quires no further assumptions concerning the shape of the pseudo-circles, and
the analysis of the general case, in which we require x-monotonicity and 3-
parameter algebraic representation. (At least for pseudo-parabolas, the weaker
bound of O(n8/5) holds in general.) It would be interesting and instructive
to find a purely topological way of tackling the general problem involving
pseudo-circles. For example, can one obtain a bound close to O(n3/2), or even
any bound smaller than the general bound O(n5/3) of Tamaki and Tokuyama
[1998] (which is purely topological), for the number of empty lenses in an ar-
bitrary arrangement of pseudo-circles, without having to make any assumption
concerning their shape? Assuming x-monotonicity, can the bound O(n8/5) in
Theorem 4.1 be further improved?

Appendix A. Analysis of the Case of Circles

In this appendix, we show how to refine the upper bound on χ (C), in the case of
circles, so that the associated constant s ′ is 4, and thus s = 2 and q = 4. We begin
by proving two lemmas, which will be usful for our analysis.

LEMMA A.1. Let c1 and c2 be two circles in the plane, with c∗
1 = (a1, b1, r1)

and c∗
2 = (a2, b2, r2) and r1 ≥ r2. The upper arcs c+

1 and c+
2 intersect at two points

if and only if the following condition holds (see Figure 21(i)):

(UU) b2 ≥ b1, λc2 and ρc2 lie inside c1, and c1 intersects c2.
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FIG. 21. (i) Illustration of condition (UU). (ii) Illustration of condition (UL).

PROOF. If c+
1 and c+

2 intersect at two points u, v then both centers lie below
the line � passing through u and v . Moreover, the portion of the smaller disk (the
disk bounding the smaller circle) below � is contained in the corresponding portion
of the bigger disk, and the center of the smaller disk is closer to �. This is easily
seen to imply (UU). Conversely, if (UU) holds then both intersection points lie on
c+

2 or both lie on c−
2 (because the endpoints of both arcs lie inside c1). Translate c2

vertically downward until its center has the same y-coordinate as that of c1. In this
position λc2 and ρc2 continue to lie inside c1, and the two circles must be disjoint
(any intersection point on c−

2 must have a matching symmetric point on c+
2 , which

would produce at least 4 intersection points). This is easily seen to imply that the
original c−

2 is also disjoint from c1, so the two intersection points must lie on c+
2 ,

and, since b2 ≥ b1, they must also lie on c+
1 .

LEMMA A.2. Let c1 and c2 be two circles in the plane, with c∗
1 = (a1, b1, r1)

and c∗
2 = (a2, b2, r2). The arcs c+

1 and c−
2 intersect at two points if and only if the

following condition holds (see Figure 21(ii)):

(UL) b2 ≥ b1, λc2 and ρc2 lie outside c1, λc1 and ρc1 lie outside c2, and c1 intersects
c2.

PROOF. Suppose that c+
1 and c−

2 intersect at two points u, v . Then the portion
of c+

1 between u and v lies inside c2, and the portion of c−
2 between u and v lies

inside c1. This is easily seen to imply that each of the x-extreme points λc1 , ρc1 , λc2

and ρc2 lies outside the other circle. Moreover, the center of c1 (respectively, c2) lies
below (respectively, above) the line passing through u and v , implying that b2 ≥ b1.
Hence, (UL) holds. Conversely, if (UL) holds then both intersection points must lie
on the same arc (upper or lower) of c1, and on the same arc (upper or lower) of c2.
However, in view of Lemma A.1, it cannot be the case that both arcs are upper or
that both arcs are lower. Hence one arc is upper and one is lower, and the condition
b2 ≥ b1 is easily seen to imply that the upper arc is of c1 and the lower arc is
of c2.

Let ψ(A, B) denote the minimum number of cuts needed to eliminate all
bichromatic upper-upper lenses in A ∪ B (lenses formed by the upper arcs of
one circle in A and one in B). Put ψ(A) = ψ(A, A). For k = 0, 1, 2, set
ψ (k)(u, v) = max ψ(A, B), where the maximum is taken over all pairs of families
of circles A and B of sizes at most u and v , respectively, so that

for k = 0, no constraint is imposed on A and B;
for k = 1, we require that the radius of each circle in A be greater than or equal
to the radius of each circle in B; and
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for k = 2, we require the same condition on the radii as for k = 1, and also that
the y-coordinate of the center of each circle in A be smaller than or equal to the
y-coordinate of the center of each circle in B.

We set ψ (k)(m) = ψ (k)(m, m), and our task is to bound ψ (0)(n).
Sort the circles in C in increasing order of their radii, and let C1, C2 be the subsets

of the circles with the n/2 smallest and n/2 largest radii, respectively. We clearly
have

ψ(C) ≤ ψ(C1) + ψ(C2) + ψ(C2, C1),

from which we deduce the recurrence

ψ (0)(n) ≤ 2ψ (0)

(
n

2

)
+ ψ (1)

(
n

2
,

n

2

)
. (8)

Next we estimate ψ (1). Let A and B be two sets of m and n circles, respectively,
so that the radius of each circle in A is greater than or equal to the radius of every
circle in B. Sort the circles in C = A ∪ B in increasing order of the y-coordinate
of their centers, and split C into two subsets C−, C+, consisting respectively of the
circles with the (m + n)/2 lowest and the (m + n)/2 highest y-coordinates. Put
A− = A ∩ C−, A+ = A ∩ C+, B− = B ∩ C−, and B+ = B ∩ C+. We clearly have

ψ(A, B) ≤ ψ(A−, B−) + ψ(A+, B+) + ψ(A−, B+);

the fourth term, ψ(A+, B−), is 0, because all pairs of circles in A+ × B− violate
condition (UU). Put k = |A−|, � = |B+|. Hence, we obtain the recurrence

ψ (1)(m, n) ≤ max
k, �≤ m+n

2
k − l = m−n

2

{
ψ (1)

(
k,

m + n

2
− k

)
+ψ (1)

(
m + n

2
− �, �

)
+ψ (2)(k, �)

}
,

(9)

where the conditions on k and � follow from the construction.
We next bound ψ (2), where a more complex recurrence is needed. Let A and B

be two sets of m and n circles, respectively, so that for any (c1, c2) ∈ A × B, with
c1 = (a1, b1, r1) and c2 = (a2, b2, r2), the following condition holds:

(C0) r1 ≥ r2 and b2 ≥ b1.

If the upper arc of a circle c1 = (a1, b1, r1) ∈ A intersects the upper arc of c2 =
(a2, b2, r2) ∈ B at two points, then by Lemma A.1, the following two conditions
also hold:

(C1) λc2 = (a2 − r2, b2) and ρc2 = (a2 + r2, b2) lie inside c1;
(C2) c1 and c2 intersect.

Fix a circle c = (a, b, r ) in A. The locus K1(c) of all circles (ξ, η, ζ ) ∈ B that
satisfy (C1) with c is the region

{(ξ, η, ζ ) | (ξ − ζ − a)2 + (η − b)2 ≤ r2 and (ξ + ζ − a)2 + (η − b)2 ≤ r2},
which is bounded by the pair of surfaces

π1(c) : (ξ − ζ )2 + η2 − 2a(ξ − ζ ) − 2bη + a2 + b2 − r2 = 0, (10)

π2(c) : (ξ + ζ )2 + η2 − 2a(ξ + ζ ) − 2bη + a2 + b2 − r2 = 0. (11)



182 P. K. AGARWAL ET AL.

On the other hand, if we fix a circle c′ = (a, b, r ) in B, then the locus K̄1(c′) of
all circles (ξ, η, ζ ) ∈ A that satisfy (C1) with c′ is the region

{(ξ, η, ζ ) | (ξ − (a − r ))2 + (η − b)2 ≤ ζ 2 and (ξ − (a + r ))2 + (η − b)2 ≤ ζ 2},
which is bounded by the pair of surfaces

π̄1(c′) : ξ 2 + η2 − ζ 2 − 2(a − r )ξ − 2bη + (a − r )2 + b2 = 0, (12)

π̄2(c′) : ξ 2 + η2 − ζ 2 − 2(a + r )ξ − 2bη + (a + r )2 + b2 = 0. (13)

Finally, for a fixed circle c = (a, b, r ) in A or B, the locus K2(c) of all circles
(ξ, η, ζ ) that satisfy (C2) with c, given that they already satisfy (C1), is bounded
by the surface (as already remarked, only one of the two inequalities that represent
intersection between circles need to be considered)

(ξ − a)2 + (η − b)2 = (ζ − r )2, or

π3(c) : ξ 2 + η2 − ζ 2 − 2aξ − 2bη + 2rζ + a2 + b2 − r2 = 0. (14)

An important observation is that the bound on the parameter s is large because we
consider intersection curves of “mixed” pairs of surfaces from among the possible
types (10)–(14). However, if we only consider pairs of surfaces of the same type,
say of type (14), the corresponding intersection curves are plane quadrics, so the
number of intersection points between the projections of two such curves is at most
4, as in the case of vertical parabolas (Section 5.2). Our approach is thus to enforce
the conditions (C1)–(C2) in two stages, where the first stage enforces (C1) and the
second enforces (C2). This will suffice to reduce s to 2.

In more detail, we proceed as follows: For k = 3, 4, set ψ (k)(u, v) =
max ψ(A, B), where the maximum is taken over all pairs of families of circles A
and B of sizes at most u and v , respectively, that satisfy (C0)–(C(k − 2)). We set
ψ (k)(m) = ψ (k)(m, m). Recall that our task is to bound ψ (2)(m).

Bounding ψ (4)(m). We first observe that ψ (4)(m) = O(m4/3). Indeed, if every
pair of circles in A×B satisfy (C0)–(C2), that is, the upper arcs of every pair intersect
at two points, then the bound follows by considering the collection of extended upper
arcs of the circles in A ∪ B, and applying Lemma 4.2 and Theorem 3.4, as argued
in Section 5.3.

Bounding ψ (3)(m). Next, we apply the analysis in the proof of Lemma 5.1 to
the arrangement of the surfaces π3(c), for c ∈ A or c ∈ B. Choosing a parameter
1 ≤ r ≤ m1/4, we obtain the recurrence

ψ (3)(m) ≤ cr6β2
q (r )

[
ψ (3)

(
m

r4

)
+ ψ (4)(m)

]
≤ cr6β2

q (r )

[
ψ (3)

(
m

r4

)
+ O(m4/3)

]
,

with q = 4. Indeed, the overhead term bounds the minimum number of cuts needed
to eliminate all bichromatic upper-upper lenses between pairs of subfamilies of
circles that satisfy (C2) (where one subfamily corresponds to all circles in, say,
A, whose representing points lie in some cell � of the relevant cutting, and the
other subfamily corresponds to all circles c ∈ B whose associated surface π3(c)
fully encloses �), in addition to (C0)–(C1) which are satisfied, by assumption, by
all pairs of circles in A × B. Here q = 4, because we are dealing here only with
surfaces of the form π3(c), and, as already remarked, the intersection curve of two
such surfaces is a plane quadric, so, as argued in Section 5.2, the projections of two



Lenses in Arrangements of Pseudo-Circles and Their Applications 183

such intersection curves on the ξη-plane intersect in at most four points, thereby
implying that q = 4 and βq(r ) = 2O(α2(r )). The same analysis as in Section 5.1 now
shows that

ψ (3)(m) = O(m3/2κ(m)). (15)

Bounding ψ (2)(m). This is achieved by a similar process of interleaved recur-
sion, in which we keep flipping the roles of A and B. However, this can be done so
that one of the two recursive steps is performed in the plane (and only one in three
dimensions). Specifically, we have:

LEMMA A.3. For any m, n and for any parameter 1 ≤ r1 ≤ min{m, n1/2},

ψ (2)(m, n) ≤ c2r2
1ψ (2)

(
m

r1
,

n

r2
1

)
+ c2r4

1ψ (3)

(
m,

n

r2
1

)
, (16)

for some positive constant c2.

PROOF. Let A and B be two families of circles of size m and n, respectively,
so that every pair in A × B satisfy condition (C0). We need to “enforce” condition
(C1), namely, that the leftmost and rightmost points of a circle in B lie inside a
circle in A. This can be done via the following cutting-based partitioning in the
plane, where each circle g = (ξ, η, ζ ) ∈ B is mapped to the two respective points
λg = (ξ − ζ, η), ρg = (ξ + ζ, η), and the circles of A remain as they are.

We compute a (1/r1)-cutting � of A of size O(r2
1 ). For each � ∈ �, let B� =

{g ∈ B | λg ∈ � or ρg ∈ �}. If |B�| > n/r2
1 , we partition � into subcells, each of

which contains at most n/r2
1 points. The number of new cells remains O(r2

1 ). For
each new cell �, let A� = {c ∈ A | c ∩ � �= ∅} and Ã� = {c ∈ A | � ⊆ int(c)}.
Since � is a cutting, we have |A�| ≤ m/r1 for each �.

To bound ψ(A, B), we first sum up the recursive terms
∑

� ψ(A�, B�). Let
(c, g) be a pair that needs to be counted in ψ(A, B) but has not been counted in
this recursive manner. Let �, �′ be the cells of the cutting that contain λg, ρg,
respectively. Then both cells �, �′ are fully contained in the interior of c. This
suggests the following approach to completing the count: Take each pair (�, �′)
of cells of the cutting, and put B(�,�′) = {g ∈ B | λg ∈ � and ρg ∈ �′},
A(�,�′) = {c ∈ A | �, �′ ⊆ int(c)}. The number of remaining pairs that need
to be counted is thus bounded by∑

(�,�′)

ψ
(

A(�,�′), B(�,�′)
)
.

However, every pair of sets in this sum also satisfy (C1), so the sum is
O(r4ψ (3)(m, n/r2

1 )). This completes the proof of the lemma.

We also need a dual partitioning scheme for the “flipped” version of the recursion,
in which the circles of A are mapped into points and those of B into surfaces. Here,
unlike the preceding partition, we need to use the 3-dimensional representation of
the circles:

LEMMA A.4. For any m, n and for any parameter 1 ≤ r2 ≤ min{m1/3, n},

ψ (2)(m, n) ≤ c3r3
2βq(r2)

[
ψ (2)

(
m

r3
2

,
2n

r2

)
+ ψ (3)

(
m

r3
2

, n

)]
, (17)

for some integer constant q and some positive constant c3.
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PROOF. Let A and B be two families of circles of size m and n, respec-
tively, which satisfy condition (C0). We now map each circle g ∈ A to the
point g∗ = (ξ, η, ζ ) ∈ R

3, using the 3-parameter representation of C . Let # =
{π̄1(c), π̄2(c) | c ∈ B}. We compute a (1/r2)-cutting � of # of size O(r3

2βq(r2)),
for some appropriate constant q.8 For each cell τ ∈ �, set Aτ = {c ∈ A | c∗ ∈ τ }
and partition τ further, as needed, to ensure that, for any resulting subcell τ ′,
|Aτ ′ | ≤ m/r3

2 ; this does not change the asymptotic bound on the number of cells.
Set Bτ = {c ∈ B | (π̄1(c) ∪ π̄2(c)) ∩ τ �= ∅} and B̃τ = {c ∈ B | τ ⊆ K̄1(c)}.
Hence, we obtain the following recurrence

ψ(A, B) =
∑
τ∈�

[ψ(Aτ , Bτ ) + ψ(Aτ , B̃τ )].

By construction, every pair (c1, c2) ∈ Aτ × B̃τ satisfies (C0)–(C1), which implies
that ψ(Aτ , B̃τ ) ≤ ψ (3)(|Aτ |, |B̃τ |). Since |Aτ | ≤ m/r3

2 and |Bτ | ≤ 2n/r2 for each
τ , we thus obtain, summing over all cells of the cutting,

ψ (2)(m, n) ≤ c3r3
2βq(r2)

[
ψ (2)

(
m

r3
2

,
2n

r2

)
+ ψ (3)

(
m

r3
2

, n

)]
,

as asserted.

Combining (16) and (17), choosing r2 = r and r1 = 2r2 for an appropriate
parameter r > 1, and substituting the bound (15) onψ (3)(·), we obtain the recurrence
for appropriate values of constants c, c′:

ψ (2)(m) ≤ cr7βq(r )ψ (2)

(
m

2r5

)
+ c′r8m3/2κ(m).

Since the overhead term in the recurrence dominates its homogeneous solution, it
can be shown (by induction on m) that if we choose r to be a sufficiently large
constant, then the solution to the recurrence is

ψ (2)(m) = O(m3/2κ(m)).

Bounding ψ (1)(m) and ψ (0)(m). We now return to the first two stages of divide
and conquer. Substituting the bound for ψ (2)(·) in (9), we obtain a recurrence in
which each instance involving a total of m + n circles is replaced by two instances,
each involving a total of (m + n)/2 circles. This readily implies that the recurrence
solves to

ψ (1)(m) = O(m3/2κ(m)).

Substituting this bound into (8), we again obtain a simple recurrence for ψ (0)(·)
which also solves to

ψ (0)(m) = O(m3/2κ(m)).

We have thus shown that the minimum number of cuts needed to eliminate all
upper-upper lenses in a set of n circles is O(n3/2κ(n)). A fully symmetric argument
yields the same bound for the number of cuts needed to eliminate all lower-lower

8 Curiously, q = 4 for the collection of surfaces π̄1(c), π̄2(c), which follows by the same reasoning
used for the surfaces π3(c). However, this extra property is not needed in this step of our analysis.
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lenses, and it remains to bound the number of cuts needed to eliminate upper-lower
lenses. For this we need to carry out a similar analysis, based on the condition (UL)
in Lemma A.2. The analysis is indeed rather similar, and we do not spell it out in
detail. We only comment on several technical differences that arise:

(1) At the bottommost recursive stage, we enforce the condition that a pair of
circles c = (a, b, r ) and c′ = (ξ, η, ζ ) intersect. Here we need to enforce both
inequalities, that the distance between the centers be at least the difference
between the radii and at most their sum. The corresponding surfaces, with c
fixed and c′ varying, are

π3(c) : ξ 2 + η2 − ζ 2 − 2aξ − 2bη + 2rζ + a2 + b2 − r2 = 0
π̄3(c) : ξ 2 + η2 − ζ 2 − 2aξ − 2bη − 2rζ + a2 + b2 − r2 = 0.

Fortunately, the intersection curve of any pair of these surfaces is still a plane
quadric, and the preceding analysis can be easily adapted to keep the parameter
q equal to 4 (and s to 2) in this case too.

(2) We now need only one stage of a simple divide-and-conquer, to enforce the
condition b2 ≥ b1, but we need two stages to enforce the conditions concerning
the points λc1 , ρc1 , λc2 and ρc2 , one stage enforcing that λc1 , ρc1 lie outside c2,
and the other stage enforcing that λc2 , ρc2 lie outside c1. Both stages are carried
out exactly as above.

The modified analysis thus yields a bound of O(n3/2κ(n)) for the minimum
number of cuts needed to eliminate all upper-lower lenses in a set C of n circles,
showing, at long last, that χ (C) = O(n3/2κ(n)).
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HELLY, E. 1930. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten. Monaths.
Math. und Physik 37, 281–302.

KEDEM, K., LIVNE, R., PACH, J., AND SHARIR, M. 1986. On the union of Jordan regions and collision-free
translational motion amidst polygonal obstacles. Disc. Comput. Geom. 1, 59–71.
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PINCHASI, R., AND RADOIČIĆ, R. 2003. On the number of edges in a topological graph with no self-
intersecting cycle of length 4. In Proceedings of the 19th Annual ACM Symposium on Computational
Geometry. ACM, New York, 98–103.

SHARIR, M., AND AGARWAL, P. K. 1995. Davenport-Schinzel Sequences and Their Geometric Applica-
tions. Cambridge University Press, New York.

SNOEYINK, J., AND HERSHBERGER, J. 1991. Sweeping arrangements of curves. In Discrete and Compu-
tational Geometry: Papers from the DIMACS Special Year. American Mathematical Society, Providence,
R.I., 309–349.
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