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pseudo-circlesis said to be an empty lens if the closed Jordan region that it bounds does not intersect
any other member of the family. We establish alinear upper bound on the number of empty lensesin
an arrangement of n pseudo-circles with the property that any two curves intersect precisely twice.
We use this bound to show that any collection of n x-monotone pseudo-circles can be cut into O(n®/%)
arcs so that any two intersect at most once; this improves a previous bound of O(n%?3) due to Tamaki
and Tokuyama. If, in addition, the given collection admits an algebraic representation by three real
parameters that satisfies some simple conditions, then the number of cuts can be further reduced to
O(n%2(log n)°@*M), where «(n) istheinverse Ackermann function, and s is aconstant that depends
on the the representation of the pseudo-circles. For arbitrary collections of pseudo-circles, any two
of which intersect exactly twice, the number of necessary cuts reduces still further to O(n*3). As
applications, weobtainimproved boundsfor the number of incidences, thecomplexity of asinglelevel,
and the complexity of many facesin arrangements of circles, of pairwise intersecting pseudo-circles,
of arbitrary x-monotone pseudo-circles, of parabolas, and of homothetic copies of any fixed simply
shaped convex curve. We also obtain a variant of the Gallai—Sylvester theorem for arrangements of
pairwiseintersecting pseudo-circles, and anew lower bound on the number of distinct distances under
any well-behaved norm.

Categories and Subject Descriptors: G.2.1 [Discrete M athematics]: Combinatorics—counting prob-
lems; 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—geometric
algorithms, languages, and systems

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Arrangements, pseudo-circles, incidence problems

1. Introduction

The arrangement of a finite collection C of geometric curves in R?, denoted as
A(C), isthe planar subdivision induced by C, whose vertices are the intersection
pointsof the curvesof C, whose edgesarethe maximal connected portionsof curves
in C not containing a vertex, and whose faces are maximal connected portions of
R?\ | J C. Because of numerous applications and the rich geometric structure that
they possess, arrangements of curves, especially of lines and segments, have been
widely studied [Agarwal and Sharir 2000].

A family of Jordan curves (respectively, arcs) is called afamily of pseudo-lines
(respectively, pseudo-segments) if every pair of curves intersect in at most one
point and they cross at that point. A collection C of closed Jordan curvesis called
a family of pseudo-circles if every pair of them intersect at most twice. If the
curves of C are graphs of continuous functions everywhere defined on the set of
real numbers, such that every two intersect at most twice, we call them pseudo-
parabolas.! Although many combinatorial results on arrangements of lines and
segments extend to pseudo-lines and pseudo-segments, as they rely on the fact that
any two curves intersect in at most one point, they rarely extend to arrangements
of curves in which a pair intersect in more than one point. In the last few years,
progress has been made on analyzing arrangements of circles, pseudo-circles, or
pseudo-parabolas by “cutting” the curves into subarcs so that the resulting set
is a family of pseudo-segments and by applying results on pseudo-segments to
the new arrangement; see Agarwal et al. [2003], Alon et al. [2001], Aronov and

! For simplicity, we assume that every tangency counts as two intersections, that is, if two pseudo-
circles or pseudo-parabolas are tangent at some point, but they do not properly cross there, they do
not have any other point in common.
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Fic. 1. (i) A pseudo-circle y supporting one lens-face and two lune-faces. (ii) A family of (shaded)
nonoverlapping lenses.

Sharir [2002], Chan [2003], Pinchasi [2001], and Tamaki and Tokuyama [1998].
This article continues this line of study—it improves a number of previous results
on arrangements of pseudo-circles, and extends a few of the recent results on
arrangements of circles (e.g., those presented in Alon et al. [2001], Aronov and
Sharir [2002], and Pinchasi [2001]) to arrangements of pseudo-circles.

Let C be afinite set of pseudo-circlesin the plane. Let ¢ and ¢’ be two pseudo-
circlesin C, intersecting at two pointsu, v. A lens A formed by ¢ and ¢’ isthe union
of two arcs, one of ¢ and one of ¢/, both delimited by u and v. If A isthe boundary
of aface of A(C), wecall A an empty lens; 1 iscalled alens-faceif it is contained
in the interiors of both ¢ and ¢/, and a lune-face if it is contained in the interior
of one of them and in the exterior of the other. See Figure 1. (We ignore, in the
remainder of thearticle, thecasewhere A liesintheexteriorsof both pseudo-circles,
because there can be only one such facein A(C).) Let 1(C) denote the number of
empty lensesin C. A family of lenses formed by the curvesin C iscalled pairwise
nonoverlapping if the (relativeinteriors of the) arcsforming any two of them do not
overlap. Let v(C) denote the maximum size of afamily of nonoverlapping lensesin
C. We define the cutting number of C, denoted by x (C), as the minimum number
of arcsinto which the curves of C have to be cut so that any pair of resulting arcs
intersect at most once (i.e., these arcs form a collection of pseudo-segments); thus,
x(C) = |C| when no cuts need to be made. In this article, we obtain improved
bounds on 1(C), v(C), and x (C) for several special classes of pseudo-circles, and
apply them to obtain bounds on various substructures of A(C).

1.1. PrReEvVIOUS RESULTS. Tamaki and Tokuyama [1998] proved that v(C) =
O(n%3) for afamily C of n pseudo-parabolas or pseudo-circles, and exhibited a
lower bound of (n*?3). In fact, their construction gives a lower bound on the
number of empty lenses in an arrangement of circles or parabolas. Subsequently,
improved boundson 1(C) and v(C) have been obtained for arrangements of circles.
Alon et al. [2001] and Pinchasi [2001] proved that «(C) = ©(n) for a set of n
pairwise intersecting circles. If C isan arbitrary collection of circles, then v(C) =
O(n%¥?*%), for any ¢ > 0, as shown by Aronov and Sharir [2002]. No better bound
isknown for the number of empty lensesin an arbitrary family of circles. However,
when C consists of n unit circles, then 4 (C) = O(n*3) [Spencer et al. 1984;
Székely 1997]. Moreover, 1(C) can be lower-bounded by the number of pairs of
circlesof C, whose centerslie at distance 2. (Any such pair of circlesaretangent to
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each other, and we can regard the tangency as a degenerate empty lens.) As shown
by Erdés [1946], there exist collections C of n such circles with €(nl+¢/10glogn)
pairs at distance 2, for some constant ¢, showing that 14(C) = Q(n'+¢/!0glogn),

The analysis in Tamaki and Tokuyama [1998] shows that the cutting number
x (C) is proportional to v(C) for collections of pseudo-parabolas or of pseudo-
circles. Therefore one has x(C) = O(n%?3) for pseudo-parabolas and pseudo-
circles [Tamaki and Tokuyama 1998], and x(C) = O(n%?*¢) for circles. Us-
ing this bound on x(C), Aronov and Sharir [2002] proved that the maximum
number of incidences between a set C of n circles and a set P of m points is
O(m?3n?/3 4 mb/A+3n9/t=¢ L m 4 n), for any ¢ > 0. Recently, following
a similar but more involved argument, Agarwal et a. [2003] proved a similar
bound on the complexity of m distinct faces in an arrangement of n circles in
the plane.? An interesting consequence of the results in Alon et al. [2001]
and Pinchasi [2001] is the following generalization of the Sylvester—Gallai the-
orem: In an arrangement of pairwise intersecting circles, there always exists a
vertex incident upon at most three circles, provided that the number of circlesis
sufficiently large and that they do not form a pencil. For pairwise intersecting unit
circles, the property holds when the number of circlesis at least five [Alon et al.
2001; Pinchasi 2001].

1.2. New ResuLTs. Inthisarticle, we first obtain improved bounds on 1(C),
v(C), and x (C) for various special classes of pseudo-circles, and then apply these
bounds to several problems involving arrangements of such pseudo-circles. Let C
be a collection of n pseudo-parabolas such that any two have at least one point in
common. We show that the number of tangenciesin C isat most 2n —4 (for n > 3).
In fact, we prove the stronger result that the tangency graph for such a collection
C isbipartite and planar. Using this result, we prove that «(C) = ®(n) for aset C
of n pairwise intersecting pseudo-circles. Next, we show that x(C) = O(n%?3)
for collections C of n pairwise intersecting pseudo-parabolas. We then go on
to study the general case, in which not every pair of curves intersect. We first
show, in Section 4, that x(C) = O(n®®) for arbitrary collections of n pseudo-
parabolas and for collections of n x-monotone pseudo-circles. This improves the
general bound of Tamaki and Tokuyama[1998], and is based on a recent result of
Pinchas and Radoici¢ [2003] on the size of graphs drawn in the plane so that any
pair of edges in a cycle of length 4 intersect an even number of times. Section 4
depends only on the results of Section 2.1. In order to improve this bound further,
we need to make afew additional assumptions on the geometric shape of the given
curves. Specifically, we assume, in Section 5, that, in addition to x-monotonicity,
the n given curves admit a 3-parameter algebraic representation that satisfies some
simple conditions (a notion defined more precisely in Section 5). Three important
classes of curves that satisfy these assumptions are the classes of circles, verti-
cal parabolas (of the form y = ax? + bx + ¢), and of homothetic copies of any
fixed simply shaped convex curve. We show that, in the case of such a repre-
sentation, x(C) = O(n¥?(logn)°@ M), where a(n) is the inverse Ackermann

2 Actually, Agarwal et al. [2003], having been written alongside with the present article, already
exploits the slightly improved bound derived here.
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function and s is a constant depending on the algebraic parametrization; s = 2
for circles and vertical parabolas. This bound gives a dightly improved bound on
x (C), compared to the bound proved in Aronov and Sharir [2002], for a family
of circles.

In Section 6, we apply the above results to several problems. The better bounds
on the cutting number x (C) lead to improved bounds on the complexity of levels,
on the number of incidences between points and curves, and on the complexity
of many faces, in arrangements of several classes of pseudo-circles, including the
cases of circles, parabolas, pairwise-intersecting pseudo-circles, homothetic copies
of afixed convex curve, and genera pseudo-parabolas and x-monotone pseudo-
circles. The exact bounds are stated in Section 6. We also obtain a generalized
Gallai—Sylvester result for arrangements of pairwise-intersecting pseudo-circles,
and anew lower bound for the number of distinct distances determined by n points
in the plane and induced by an arbitrary well-behaved norm.

2. Pairwise Intersecting Pseudo-Circles

Let C be a set of n pseudo-circles, any two of which intersect in two points. We
prove that (C), the number of empty lenses in A(C), is O(n). The proof pro-
ceeds in three stages: First, we reduce the problem to O(Z1) instances of counting
the number of empty lenses in an arrangement of at most n pairwise intersect-
ing pseudo-circles, all of whose interiors are star shaped with respect to a fixed
point 0. Next, we reduce the latter problem to counting the number of tangen-
ciesin afamily of pairwise intersecting pseudo-parabolas. Finally, we prove that
the number of such tangencies is O(n). For simplicity, we provide the proof in
the reverse order: Section 2.1 proves a bound on the number of tangenciesin a
family of pairwise intersecting pseudo-parabolas; this provides the main geomet-
ric insight of this article, on which all other results are built. Section 2.2 proves
a bounds on w(C) for a family C of pairwise-intersecting star-shaped pseudo-
circles, by using the result in the previous subsection; Section 2.3 supplies the
fina reduction, and shows that the number of empty lenses in a family of arbi-
trary pairwise-intersecting pseudo-circles can be counted using the result obtained
in Section 2.2.

2.1. TANGENCIES OF PSEUDO-PARABOLAS. Let I' be aset of n pairwise inter-
secting pseudo-parabolas, that is, graphs of totally defined continuous functions,
each pair of which intersect, either in exactly two crossing points or in exactly one
point of tangency, where no crossing occurs.® We also assume that no three of these
curves have apoint in common. This general position assumption is made in order
to simplify our analysis. Later on, we will show how to extend our analysisto sets
of curves that are not in general position. Note also that considering tangencies,
rather than empty lenses, isjust another simplifying step: Since no three curvesare
concurrent, any tangency can be deformed into a small empty lens and vice-versa.

3 The requirement that the number of intersections of every pair be exactly two can be relaxed to that
of requiring that every pair intersect at least once: A family satisfying the latter condition can easily
be extended to afamily that satisfies the former condition.
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FiG. 2. (i) lllustrating thedrawing rule. (ii) Drawing the graph G for an arrangement of five pairwise
intersecting pseudo-parabolas with three tangencies.

Let T denote the set of all tangencies between pairs of curvesin I'. Our goal isto
bound the size of T.

We associate a graph G with T, whose vertices are the curves of I and whose
edges connect pairs of tangent curves. A pseudo-parabola in T" is called lower
(respectively, upper) if it forms a tangency with another curve that lies above
(respectively, below) it. We observe that a curve y € T" cannot be both upper and
lower because the two other curves forming the respective tangencieswith y would
have to be digjoint, contrary to assumption. Hence, G is bipartite. In the remainder
of this section we show that G is planar, and thiswill establish alinear upper bound
onthesizeof T.

2.1.1. The Drawing Rule. Let ¢ be avertical line that lies to the left of al the
verticesof A(T"). Wedraw G inthe planeasfollows: Each y € I' isrepresented by
the point y* = y N £. Each edge (y1, y2) € G isdrawn as a y-monotone curve that
connects the points y;*, y;. We use (y;, y5) to denote the arc drawn for (y1, y2).
Thearc hasto navigate to the | eft or to the right of each of the intermediate vertices
8* between y;* and y; along £.

Weusethefollowing rulefor drawing anedge (1, y2): Assumethat y;* lies bel ow
¥, aong £. Let W(y1, y2) denote the left wedge formed by y; and y», consisting
of al pointsthat lie above 3, and below y, and to the left of the tangency between
them. Let§ e I' beacurvesothat 5* lieson ¢ between y; and y5°. Thecurve § hasto
exit W(y1, y2). If itsfirst exit point (i.e., itsleftmost intersection with W (y1, v2))
lieson yy, then wedraw (y1, ) to passto theright of §*. Otherwise, we draw it to
passtotheleft of §*; see Figure 2(i). Notethat atangency also countsasan exit point
(with immediate re-entry back into the wedge). Except for these requirements, the
edge (y1, y2) can be drawn in an arbitrary y-monotone manner.

We remark that the drawing rule perse is still somewhat arbitrary, and does
not necessarily imply that the resulting drawing is noncrossing. Instead, it has the
property that every pair of edges without a common vertex cross an even number
of times, which, using the Hanani—Tutte theorem, implies that G isindeed planar;
see below for details.

LEmMmA 2.1. Suppose that the following conditions hold for each quadruple
Y1, V2, V3, v4 Of digtinct curves in I', whose intersections with £ appear in this
y-increasing order:

(@) 1f (y1, v4) and (2, y3) areedges of G, then both y; and 5" lie on the same side
of thearc (v7, v5)-
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FiG. 3. Thealowed and forbidden configurations in conditions (a) and (b).

(b) If (y1, y3) and (y2, y4) are edges of G and the arc (y;’, y3) passes to the left
(respectively, right) of v, thenthearc (5, y,) passestotheright (respectively,
left) of y3.

Then G isplanar.

ProOF. Figure 3 showsthe configurations allowed and forbidden by conditions
(a) and (b). We show that the drawings of each pair of edgesof G without acommon
endpoint cross an even number of times. (With additional care, this property can
also be enforced for pairs of edgeswith acommon endpoint, aswill be shown later.
Thisextension is hot heeded for the main result, Theorem 2.4, but is needed for the
analysisin Section 4 involving general pseudo-parabolas and x-monotone pseudo-
circles.) This, combined with Hanani—Tutte' stheorem [ Tutte 1970] (seea so Hanani
[1934] and Lovasz et al. [1997]), implies that G is planar. Clearly, it suffices to
check thisfor pairs of edges (with distinct endpoints) for which the y-projections
of their drawings have a nonempty intersection. In this case, the projections are
either nested, asin case (@) of the condition in the lemma, or partially overlapping,
asin case (b).

Consider first apair of edges e = (y1, y4) and € = (y», v3), with nested projec-
tions, asin case (a). Regard the drawing of e as the graph of a continuous partial
function x = e(y), defined over the interval [y}, y;], and similarly for €. Part (a)
of the condition implies that either eisto theleft of € at both y; and y3, or eisto
theright of € at both these points. Since e and € correspond to graphs of functions
that are defined and continuous over [y, y5], it follows that e and € intersect in
an even number of points.

Consider next a pair of edges e = (y1, ¥3) and € = (y», v4), with partidly
overlapping projections, asin case (b). Here, too, part (b) of the condition implies
that either e isto the left of € at both y; and y5, or e isto theright of € at both
these points. This implies, as above, that e and € intersect in an even number of
points.

This completes the proof of thelemma. [

We next show that the conditionsin Lemma 2.1 do indeed hold for our drawing
of G.

LEMMA 2.2. Let y1, v2, 3, ¥4 be four curves in T, whose intercepts with ¢
appear in thisincreasing order, and suppose that (y1, y4) and (y», y3) are tangent
pairs. Then it is impossible that the first exit points of y, and y; from the wedge
W(y1, y4) are at opposite sides of the wedge.



146 P. K. AGARWAL ET AL.

@ (i)

FIG. 4. Edgesof G with nested projections: (i) . passes below vi4 and y3 passes above vyy; (ii) both
y» and y3 pass on the same side of vy4.

PROOF. Suppose to the contrary that such a configuration exists. Then, except
for the respective points of tangency, ys always lies above y»,, and y, always lies
above y;1. Thisimplies that if the first exit point of 1, from W(y1, y4) lies on y4,
then the first exit point of y; also hasto lie on y4, contrary to assumption. Hence,
the first exit point of y, lieson 1 and, by symmetric reasoning, the first exit point
of y3 lieson y,4. See Figure 4. Let v14 denote the point of tangency of 31 and 4. We
distinguish between two cases:

(a) y» passes below vi4 and y3 passes above vi4: See Figure 4(i). In this case,
the second intersection point of 1, and y, must lieto theright of vi4, for otherwise
y» could not have passed below vy4. Similarly, the second intersection point of y3
and y, also liesto the right of vi4. Thisaso implies that , and y,4 do not intersect
to the left of vi4, and that 4, and y; aso do not intersect to the left of vis. Let ugs
(respectively, uy4) denote the leftmost intersection point of y; and y3 (respectively,
of v, and y4), both lying to the right of vi4. Suppose, without loss of generality,
that ui3 lies to the left of uy4. In this case, the second intersection of y; and y»
must lie to the right of uy3. Indeed, otherwise 3, would become “trapped” inside
the wedge W(y1, y3) because y» cannot cross y; and it has aready crossed y; at
two points. The second intersection of 3 and y,4 occursto the left of uiz. Now, y»
and y,4 cannot intersect to the left of uy3: y» does not intersect y, to the left of its
first exit w1, from W(y1, y4). To theright of wy, and to the left of uys, y» remains
below y1, which lies below y4. Findly, to the right of uy3, » lies below y3, which
liesbelow y4 (sinceit has already intersected y, twice). Thisimpliesthat y, cannot
intersect y4 at al, a contradiction, which shows that case (a) isimpossible.

(b) Both y, and 3 passon the same side of v14: Without loss of generality, assume
that they pass above vi4. See Figure 4(ii). Then y, must cross y; again and then
Cross y4, both within 3W(y4, y4). In this case, y3 cannot cross y, to the left of vy,
because to do so it must first cross y,4 again, and then it would get “trapped” inside
the wedge W(y», y4). But then y; and y3 cannot intersect at al: We have argued
that they cannot intersect to the left of vi4. To the right of this point, y; lies above
v», Which lies above y;. This contradiction rules out case (b), and thus completes
the proof of thelemma. [

LEMMA 2.3. Let v, v, v3, v4 be four curves in T, whose intercepts with ¢
appear in thisincreasing order, and suppose that (y1, y3) and (y», v4) are tangent
pairs. Then it isimpossible that the first exit point of y» from the wedge W(y1, v3)
and the first exit point of 3 from the wedge W(y», y4) both lie on the bottom sides
of the respective wedges, or both lie on the top sides.
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FIG. 5. Edgesof G with partially overlapping projections.

PrROOF. Supposeto the contrary that such a configuration exists. By symmetry,
we may assume, without loss of generality, that both exit points lie on the bottom
sides. That is, the exit point u;, of y, from W(y1, y3) lies on y, and the exit point
Uy of y3 from W(y», y4) lieson y,. See Figure 5. By definition, 3, and y3 do not
intersect to the left of u1,. SO, Uy occursto theright of uy, and, in fact, also to the
right of the second intersection point of y; and y,. Again, by assumption, y3 and y4
do not intersect to the left of uo3. Hence y; and y4 also do not intersect to the | eft of
Uy3, because y; liesbelow y3. But then y; and 4 cannot intersect at all, because to
theright of u,s, y4 liesabove y,, which lies above y;. This contradiction completes
the proof of thelemma. [

Lemmas 2.2 and 2.3 show that the conditionsin Lemma2.1 hold, so G is planar
and bipartite and thus has at most 2n — 4 edges, for n > 3. Hence, we abtain the
following.

THEOREM 2.4. Let T" be a family of n pairwise intersecting pseudo-parabolas
in the plane, that is, each pair intersect either in exactly two crossing pointsor in
exactly one point of noncrossing tangency. Assume also that no three curves of I'
meet at a common point. Then, there are at most 2n — 4 tangencies between pairs
of curvesinT, for n > 3.

2.2. EMPTY LENSES IN STAR-SHAPED PSEUDO-CIRCLES. The main result of
thissection is;

THEOREM 2.5. The number of empty lensesin an arrangement of n > 3 pair-
wiseintersecting pseudo-circles, no pair of which are tangent and no three concur-
rent, so that all their interiors are star shaped with respect to a point o, is at most
2n — 3. Thisnumber is 3 for n = 2. Both bounds are tight in the worst case.

The lower bound, for n = 5, isillustrated in Figure 6. It is easy to generalize
this construction for any n > 3. The case n = 2 istrivia: A pair of intersecting
circles form three empty lenses (ignoring the unbounded face), of which two are
lune-faces and oneis alens-face, containing o.

Assume then that n > 3. At most, one empty lens contains 0. We will show
that the number of empty lenses not containing o is at most 2n — 4. By definition,
each of these lensesis a lune-face (whereas the empty lens containing o, if any, is
alens-face).

We deform the pseudo-circles of C, so asto turn each lune-face into a tangency
between the two corresponding pseudo-circles. Thisiseasy to do, by deforming the
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FIG.6. Lower-bound construction: Five convex pseudo-circleswithacommon interior point forming
seven empty lenses.

FiG. 7. Transforming an empty lensinto a tangency.

two pseudo-circles bounding such an empty lens, using the facts that no two empty
lenses share an arc or avertex; see Figure 7 for an illustration. We can deform the
pseudo-circles in this manner without losing the star-shapedness property.

Draw agenericray p that emanatesfrom o and doesnot passthrough any vertex of
A(C); in particular, it does not pass through any empty lens, each how reduced to a
point of tangency between the respective pseudo-circles. Without loss of generality,
assume that p has orientation O, that is, it points to the direction of the positive x-
axis. Regard each curve of C asthegraph of afunctionin polar coordinates, and map
the open interval (0, 2r) of orientations onto thereal line (e.g., by x = — cot6/2).
This transforms C into a collection I" of pairwise intersecting pseudo-parabolas,
that is, graphs of totally defined continuous functions, each pair of which intersect
exactly twice. Theray p ismapped to the vertical linesat X = +o0.

The problem has thus been reduced to that of bounding the number of tangencies
among n pairwise intersecting pseudo-parabolas, no three of which are concurrent.
By Theorem 2.4, the number of tangenciesis at most 2n — 4, for n > 3, so the
number of lune-faces is at most 2n — 4. This completes the overal proof of the
theorem.

2.3. REDUCTION TO PAIRWISE INTERSECTING STAR-SHAPED PSEUDO-CIRCLES.
Let C be afamily of n pseudo-circles, any two of which intersect each other in
two points. We refer to the interiors of these pseudo-circles as pseudo-disks. We
bound 1.(C) by reducing the problem to a constant number of subproblems, each
of which is ultimately reduced to counting the number of empty lensesin afamily
of pairwise intersecting star-shaped pseudo-circles. We continue to assume that the
curvesin C arein general position, asin the preceding section.

We need the following easy observation.

LEmMMA 2.6. Among any five pseudo-disks bounded by the elements of C, there
are at least three that have a point in common.

PrOOF. Indeed, if this were false, then there would exist five pseudo-disks
such that any two of them intersect in an empty lens (in the arrangement of the five
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corresponding boundary curves). Thisiseasily seentoimply (see, e.g., Kedemet al.
[1986]) that the intersection graph of these disks can be drawn in a crossing-free
manner. However, this graph is Ks, the compl ete graph with five vertices, which is
not planar. [

Thefollowing topological variant of Helly’stheorem [Helly 1930] was found by
Molnéar [1956]. It can be proved by afairly straightforward induction.

LEMMA 2.7. Any finite family of at least three simply connected regionsin the
plane has a nonempty simply connected intersection, provided that any two of its
members have a connected intersection and any three have a nonempty intersec-
tion. Consequently, the intersection of any subfamily of pseudo-disks bounded by
elements of C is either empty or simply connected and hence contractible.

Let p > g > 2beintegers. We say that afamily F of setshasthe (p, q) property
if among every p members of F there are q that have a point in common. We say
that afamily of sets F ispierced by aset T if every member of F contains at |east
oneelement of T. Theset T isoften called atransversal of F.Fix p>q > d+ 1.
Alon and Kleitman [1992] proved that there exists a transversal of size at most
k = k(p, g, d) for any finite family of convex setsin RY with the (p, q)-property.
Recently, Alon et a. [2002] extended this result to any finite family F of open
regions in d-space with the property that the intersection of every subfamily of F
is either empty or contractible. Their result, combined with Lemmas 2.6 and 2.7,
implies the following.

COROLLARY 2.8. There is an absolute constant k such that any family of
pseudo-disks bounded by pairwise inter secting pseudo-circles can be pierced by at
most k points.

Fix aset O = {04, 02, ..., 0O} Of k pointsthat pierces all pseudo-disks bounded
by the elements of C. Let C; consist of all elements of C that contain ¢; in their
interior, fori =1,2,...,k.

It suffices to derive an upper bound on the number of empty lenses formed by
pairsof pseudo-circlesbelonging to the same class C;, and on the number of empty
lenses formed by pairs of pseudo-circles belonging to two fixed classes C;, C;.
We begin by considering the first case and then reduce the second case to the
first one.

Let C be afamily of pseudo-circles, so that any two of them intersect and each
of them contains the origin o in its interior. We wish to bound 1(C). Obviously,
there exists at most one empty lens-face formed by elements of C, namely, the
face containing o. Therefore, it is sufficient to bound the number of lune-faces
determined by C. The combinatorial structure of an arrangement isits face lattice.
We call two arrangements combinatorially equivalent if the face lattices of their
arrangements are isomorphic. For a face f, we say that an edge e bounding f
is pointing inside (respectively, outside) if f isin the interior (respectively, the
exterior) of the pseudo-disk whose boundary includes e.

We need the following technical lemma to prove the main result.

LEMMA 2.9. Let C bea family of pseudo-circles such that all of them have an
interior point o in common. Then the union of any set of pseudo-disks bounded by
the elements of C is simply connected.
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PrROOF. For any y; € C, let D; denote the pseudo-disk bounded by y;. Using
stereographic projection, we can map each D; into a simply connected region D/
of a sphere S? touching the plane at o, where the center of projection is the point
0 e S? antipodal to o. Clearly, we have

s\ U b= [ E*\ D).

1<i<k 1<i<k

Thesets D/ = S?\ D/ form acollection of pseudo-disksin the “ punctured” sphere
S?\ {0}, isomorphic to the plane, and they all contain o’. Thus, applying Lemma?2.7
(clearly, the intersection of two pseudo-disks is always connected), we obtain that
the right-hand side of the above equation is simply connected. Therefore, S? \
(U;<i <k Df is@so simply connected, which implies that the union of the pseudo-
disks bounded by the elements of C is simply connected. []

By Lemma 2.9, R?\ | J, D; consists of only one (unbounded) cell in A(C). An
immediate corollary of the above lemmais the following.

CoRrOLLARY 2.10. Every bounded face of A(C) hasan edgethat pointsinside.

ProoF. Let f be a bounded face of A(C). Denoting by s and D;, for
i = 1,2,...,k, the edges of f and the respective pseudo-disks whaose bound-
aries contain these edges, and assuming that every s is pointing outside, we ob-
tain that f liesin the exterior of al pseudo-disks Dj, fori = 1,2, ..., k. How-
ever, this would imply that f is abounded cell of the complement of | J,_; ., Di,
contradicting Lemma 2.9, which states that | J,_;_, Di is a simply connected
bounded set. [J o

We now prove the main technical result of this section.

LEMMA 2.11. Let C be a finite family of pseudo-circles in general position,
such that all of them have an interior point o in common. Then, there exists a
combinatorially equivalent family C’ of pseudo-circles, all of which are star-shaped
with respect to o.

ProoF. We perform an “angular” topological sweep of A(C) with respect to
0 by a semi-infinite arc I’ that has o as an endpoint, and intersects, at any time,
each pseudo-circle of C exactly once. The ordering of the intersections of ¥ with
the members of C gives a permutation of C, and the sweep produces a circular
sequence IT of permutations, each differing from the preceding one by a swap
of two adjacent elements. We then construct a family C’ of pseudo-circles, al of
which are star-shaped with respect to o, so that the angular sweep of A(C’) by a
ray emanating from o produces the same sequence IT; this will imply that C’ is
combinatorially equivalent to C.

First, we show how to construct an initia instance of the curvef. Let f; bethe
cell of A(C) containing 0. Clearly, all edgesof f; pointinside. Start drawing acurve
i from o so that it first crosses an edge e; of fy, pointing inside f;. Let f, denote
the cell on the other side of e, and let e, be an edge of this cell pointing inside;
clearly, e; # e;. Extend " through f, until it crosses e,. Proceeding in thisway, we
reach, after n steps, the unique unbounded cell f,,1; see Figure 8(i). Thisfollows
by noting that at each step we exit a different pseudo-disk, and never enter into
any pseudo-disk. Let y; € C denote the pseudo-circle whose boundary contains e, .
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FiG. 8. Converting C into a star-shaped family by a counterclockwise topological sweep: (i) The
original curves; (ii) The transformed curves. IT = (123, 213, 231, 321, 312, 132, 123).

FIG. 9. (i) g and e have acommon endpoint counterclockwiseto ; (ii) advancing the sweep curve.

Clearly, the sequence my = (y1, . . ., ¥n), Where y; isthe curve containing the edge
g, isapermutation of C.

Thefollowing claim showsthat there always existsa“local” move that advances
the sweep of the curve I around o. It is reminiscent of a similar result given in
Snoeyink and Hershberger [1991].

CLAIM 1. There exist two consecutive edges g, 6,1 that are crossed by F
and have a common endpoint counterclockwise to f, that is, the triangular region
enclosed by g, 6,1, and f is contained in a face of A(C) and lies (locally) on the
counterclockwise side of 7.

ProOOF. Let (i), foreachl <i < n, denotetheindex of thefirst element of C
that intersectsy; counterclockwisetof. Let T; denotethetriangular region bounded
by v, vji), and f. We say that T; is positive (respectively, negative), if j(i) < i
(respectively, j(i) > i). Let k be the smallest integer for which Ty is positive, and
put | = j(K); see Figure 9(i). Observe that T, is positive, so k iswell defined. No
curve whose index is greater than k can intersect Ty because such a curve would
havetointersect 1 at morethan two points (it hasto “enter” and “leave” Ty through
1, but to reach the entry point it has to cross y; once more, counterclockwise to
T). Since j(I) > I, it followsthat, if | = k — 1, then g and g satisfy the property
inthe claim. The proof is completed by noting that thisis the only possible case: If
| < k—1, then y_1 cannot exit Ty at all, which isimpossible. Indeed, yx_1 cannot
intersect any curve of C intheinterior of Ty, because then Ty_1 would be positive,
as the index of any curve intersecting the interior of Ty is smaller than k. If y_1
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exits Ty by intersecting 11, then again Ty_1 would be positive. Finaly, yx_; cannot
exit Ty by crossing yi because k — 1 # | = j(k). This contradiction implies that
| =k — 1, andtheclaim holdswith g, e. [J

Assume that  and g, ; share an endpoint w counterclockwise to . Now fix a
pair of pointsu, v € f, close to the points where i crosses 0 T; and lying outside
Ti, and continuously sweep the portion of the curvef” between u and v, keeping the
other parts fixed, pushing the crossing points with 8 T; towards w, and finally pull
it through w, so that i no longer intersects T;; see Figure 9(ii). In this new position,
I meets y; 11 beforeit meets y;. We obtain anew permutation 2, which isthe same
as 1 except that the positions of y; and y; are swapped.

We repeat the above procedure for the new curve . Continuing in this manner,
we obtain a sequence IT = (71, 7o, ...) of permutations of the elements of C,
corresponding to the different ordersin which i’ crosses the curves.

We now construct afamily of pseudo-circlesthat realize the same sequence IT if
we sweep their arrangement by aray around o. Thisisdone similar to the procedure
described by Goodman and Pollack [1993] for redlizing an allowable sequence by
an arrangement of pseudo-lines. Roughly speaking, we draw n concentric circles
01, 02, ..., 0n @ound o, and draw aray p; from o for each permutation ; in II.
If 741 is obtained from z; by swapping y; and y;;1, we erase small arcs of o;
and oj11 near their intersection points with p;1 and connect the endpoints of
the two erased arcs by two crossing segments; see Figure 8(ii). Let C’ denote the
set of n curves, aobtained by modifying the circles o4, .. ., o, in this manner. By
construction, each curve in C’ is star-shaped with respect to o and C’ produces the
sequence IT if we sweep it around o with aray. By induction on the length of I1,
one can show that C and C’ are combinatorially equivalent, which implies that C’
isafamily of pseudo-circles, any pair of which intersect in exactly two points.

Lemma 2.11 implies that the number of empty lensesin C isthe same asthat in
C’. Hence, by Theorem 2.5, we obtain the following.

COROLLARY 2.12. Let C be afamily of n > 3 pairwise-intersecting pseudo-
circlesingeneral position whosecommoninterior isnot empty. Then 4(C) < 2n—3.
Forn =2, u(C) = 3.

We are now ready to prove the main result of this section.

THEOREM 2.13. Let C bea family of n pairwise-intersecting pseudo-circlesin
general position. Then 1(C) = O(n).

ProoF. By Corollary 2.8, there exists a covering {C4, ..., Cx} of C by O(2)
subsets, so that al the pseudo-circles in C; contain a point o; in their common
interior, fori = 1, ..., k. Corollary 2.12 implies that the number of empty lenses
induced by two pseudo-circles within the same family C; is at most 2|Ci| — 1,
for a total of a most O(n). It thus remains to consider the case in which the
givenfamily of pairwiseintersecting pseudo-circlesisthe union of two subfamilies
C{ c G, C} c Cj, such that the interiors of all pseudo-circlesin C{ (respectively,
in Cj) contain the common point o; (respectively, o;), but no circle of C{ contains
o initsinterior and no circle of C} contains o initsinterior. We wish to bound the
number of “bichromatic” empty lenses, that is, empty lensesin A(C/ U C}) formed
by a pseudo-circle in C{ and a pseudo-circle in C;. Any bichromatic lune-face in
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A(C{ U Cj) must contain either o or oj, so there can be at most two such faces.
Thus, it suffices to bound the number of bichromatic lens-faces.

Apply an inversion of the plane with respect to o;. Then each bichromatic lens-
face is mapped into a lune-face, which lies outside the incident pseudo-circle of
C{ and inside the incident pseudo-circle of C; Moreover, all the pseudo-circles of
both families now contain o; in their interior. Hence, by Theorem 2.5, the number
of these lune-faces (i.e., the original lens-faces) isat most 2n — 4, forn > 3;itis2
for n = 2. Summing this bound over al pairs of setsin the covering, the theorem
follows. [J

2.4. PAIRWISE NONOVERLAPPING LENSES. Let C be a family of n pairwise-
intersecting pseudo-parabolas or pseudo-circlesin general position, and let L bea
family of pairwise nonoverlapping lensesin .A(C). In this section, we obtain the
following bound for the size of L.

THEOREM 2.14. Let C beafamily of n pairwise-intersecting pseudo-parabolas
or pseudo-circlesin general position. Then the maximumsizeof afamily of pairwise
nonoverlapping lensesin A(C) is O(n%/3).

We begin by considering the case of pseudo-parabolas; we then show that the
other case can be reduced to this case, using the analysis given in the preceding
subsections. We first prove several lemmas.

LEMMA 2.15. Let C and L be as above, and assume further that the lensesin
L have pairwise digoint interiors. Then |[L| = O(n).

PrOOF. For eachlensi € L, let o; denote the number of edges of A(C) that
liein the interior of A (i.e., the region bounded by 1), and set o = ), 0:. We
prove the lemma by induction on the value of o . If o = O, that is, all lensesin L
are empty, then the lemma follows from Theorem 2.13. Suppose o, > 1.

Let Ao bealensin L witho,, > 1, andlet Ko betheinterior of Aq. Let y, ' € C
be the pseudo-parabolas forming 1o, and let § € y and 8’ C y’ be the two arcs
forming Ao. Let ¢ € C beacurvethat intersects Ko; clearly, ¢ € C cannot be fully
contained in Ko, S0 it must cross Aq. Up to symmetry, there are two possible kinds
of intersection between ¢ and Ao:

() |gnd|=2,and¢cNé =0.
(i) ¢ intersectsboth § and &'. Inthiscase, either ¢ intersectseach of §, 8’ at asingle
point, or it intersects each of them at two points.

Suppose Kg iscrossed by acurve ¢ € C of type (i). Let A; bethelensformed by
¢ andy’. Wereplace Ao with 11 in L. See Figure 10(i). The new set L’ still consists
of lenses with pairwise digoint interiors, so in particular the lensesin L’ are till
pairwise nonoverlapping. Moreover, the interior of A is strictly contained in Kq
and contains fewer edges of A(C) than Ko, S0 o1 < . Thelemma now holds by
the induction hypothesis. We may thus assume that no curve of type (i) crosses Ko,
so al these curvesare of type (ii). Inthiscase, we deform y or y’, thereby shrinking
Ko toanempty lensbetween y and y’. For example, wecan replace§’ by an arc that
proceeds parallel to § and outside Ko, and connects two points on ' close to the
endpointsof &, except for asmall region wherethe new 8’ crosses § twice, forming
asmall empty lens; see Figure 10(ii). Since only curves of type (ii) cross Ky, itis
easy to check that C is still acollection of pairwise-intersecting pseudo-parabolas.
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FiG. 10. (i) Replacing Ao by a“smaller” lensif it intersects atype (i) curve. (ii) Shrinking Ao to an
empty lenswhen it is crossed only by type (ii) curves.

Moreover, since the lensesin L are pairwise nonoverlapping and no pair of them
share an endpoint, the deformation of § can be done in such a way that no other
lensin L isaffected. Thelens Aq isreplaced by the new lens A, formed between §
and the modified §’. Since o;, = 0, we have reduced the size of o, and the claim
follows by the induction hypothesis. This completes the proof of the lemma. [

A pair (A, A) of lensesin L is caled crossing if an arc of A intersects an arc
of A". (Note that a pair of lenses may be nonoverlapping and yet crossing.) A pair
(A, 2) of lensesin L issaid to be nested if both arcsof A" are fully contained in the
interior of A. Let X bethe number of crossing pairsof lensesin L, andlet Y bethe
number of nested pairs of lensesin L.

LEMMA 2.16. LetC, L, X andY beasabove. Then
IL| = O(n+ X +Y). D

Proor. If L containsapair of crossing or nested lenses, remove one of them
from L. Thisdecreases|L| by 1and X + Y by at least 1, soif (1) holdsfor the new
L, it also holds for the original set. Repeat this step until L has no pair of crossing
or nested lenses. Every pair of lenses in (the new) L must have digoint interiors.
The lemmais then an immediate consequence of Lemma2.15. [

We next derive upper bounds for X and Y. The first bound is easy:
LEMMA 2.17. X = O(n).

PROOF. We charge each crossing pair of lenses (A, A) in L to an intersection
point of some arc bounding A and some arc bounding A’. Since the lenses of L are
pairwise nonoverlapping, it easily follows that such an intersection point can be
charged at most O(1) times (it is charged at most once if the crossing occurs at a
point in the relative interior of arcs of both lenses), and thisimpliesthelemma. [

We next derive an upper bound for Y, with the following twist:

LEMMA 2.18. Let k < n be some threshold integer parameter, and suppose
that each lens of L is crossed by at most k curvesof C. Then Y = O(k|L|).

ProoF. FixalensA’ € L.Let A € L bealensthat contains A’ in itsinterior,
i.e, (A, )) isanested pair. Pick any point g on A’ (e.g., its left vertex), and draw
an upward vertical ray p from q; p must cross the upper boundary of A. It cannot
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cross more than k other curves before hitting A because any such curve hasto cross
A (asmentioned in the proof of Lemma2.15, no curve can befully contained in the
interior of alensof L). Because of the nonoverlap of thelensesof L and the general
position assumption, the crossing point o N A uniquely identifies A. This implies
that at most O(k) lensesin L can contain A’, thereby implying that the number of
nested pairs of lensesin L is O(k|L]|). [

PROOF OF THEOREM 2.14.  Continueto assumethat C isacollection of pairwise
intersecting pseudo-parabolas, and let L be a family of pairwise nonoverlapping
lensesin A(C). Let k be any fixed threshold parameter, which will be determined
later. First, remove from L all lenses which are intersected by at least k curves of
C. Any such lens contains points of intersection of at least k pairs of curves of C.
Since these lenses are pairwise nonoverl apping, and there are n(n — 1) intersection
points, the number of such “heavily intersected” lensesisat most O(n?/k). So, we
may assume that each remaining lensin L is crossed by at most k curves of C.

Draw arandom sample R of curves from C, where each curve is chosen inde-
pendently with probability p, to be determined shortly. The expected number of
curves in R is np, and the expected size |L’| of the subset L’ of lenses of L that
survive in R (i.e., both curves bounding the lens are chosen in R) is |L|p?. Here
L refers to the set after removal, within A(C), of the heavily intersected lenses.
The expected number Y’ of nested pairs (1, A') in L’ is Yp* (any such pair must
be counted in Y for the whole arrangement, and its probability of surviving in R
is p*). Similarly, the expected number X’ of crossing pairs (1, A') in L’ is Xp*. By
Lemmas 2.16 (applied to A(R)), 2.17, and 2.18, we have

ILIp? < c(np+ n?p* + KIL|p?),

for an appropriate constant c. That is, we have
IL|(1—ckp?) <c (% + n2p2) .

Choose p = 1/(2ck)¥?, to obtain |L| = O(nkY? + n?/k). Adding the bound on
the number of heavy lenses, we conclude that the size of thewhole L is

2
IL| = O (nk1/2+ %)

By choosing k = n%23, we obtain |[L| = O(n*?3), thereby completing the proof of
the theorem for the case of pseudo-parabolas.

Suppose next that C is a collection of pairwise intersecting pseudo-circles. We
apply the sequence of reductions used in Section 2, and keep track of the “fate” of
eachlensin L, ensuring that they remain pairwise nonoverlapping. Thetransforma-
tionseffected by LemmaZ2.11 and Theorem 2.13 clearly do not violate this property.
Moreover, when we pass to the subcollections C; or C; U Cj, the remaining lenses
continue to be pairwise nonoverlapping. Finally, “opening-up” the pseudo-circles
into pseudo-parabolas by cutting them with aray may destroy some lenses of L,
but the number of lenses of L that are cut by theray isclearly only O(n), sowecan
remove them from L and consider only the surviving lenses, to which the analysis
just presented can be applied. [
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FiG. 11. Perturbing arrangementsin degenerate position: (i) Straightening the curvesin the vicinity
of adegenerate point p. (ii) Deforming the curves near p. (Notethat ¢, and c; crossat p, while every
other pair istangent at p.)

2.5. CUTTING PAIRWISE INTERSECTING PSEUDO-CIRCLES INTO PSEUDO-
SEGMENTS. Let C be a family of n pairwise intersecting pseudo-parabolas or
pseudo-circles that are not necessarily in general position. (This is the first time
that we treat degenerate situations aswell.) Recall that x (C) denotes the minimum
number of subarcs into which the curvesin C need to be cut so that any two arcs
intersect at most once. As noted, the analysis of Tamaki and Tokuyama [1998]
implies that x(C) = O(v(C)). Hence, if the curvesin C are in general position,
Theorem 2.14 impliesthat x (C) = O(n*3).

Remark. For the analysis of Tamaki and Tokuyama [1998] to apply, one has
to assume that the properties of C that are needed for the derivation of a bound on
v(C) aso hold for any (random) sample of C. For example, here we assume that
every pair of curvesin C intersect, and this clearly holds for any subset of C. In
later applications, similar hereditary behavior also has to be verified, but we will
not do it explicitly, asit will trivialy hold in al cases.

2.5.1. Handling Degeneracies. Suppose that the curvesin C are in degenerate
position. For technical reasons, we assume that, for the case of pseudo-circles, the
curves are x-monotone. We will first deform them into a collection of curvesin
general position, then apply Theorem 2.14 to obtain the bound O(n*3) on v(C’),
for the deformed collection C’, then apply the analysis of Tamaki and Tokuyama
to cut the curves of C’ into O(n*3) pseudo-segments, and finally deform the cut
curves of C’, together with the cutting points, back to their original position.

In more detail, we proceed as follows: Let p be a point at which at least three
curves of C are incident or at least two curves of C are tangent; any number of
pairs of curves incident to p may be tangent to each other at p.* Draw a small
axis-parallel rectangle y = yp centered at p, so that (i) the interior of y does not
contain any vertex of A(C) except for p; (ii) each curveincident to p intersectsy in
exactly two points, which lie on the left and right edges of y; and (iii) no curve that
isnot incident to p intersects y. The x-monotonicity and continuity of the curves
of C areeasily seentoimply that such ay exists. For each curve c that isincident to
p, we replace the (connected) portion of cinside y by the pair of straight segments
connecting p to the two points of ¢ N y. See Figure 11(i).

4 Note that it may be the case that (cy, ¢,) and (¢, c3) are two pairs of tangent curves at p, but ¢, and
c3 are not tangent; see Figure 11(i).
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For each curve ¢; € C passing through p, let A; (respectively, p;) denote the
intersection of ¢; with the left (respectively, right) edge of . Order the curves
incident to p as Cy, ..., Cj, SO that A4, ..., A; appear in this increasing y-order
along the left edge of . Replace p by asequence of | distinct points py, ..., p;
lying on the vertical line passing through p, and arranged along it in thisdecreasing
y-order. Foreachi =1, ..., j, replacetheportion of ¢; within y by thetwo straight
segments connecting A; and p; to p;; see Figure 11(ii).

Itiseasily verified that (i) each pair of original curvesthat weretangent at p are
replaced by apair of curvesthat cross twice within y and (ii) each pair of origina
curves that crossed at p are replaced by a pair of curves that cross once within
y. Thisimplies that the resulting curves are still afamily of pairwise-intersecting
pseudo-parabolas or x-monotone pseudo-circles, and, with an appropriate choice of
the points py, ..., pj, the portions of these curveswithin y arein general position.

We repeat this perturbation in the neighborhood of each point that is incident to
at least three curves or to at least one tangent pair. Thefinal perturbed collection C’
isdtill afamily of pairwise intersecting pseudo-parabolas or x-monotone pseudo-
circles, and they are now in genera position. Applying, as above, the analysis of
Tamaki and Tokuyama and Theorem 2.14, we can cut the curvesin C’ into O(n*/3)
pseudo-segments. Moreover, the cuts can be made in such a way that, for any
curve c incident to a degenerate point p, its perturbed version ¢’ is cut within the
corresponding surrounding rectangle y, only if ¢’ participatesin alensthat isfully
contained in y,, which is equivalent to the original curve ¢ being tangent to some
other curve(s) at p.

Finally, after having cut the perturbed curves, we deform them back to their
original positions. If a perturbed curve ¢’ was cut within some rectangle y,, we
cut the original curve c at the center p itself. It is easily verified that the resulting
collection of arcsisindeed a family of pseudo-segments. No two arcs are tangent
to each other (in their relative interiors), but an endpoint of an arc may lie on
(the relative interior of) another arc. We summarize this analysis in the following
theorem.

THEOREM 2.19. Let C be a collection of n pairwise intersecting pseudo-
parabolas or X-monotone pseudo-circles, not necessarily in general position. Then
% (C) = O(n*?3). (x-monotonicity need not be assumed for pseudo-circlesin gen-
eral position.)

3. Bichromatic Lenses in Pseudo-Parabolas

In this section, we consider the following bichromatic extension of the problems
involving empty and pairwise-nonoverlapping lenses, which is required as amain
technical tool in the analysis of the general case, treated in Section 5, where not
al pairs of the given pseudo-circles necessarily intersect. (We remark, though, that
we handle in Section 5 only certain special classes of pseudo-circles and pseudo-
parabolas.)

We consider inthis section only the case of pseudo-parabolas, whichissimpler to
handle. The case of pseudo-circleswill betreated indirectly in Section 5. Moreover,
we return to our initial assumption that the given curves are in general position.
Degenerate cases will betreated later on. Let I' = AU B beafamily of n pseudo-
parabolas in general position, where AN B = ¢ and each pseudo-parabola of A
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Fic. 12. Discarding one of the nested pseudo-parabolas: (i) a is discarded, (ii) b is discarded.

intersects every pseudo-parabola of B twice; a pair of pseudo-parabolas within A
(or B) may be digaint. A lens formed by a pseudo-parabola belonging to A and
another belonging to B is called bichromatic.

We first extend Theorem 2.4 to the bichromatic case, and show that the number
of empty bichromatic lenses, in the setup assumed above, is O(n). Then we obtain
a bound of O(n*3) on the maximum size of a family of bichromatic pairwise
nonoverlapping lenses. These results are obtained by pruning away some curves
from I, so that the remaining curves are pairwise intersecting, and no lensin the
family under consideration is lost. More specifically, we proceed as follows.

THEOREM 3.1. LetT" = AU B be afamily of n pseudo-parabolas in general
position, where AN B = ¢J and each pseudo-parabola of A intersectsevery pseudo-
parabola of B twice. Then the number of empty bichromatic lensesin A(T") is O(n).

ProOF. It sufficesto estimate the number of empty bichromatic lenses formed
by somea € A and by someb € B so that a lies above b within the lens. The
complementary set of empty bichromatic lenses is analyzed in a fully symmetric
manner.

We apply the following pruning process to the curves of T'. Let a, &’ be two
digoint curvesin A so that a’ lies fully below a. Then no empty bichromatic lens
of the kind under consideration can be formed between a and any pseudo-parabola
b € B, becausethen a’ and b would have to be digoint; see Figure 12(i). Hence, we
may remove a from A without affecting the number of empty bichromatic lenses
under consideration. Similarly, if b and b’ aretwo digjoint curvesin B, with b lying
fully below b’, then, for similar reasons, no empty bichromatic lens of the kind
under consideration can be formed between b and any pseudo-parabolaa € A; see
Figure 12(ii). Hence, b may be removed from B without affecting the number of
lenses that we are after.

We keep applying thispruning processuntil al pairsof remaining curvesin AUB
intersect each other. By Theorem 2.4, the number of empty lensesin A(AU B) is
O(n). Asdiscussed above, this completes the proof of the theorem. [

In order to bound the maximum number of bichromatic pairwise-nonoverlapping
lensesin I", we need the following lemma.

LEMMA 3.2. LetT' = AU B be a family of n pseudo-parabolas in general
position, where AN B = ¢ and each pseudo-parabola of A intersectsevery pseudo-
parabola of B twice. Let L be a family of pairwise-nonoverlapping bichromatic
lensesin A(T") that have pairwise digoint interiors. Then |L| = O(n).

PrOOF. As earlier, it suffices to estimate the number of lensesin L that are
formed by somea € Aand by someb € B sothat a liesabove b withinthelens. As
inthe proof of Theorem 3.1, we arguethat if therearetwo digoint curvesa, a’ € A
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FiG. 13. Transforming alensinto an empty lens.

sothat &’ liesfully below a, then a can be pruned away. Let A € L bealensformed
by a and by somecurveb € B. Let§ C bbethearc of b forming A (see Figure 13).
Sinceb )\ é liesfully above a and thus above &', the curve a’ must intersect § at two
points. Replace A by the lens )/, formed between &’ and b. Since the lensesin L
havedigointinteriors, A" isnot amember of L, and, after the replacement, L istill
afamily of bichromatic lenses with pairwise-digoint interiors (and thus pairwise
nonoverlapping), of the same size. Hence, by applying thisreplacement ruleto each
lensin L formed along a, we construct afamily of pairwise-nonoverlapping lenses
in which no lens is bounded by a, so we delete a from A. Hence, we can assume
that all pairs of curvesin A intersect. By applying a symmetric rule for pruning
the curves of B, we can assume that every pair in B also intersect. Since every two
curvesin I intersect, the lemmafollows from Theorem 2.4. [

By proceeding as in Section 2.4 but using the above lemma instead of
Lemma 2.15, we obtain the following result.

LeEmmA 3.3. Let " = AU B be a family of n pseudo-parabolas in general
position, where AN B = ¢J and each pseudo-parabola of A intersectsevery pseudo-
parabola of B twice. Let L be a family of pairwise-nonoverlapping bichromatic
lensesin A(T"). Thenthesize of L is O(n*/3).

As aresult, we obtain the main result of this section.

THEOREM 3.4. LetI' = AU B be a family of n pseudo-parabolas, not nec-
essarily in general position, where AN B = @ and each pseudo-parabola of A
intersects every pseudo-parabola of B twice. Then one can cut the curvesin I into
O(n*3) arcs, so that each arc lying on a curve of A intersects every arc lying on a
curve of B at most once.

ProoF. If the curves are in general position, thisis an immediate corollary of
theanalysisof Tamaki and Tokuyama[1998], in asimilar manner to the application
in Section 2.5. (As remarked there, we need to verify that the conditions assumed
in the theorem also hold for subsets of A, B, whichisclearly thecase.) If Aand B
are in degenerate position, we apply the perturbation scheme used in Section 2.5.
It is easily checked that this scheme maintains the property that each curve in A
intersects every curvein B, so the bound on the number of cuts remains O(n*3) in
thiscasetoo. [J

4. Improving the Tamaki—Tokuyama Bound

In this section, weimprove the bound of Tamaki and Tokuyama[1998] for arbitrary
collections C of pseudo-parabolas or x-monotone pseudo-circles, and show that
v(C) = O(n®®) in these cases.
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FiG. 14. lllustrating the refined drawing rule for the plane embedding of G’. The lenses of L all
appear aong the bottommost curve, and each hollow circle designates the | eft endpoint of alens, and
the apex of the corresponding wedge.

4.1. THE CASE OF PSEUDO-PARABOLAS.

THEOREM 4.1. Let I' be a family of n pseudo-parabolas (not necessarily in
general position). Then x(I") = O(n®>).

PrROOF. Let us first assume that the given collection is in general position,
and handle the degenerate case towards the end of the proof, as in the preceding
sections. Let I be a collection of n pseudo-parabolasin general position, and let L
be afamily of pairwise nonoverlapping lensesin I'. Consider thegraph G = (T, L)
asin Section 2.1. Wedraw G in the plane using the same drawing rule described in
Section 2.1.% We partition I into two subsets I'y, ', of size at most [n/2] each so
that for al (y1, y2) € I'1 x I'y, 5 lies above y;. Let G’ be the bipartite subgraph
of Ginwhich E(G’) = E(G) N (I'y x I'2). Then |[L| < v(T"1) + v([2) + |[E(G)].

By refining the rule described in Section 2.1, we draw G’ so that the drawings
of every pair of edgesin G’ that belong to a cycle of length 4 intersect an even
number of times. By aresult of Pinchasi and RadoiCi€ [2003], agraph on n vertices
with this property has at most O(n®®) edges. Put v(n) = maxp v(I"), where the
maximum istaken over all setsT" of n pseudo-parabolas in general position. Since
[T1], |T2| < [Nn/27, we obtain the recurrence

v(n) <2v ([2]) + O(n8/5),

whose solutionisv(n) = O(n¥?). Thisimpliesthat [L| = O(n®®). This, plusthe
analysisin Tamaki and Tokuyama[1998] impliesthat x (I'") = O(n®°).

Wefirst describe how to refinethe drawing of G'. Thedrawing rule of Section 2.1
only specifies how the edges of G’ haveto “navigate” around intermediate vertices
along the vertical line £, but the rule does not specify the order in which edges
emanate from avertex. Let f* beavertex of thedrawngraph G'. Let g5, ..., g be
al the verticesabove f * that are connected toit by anedge. Foreach1 <i <k, let
x; bethe x-coordinate of theleftmost i ntersection point between f and g;. Order the
gi'ssothat x; < x; wheneveri < j. Wethendraw theedges(f*, g7), ..., (f*, o)
o that they emanate from f* upward in this clockwise order. See Figure 14.6

5 We make a small technical modification in the statement of the rule: the wedge W(y1, y2) is now
defined to terminate on theright at the left intersection point of y; and -, (rather than at their tangency,
asin Section 2.1).

6 Notethat in thisfigure, unlike Figure 2(ii), we do not draw the lenses as tangencies, since they need
not be empty.
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FiG. 15. Illustrating the proof that adjacent edges of G’ intersect an even number of times. (i) The
case where (f*, h*) passes to the left of g*. (ii) The case where (f*, h*) passesto theright of g*.

Symmetrically, for any given vertex f* let hi, ..., hy, denote al the vertices
below f* that are connected to it by an edge. Order them, as above, in the left-to-
right order of the leftmost intersection points between hy, ..., hy, and f. Wedraw
the edges (f*, hy), ..., (f*, hy) so that they emanate from f* downward in this
counterclockwise order. We call two edges of G’ adjacent if they share an endpoint.

CLAIM 2. The drawings of every pair of adjacent edges in G’ cross an even
number of times.

ProoF. We provethisonly for two adjacent edges whose drawings go upward
from a common vertex f*; the argument for edges that go downward is fully
symmetric. Let the other endpoints of these edges be g* and h*, and assume,
without loss of generality, that h* lies above g*.

If the arc (f*, h*) passes to the left of g*, then the leftmost intersection vgp
between h and g is to the left of the leftmost intersection v, between h and f
(clearly, both intersections exist); see Figure 15(i). We claim that in this case v¢p
lies to the left of the leftmost intersection vy between f and g. Indeed, assume
to the contrary that v¢p, lies to the right of v¢g. Then g must intersect h twice to
the left of v, and then intersect f at least once to the left of v¢,. Moreover, since
the lenses (f, g) and (f, h) are nonoverlapping, the rightmost intersection v’ of
f and g must also lie to the left of v¢n; see Figure 15(i). But then, immediately to
theright of v, the curve g is“trapped” in the wedge W( f, h), sinceit has already
intersected each of these curvestwice. Thiscontradictionimpliesthat v ¢, liesto the
left of v+g, and our modified drawing rule thusimpliesthat ( f*, g*) lies clockwise
to(f*, h*) near f*. Regarding the two edges as graphs of functions of y, and using
the mean-value theorem, asin Section 2.1, we conclude that (f*, g*) and (f*, h*)
intersect an even number of times.

If thearc (f*, h*) passesto the right of g*, then the leftmost intersection v ¢4 of
f and g liesto theleft of theleftmost intersection v, of f and h. See Figure 15(ii).
Then our modified drawing rule implies that (f*, g*) lies counterclockwise to
(f*, h*) near f*. Arguing as above, thisimplies that these two edges intersect an
even number of times, thus completing the proof of our claim. [

CLaim 3. If(f, p, g, q)isacycleof length four in G, thenthe curves f, p, g,
and q are pairwise intersecting.

ProoOF. Thisclearly holdsfor each pair of curveswhose corresponding vertices
are adjacent inthe cycle, so the only pairsthat need to be analyzed arethe pair f, g
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(i)

FiG.16. (i) All the pairsof curvesthat correspond to the given 4-cycle must intersect. (ii) Thelenses
that correspond to the 4-cycle are all empty relative to the four curves f, p, g, .

and the pair p, g. We show that f, g must intersect each other, and the argument
for p, q is similar. Assume to the contrary that f and g are digoint and, without
loss of generality, that f lies aways above g. Trace the curve p from left to right.
It starts above f, g and it creates alenswith each of f and g. Clearly, p must first
intersect f, but then it cannot intersect g beforeit intersects f again, for otherwise
the lenses (p, f) and (p, g) would be overlapping. However, after p intersects f
for the second time, it cannot intersect g anymore, since f now separates these
two curves. See Figure 16(i). Thiscontradictionimpliesthat f, p, g, g are pairwise
intersecting. [

CLaim 4. If (f, p, g,q) is a cycle of length four in G’, then the four lenses
corresponding to the cycle are empty with respect to the arrangement of these four
curves.

ProOOF. Consider any of these four lenses, say (f, p), and assume that either g
or q intersects it. Since the two cases are similar, we only consider the case where
g intersects (f, p). g cannot intersect the arc of (f, p) that belongs to p, for then
(f, p) and (g, p) would be overlapping. It follows that g must intersect twice the
arcof (f, p) that belongsto f; seeFigure 16(ii). Inthiscase, since g startsbelow p,
g must intersect p onceto the left of thelens (f, p) and onceto itsright, in which
case the two lenses (f, p) and (g, p) are overlapping, a contradiction that implies
theclaim. [

Finaly, let (f, p, g, q) beacycleof length four in G". By Claim 2, the drawings
of each of the four pairs of adjacent edges intersect an even number of times. By
Claims 3 and 4, the lenses (f, p) and (g, q) are empty in the family of the four
pairwise intersecting pseudo-parabolas f, p, g, g. It now followsfromthe analysis
of Section 2.1 that the drawings of (f*, p*) and (g*, g*) intersect an even number
of times. Similarly, we can arguethat thedrawingsof (f*, g*) and (g*, p*) intersect
an even number of times, thereby implying that the drawings of every pair of edges
in the above cycleintersect in an even number of times. Hence, |E(G')| = O(n®),
by the result in Pinchasi and Radoi¢i¢ [2003].

This completes the proof of the theorem for curves in general position. In the
degenerate case we proceed exactly as in Section 2.5, concluding that x(I') =
O(n®/%) in these cases too.

4.2. THE CASE OF PseuDO-CIRCLES.  We next extend Theorem 4.1 to the case
of x-monotone pseudo-circles, that is, any line parallel to the y-axis intersects any
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FiG. 17. Converting a pseudo-circle into two pseudo-parabolas.

of the pseudo-circles in at most two points. The corresponding extension to the
case of arbitrary pseudo-circles remains an open problem, although we expect it to
holdjust aswell. Let C beafamily of n x-monotone pseudo-circles. Informally, we
want to turn these curvesinto a collection of pseudo-parabolas, by cutting each of
them at its leftmost and rightmost points, and by completing each of the resulting
top and bottom arcs into the graph of a totally defined continuous function by
extending it to the left and to the right by two sufficiently steep rays (as depicted
in Figure 17). However, these extensions may be degenerate if many curves share
acommon leftmost or rightmost endpoint. To simplify the analysis, we discard on
each curve a sufficiently small neighborhood of its x-extreme points, and extend
the remaining top and bottom portions to pseudo-parabolas as before.

Moreformally, we proceed asfollows. Let ¢ € C, and denote by A (respectively,
oc) theleftmost (respectively, rightmost) point of ¢; our x-monotonicity assumption
impliesthat these points are well defined. Consider the intersection points of ¢ with
the other curves in C; there are at most 2(n — 1) such points. Then there exist
sufficiently small arcs N(Ac), N(pc) € c that contain respectively ¢, pc and are
freefrom all other intersection pointsthat do not lieat A¢, po.. Removing these arcs
from c, it is partitioned into two x-monotone arcs, called upper and lower arcs and
denoted asc™, ¢, respectively; see Figure 17(i).

We convert C into afamily of pseudo—parabolas For each c € C, we extend its
upper arc c* to an x- monotone curve y;~ by adding a downward (almost vertical)
ray I¢ (respectively, r¢) of sufficiently large positive (respectively, negative) slope
from A (respectively, pc); al rays emanating from the left (respectively, right)
endpoints of the pseudo-circles are paralel. Similarly we extend every c” toan
X-monotone curve y;~ by attaching upward (almost vertical) rays Il and rd to Ac
and pg, respectively. We assume that the rays are chosen sufficiently steep so that
adownward (respectively, upward) ray intersects a pseudo-disk of C only if it lies
vertically below (respectively, above) the apex of the ray. Since the x-extremal
endpoints of all the arcsct, ¢ are all distinct, by construction, the slopes of the
extension rays can be chosen in such away that no two rays lie on the same line.
We now prove that the resulting curves form a family of pseudo-parabolas.

LEMMA 4.2. For afinite family C of x-monotone pseudo-circles,
F={y v IceC)
isafamily of pseudo-parabolas.

ProOOF. For simplcity, we prove the lemma for the case in which the x-
coordinates of the extremal points of the top and bottom portions of the curves
of C are dl distinct. This can clearly be enforced by an appropriate choice of the
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FiG. 18. Two extended upper arcs intersect at most twice: (A) p, liesto the left of Ap; (B) Ap lies
above at: (B.1) a*, bt intersect at two points or they intersect at one point but p, lies to the right
of pa; (B.2) a* and b™ intersect at one point and p;, lies to the left of p,; (B.3) a* and b™ do not
intersect. (C) Ap liesbelow at: (C.1) a*t and b* intersect at two points and py, lies to the left of pj;
(C.2) a™ and b™ intersect at one point; (C.3) a™ and b™ do not intersect.

cutting points. Let a and b be two pseudo-circlesin C. We first prove that y,;~ and
¥y intersect in at most two points. For simplicity, for acurve ¢ € C, we will use
lc, I to denote therays|¢ and r¢, respectively. Also, with some abuse of notation,
we now denote by A, and p, the leftmost and rightmost points of a*, and similarly
for b™. Without loss of generality, assumethat A, liesto the left of Ap; then theray
|2 does not intersect y,,". There are three cases to consider:

Case (A). 1p liesto theright of p,.  In this case the only intersection between
va and ;" is between the rays |y, and r, (see Figure 18(A)).

Case (B). Ap lies above a™. In this case Iy, intersects a*™, so we show that
there is at most one additional intersection point between y;~ and y,". If a™ and
bt intersect at two points or if a* and b™ intersect at one point but pp lies to
the right of p,, then a and b intersect in at least four points (see Figure 18(B.1)),
contradicting the assumption that C is a family of pseudo-circles. If a* and bt
intersect at one point and pp, liesto the left of p, (and, necessarily, below at), then
neither r, intersects y,’ (ra liestotheright of b*) nor ry intersects ;" (rp, liesbelow
at); see Figure 18(B.2). Hence, there are only two intersection points between y;"
and y,'.

If a™ and b™ do not intersect, then r, cannot intersect y,', asit lies below b*.
Hence, only r, may intersect y;~ (if pa liesto theright of py), thereby showing that
there are at most two intersection points between y,;~ and y,"; see Figure 18(B.3).

Case(C): Apliesbelowa™. Inthiscasel, doesnotintersecta™. If at intersects
b* at two pointsand pp liesto theright of p,, then a and b intersect in at least four
points, a contradiction (the situation is similar to that shown in Figure 18(B.1)). If
they intersect at two points but o, liesto the left of p,, then neither r, intersectsb™
nor ry, intersects at, so there are at most two intersection points between y,;", yb+ :
see Figure 18(C.1).

If at and b™ intersect at one point, then r, cannot intersect y, (see
Figure 18(C.2)), so the number of intersection points between y,7 and ;" iseasily
seen to be at most two. Finaly, if at and bt do not intersect, then there is at most
one intersection between y,;~ and y;,", namely between r, and b (if p, liesto the
right of pg); see Figure 18(C.3).
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FIG. 19. An extended upper arc and an extended lower arc intersect at most twice: (A) p, liesto
the left of Ap; (B) Ay liesabovea™: (B.1) a*, b~ intersect at two points; (B.2) at and b~ intersect at
one point; (B.3) at and b~ do not intersect. (C) A, liesbelow a*: (C.1) at and b~ intersect at two
points (an impossible configuration); (C.2) a* and b~ intersect at one point; (C.3) a* and b~ do not
intersect.

Hence, inall cases, there are at most two intersection points between y," and ;"
A symmetric argument shows that y,~ and y,,~ also intersect at most twice. Finally,
asimilar case analysis, depicted in Figure 19, showsthat y,~ and y, aso intersect
at most twice. We leave it to the reader to fill in the fairly straightforward details,
similar to those given above. [

THEOREM 4.3. Let C be an arbitrary family of n x-monotone pseudo-circles
in the plane. Then x (C) = O(n®/%).

ProoOF. Assume first that the curvesin C are in general position. Let L be a
family of pairwise-nonoverlapping lenses in C. We convert C into afamily I' =
{yc, yo | c € C}of 2n pseudo-parabolas, as described above. Thereareat most 4n
lensesin L that contain the original x-extreme points A or p. of somecurvec € C
on their boundary, as the lensesin L are nonoverlapping. For any remaining lens,
each of itstwo arcsisfully contained inthetrimmed portion of the upper or thelower
arc of a pseudo-circle in C, and therefore it appears as a lens in the transformed
collection ' of pseudo-parabolas. By Theorem 4.1, the number of such lensesis
O(n®°%). Hence, |L| = O(n®%), which implies the claim for curves in general
position. The case of degenerate position is handled exactly asin Section 2.5. [

5. Curveswith 3-Parameter Algebraic Representation

In this section we further improve the bound obtained in the previous section, and
derive abound close to n®? for afew important special cases, in which the curves
possess what we term as a 3-parameter algebraic representation. Asin Sections 2
and 4, we first prove the bound for pseudo-parabolas and then reduce the case of
pseudo-circles to that of pseudo-parabolas.

5.1. THE CASE OF PSEUDO-PARABOLAS. Let I' be a family of n pseudo-
parabolas. We say that I" has a 3-parameter algebraic representation if I" isafinite
subset of some infinite family P of pseudo-parabolas so that each curve y € P can
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be represented by atriple of real parameters (&, n, ¢), which we regard as a point
y* € R3, so that the following three conditions are satisfied.

(APL) For each point g in the plane, the locus of al curvesin P that pass through
q is, under the assumed parametrization, a 2-dimensional surface patch in R?,
which is a semialgebraic set of constant description complexity, that is, it is
defined as a Boolean combination of aconstant number of polynomial equations
and inequalities of constant maximum degree. For any two distinct points p
and g in the plane, the locus of al curvesin P that pass through both p and q
is, under the assumed parametrization, a 1-dimensional semialgebraic curve of
constant description complexity.

(AP2) For each curve y € P, the set of all curves g € P that intersect y maps
to a 3-dimensional semialgebraic set K, of constant description complexity.
The boundary of K,, denoted by t,, is the locus of al curvesin P that are
tangent to y (and, being pseudo-parabolas, do not meet ¢ at any other point);
7, partitions R® into two regions, one of which is K, and the other consists of
points representing curves that are disjoint from .

(AP3) Each curve in P is a semialgebraic set of constant description complexity
in the plane, and the family P is closed under tranglations.

We remark that condition (AP1) is not needed for obtaining bounds on v(I") and
x (). Itisused for obtaining improved boundsfor the number of incidencesbetween
points and the curves in T', and for the complexity of many faces in A(T"); see
Section 6 for details. The class of vertical parabolas, given by equations of theform
y = ax?+bx+c, isan exampleof pseudo-parabol ashaving a3-parameter algebraic
representation, where each parabolais represented by the triple of its coefficients.

Suppose then that P is a fixed collection of pseudo-parabolas that have a 3-
parameter algebraic representation, and let ' c P be a family of n pseudo-
parabolas.

Our plan of attack, similar to those employed in Alon et a. [2001] and Aronov
and Sharir [2002], is to decompose the intersection graph H of I" (whose edges
represent all intersecting pairs of curvesin I') into a union of complete bipartite
graphs {A; x Bj}i, so that, for each a € A, b € B;, a intersects b. We then use
Theorem 3.4 to derive an upper bound on the number of cuts needed to eliminate all
bichromatic lensesin A; x B;j. We repeat this process for each complete bipartite
graph A; x Bj, and add up the numbers of cutsto derivethe overall bound on x (T").

Inmoredetail, weproceedasfollows: LetI'™* = {y* | y e I'},andI" = {7, | y €
I'}. We describe arecursive scheme to generate the desired bipartite decomposition
of theintersection graph of I". At each step, we havetwo families A, B C I, of size
m and n, respectively. Let x (A, B) denote the minimum number of cuts needed
to eliminate all bichromatic lensesin A(A U B). Set x(m,n) = max x(A, B)
where the maximum is taken over al families of m and n pseudo-parabolas of P,
respectively. Set x(m) = x(m, m). We need to introduce a few concepts before
beginning with the analysis of x(m).

For any constant integer q, let 14(r) denote the maximum length of Davenport-
Schinzel sequences of order g composed of r symbols[Sharir and Agarwal 1995].
Put Bq(r) = Aq(r)/r. In what follows, we sometimes drop the parameter g, and
write B4(r) simply as A(r). Assuming g to be even, we have f4(r) = 20,
wherea(r) istheextremely slowly growinginverse Ackermann function. See Sharir
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and Agarwal [1995] for more details. Let r € R3 be a simply connected region
of constant description complexity. For a set G of surfaces in R3, we define the
conflictlist G, € G of T with respect to G to be the set of surfacesthat intersect ¢
but do not contain t. Each surfacein G, either crosses , or itistangent to z.

LEMMA 5.1. For anym, n and for any given parameter 1 < r < min{m%/3, n},

3 mn 4/3
x(m.n) < er®e(0) [ x (5. ) + O((m+m*?)] @)
where g is a constant that depends on the family P, and ¢ is an absolute constant.

ProOF. Let A, B C P betwo families of m and n pseudo-parabolas, respec-
tively. Let B = {o | b € B}. Foraparameter 1 <r <n, a(1/r)-cutting E of the
arrangement A(B) is a decomposition of R? into relatively open and simply con-
nected cells of dimensions 0, 1, 2, 3, each having constant description complexity,
so that the size of the conflict list of each cell with respect to B isat most n/r. Since
each 7, is atwo-dimensional algebraic set of constant description complexity, it
followsfromtheresultsin Agarwal et al. [1999] and Agarwal and MatouSek [1994]
that there exists a (1/r)-cutting E of size O(r3g4(r)), where g is 2 plus the maxi-
mum number ' = S'(y41, 2, v3, va), over al quadruples of curves y1, s, 3, ¥4 in
P, of vertical lines ¢ that pass through both intersection curves r,, N1, and 7, N 7,
in R3. More precisely, S'(y1, y2, ¥3, ¥a) is the number of connected components
of the union of all these vertical lines; equivalently, it is the number of connected
components of the intersection of the vertical projectionsof z,, N 7, and 7,, N 7).

We construct such a (1/r)-cutting E of B. For each cell A € E, let Ay =
{y e A| y* e A} If |AA] > m/r3, we cut A further into subcells(e.g., by
planes paralel to some generlc direction), each containing at most m/r > points.
The number of cellsremain as/mptotlcally O(r 384(r)). For each (new) cell A, let
Bar = {be B| A C Ky}, thatis, any curvein B, intersects al curves of A, (if
A C 93Ky, then b istangent to all curvesin A,), andjet BA be the set of curves
corresponding to the conflict list of A with respect to B.

It follows by construction that

x(A, B) < Z[X(AAv Ba) + x(Aa, Ba)l.

A€l

Since every pair of pseudo-parabolas in A x B, intersect, by Theorem 3.4,
x(Ax, Ba) = O((|Aa] 4 [BADY3) = O((m + n)*3). Since |Ax| < m/r® and
|Bal < n/r (the latter inequality holds for the original cells of E, before any cell
with two many points of A* hasbeen split, and it thus also holdsfor each split cell),
we have x (Ax, Ba) < x(m/r3,n/r). This completes the proof of thelemma. [

Flipping the roles of A and B, that is, mapping B to a set of pointsand A to a
set of surfacesin R, and applying the same decomposition scheme, we obtain

3 mn 43
x(m.n) = er?8a) [ x (7. 75) + Om+m ¥ ®
Substituting (3) into the right-hand side of (2), we obtain

x(m) = rop)x (53 ) + Om¥3reA2(r).
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Choosingr = m¥/3, we obtain

x(m) < eim™®ga(m)) - x (M*°) + cxm®2g3(m) (4)
for an appropriate constant ¢; > 1. We claim that the solution of this recurrenceis
x(m) < m*?(log m)®08fa(m (5)

wherec’ > 1isasufficiently large constant. This can be proved by induction on m,
asfollows. We may assumethat (5) holdsfor all m < mg, where mg isasufficiently
large constant that satisfies (logm)®'°9#(™ > 2¢, Z(m) for al m > mo. Plugging
(5) into (4), we obtain, for m > mg,

A

com/8ga(m)m*3 (log(m® 9))C/ 1095(™ 4 o m¥ 2B5(m)

g3, €109 ()
cam(logm)*'*9 gZ(m) (2 )

x (m)

A

+ cym>?pZ(m)

IA

J J 1
m3/2(|og m)c log Bg(m) (Cl,BgH: Iog(8/9)(m) 4 E)

A

ClmS/Z(I og m)c’ log Bq(m) ,

provided that the constant ¢’ is chosen sufficiently large. This establishes the in-
duction step and thus proves (5). Recall that Sq(n) = 2°@ ™), where a(n) is the
inverse Ackermann function and s = [(q — 2)/2] is aconstant. Putting

ies(n) = (logn) ™)

and using the fact that, initially, |A|, |B| < n, we obtain the following main result
of this section:

THEOREM 5.2. Let P be a collection of pseudo-parabolas that admits a 3-
parameter algebraic representation. Then x (I') = O(n*2«s(n)), for any subset T
of n elementsof P, and for some constant parameter sthat dependsonthealgebraic
representation of the curvesin P.

Remark. Inwhat follows, we will sometimes raise xs(n) to some fixed power,
or multiply it by a polylogarithmic factor, or replace n by some fixed power of n.
These operationsdo not changethe asymptotic form of the expression—they merely
affect the constant of proportionality in the exponent. For the sake of simplicity,
we use the notation «5(n) to denote these modified expressions as well. We allow
ourselves this freedom because we strongly believe that the factor «¢(n) isjust an
esoteric artifact of our analysis, and has nothing to do with the real bound, which
we conjecture to be o(n¥?).

5.2. THECASEOF VERTICAL PARABOLAS. Asafirst applicationof Theorem5.2,
consider the family V of vertical parabolas, each of which is given by an equation
of the form y = ax? + bx + c. Every vertical parabola has a natural 3-parameter
representation, by the triple (a, b, ¢) of its coefficients, and V trivially satisfies
(AP3).

For afixed point p = («, B) € R?, theset of vertical parabolasy = £x? 4 nx+¢
passing through p isthe plane

o +an+¢ =B,
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which is obviously a two-dimensional semialgebraic set of constant description
complexity. Similarly, the locus of parabolas that pass through two distinct points
p, g is either empty or a 1-dimensional curve of constant description complexity.
Thus, (APL) is satisfied.

Finally, for a fixed parabolay : y = ax? + bx + ¢, another vertical parabola
y = £x2 + nXx + ¢ istangent to y if and only if

(n —b)> -4 —a)(¢ —c)=0.
Hence, the surface t, is given by the equation

(n? — 4k¢) — 2bn + 4ct + 4ac + (b? — 4ac) = 0, (6)

which is a quadric in R3, and thus (AP2) is also satisfied. In order to estimate
thevalue of s = [§//2], recal that s’ satisfies the following condition: Given any
four curves y1, ..., ya € P, there are at most s’ intersection points between the
&n-projections of the intersection curves o1, = 1, N 1), aNd o = 7, N T,,.

It follows from (6) that the intersection curve o1, of two surfaces r,, and 7, is
aplanar curve, whose projection on the £n-plane (¢ = 0) isaquadric. Hence, the
projections of o1, and o34 on the £ n-planeintersect in at most four points, implying
thats’ < 4ands < 2. Letting

k() = kz(n) = (logn) ™,
we obtain the following:

THEOREM 5.3. LetT beaset of nvertical parabolasinthe plane; then x (I") =
O(n%?k (n)).

5.3. THE CASE OF PsEUDO-CIRCLES. We now prove a near n®?-bound on the
maximum number of pairwise-nonoverlapping lenses for a few special classes of
pseudo-circles. Inaddition to the condition of 3-parameter a gebraic representation,
which we definein adightly different manner, we also require, asin Section 4, that
the pseudo-circles be x-monotone. We say that an infinite family C of x-monotone
pseudo-circles has a 3-parameter algebraic representation if every curve ¢ can be
represented by a triple of real parameters (&, n, ¢), which we regard as a point
c* € R3, so that the following three conditions are satisfied.

(AC1) For each point q in the plane, the locus of all curvesin C that pass through
g is, under the assumed parametrization, a 2-dimensional semialgebraic set oy
of constant description complexity. For any two distinct points p and g in the
plane, the locus of al curves in C that pass through both p and q is, under
the assumed parametrization, a 1-dimensional semialgebraic curve of constant
description complexity.

(AC2) For each curve c € C and for each of the following conditions, the locus of
all curves g € C satisfying that condition is a 3-dimensional semialgebraic set
of constant description complexity:

(AC2.1) The x-projection of g isdigoint from that of c.
(AC2.2) The upper arc ct of c intersects g™ (respectively, g-).
(AC2.3) Thelower arc c™ of cintersects g™ (respectively, g7).

(AC2.4) One of the x-extremal endpoints of c liesinside (respectively, vertically
above, vertically below) g (respectively, g+, g™).
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(AC2.5) One of the x-extremal endpoints of g liesinside (respectively, vertically
above, vertically below) c (respectively, ct, c™).
(AC3) Each curvein C isasemiagebraic set of constant description complexity in
the plane, and the family C is closed under tranglations.

Let C beafamily of x-monotone pseudo-circles having a 3-parameter algebraic
representation, and let C € C be a subset of n pseudo-circles. We replace C by
thecollectionT" = {y;, i | ¢ € C}, where y (respectively, ;) isthe extension
of the (appropriately trimmed) upper arc ¢t (respectively, the lower arc ¢™) of c,
as defined in Section 4. By Lemma 4.2, I' is a collection of pseudo-parabolas. In
order to apply Theorem 5.2, we need to argue that the set of all resulting pseudo-
parabolas satisfies the condition (AP2). Strictly speaking, the precise shape of a
pseudo-parabolain I depends on the set C, so it seems that the resulting pseudo-
parabol as might not have a 3-parameter al gebraic representation. However, whether
two pseudo-parabolasin I intersect does not depend on the slope of their extension
rays, nor ontheprecise placeswhereapseudo-circlein C hasbeen cut. Instead, it de-
pends only on the two pseudo-circlesc and g from which the two pseudo-parabolas
were derived. More precisely, fix a pseudo-circle c € C, and consider the locus of
all pseudo-circles g € C such that one of the following four conditions holds:

(i) The x-projections of ¢ and g are digoint,

(i) ct and gt intersect,
(iii) an x-extremal point of c lies vertically above g™, or
(iv) an x-extremal point of g liesvertically abovec™.

Herec' and g™ refer tothefull (untrimmed) top boundaries of c and g, respectively.
By (AC2.1)«(AC2.5), the locus of pseudo-circles g satisfying at least one of these
four conditions can be written as the union of four semialgebraic sets, each of
constant description complexity. Therefore, the resulting set, denoted ., is aso
a semialgebaric set of constant description complexity. A similar argument holds
for the other three cases, replacing c™ and/or g* by ¢, g—, respectively.

Now consider the actual finite subset C < C, and run the analysis of Section 5.1,
using the sets ¢, as just defined, in the proof of Lemma 5.1. We end up with
pairs (Aa, Ba), so that each point representing a curve a in A, is contained in
the region 7, for every b € B,. In other words, the pseudo-circles a and b satisfy
one of the above conditions (i)—(iv). We replace a and b by the pseudo-parabolas
Ya . ¥a Vs Vs »andnotethat any of theconditions (i)—(iv) impliesthat y,” and ",
astrimmed in the conversion process of Section 4.2, intersect. In other words, each
pseudo-parabolay;", fora € A,,intersectsevery pseudo-parabolay,’, forb € Ba.
Hence, by Theorem 3.4, the number of cuts needed to eliminate all bichromatic
lenses formed between such pairs of pseudo-parabolas, is O((|Aa| + |Ba)*3).
Continuing asin the proof of Theorem 5.2, we concludethat x (I') = O(n%?ks(n)),
for an appropriate parameter s. We now cut the curvesin C at the same pointswhere
their top or bottom boundaries have been cut in T, and, in addition, cut each curve
c € C at thetwo extreme points A¢, pc. It followstrivially that the resulting subarcs
form a collection of pseudo-segments. We thus have:

THEOREM 5.4. Let C be a collection of pseudo-circles that satisfies (AC1)—
(AC3). Then x(C) = O(n*?ks(n)), for any subset C of n elements of C, and for
some constant parameter s that depends on C.
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5.4. THE CAsE OF CIRCLES. The most obvious application of Theorem 5.4 is
to the family C of all circlesin the plane. C trivially satisfies condition (AC3). We
map each circlec : (x — &)? + (y — n)? = ¢2 tothe point ¢* = (£,7,¢) € R3.
The set of pointsc* = (£, n, ¢) € R3 corresponding to circles ¢ that pass through
afixed point p = («, B8) istheregion

op={En0)|E—a)’+@n—p)*=1¢%,

which isa2-dimensional conein 3-space. Moreover, using a standard transforma-
tion [Edel sbrunner 1987], we can map these surfacesinto planes, without changing
the incidence pattern between points and surfaces. Similarly, the locus of circles
that pass through two distinct points p, q is, in the new representation, the line of
intersection of the two corresponding planes. Hence, (ACL) is satisfied.

Concerning condition (AC2), it can be verified that the set of (points in R®
representing) circles that satisfy the each of (AC2.1)—(AC2.5) is a semialgebraic
set of constant description complexity. It can be shown that the surfaces bounding
these regions are planes or quadrics, so the intersection curves of any two of them
arein genera of degreefour, and anaive bound on the number of intersection points
between the £ -projectionsof apair of such curvesiss, < 4° = 16, yieldings = 8.
For mostly aesthetic reasons, using amore sophisticated, but tedious, analysis, one
can lower the constantsto s' = 4 and s = 2. The details of this analysis are given
in Appendix A.

Writing, as above, «(n) for k2(n), we thus obtain:

THEOREM 5.5. Let C be a set of n circles in the plane; then x(C) =
O(n%?k(n)).

5.5. THE CASE OF HOMOTHETIC COPIES OF A STRICTLY CONVEX CURVE.
Theorem 5.4 can also be applied to the family C of homothetic copies of a fixed
strictly convex curve y, having constant description complexity. Without of loss of
generality wecan assumethat theline segment connecting itsleftmost and rightmost
pointsis a horizontal segment with origin asits midpoint. Let 2h be the length of
this segment, that is, the leftmost and the rightmost points of y, are (—h, 0) and
(h, 0), respectively.

Firgt, as already noted in Kedem et al. [1986], C isindeed a family of pseudo-
circles (thisdoes not necessarily hold if  isnot strictly convex). Clearly, condition
(AC3) is satisfied. Each homothetic copy of y has the form

(év 77) + )»J/O = {(%—’ 77) + )‘(X’ y) | (X’ y) € )/0}7

for sometripleof real parametersé, n € R, A € R*. Werepresent each copy by the
correspondingtriple (&, n, 1) € R3. Condition (AC1) iseasy to establish: For afixed
point p, the condition p € (&, n) + Ayo iSequivaent to %(p — (&, 1)) € yo, which
clearly defines a semialgebraic surface patch of constant description complexity.

For apair p, g of distinct points, each homothetic copy of y, that passes through
pandq satisfies 1(p— (£, 1)) € yo. (0 — (£, 1)) € yo. Hence, (p—q)/A isachord
of yp. Since Aq is strictly convex, for each fixed A there is a unique chord equal to
(p—q)/A, s0 &, n are dso uniquely determined. Hence, the locus of copies of yq
that pass through p and q is a 1-dimensional curves, which clearly has constant
description complexity.
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(i)

FIG. 20. (i) The x-projections of two homothetic copies of y, are digoint. (ii) Upper arcs of two
homothetic copies of y, intersecting at a point.

Establishing condition (AC2) isabit more technical. We need to argue the semi-
algebraicity property for each of (AC2.1)-(AC2.5). For a fixed homothetic copy
1 = (a, B8, ) of v, the condition that the x-projection of another homothetic copy
y = (&, n, A) isdigoint from that of y; holdsif and only if

(¢ +puh <& —=2ah)v (€ +21h <a—puh)

(see Figure 20(i)), thereby implying that the locus of homothets of yy that satisy
(AC2.1) is a semialgebraic set of constant description complexity. Similarly, the
conditionthat theupper arc of y meetstheupper arc of y; can beexpressed by thefol-
lowing predicate; Thereexistsw € R? suchthatw € y;Ny and y(w) > max{s, n}.
See Figure 20(ii). Using the fact that 1, is a semialgebraic set of constant descrip-
tion complexity, it follows that the above predicate also defines a semiagebraic
set of constant description complexity; see Basu et a. [2003] and Bochnak et al.
[1998] for properties of real semialgebraic sets that imply this claim. The remain-
ing conditions of (AC2) can be argued the same way. Theorem 5.4 thusimpliesthe
following.

THEOREM 5.6. Let yy be a strictly convex curve of constant description cont
plexity, and let C bea set of n homothetic copies of yo. Then, x (C) = O(n*?ks(n)),
for some constant s that depends on yy.

6. Applications

The preceding results have numerous applications to problems involving inci-
dences, many faces, levels, distinct distances, and results of the Gallai-Sylvester
type, which extend (and also slightly improve) similar applications obtained for the
case of circlesin Agarwal et a. [2003], Alon et al. [2001], and Aronov and Sharir
[2002].

6.1. LEVELS. Given a collection C of curves, the level of apoint p € R? is
defined to be the number of intersection points between the relatively-open down-
ward vertical ray emanating from p and the curves of C. The kth level of A(C),
for a fixed parameter k, is the (closure of the) locus of all points on the curves
of C, whose level is exactly k. The k-level consists of portions of edges of A(C),
delimited either at vertices of A(C) or at points that lie above an x-extremal point
of some curve. The complexity of the k-level is the number of edge portions that
congtitute the level.

Themaintool for establishing boundsonthe complexity of levelsin arrangements
of curvesisan upper bound, given by Chan [2003, Theorem 2.1], on the compl exity
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of alevel in an arrangement of extendible pseudo-segments, which is a collection
of x-monotone bounded curves, each of which is contained in some unbounded x-
monotonecurve, so that the coll ection of these extensionsisafamily of pseudo-lines
(in particular, each pair of the original curvesintersect at most once).

Chan showed that the complexity of alevel in an arrangement of m extendible
pseudo-segments with £ intersecting pairsis O(m + m?3g1/3). Chan also showed
that a collection of m x-monotone pseudo-segments can be turned, by further cut-
ting the given pseudo-segments into subsegments, into a collection of O(mlogm)
extendible pseudo-segments.

Thus, the bounds on x (n) lead to the following result (where, in part (b), the
extra logarithmic factor incurred in turning our pseudo-segments into extendible
pseudo-segments, aswell asthe power 2/3 to which werai sethe number of pseudo-
segments, are absorbed in the factor «s(n)).

THEOREM 6.1

(a) Let C be a set of n pseudo-parabolas or n x-monotone pseudo-circles. Then
the maximum complexity of a level in A(C) is O(n%/%51og?3 n).

(b) If, in addition, C admits a 3-parameter algebraic representation that satisfies
(APL)—(AP3) for the case of pseudo-parabolas, or (AC1)—AC3) for the case of
pseudo-circles, then the maximum complexity of a single level is O(n%3«s(n)),
where sisa constant that depends on the algebrai c representation of the curves
inC; s = 2for circlesand vertical parabolas.

(c) If all pairsin C intersect, then the bound improves to O(n*#/°log®3n) (with
no further assumption on these curves).

Remark. Recently, Chan[2003] hasstudied the complexity of levelsin arrange-
ments of graphs of polynomials of constant maximum degree s > 3. His bound
relieson cutting the given graphsinto subarcsthat constitute acollection of pseudo-
segments, which is achieved by repeated differentiation of the given polynomials,
eventually reducing to the problem of cutting an arrangement of pseudo-parabolas
(actually, of pseudo-parabolic arcs) into pseudo-segments. In the earlier conference
version of hisarticle, the bound on the number of the desired cuts was abtained by
applying the Tamaki—Tokuyama result as a“black box.” In the new version, Chan
uses amore sophisticated variant of the Tamaki—Tokuyama technique, which leads
to improved bounds on the number of cuts. It is not clear whether our new bounds
can be used to further improve his new bounds.

The above theorem implies the following result in the area of kinetic geometry,
which improves upon an earlier bound givenin Tamaki and Tokuyama[1998]. This
problem was one of the motivations for the initial study of Tamaki and Tokuyama
[1998].

COROLLARY 6.2. Let P be a set of n pointsin the plane, each moving along
some line with a fixed velocity. For each time t, let p(t) and q(t) be the pair of
points of P whose distance is the median distance at time t. The number of times
in which this median pair changesis O(n'%3«(n)). The same bound appliesto any
fixed quantile.

6.2. INCIDENCES AND MARKED FACES. Let C beaset of n curvesin the plane,
and let P be aset of m pointsin the plane. Two closely related and widely studied
problems concern two kinds of interaction between C and P: (i) Assuming that
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the points of P lie on curves of C, let | (C, P) denote the number of incidences
between P and C, that is, the number of pairs (c, p) € C x P suchthat p € c. (ii)
Assuming that no point of P lies on any curve of C, let K(C, P) denote the sum
of the complexities of the faces of .A(C) that contain at least one point of P; the
complexity of afaceisthe number of edges of .A(C) on its boundary. The results
in Agarwal et al. [2003], and Aronov and Sharir [2002] imply thefollowing bounds.

LEMMA 6.3. Let C be a set of n curvesin the plane, and let P be a set of m
points in the plane. Then

1(C, P) = O(m?°*n?3+m+ x(C)), K(C, P) = O(m?3*n?3+ x(C)log? n).
Hence, Theorems 3.4, 4.3, 5.2, and 5.4 imply the following.

THEOREM 6.4.

(a) Let C bea set of n pairwise-intersecting pseudo-circles, and P a set of m points
in the plane. Then

I (C, P) — O(m2/3n2/3 +m+ n4/3)’ K(C, P) — O(m2/3n2/3 + n4/3 |ogz n)‘

(b) Let C be a set of n pseudo-parabolas or n x-monotone pseudo-circles, and P
a set of m pointsin the plane. Then

I (C, P) — O(m2/3n2/3 +m+ n8/5)’ K(C, P) — O(m2/3n2/3 + n8/5 |ogz n)‘

We note that these bounds are worst-case tight when the first term dominates the
last term, which isthe casewhen mislarger thann or nlog® nin part (a), and larger
than n”/° or n”/>log® n in part (b).

Similarly, if C isaset of n pseudo-parabolas or n x-monotone pseudo-circles
that are not pairwise intersecting but admit a 3-parameter algebraic representation
with corresponding parameter s, as above, then we can obtain the following bounds
by plugging Theorems 3.4 and 4.3 into Lemma 6.3.

1(C, P) = O(M?®n?2 + m+ n¥?(n)), K(C, P)
= O(Mm?3n?3 4 n¥?kq(n)). 7)

Asabove, these bounds are worst-case tight when missufficiently large (larger than
roughly n%4) Agarwal et al. [2003], Aronov and Sharir [2002]. We can improve
these bounds for smaller values of m, by exploiting properties (AP1) or (AC1) of
the definition of 3-parameter algebraic representation, following the approaches
in Agarwal et al. [2003] and Aronov and Sharir [2002]. We describe the argument
for the case of incidences and briefly discuss how to handle the case of marked
faces.

We map the pseudo-circles y € C to points y* in R3, and the points in P
to surfaces o, in R3, so that incidences between points and curves correspond to
incidences between the dual surfaces and points, and so that one halfspace bounded
by the surface o, corresponds to pseudo-circles that contain the point p in their
interior. Let P* be the resulting set of surfacesin R3, and let C* be the resulting
set of pointsin R3.

We fix a parameter r > 1. Roughly speaking, as in Agarwal et a. [2003]
and Aronov and Sharir [2002], wewish to computea(1/r)-cutting of P*. However,
since we are dealing with an arrangement of surfaces instead an arrangement of
planes, a (1/r)-cutting for P* is not a cell complex and the incidence structure
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between C* and P* ismore involved. Consequently we rely on arandom-sampling
argument similar to the onein Clarkson et al. [1990].

6.2.1. SamplingLemma. Forasubset R € P*, wedefineapartition E = E(R)
of R® into relatively open and simply connected O-, 1-, 2-, and 3-dimensional cells,
which is very similar to the vertical decomposition of A(R) [Clarkson et al. 1990;
Chazelle et al. 1989]. Specifically, we add all vertices and edges of A(R) into E.
For each (open) 2-face f of A(R), we compute the vertical decomposition f* of
f, as described in Clarkson et a. [1990], and add the relatively open edges and
pseudo-trapezoids to E. (The newly created vertices, which lie on the edges of
f, are not added to E.) Finally, for each (open) 3-face ¢ of A(R), we compute
its vertical decomposition as described in Clarkson et al. [1990], and we add the
vertical edges, 2-faces, and 3-dimensional pseudo-prismsto E; none of these cells
liein any surface of R. Let 25 € E be the set of vertices and edges of A(R),
which were added to E, let Eg € E be the set of 1-dimensional cells that liein
exactly one surface of R, and let E, € E be the set of vertical edges that were
added to E in the last step. For each cell A € E,let C, = {c € C | c* € A},
Pr ={p e P | p* € PX}, where P isthe conflict list of A (with respect to P*),
and PA = {p e P | A C p*}.SetnA = |CA|, ma = |PA|,and mA = |PA|The
result in Chazelle et al. [1989] impliesthat |E| = O(r3p4(r)), where B4(r) isthe
function defined in Section 5.1.

LEMMA 6.5. For agiven parameter r > 1, thereexistsa set R € P* of O(r)
surfaces with the following properties:

. m
() Y nP=nandm, < —logr, for any A € .

A€l
(i) Y pcg, Ma = O(Mr?).

Loy m
(iii) My < - logr, forany A € Eg U Ep.

PrROOF. We choose arandom subset R € P* of sizecr, for asufficiently large
constant parameter ¢, where each subset is chosen with equal probability. Since &
isapartition of R, >, na = n. By thetheory of ¢-nets, an appropriate choice of ¢
guaranteesthat, with high probability, m, < (m/r)logr, forany A € E [Haussler
and Welzl 1987]. This proves part (i). As for (ii), observe that if p € P4, for a
vertex or edge A in A(R), then A isalso a vertex or an edge, respectively, in the
arrangement of the intersection curves {p* Nr* | r* € R}. Since this arrangement
has O(r ?) verticesand edges, thebound in part (ii) follows. A vertical edge A € &
does not lie in any surface of R, therefore by the theory of ¢-nets and with an
appropriate choice of ¢, M < (m/r)logr with high probability, for al such A’s.
Similarly, one can argue that m, < (m/r)logr for each cell A € Eg, assuch a
cell liesin exactly one surface of R. See Clarkson et al. [1990] and Haussler and
Welzl [1987] for details. This completes the proof of the lemma. [

6.2.2. Bounding Incidences. Let R be asubset of P* satisfying the conditions
of Lemma 6.5. We compute E as defined above. Then

1(C.P) =) 1(Ca.Pa)+ 1(Ca. Pa).

A€B
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Since each point in P, lies on every curvein C, and two curvesin C intersect in
at most two points, M, > 2 impliesthat ny < 1. Hence,

1 (Ca., ISA) = O(nx + My).

Notethat )", na = n, Mx = 0for any 3-dimensional cell A € E,andm, < 1
for any 2-dimensional cell A € E because, by conditions (AC1) and (AP1), two
surfaces intersect along a 1-dimensional curve. Hence,

Z 1(Ca, Pa) = O(n + mr2g,(r)logr).

A€E

In order to bound ), I (Ca, Pa), we refine the cells of E as follows. If ny >
n/(r3pq(r)) for acell A € E, we split it further so that each new cell contains at
most n/(r3Bq(r)) points. The number of refined cells in the resulting partition &’
isstill O(r3Bq4(r)). Therefore, using the bound (7) for 1 (Ca, Pa), we obtain

Z [ (Ca, Pa) = Z C)(r712A/3|'12A/3 + My + ni/sz(nA))

Ae& AeE’

s mlogr\?3/ n \?® mlogr
- ot ’3“”(( ) ()
n \’? /n
() ()
-0 (mz/snz/sr 1381/3(r) |og2/3 1
3/2
+mr2p(r)logr + (?) Ks<rﬂ3>>

I(C,P) = O(m2/3n2/3r1/3 ,31/3(r)logz/3r

32
+mr2p(r)logr + (?) Ks(r%) + n).

We chooser = [n¥/m**1], whichisintherangel <r < mwhenn'/® <m <
n®4.1f m > n%4 wetaker = 1, andif m < n'/3 wetaker = m. It follows easily,
asin Aronov and Sharir [2002], that

Hence,

1 (C, P) = O(m?3n?3 + m¥1n¥ Lk (m3/n) + m + n),
where s is a constant depending on the representation of C.

6.2.3. Bounding the Complexity of Marked Faces. We use the approach
in Agarwal et a. [2003] to prove an improved bound on the complexity of marked
faces. Thereisonesignificant differenceinthe proof for thiscase compared withthe
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case of incidences. Here we need a hierarchical cutting’ of A(R). The best known
agorithm for computing such ahierarchical (1,/r)-cutting returns a cutting of size
O(r3+), for any ¢ > 0. Plugging this weaker bound on the size of hierarchical
cuttings in the analysis of Agarwal et al. [2003], the bound on the marked faces
increases by afactor O(m®). We refer the reader to the articlesjust cited for further
details, and omit the description of the modifications of the analysis given there
that need to be performed.

Putting everything together, we obtain the following results on the number of
incidences and the complexity of marked faces.

THEOREM 6.6. Let C bea set of n pseudo-parabolas or n x-monotone pseudo-
circlesthat admit a 3-parameter algebraic representation, and let P be a set of m
pointsin the plane.

(i) 1(C, P) = O(m?3n?/3 4 mb/11n% i (m3/n) + m+ n), where s isa constant

depending on the representation, and

(i) K(C, P) = O(m%3n?/3 4 m®1+¢n%11 4 nlogn), for any & > 0.
If the pseudo-parabolas or pseudo-circlesin C are also pairwise intersecting,
then (we do not need to require that the pseudo-circles be x-monotone in this
case)

(iii) 1(C, P) = O(m?3n?3 + m¥?n%®g(n/m) + m + n), and

(iv) K(C, P) = O(m%3n?3 4+ m¥?+¢n5%|og'2n + nlogn), for any & > 0.

For the cases of circlesand of vertical parabolas, the relevant surfaces are (or can
betransformedinto) planes, sothereisno extra(r) factor, and efficient hierarchical
cuttings can be constructed (for the analysis of many faces). Hence, the analysisin
Agarwal et a. [2003] and Aronov and Sharir [2002] yields the following improved
bounds. (The bound in Theorem 6.7(ii) has actually been proven in Agarwal et al.
[2003] for the case of circles; we state it here for the sake of completeness.)

THEOREM 6.7. Let C bea set of n circlesor n vertical parabolasand P a set
of m pointsin the plane. Then

(i) 1(C, P) = O(m%3n?3 4+ m8/11n%L,(m3/n) + m + n), and
(i) K(C, P) = O(m?3n?3 + m8/1n%(m3/n) + nlogn).
In addition, if the curvesin C are pairwise intersecting, then
(iii) 1(C, P) = O(m?3n?/® + mY/?n%® 4 m 4 n), and
(iv) K(C, P) = O(m%¥3n?3 4+ m¥/2n>%]og"? n + nlogn).

Remark. Using astandard sampling technique, such asthe oneused in Agarwal
etal.[2003], Aronov and Sharir [2002] and Chan[2003], we can a so obtainversions
of these bounds that are sensitive to the number of intersecting pairs of the given
curves (for parts (i) and (ii) of both theorems).

" For aset I of surfaces, a(1/r)-cutting E of I" is called hierarchical if there exist aconstant ro and
asequence of cuttings Eo, Ei, ..., By = E, foru = [log,, r1, where &; isa(1/rg)-cutting of I and
each cell of E; liesinsideacell of &;_;.
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6.3. DISTINCT DISTANCES UNDER ARBITRARY NORMS.  Aninteresting applica-
tion of Theorem 6.6(i) is the following result.

THEOREM 6.8. Let Q be a compact strictly convex centrally symmetric semi-
algebraic region in the plane, of constant description complexity, which we regard
asthe unit ball of a norm || - ||q. Then, any set P of n distinct points in the plane
determines at least (n”/°/ks(n)) distinct || - ||o-distances, where s is a constant
that depends on Q. (If Q is not centrally symmetric, it defines a convex distance
function, and the same lower bound applies in this case too.) Thisis also a lower
bound on the number of distinct || - || o-distances that can be attained froma single
point of P.

ProOF. The proof proceeds by considering nt homothetic copies of Q, shifted
to each point of P and scaled by the t possible distinct || - || o-distances that the
pointsin P determine. There are n? incidences between these curves and the points
of P. Using Theorem 6.6(i), the bound follows easily (here too the constant in the
exponent of the expression for xs(n) ischanged). [

Remarks.

(1) The proof technique isidentical to an older proof for distinct distances under
the Euclidean metric, given in Clarkson et al. [1990, Sect. 5.4]. Meanwhile,
the bound for the Euclidean case has been substantially improved (see [ Tardos
2003] for the current “record”), but, as far as we know, the problem has not
been considered at al for more general metrics.

(2) (Theorem 6.8isfaseif Q isnot strictly convex. For example, let Q bethe unit
ball of the L1-norm, and let P be the set of vertices of the ./n x /n integer
lattice. There are only 2,/n distinct L ;-distances among the points of P.

6.4. A GENERALIZED GALLAI-SYLVESTER THEOREM. A collection C of
pseudo-circles is called a pencil, if there are two points A and B which belong
to every pseudo-circlein C. In this case, of course, A and B are the only intersec-
tion points of pseudo-circlesfrom C.

InAlonetal. [2001], itisshown (Theorem 4.1) that if C isafamily of n pairwise
intersecting circleswhich is not apencil, and n islarge enough, then there exists an
intersection point through which at most three circles from C pass. Thisis aweak
analogue to the celebrated Gallai—Sylvester Theorem for lines in the plane. The
only tool, apart from Euler’'s formula, which is used in the proof of this theorem
inAlon et a. [2001] is alinear bound on the number of empty lenses created by a
family of pairwiseintersecting circlesinthe plane. Inview of Theorem 2.13, which
generalizes this bound for pseudo-circles we can now generalize the result in Alon
et al. [2001] asfollows:

THEOREM 6.9. Let C be a family of n pairwise intersecting pseudo-circles
in the plane. If n is sufficiently large and C is not a pencil, then there exists an
intersection point incident to at most three pseudo-circles of C.

7. Conclusion and Open Problems

In this article we obtained a variety of results involving lenses in arrangements of
pseudo-circles, with numerous applications to incidences, levels, and complexity
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of many faces in arrangements of circles, vertical parabolas, homothetic copies of
a fixed convex curve, pairwise intersecting pseudo-circles, and arbitrary pseudo-
parabolas and x-monotone pseudo-circles. We also obtained a Gallai—Sylvester
result for arrangements of pairwise-intersecting pseudo-circles, and a new lower
bound on the number of distinct distances in the plane under fairly arbitrary norms.
The main tool that facilitated the derivation of al these results is the somewhat
surprising property that the tangency graph in a family of pairwise intersecting
pseudo-parabolasis planar (Theorem 2.4).

This article leaves many problems unanswered. We mention a few of the more
significant ones:

(i) Obtain tight (or improved) bounds for the number of pairwise nonoverlapping
lenses in an arrangement of n pairwise intersecting pseudo-circles. We con-
jecture that the upper bound of O(n*3), given in Theorem 2.14, is not tight,
and that the correct bound is O(n) or near-linear.

(ii) Obtain tight (or improved) bounds for the number of empty lensesin an ar-
rangement of n arbitrary circles or more general classes of pseudo-circles.
Thereis agap between the lower bound ©2(n*3), which follows from the con-
struction of (n*3) incidences between n points and n lines, and which can be
realized by circles, and the upper bound of O(n%?«(n)), givenin Theorem 5.2
and Corollary 5.5. Even improving the upper bound to O(n®?), for the case of
circles, seems a challenging open problem. A related and harder problemisto
obtain an improved bound for the number of pairwise nonoverlapping lenses
(and for the cutting number) in an arrangement of n arbitrary circles.

(iif) One annoying aspect of our analysis is the difference between the analysis
of pairwise intersecting pseudo-circles, which is purely topological and re-
quires no further assumptions concerning the shape of the pseudo-circles, and
the analysis of the general case, in which we regquire x-monotonicity and 3-
parameter algebraic representation. (At least for pseudo-parabol as, the weaker
bound of O(n®°%) holds in general.) It would be interesting and instructive
to find a purely topological way of tackling the general problem involving
pseudo-circles. For example, can one obtain abound closeto O(n*?), or even
any bound smaller than the general bound O(n®?3) of Tamaki and Tokuyama
[1998] (whichis purely topological), for the number of empty lensesin an ar-
bitrary arrangement of pseudo-circles, without having to make any assumption
concerning their shape? Assuming x-monotonicity, can the bound O(n®/®) in
Theorem 4.1 be further improved?

Appendix A. Analysis of the Case of Circles

In this appendix, we show how to refine the upper bound on x (C), in the case of
circles, so that the associated constant s’ is4, and thuss = 2 and g = 4. We begin
by proving two lemmas, which will be usful for our analysis.

LEMMA A.l. Letc; and c; be two circles in the plane, with ¢; = (ag, by, r1)
and ¢ = (ap, by, rp) andry > r,. Theupper arcsc; and ¢ intersect at two points
if and only if the following condition holds (see Figure 21(i)):

(UU) by > by, Ac, and p, lieinside c;, and ¢; intersects c;.
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B b Acy - Perd .
(a1,b1) (a1, 1)
® (ii)

FiG. 21. (i) lHlustration of condition (UU). (ii) IHlustration of condition (UL).

ProOF. If ¢f and c; intersect at two points u, v then both centers lie below
the line ¢ passing through u and v. Moreover, the portion of the smaller disk (the
disk bounding the smaller circle) below ¢ is contained in the corresponding portion
of the bigger disk, and the center of the smaller disk is closer to £. Thisis easily
seen to imply (UU). Conversely, if (UU) holds then both intersection pointslie on
c; or both lieon ¢, (because the endpoints of both arcslieinside c;). Trandate c;
vertically downward until its center has the same y-coordinate as that of c;. In this
position A¢, and p¢, continue to lie inside ¢y, and the two circles must be digjoint
(any intersection point on ¢, must have a matching symmetric point on ¢, which
would produce at least 4 intersection points). Thisis easily seen to imply that the
origina ¢, isalso disoint from c;, so the two intersection points must lie on cJ,
and, since b, > by, they must also lie on cf. O

LEMMA A.2. Let c; and c; be two circles in the plane, with ¢ = (ay, by, r1)

and ¢ = (ag, by, r2). Thearcsc; and ¢, intersect at two pointsif and only if the
following condition holds (see Figure 21(ii)):

(UL) by > by, Ag, and pg, lieoutside ¢y, A¢, and p, lieoutside ¢z, and ¢, intersects
Co.

PROOF. Suppose that ¢ and ¢, intersect at two points u, v. Then the portion
of cf between u and v lies inside c,, and the portion of ¢, between u and v lies
inside c;. Thisiseasily seen to imply that each of the x-extreme points A¢,, pc,, Ac,
and p¢, liesoutside the other circle. Moreover, the center of ¢; (respectively, ;) lies
below (respectively, above) theline passing through u and v, implying that b, > b,.
Hence, (UL) holds. Conversely, if (UL) holdsthen both intersection points must lie
on the same arc (upper or lower) of ¢, and on the same arc (upper or lower) of c;.
However, in view of LemmaA.1, it cannot be the case that both arcs are upper or
that both arcs are lower. Hence one arc is upper and oneislower, and the condition
b, > by is easily seen to imply that the upper arc is of ¢; and the lower arc is
of c,. O

Let ¢(A, B) denote the minimum number of cuts needed to eliminate al
bichromatic upper-upper lenses in A U B (lenses formed by the upper arcs of
one circle in A and one in B). Put v(A) = v(A, A). For k = 0,1, 2, set
v ®(u, v) = max (A, B), where the maximum is taken over al pairs of families
of circles A and B of sizesat most u and v, respectively, so that

for k = 0, no constraint isimposed on A and B;

for k = 1, werequire that the radius of each circlein A be greater than or equal
to the radius of each circlein B; and
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for k = 2, we require the same condition on the radii asfor k = 1, and also that
the y-coordinate of the center of each circlein A be smaller than or equal to the
y-coordinate of the center of each circlein B.

We set v ®(m) = v ®(m, m), and our task is to bound v ©(n).

Sort thecirclesin C inincreasing order of their radii, and let C;, C, bethe subsets
of the circles with the n/2 smallest and n/2 largest radii, respectively. We clearly
have

¥ (C) < ¥ (C1) + ¥(Co) + ¥ (Ca, C),

from which we deduce the recurrence

© OY R @ n

09 =200 (3) +00(3.3) ®
Next we estimate @, Let A and B be two sets of m and n circles, respectively,
so that the radius of each circlein A is greater than or equal to the radius of every
circlein B. Sort the circlesin C = AU B inincreasing order of the y-coordinate
of their centers, and split C into two subsets C—, C™, consisting respectively of the
circles with the (m + n)/2 lowest and the (m + n)/2 highest y-coordinates. Put
A =ANC,At = ANC*,B-=BNC~,and Bt = BNC*. Weclearly have

V(A B) <y(A,BY)+ ¥ (A", B) + ¥ (A", BY);

the fourth term, ¥ (A*, B™), is 0, because al pairs of circlesin AT x B~ violate
condition (UU). Putk = |A~|, £ = |B™|. Hence, we obtain the recurrence

yO(m.n) < max {z/f“) (k, m ;r n_ k> +y® (mTJrn —, z) +y Ak, e)} :
=T

__ Mm-n
k—1 = fion

©)
where the conditions on k and ¢ follow from the construction.
We next bound @, where a more complex recurrence is needed. Let A and B
be two sets of m and n circles, respectively, so that for any (ci, ¢z) € A x B, with
¢1 = (ag, by, r1) and ¢, = (ap, by, ry), the following condition holds:

(CO) ry >rpand by, > by.

If the upper arc of acirclec; = (a;, by, r1) € Aintersects the upper arc of ¢, =
(az, bp, 1) € B at two points, then by Lemma A.1, the following two conditions
aso hold:

(C1) Ac, = (a2 —r2, by) and pe, = (a2 + 2, by) lieinside cy;
(C2) ¢, and ¢, intersect.
Fix acirclec = (a, b,r) in A. Thelocus K,(c) of al circles (¢, n, ¢) € B that
satisfy (C1) with c isthe region
Eno)lE—¢—a+m—b?=<r?and (§+¢—a)’+(n—b?=r?,
which is bounded by the pair of surfaces
mi(c): (- ¢ +n*—2aE —¢)-2bn+a’+b*-r?=0, (10

Q) 1 (E+ )P +n*—2aE +¢)—2bp+at+b*—r*=0. (11
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On the other hand, if wefix acirclec’ = (a, b, r) in B, then the locus Izl(c’) of
al circles (&, n, ¢) € Athat satisfy (C1) with ¢’ istheregion

{En o)1 E—(@=-)+@m-b?<¢? and (5§ —(a+1))’+(n—b)> <¢?),
which is bounded by the pair of surfaces

m(c): 2+ n?—c2—2@—r)s —2bp+(a—r)>+b*>=0, (12)

T E2+ P — > —2@+r)e —2bp+(@+r)>+b>=0  (13)

Finally, for afixed circlec = (a, b,r) in A or B, the locus K»(c) of al circles
(&, n, ¢) that satisfy (C2) with c, given that they already satisfy (C1), is bounded
by the surface (as already remarked, only one of the two inequalities that represent
intersection between circles need to be considered)

E—af+m—bZ=(@—r) or
ma(C) €2+ > — % —2aE —2bp+2rc + a2+ b2 —r?2=0. (14)

Animportant observationisthat the bound onthe parameter sislarge becausewe
consider intersection curves of “mixed” pairs of surfaces from among the possible
types (10)—(14). However, if we only consider pairs of surfaces of the same type,
say of type (14), the corresponding intersection curves are plane quadrics, so the
number of intersection points between the projections of two such curvesisat most
4, asinthe case of vertical parabolas (Section 5.2). Our approach isthusto enforce
the conditions (C1)—(C2) in two stages, where the first stage enforces (C1) and the
second enforces (C2). Thiswill suffice to reduce s to 2.

In more detail, we proceed as follows. For k = 3,4, set y®(u,v) =
max (A, B), where the maximum is taken over all pairs of families of circles A
and B of sizes at most u and v, respectively, that satisfy (CO)—(C(k — 2)). We set
Y (m) = v ®(m, m). Recall that our task is to bound v (m).

Bounding v (m). We first observe that ¥ (m) = O(m*3). Indeed, if every
pair of circlesin Ax B satisfy (CO)—(C2), that is, theupper arcsof every pair intersect
at two points, thenthe bound foll owsby consi dering the collection of extended upper
arcs of the circlesin AU B, and applying Lemma 4.2 and Theorem 3.4, as argued
in Section 5.3.

Bounding ¥®(m). Next, we apply the analysis in the proof of Lemma 5.1 to
the arrangement of the surfaces rr3(c), for c € A or ¢ € B. Choosing a parameter
1 <r < m%4 we obtain the recurrence

09m) = a0 w3+ wm | = orteie)| v (5 ) + o)

withg = 4. Indeed, the overhead term bounds the minimum number of cuts needed
to eliminate all bichromatic upper-upper lenses between pairs of subfamilies of
circles that satisfy (C2) (where one subfamily corresponds to al circles in, say,
A, whose representing points lie in some cell A of the relevant cutting, and the
other subfamily corresponds to all circles c € B whose associated surface m3(C)
fully encloses A), in addition to (C0)—(C1) which are satisfied, by assumption, by
al pairsof circlesin A x B. Here g = 4, because we are dealing here only with
surfaces of the form 3(c), and, as already remarked, the intersection curve of two
such surfacesisaplane quadric, so, as argued in Section 5.2, the projections of two
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such intersection curves on the & n-plane intersect in at most four points, thereby
implying that q = 4 and f4(r) = 2°€*), The same analysisasin Section 5.1 now
shows that

yO(m) = O(m*Zic(m)). (15)

Bounding v@(m). Thisis achieved by a similar process of interleaved recur-
sion, in which we keep flipping theroles of A and B. However, this can be done so
that one of the two recursive stepsis performed in the plane (and only onein three
dimensions). Specifically, we have:

LEMMA A.3. For any m, n and for any parameter 1 < r; < min{m, n%/?},

m n n
y@m,n) < crfy@ (=, 5 ) +crfy®(m, = ), (16)
i r r

1 1
for some positive constant c,.

ProOF. Let A and B be two families of circles of size m and n, respectively,
so that every pairin A x B satisfy condition (CO). We need to “enforce” condition
(C1), namely, that the leftmost and rightmost points of a circlein B lie inside a
circlein A. This can be done via the following cutting-based partitioning in the
plane, where each circleg = (&, n, ¢) € B ismapped to the two respective points
rg=(E —=1¢,n), pg = (¢ + ¢, n), and thecirclesof Aremain asthey are.

We compute a (1/r4)-cutting E of A of size O(r?). Foreach A € E, let By =
{ge B|Age Aorpg e A} If [Ba| > n/r2, wepartition A into subcells, each of
which contains at most n/r# points. The number of new cells remains O(r ). For
eachnewcell A, let Ay ={ce AlcNA#@tand Ay, ={ce A| A Cint(c)}.
Since E isacutting, we have | Ax| < m/rq for each A.

To bound (A, B), we first sum up the recursive terms » ", ¥ (Aa, Ba). Let
(c, g) be a pair that needs to be counted in ¥ (A, B) but has not been counted in
this recursive manner. Let A, A’ be the cells of the cutting that contain Ag, pg,
respectively. Then both cells A, A’ are fully contained in the interior of c. This
suggests the following approach to completing the count: Take each pair (A, A”)
of cells of the cutting, and put Baay = {g € B | Ag € Aandpg € A'},
Aaary =1{ce A| A, A" Cint(c)}. The number of remaining pairs that need
to be counted is thus bounded by

Y v (An.ay Ba).

(A,A)
However, every pair of sets in this sum also satisfy (Cl), so the sum is
O(r*y®(m, n/r2)). This completes the proof of the lemma. [

Wealso need adual partitioning schemefor the*“flipped” version of therecursion,
inwhich thecircles of A are mapped into pointsand those of B into surfaces. Here,
unlike the preceding partition, we need to use the 3-dimensional representation of
the circles:

LEMMA A.4. For any m, n and for any parameter 1 < r, < min{m¥/3, n},

(. n) < carfa(ra) [w@) (g f—:) e (?3 n)] L @)

2 2
for some integer constant g and some positive constant cs.
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Proor. Let A and B be two families of circles of size m and n, respec-
tively, which satisfy condition (C0). We now map each circle g € A to the
point g* = (&, 1, ¢) € R®, using the 3-parameter representation of C. Let & =
{m1(c), m2(c) | ¢ € B}. We compute a (1/rp)-cutting E of X of size O(r3p4(r2)),
for some appropriate constant .8 For eachcell 7 € E,set A, = {ce A|c* € 1}
and partltlon t further, as needed, to ensure that, for any resulting subcell 7,
|A-| < m/r3; this does not change the asymptotic bound on the number of cells.
Set B, = {ce B | (nl(c)UJrz(c))ﬂr #+ ¢} and B, = {ceB|1C Kl(c)}
Hence, we obtain the following recurrence

Y(A. B) = [¥(A. B)) + ¥(A. B

Tel

By construction, every pair (i, C2) € Ar x B, satlsfles(CO)—(Cl) which implies
that v (A;, B;) < YyO(A, |B,|) Since |A;| < m/r3 and |B,| < 2n/r for each
7, We thus obtain, summing over al cells of the cutti ng,

,/,<2>(m,n)§c3r§ﬂq(rz)[¢(2)<rm Zn) +y® (r_ n)}
2

2 T 2
asasserted. [

Combining (16) and (17), choosing r, = r and ry = 2r? for an appropriate
parameterr > 1, and substituting thebound (15) on (), weobtaintherecurrence
for appropriate values of constantsc, ¢

vA(m) < cr ﬂq(r)w@( >+cr m*2k(m).

Since the overhead term in the recurrence dominates its homogeneous solution, it
can be shown (by induction on m) that if we chooser to be a sufficiently large
constant, then the solution to the recurrenceis

y@(m) = O(m¥%k(m)).

Bounding v Y(m) and v (@(m). We now return to the first two stages of divide
and conquer. Substituting the bound for v @(.) in (9), we obtain a recurrence in
which each instanceinvolving atotal of m+ n circlesisreplaced by two instances,
each involving atotal of (m+ n)/2 circles. Thisreadily impliesthat the recurrence
solvesto

yO(m) = O(m*2c(m)).

Substituting this bound into (8), we again obtain a simple recurrence for ©(.)
which aso solves to

¥ O(m) = O(m¥%k(m)).

We have thus shown that the minimum number of cuts needed to eliminate all
upper-upper lensesin aset of n circlesis O(n¥2«(n)). A fully symmetric argument
yields the same bound for the number of cuts needed to eliminate all lower-lower

8 Curiously, q = 4 for the collection of surfaces 71(c), 2(c), which follows by the same reasoning
used for the surfaces rr3(c). However, this extra property is not needed in this step of our analysis.



Lensesin Arrangements of Pseudo-Circles and Their Applications 185

lenses, and it remains to bound the number of cuts needed to eliminate upper-lower
lenses. For thiswe need to carry out asimilar analysis, based on the condition (UL)
in Lemma A.2. The analysisisindeed rather similar, and we do not spell it out in
detail. We only comment on several technical differencesthat arise:

(1) At the bottommost recursive stage, we enforce the condition that a pair of
circlesc = (a,b,r)andc = (&, n, ¢) intersect. Here we need to enforce both
inequalities, that the distance between the centers be at least the difference
between the radii and at most their sum. The corresponding surfaces, with ¢
fixed and ¢’ varying, are

m3(C): E2+n*—¢?—2a5 =2+ 2t +a2+b*—r?=0
ma(c): 2+ —¢?—2af —2bp—2rg+at+b>—r?=0.

Fortunately, the intersection curve of any pair of these surfacesis still a plane
quadric, and the preceding analysis can be easily adapted to keep the parameter
g equal to 4 (and s to 2) in this case too.

(2) We now need only one stage of a simple divide-and-conquer, to enforce the
condition b, > by, but we need two stagesto enforce the conditions concerning
the points A, , pc,, Ac, ad pc,, One stage enforcing that A¢,, o, lie outside c,,
and the other stage enforcing that Ac,, pc, lie outside c;. Both stages are carried
out exactly as above.

The modified analysis thus yields a bound of O(n%?«(n)) for the minimum
number of cuts needed to eliminate all upper-lower lensesin aset C of n circles,
showing, at long last, that x (C) = O(n¥2«(n)).
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