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Abstract

The purpose of this article is to analyze a class of voting games in a par-
tition approach. We consider a society in which coalitions can be formed and
where a finite number of voters have to choose among a set of alternatives. A
coalition is winning if it can veto any proposed alternative. In our model, the
veto power of a coalition is dependent on the coalition formation of the out-
siders. We show that whether or not the core is non-empty depends crucially
on the expectations of each coalition regarding outsiders’ behavior when it
wishes to veto an alternative. On the one hand, if each coalition has pes-
simistic expectations, then the core is non-empty if and only if the dimension
of the set of alternatives is equal to one. On the other hand, if each coali-
tion has optimistic expectations, the non-emptiness of the core is not ensured.

Keywords: Voting games; Partition approach; Core.
JEL Classification: C71, D72.

1 Introduction

Voting games represent a special class of cooperative games in which some coali-
tions of voters have the power to enforce their will regardless other voters’ actions,
while the remaining coalitions are powerless to influence the outcome. A natural
concept to predict the outcome of a vote is the core. An alternative belongs to the
core if there does not exist some alternative and a winning group of voters in favor
of changing the status quo to that alternative. Although voting games constitute
a rather special class of cooperative games, the existence of a core alternative is by
no means ensured: the famous “paradox of voting” is an elementary three-player
example for which the core is empty.

A voting game is viewed as a society in which coalitions can be formed and
where a finite number, n ∈ N, of voters have to choose an alternative from a set
in the p-dimensional Euclidean space Rp. The classification of voting games ac-
cording to the emptiness or non-emptiness of the core has been the object of a
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wide literature. Assuming that the preference relation over the set of alternatives
of each voter is continuous and convex, Greenberg (1979) showed that if the set
of winning coalitions of a voting game consists of all coalitions with more than
pn/(p + 1) individuals then the core is non-empty. In the same way, Nakamura
(1979) determined the upper bound on the cardinality of the set of alternatives
of a voting game, called the Nakamura number, which would guarantee the exis-
tence of a core alternative. The Nakamura number is defined as the size of the
smallest collection of winning coalitions having an empty intersection. If such a
collection does not exist, then the Nakamura number is equal to infinity. So, the
non-emptiness of the core is directly related to the combinatorial structure of the
winning coalitions. Schofield (1984), Strnad (1985) and Le Breton (1987) have
generalized Greenberg’s result (1979) to arbitrary voting games. More precisely,
they prove that if p is smaller than or equal to the Nakamura number of a voting
game minus two, and if individual preference relations are continuous and convex
then the core is non-empty. Otherwise, if p is strictly greater than the Nakamura
number of a voting game minus two, there exists a profile of preference relations
for which the core is empty.

Coalition formation games with externalities were first modeled by Thrall and
Lucas (1963) as partition function games. For this class of games, Hafalir (2007)
shows that a convexity property ensures the non-emptiness of the core with single-
ton and cautious expectations on the coalition formation of the outsiders. Funaki
and Yamato (1999) study the core of an economy with a common pool resource
by means of partition function games. On the one hand, if each coalition has
pessimistic expectations on outsiders’ behavior, then the core is non-empty. On
the other hand, if it has optimistic expectations, the core is empty when there are
more than four players.

In continuation of these works, we study the class of voting games in a par-
tition approach. In particular, we investigate whether it is possible to guarantee
the non-emptiness of the core when each coalition is embedded into a partition.
A coalition embedded into a partition is winning if it can veto any proposed alter-
native. Unlike classical voting games, a coalition can be winning for a partition
and non-winning for another partition. In other words, whether or not a coalition
is winning depends on the coalition formation of the outsiders, and so the non-
emptiness of the core too.

On the one hand, assume that the members of a coalition pessimistically ex-
pect that the outsiders react in the worst possible way for them when they wish
to veto an alternative. In the present model, this will correspond to the case
where outsiders will form the largest possible coalition. We prove that the core is
non-empty if and only if the dimension of the set of alternatives is equal to one.
On the other hand, assume that the members of a coalition optimistically expects
that the outsiders react in the best way for them when they wish to veto an alter-
native. In the present model, this will correspond to the case where each outsider
will form a singleton. We show that there always exists a profile of preference rela-
tions for which the core is empty. Therefore, whether or not the core is non-empty
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depends crucially on the expectations of each coalition about outsiders’ behavior
when it wishes to veto an alternative.

This article is organized as follows. Section 2 describes voting games in a
partition approach. In section 3 we prove that the core is non-empty when each
coalition has a pessimistic view regarding the coalition formation of the outsiders.
In section 4, we show that there exists a profile of preference relations for which
the core is empty when expectations of each coalition are optimistic regarding the
coalition formation of the outsiders. Section 5 gives some concluding remarks.

2 The model

The society consists of a set of voters N = {1, . . . , n} where n ≥ 3. The voters
have to choose an alternative from a non-empty, convex and compact set X ⊆ Rp,
p ∈ N. Each voter i ∈ N has preferences represented by a complete preorder ⪰i over
X. We denote by P the set of complete preorders over X. A profile of preference
relations is an element ⪰= (⪰1, . . . ,⪰n) ∈ Pn. We denote by Pco ⊆ P the set of
continuous,1 convex2 and complete preorders over X.

We denote by Ω(N) and Π(N) the sets of all non-empty coalitions and all
partitions of N respectively. Let S and ρ be the representative elements of Ω(N)
and Π(N) respectively. The binary relation ≤C on Π(N) is defined as follows: we
say that a partition ρ ∈ Π(N) is coarser than a partition ρ′ ∈ Π(N) (or ρ′ is finer
than ρ) which we write ρ′ ≤C ρ if for any coalition S ∈ ρ′ there exists a coalition
T ∈ ρ such that T ⊇ S.
Let W e be a correspondence defined from Π(N) to Ω(N) that associates to
each partition ρ ∈ Π(N) a (possibly empty) set of winning coalitions such that
W e(ρ) ⊆ ρ. Throughout this article, we assume that W e satisfies the two follow-
ing conditions:

- Proper (P): for any ρ ∈ Π(N), we have ∣W e(ρ)∣ ≤ 1;

- Splitting of Outsiders (SO): for any ρ ∈ Π(N) and any ρ′ ∈ Π(N) such
that ρ′ ≤C ρ and S ∈ ρ ∩ ρ′, S ∈W e(ρ) implies S ∈W e(ρ′).

Condition (P) means that any partition ρ ∈ Π(N) admits at most one winning
coalition while condition (SO) specifies that a winning coalition S ∈ Ω(N) for a
partition ρ ∈ Π(N) is still winning when the other coalitions embedded into ρ split
into smaller groups.

Definition 1 A voting game in a partition approach is a pair (N,W e) where N
is a set of voters and W e is a correspondence of winning coalitions.

1A preorder ⪰i over X is continuous if for all x ∈X, the sets {y ∈X ∶ x ⪰i y} and {y ∈X ∶ y ⪰i x}
are closed relative to X.

2A preorder ⪰i over X is convex if [∀x, y, z ∈X, y ⪰i x and z ⪰i x] Ô⇒ [λy + (1−λ)z ⪰i x] for
all λ ∈ [0,1].
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In the general framework of partition function games, the worth of a coalition
depends on the entire coalition structure. Any deviation happens with certain
expectations of the deviating coalition about the coalition formation of the out-
siders. Hafalir (2007) has proceed under the assumption of given expectations of
the deviating coalition (singleton, cautious, merging and rational expectations)
about outsiders’ behavior.3 The coalition structure affects the worth of a coali-
tion according to the type of externalities. Externalities are positive (negative)
if a merger between two coalitions makes other coalitions better (worse) off. For
instance, in partition function games associated with a price competition setting
externalities are positive since a merger between two cartels (coalitions) of firms
causes an increase of prices which benefits to the other cartels by increasing their
market share.
For the class of voting games in a partition approach, whether or not a coalition is
winning depends on the coalition formation of the outsiders, and so the outcome of
a vote too. Thus, we have to make assumptions about what a coalition conjectures
about outsiders’ behavior when it wishes to veto an alternative. By (P), there is
at most one winning coalition for each partition. In this article, we focus on the
two extreme cases of pessimistic and optimistic expectations about the coalition
formation of the outsiders. By (SO), externalities are negative since a merger
between two coalitions can make coalition S non-winning. So condition (SO) im-
plies that the worst coalition formation for S is that outsiders form the largest
possible coalition which corresponds to partition ρ⊤S = {S,N/S}. In the same way,
condition (SO) implies that the best coalition formation for S is that each out-
sider forms a singleton which corresponds to partition ρ⊥S = {S} ∪ {{j} ∶ j ∈ N/S}.
While pessimistic expectations correspond to cautious and merging expectations
as defined by Hafalir (2007) for general partition function games, optimistic ex-
pectations coincide with singleton expectations.4 With these notations in mind,
we can define the core with pessimistic and optimistic expectations.

Definition 2 Let (N,W e) be a game. The core with pessimistic expectations is
the set of all alternatives that will not be vetoed by a winning coalition expecting
the worst coalition formation, i.e.

Cpes(N,W e) = {x ∈X ∶ S ∈W e(ρ⊤S) Ô⇒ ∄y ∈X ∶ ∀i ∈ S, y ≻i x}.5

Similarly, the core with optimistic expectations is the set of all alternatives that
will not be vetoed by a winning coalition expecting the best coalition formation, i.e.

Copt(N,W e) = {x ∈X ∶ S ∈W e(ρ⊥S) Ô⇒ ∄y ∈X ∶ ∀i ∈ S, y ≻i x}.

3We refer to Hafalir (2007) for a detailed analysis of these expectations.
4A deviating coalition has rational expectations when it expects that outsiders will try to

maximize the sum of their own payoff. In our model, such expectations cannot be defined since
voters have individual preference relations on the set of alternatives.

5The binary relation ≻i represents the asymmetric component of ⪰i.
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The connections between Cpes(N,W e) and Copt(N,W e) are emphasized by the
following result.

Proposition 1 Let (N,W e) be a game. Then Copt(N,W e) ⊆ Cpes(N,W e).

Proof: Assume that x ∈ Copt(N,W e) and by contradiction that x /∈ Cpes(N,W e),
i.e. there is S ∈ W e(ρ⊤S) and y ∈ X such that y ≻i x for each i ∈ S. By (P) and
(SO), we know that S is the unique winning coalition for all ρ ∈ Π(N) such that
S ∈ ρ. In particular, this is true for ρ⊥S which contradicts the assumption that
x ∈ Copt(N,W e). ◻

As mentioned above, we want to analyze the non-emptiness of the core with
pessimistic and optimistic expectations. This is the purpose of Sections 3 and 4
respectively. In the remainder of this section we give the definitions of a classical
voting game and the associated core solution concept which will be useful for the
sequel.

Definition 3 A (classical) voting game is a pair (N,W ) where N is a set of
voters and W is a set of winning coalitions.

Whether or not a coalition is winning does not depend on the coalition formation
of the outsiders. The definition of the core is simplified too.

Definition 4 Let (N,W ) be a game. The core is the set of all alternatives that
will not be vetoed by a winning coalition, i.e.

C(N,W ) = {x ∈X ∶ S ∈W Ô⇒ ∄y ∈X ∶ ∀i ∈ S, y ≻i x}.

3 The core under pessimistic expectations

In this section, we study the core in the case where the expectations of each coali-
tion are pessimistic. For this purpose, being given a game (N,W e) we introduce
the associated voting game (N,Wpes) where Wpes is the set of winning coalitions
facing the largest possible coalition. Formally,

Wpes = {S ∈ Ω(N) ∶ S ∈W e(ρ⊤S)} (1)

The result below establishes an equivalence between Cpes(N,W e) and C(N,Wpes)
and follows directly from (1).

Fact 1 Let (N,W e) be a game. If we consider the transformation from (N,W e)
to (N,Wpes) given by (1), then Cpes(N,W e) = C(N,Wpes).
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In order to analyze the non-emptiness of the core with pessimistic expectations,
we need some results established for classical voting games, in particular those
of Nakamura (1979) and Le Breton (1987). As discussed in the introduction,
Nakamura (1979) proves that the non-emptiness of the core of a voting game
(N,W ) is directly related to the combinatorial structure of its winning coalitions.

Definition 5 The Nakamura number of a voting game (N,W ) is the extended
natural number v(N,W ) defined as follows:

v(N,W ) = { ∞ if ⋂C∈W C ≠ ∅;
min{∣W ′∣ ∶W ′ ⊆W and ⋂C∈W ′ C = ∅} if ⋂C∈W C = ∅.

The set ⋂C∈W C is called the collegium of (N,W ) and its members the vetoers.
If it is empty, then the game (N,W ) is non-collegial.

Among the voting games, the quota games have received much attention. A
quota game is a voting game (N,W ) such that there exists an integer q ≤ n
satisfying S ∈ W if and only if ∣S∣ ≥ q. For these games, the following result
(Moulin 1991) holds :

Lemma 1 Let (N,W ) be a quota game. Then its Nakamura number is given by
v(N,W ) = ⌈n/(n − q)⌉.6

For voting games, a necessary and sufficient condition for the non-emptiness
of the core has been provided by Le Breton (1987).

Theorem 1 (Le Breton 1987) Let (N,W ) be a game. Suppose that X is a
nonempty, convex and compact subset of Rp, p ∈ N. Then,

(i) if dimX ≤ v(N,W ) − 2, then for all ⪰∈ Pn
co, it holds that C(N,W ) ≠ ∅;7

(ii) if dimX ≥ v(N,W ) − 1, then there exists ⪰∈ Pn
co such that C(N,W ) = ∅.

In order to prove the main theorem of this section, we need the following
lemma:

Lemma 2 Let (N,W e) be a game. For any coalition S ∈ Ω(N) and any coalition
T ∈ Ω(N) such that S ∈W e(ρ⊤S) and T ∈W e(ρ⊤T ) we have S ∩ T ≠ ∅.

Proof: Suppose by contradiction that S ∩T = ∅. Since S ∈W e(ρ⊤S), (SO) implies
that S ∈W e({S,T,N/(S ∪ T )}). By (P), we know that T /∈W e({S,T,N/(S ∪ T )}).
We conclude from (SO) that T /∈W e(ρ⊤T ), a contradiction. ◻

Lemma 2 establishes that the game (N,Wpes) is proper, i.e. S ∈Wpes and T ∈Wpes

implies that S ∩ T ≠ ∅.

6
⌈x⌉ is the smallest integer greater than or equal to x.

7We denote by dimX the dimension of the affine hull of X.
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Theorem 2 For any game (N,W e), it holds that Cpes(N,W e) ≠ ∅ for all ⪰∈ Pn
co

if and only if dimX = 1.

Proof: First, assume that dimX = 1. Pick any game (N,W e) and consider the
associated game (N,Wpes) as in (1). By Lemma 2 we know that S ∩ T ≠ ∅ for
any coalition S ∈ Wpes and any coalition T ∈ Wpes. For the game (N,Wpes) this
implies that v(N,Wpes) > 2. Since dimX = 1, we conclude by Theorem 1 that
C(N,Wpes) ≠ ∅ for all ⪰∈ Pn

co. We conclude from Fact 1 that Cpes(N,W e) ≠ ∅ for
all ⪰∈ Pn

co.
Then, assume that dimX ≥ 2. We show that for any n ≥ 3 there always exists a
correspondence W e such that Cpes(N,W e) = ∅ for some ⪰∈ Pn

co. We distinguish
four cases:
(a) Assume that n ≥ 6. For any ρ ∈ Π(N), let us define W e by

W e(ρ) = {S ∈ Ω(N) ∶ ∀T ∈ ρ, T ≠ S, ∣S∣ > ∣T ∣} (2)

Clearly, W e satisfies (P) and (SO). Moreover, under pessimistic expectations we
have

Wpes = {S ∈ Ω(N) ∶ ∣S∣ ≥ ⌈(n + 1)/2⌉}.

Thus, when W e is defined by (2) the corresponding voting game (N,Wpes) is a
quota game. By using Lemma 1, some elementary calculus shows that v(N,Wpes) =
3 for any n ≥ 6.
(b) Assume that n = 3. Let us define W e as follows: W e({{1,2},{3}}) = {{1,2}},
W e({{1,3},{2}}) = {{1,3}}, W e({{2,3},{1}}) = {{2,3}}, and for all other parti-
tions ρ ∈ Π(N), W e(ρ) = ∅.
(c) Assume that n = 4. Let us define W e as follows: for all ρ34 ∈ Π(N/{1,2}),
W e({{1,2}} ∪ ρ34) = {{1,2}}, for all ρ24 ∈ Π(N/{1,3}), W e({{1,3}} ∪ ρ24) =
{{1,3}}, for all ρ14 ∈ Π(N/{2,3}), W e({{2,3}} ∪ ρ14) = {{2,3}}, and for all other
partitions ρ ∈ Π(N), W e(ρ) = ∅.
(d) Assume that n = 5. Let us define W e as follows: for all ρ345 ∈ Π(N/{1,2}),
W e({{1,2}} ∪ ρ345) = {{1,2}}, for all ρ245 ∈ Π(N/{1,3}), W e({{1,3}} ∪ ρ245) =
{{1,3}}, for all ρ145 ∈ Π(N/{2,3}), W e({{2,3}} ∪ ρ145) = {{2,3}}, and for all
other partitions ρ ∈ Π(N), W e(ρ) = ∅.
For any n ∈ {3,4,5}, W e satisfies (P) and (SO). Moreover, we have Wpes =
{{1,2},{1,3},{2,3}}, and so v(N,Wpes) = 3.
In all cases (a), (b), (c) and (d), we conclude from Theorem 1 and Fact 1 that
Cpes(N,W e) ≠ ∅ for all ⪰∈ Pn

co only if dimX = 1. ◻

4 The core under optimistic expectations

In this section, we study the core in the case where the expectations of each coali-
tion are optimistic. For this purpose, being given a game (N,W e) we introduce
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the associated voting game (N,Wopt) where Wopt is the set of winning coalitions
facing singletons. Formally,

Wopt = {S ∈ Ω(N) ∶ S ∈W e(ρ⊥S)} (3)

The result below establishes an equality between Copt(N,W e) and C(N,Wopt)
and follows directly from (3).

Fact 2 Let (N,W e) be a game. If we consider the transformation from (N,W e)
to (N,Wopt) given by (3) then Copt(N,W e) = C(N,Wopt).

Under optimistic expectations, we obtain the opposite result to the one under
pessimistic expectations.

Theorem 3 For any dimX ∈ N, there exists a game (N,W e) and a profile of
preference relations ⪰∈ Pn

co such that Copt(N,W e) = ∅.

Proof: We distinguish two cases:
(a) Assume that n ≥ 4. Take W e defined by (2). In this case, under optimistic
expectations we have

Wopt = {S ∈ Ω(N) ∶ ∣S∣ ≥ 2}.

Note that (N,Wopt) is a quota game and its Nakamura number is given by
⌈n/(n − 2)⌉ = 2 for any n ≥ 4.
(b) Assume that n = 3. Let us define W e as follows: W e({{1},{2},{3}}) = {{1}},
W e({{1},{2,3}}) = {{2,3}}, and for all other partitions ρ ∈ Π(N), W e(ρ) = ∅. In
this case, we have Wopt = {{1},{2,3}}, and so v(N,Wopt) = 2.
In both cases (a) and (b), we conclude from Theorem 1 and Fact 2 that for any
dimX ∈ N, there exists a game (N,W e) and a profile of preference relations ⪰∈ Pn

co

such that Copt(N,W e) = ∅. ◻

5 Concluding remarks

For the class of voting games in a partition approach, we have shown that if each
coalition has pessimistic expectations, then the core is non-empty if and only if
the dimension of the set of alternatives is equal to one. If each coalition has
optimistic expectations, we have proved that the non-emptiness of the core is not
ensured. Thus, as in Funaki and Yamato [1999] in the case of an economy with
a common pool resource, whether or not the core is non-empty depends crucially
on the expectations of each coalition about outsiders’ behavior when it wishes to
veto an alternative.
Our core existence results hold for a large class of voting games in a partition
approach since we only impose the two natural properties (P) and (SO) on the
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correspondence W e. A natural extension of our work would be to impose other
properties on W e in order to study another class of voting games in a partition
approach.
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