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Abstract

We show that the existence of a weakly compact cardinal over the

Zermelo-Fraenkel’s set theory ZF is proof-theoretically reducible to itera-

tions of Mostowski collapsings and Mahlo operations.

1 Introduction

It is well known that a cardinal is weakly compact iff it is Π1
1-indescribable.

From this characterization we see readily that the set of Mahlo cardinals below
a weakly compact cardinal is stationary, i.e., every club (closed and unbounded)
subset of a weakly compact cardinal contains a Mahlo cardinal. In other word,
any weakly compact cardinal is hyper Mahlo. Furthermore any weakly compact
cardinal κ is in the diagonal intersection κ ∈ M△ =

⋂
{M(Mα) : α < κ} for

the α-th iterate Mα of the Mahlo operation M : for classes X of ordinals,

κ ∈M(X) :⇔ X ∩ κ is stationary in κ⇔ ∀Y ⊂ κ[(Y is club) → X ∩ Y 6= ∅].

Note that κ ∈M(X) is Π1
1 on Vκ.

On the other side R. Jensen[11] showed under the axiom V = L of con-
structibility that for regular cardinals κ, κ is weakly compact iff ∀X ⊂ κ[κ ∈
M(X) ⇒M(X) ∩ κ 6= ∅] iff ∀X ⊂ κ[κ ∈M(X) ⇒ κ ∈M(M(X))].

Jensen’s proof in [11] yields a normal form theorem of Π1
1-formulae on Lκ =

Jκ uniformly for regular uncountable cardinals κ as follows.
For a first order formula ϕ[D] with unary predicates A,D, let

α ∈ Sϕ(A) :⇔ there exists a limit β such that α < β < α+, A ∩ α ∈ Jβ ,

〈Jβ ,∈, A ∩ α〉 |= ∀D ⊂ αϕ[D], α is regular in β and

∃p ∈ Jβ∀X [(p ∪ {α} ⊂ X ≺ Jβ) ∧ (X ∩ α is transitive) ⇒ X = Jβ] (1)

where α is regular in β iff there is no cofinal function from a smaller ordinal< α

into α, which is definable on Jβ .
The following Proposition 1.1 is the Lemma 5.2 in [11].
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Proposition 1.1 Let α ∈ Sϕ(A) and β be an ordinal as in the definition of
Sϕ(A). Then α is Σ1-singular in β+1, i.e., there exists a cofinal function from
a smaller ordinal< α into α, which is Σ1-definable on Jβ+1.

Fix a regular uncountable cardinal κ, a set A ⊂ κ. For a finite set {A, . . .}
of subsets A, . . . of κ and ordinals α < κ, let Nα(A, . . .) denote the least Σ1-
elementary submodel of Jκ+ , Nα(A, . . .) ≺Σ1

Jκ+ , such that α∪{A, . . .}∪{κ} ⊂

Nα(A, . . .). Namely Nα(A, . . .) is the Σ1-Skolem hull Hull
J
κ+

Σ1
(α∪{A, . . .}∪{κ})

of α ∪ {A, . . .} ∪ {κ} on Jκ+ . Let

C(A, . . .) := {α < κ : Nα(A, . . .) ∩ κ ⊂ α}.

Then it is easy to see that C(A, . . .) is club in κ, and definable over Jκ+ .

Proposition 1.2 Let κ be a regular uncountable cardinals κ, A ⊂ κ, ϕ[D] a
first order formula with parameters A,D.

1. Suppose 〈Jκ+ ,∈, A〉 |= ∀D ⊂ κϕ[D], and let C be a club subset of κ. Then
the least element of the club set C(A,C) is in Sϕ(A).

2. Suppose 〈Jκ+ ,∈, A〉 6|= ∀D ⊂ κϕ[D], then Sϕ(A) ∩ C(A) = ∅.

Thus 〈Jκ+ ,∈, A〉 |= ∀D ⊂ κϕ[D] iff Sϕ(A) is stationary in κ. And κ is
weakly compact iff for any stationary subset S ⊂ κ there exists an uncountable
regular cardinal α < κ such that S ∩ α is stationary in α.

Proof.
1.2.1. Suppose 〈Jκ+ ,∈, A〉 |= ∀D ⊂ κϕ[D], and let C be a club subset

of κ. Consider the club subset C(A,C) of κ. Then C(A,C) ⊂ C . We
show that α ∈ Sϕ(A) for the least element α of C(A,C). Let π : 〈Jβ ,∈
, A ∩ α,C ∩ α〉 ∼= Nα(A,C) ≺Σ1

Jκ+ be the transitive collapse of Nα(A,C).
β is a limit ordinal with α < β < α+. From 〈Jκ+ ,∈, A〉 |= ∀D ⊂ κϕ[D] we see
〈Jβ ,∈, A∩α〉 |= ∀D ⊂ αϕ[D], andA∩α,C∩α ∈ Jβ fromA,C ∈ Nα(A,C). It re-
mains to show (1) for p = {A∩α,C∩α}. Assume {A∩α,C∩α, α} ⊂ X ≺ Jβ and
X∩α = γ for an ordinal γ ≤ α. Then γ∪{A,C, κ} ⊂ π”X ≺ Nα(A,C) ≺Σ1

Jκ+ .
This yields Nγ(A,C) ≺Σ1

π”X , and Nγ(A,C)∩κ ⊂ (π”X)∩κ = π”(X∩α) = γ

by Nα(A,C)∩κ ⊂ α. This means that γ ∈ C(A,C), and hence X ∩α = γ = α.
Therefore π”X = Nα(A,C), and X = Jβ .

1.2.2. Suppose 〈Jκ+ ,∈, A〉 6|= ∀D ⊂ κϕ[D]. Assume α ∈ Sϕ(A) ∩ C(A). Let
〈Jβ̄ ,∈, A ∩ α〉 ∼= Nα(A) ≺Σ1

Jκ+ be the transitive collapse of Nα(A). Then
〈Jβ̄ ,∈, A∩α〉 6|= ∀D ⊂ αϕ[D]. On the other hand we have by α ∈ Sϕ(A), there
exists a limit β such that 〈Jβ ,∈, A ∩ α〉 |= ∀D ⊂ αϕ[D], and α is Σ1-singular
in β + 1 by Proposition 1.1. Hence β < β̄ and α is Σ1-singular in β̄. This
means that κ is Σ1-singular in κ+. However κ is assumed to be regular. A
contradiction. ✷

In this paper we show that the existence of a weakly compact cardinal over
the Zermelo-Fraenkel’s set theory ZF is proof-theoretically reducible to iterations
of Mostowski collapsings and Mahlo operations.
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LetK denote the formula stating that ‘there exists a weakly compact cardinal
K’.

For Σ1
2-sentences ϕ ≡ ∃Y ∀X θ, let ϕVK be ∃Y ⊂ Vκ∀X ⊂ VK θ

VK where
θa denotes the result of restricting any unbounded quantifiers ∃x, ∀x to ∃x ∈
a, ∀x ∈ a, resp.

Theorem 1.3 There are Σn+1-formulae θn(x) for which the following holds:

1. For each n < ω,

ZF+ (V = L) ⊢ ∀K[(K is a weakly compact cardinal) → θn(K)]

and

ZF+ (V = L) ⊢ ∀K[θn+1(K) → K ∈M({π < K : θn(π)})].

2. For any Σ1
2-sentences ϕ, if

ZF ⊢ ∀K[(K is a weakly compact cardinal) → ϕVK ],

then we can find an n < ω such that

ZF+ (V = L) ⊢ ∀K[θn(K) → ϕVK ].

Hence ZF + (V = L) + (K is weakly compact) is Σ1
2(K)-conservative over

ZF + (V = L) + {θn(K) : n < ω}, and ZF + (V = L) + K is conservative over
ZF + (V = L) + {∃K θn(K) : n < ω}, e.g., with respect to first-order sentences
ϕVI0 for the least weakly inaccessible cardinal I0.

Note that Tn = ZF + (V = L) + {∃K θn(K)} is weaker than ZF + K, e.g.,
ZF+K proves the existence of a model of Tn for each n < ω.

The Σn+1-formulae θn(x) are defined by

θn(x) :⇔ x ∈Mhωn(I+1)
n .

The Σn+1-class Mhξn for ordinals ξ is defined through iterations of Mostowski
collapsings and Mahlo operations, cf. Definition 2.2.

Let us explain some backgrounds of this paper. Π3-reflecting ordinals are
known to be recursive analogues to weakly compact cardinals. Proof theory
(ordinal analysis) of Π3-reflection has been done by M. Rathjen[12], and [1, 2,
3, 4].

As observed in [2, 5], ordinal analyses of ΠN+1-reflection yield a proof-
theoretic reduction of ΠN+1-reflection in terms of iterations of ΠN -recursively
Mahlo operations. Specifically we show the following Theorem 1.4 in [8]. Let
KPω denote the Kripke-Platek set theory with the axiom of Infinity, ΠN (a) a
universal ΠN -formula, and RMN(X ) the ΠN -recursively Mahlo operation for
classes of transitive sets X :

P ∈ RMN(X ) :⇔ ∀b ∈ P [P |= ΠN (b) → ∃Q ∈ X ∩ P (Q |= ΠN (b))]

(read:P is ΠN -reflecting on X .)
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The iteration of RMN along a definable relation ≺ is defined as follows.

P ∈ RMN (a;≺) :⇔ a ∈ P ∈
⋂

{RMN(RMN (b;≺)) : b ∈ P |= b ≺ a}.

Let Ord ⊂ V denote the class of ordinals, Ordε ⊂ V and <ε be ∆-predicates
such that for any transitive and wellfounded model V of KPω, <ε is a well
ordering of type εI+1 on Ordε for the order type I of the class Ord in V .
Specifically let us encode ‘ordinals’ α < εI+1 by codes ⌈α⌉ ∈ Ordε as follows.
⌈α⌉ = 〈0, α〉 for α ∈ Ord, ⌈I⌉ = 〈1, 0〉, ⌈ωα⌉ = 〈2, ⌈α⌉〉 for α > I, and ⌈α⌉ =
〈3, ⌈α1⌉, . . . , ⌈αn⌉〉 if α = α1 + · · · + αn > I with α1 ≥ · · · ≥ αn, n > 1 and
∃βi(αi = ωβi) for each αi. Then ⌈ωn(I + 1)⌉ ∈ Ordε denotes the code of the
‘ordinal’ ωn(I + 1).

<ε is assumed to be a canonical ordering such that KPω proves the fact that
<ε is a linear ordering, and for any formula ϕ and each n < ω,

KPω ⊢ ∀x(∀y <ε xϕ(y) → ϕ(x)) → ∀x <ε ⌈ωn(I + 1)⌉ϕ(x) (2)

For a definition of ∆-predicates Ordε and <ε, and a proof of (2), cf. [7].

Theorem 1.4 For each N ≥ 2, KPΠN+1 is ΠN+1-conservative over the theory

KPω + {V ∈ RMN (⌈ωn(I + 1)⌉;<ε) : n ∈ ω}.

On the other side, we[7] have lifted up the ordinal analysis of recursively
inaccessible ordinals in [10] to one of weakly inaccessible cardinals. This paper
aims to lift up [12] and [5] to the weak compactness.

Let us mention the contents of this paper. In the next section 2 iterated
Skolem hulls Hα,n(X) of sets X of ordinals, ordinals Ψκ,nγ for regular ordi-
nals κ (K < κ ≤ I), and classes Mhαn[Θ] are defined for finite sets Θ of ordi-
nals. It is shown that for each n,m < ω, (K is a weakly compact cardinal) →

K ∈ Mh
ωm(I+1)
n in ZF + (V = L). In the third section 3 we introduce a the-

ory for weakly compact cardinals, which are equivalent to ZF + (V = L) +
(K is a weakly compact cardinal).

In the section 4 cut inferences are eliminated from operator controlled deriva-
tions of Σ1

2-sentences ϕ
VK over K, and ϕVK is shown to be true. Everything up

to this is seen to be formalizable in ZF+(V = L)+ {θn(K) : n ∈ ω}. Hence the
Theorem 1.3 follows in the final section 5.

2 Ordinals for weakly compact cardinals

In this section iterated Skolem hulls Hα,n(X) of sets X of ordinals, ordinals
Ψκ,nγ for regular ordinals κ (K < κ ≤ I), and classes Mhαn[Θ] are defined for

finite sets Θ of ordinals. It is shown that for each n,m < ω, K ∈Mh
ωm(I+1)
n in

ZF+ (V = L) assuming K is a weakly compact cardinal.
Let Ordε and <ε are ∆-predicates as described before Theorem 1.4. In the

definition of Ordε and <ε, I with its code ⌈I⌉ = 〈1, 0〉 is intended to denote the
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least weakly inaccessible cardinal above the least weakly compact cardinal K,
though we do not assume the existence of weakly inaccessible cardinals above
K anywhere in this paper. We are working in ZF + (V = L) assuming K is a
weakly compact cardinal.

Reg denotes the set of uncountable regular ordinals above K, while R :=
Reg ∩ {ρ : K < ρ < I} and R+ := R ∪ {I}. κ, λ, ρ, π denote elements of R. κ+

denotes the least regular ordinal above κ. Θ denotes finite sets of ordinals≤ K.
Θ ⊂fin X iff Θ is a finite subset ofX . Ord denotes the class of ordinals less than
I, while Ordε the class of codes of ordinals less than the next epsilon number
εI+1 to I.

For admissible ordinals σ and X ⊂ Lσ, Hull
σ
Σn

(X) denotes the Σn-Skolem
hull ofX over Lσ, cf. [7]. F (y) = FΣn(y;σ,X) denotes the Mostowski collapsing
F : HullσΣn

(X) ↔ Lγ of HullσΣn
(X) for a γ. Let FΣn(σ;σ,X) := γ. When σ = I,

we write FΣn

X (y) for FΣn(y; I,X).
In what follows n ≥ 1 denotes a fixed positive integer .

Codeε denotes the union of codes Ordε of ordinals< εI+1, and codes LI :=
{〈0, x〉 : x ∈ L} of sets x in the universe L.

For α, β ∈ Ordε, α⊕ β, ω̃α ∈ Ordε denotes the codes of the sum and expo-
nentiation, resp.

Let

I := 〈1, 0〉, ωn(I + 1) := ω̃n(〈3, 〈1, 0〉, 〈0, 1〉〉), and LI := {〈0, x〉 : x ∈ L}

and for codes X,Y ∈ Codeε

X ⊂ε Y :⇔ ∀x ∈ε X(x ∈ε Y ).

For simplicity let us identify the code x ∈ Codeε with the ‘set’ coded by x,
and ∈ε [<ε] is denoted by ∈ [<], resp. when no confusion likely occurs. For
example, the code 〈0, x〉 is identified with the set {〈0, y〉 : y ∈ x} of codes.

Define simultaneously the classesHα,n(X) ⊂ LI∪{x ∈ Ordε : x <ε ωn+1(I+
1)}, and the ordinals Ψκ,nα (κ ∈ R+) for α <ε ωn+1(I + 1) and sets X ⊂ LI as
follows. We see that Hα,n(X) and Ψκ,nα are (first-order) definable as a fixed
point in ZF+ (V = L) cf. Proposition 2.4.

Hα,n is an operator in the sense defined below.

Definition 2.1 By an operator we mean a map H, H : P(LI) → P(LI ∪ {x ∈
Ordε : x <ε ωn+1(I + 1)}), such that

1. ∀X ⊂ LI [X ⊂ H(X)].

2. ∀X,Y ⊂ LI [Y ⊂ H(X) ⇒ H(Y ) ⊂ H(X)].

For an operator H and Θ,Λ ⊂ LI , H[Θ](X) := H(X ∪Θ), and H[Θ][Λ] :=
(H[Θ])[Λ], i.e., H[Θ][Λ](X) = H(X ∪Θ ∪ Λ).

Obviously H[Θ] is an operator.
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Definition 2.2 Hα,n(X) is a Skolem hull of {〈0, 0〉,K, I} ∪X under the func-
tions ⊕, α 7→ ω̃α, κ 7→ κ+ (κ ∈ R),Ψκ,n ↾α (κ ∈ R+), the Skolem hullings:

X 7→ HullIΣn
(X ∩ I)

and the Mostowski collapsing functions

x = Ψκ,nγ 7→ FΣ1

x∪{κ} (κ ∈ R)

and
x = ΨI,nγ 7→ FΣn

x

1. (Inductive definition of Hα,n(X)).

(a) {〈0, 0〉,K, I} ∪X ⊂ Hα,n(X).

(b) x, y ∈ Hα(X) ⇒ x⊕ y, ω̃x ∈ Hα,n(X).

(c) κ ∈ Hα,n(X) ∩ ({K} ∪R) ⇒ κ+ ∈ Hα,n(X).

(d) γ ∈ Hα,n(X) ∩ α ⇒ ΨI,nγ ∈ Hα,n(X).

(e) If κ ∈ Hα,n(X)∩R, γ ∈ Hα,n(X)∩α and κ ∈ Hγ,n(κ), then Ψκ,nγ ∈
Hα,n(X).

(f)

HullIΣn
(Hα,n(X) ∩ LI) ∩ Code

ε ⊂ Hα,n(X).

Namely for any Σn-formula ϕ[x, ~y ] in the language {∈} and pa-
rameters ~a ⊂ Hα,n(X) ∩ LI , if b ∈ LI , (LI ,∈ε) |= ϕ[b,~a ] and
(LI ,∈ε) |= ∃!xϕ[x,~a ], then b ∈ Hα,n(X).

(g) If κ ∈ Hα,n(X) ∩ R, γ ∈ Hα,n(X) ∩ α, x = Ψκ,nγ ∈ Hα,n(X), κ ∈

Hγ,n(κ) and δ ∈ (HullIΣ1
(x∪{κ})∪{I})∩Hα,n(X), then FΣ1

x∪{κ}(δ) ∈

Hα,n(X).

(h) If γ ∈ Hα,n(X) ∩ α, x = ΨI,nγ ∈ Hα,n(X), and δ ∈ (HullIΣn
(x) ∪

{I}) ∩Hα,n(X), then FΣn
x (δ) ∈ Hα,n(X).

2. (Definition of Ψκ,nα).

Assume κ ∈ R+ and κ ∈ Hα,n(κ). Then

Ψκ,nα := min
ε

{β <ε κ : κ ∈ Hα,n(β), Hα,n(β) ∩ κ ⊂ε β}.

Definition 2.2 is essentially the same as in [7].
The classes Mhαn[Θ] are defined for n < ω, α < εI+1, and Θ ⊂fin (K + 1).

Definition 2.3 (Mhαn[Θ])
Let Θ ⊂fin (K + 1) and K ≥ π ∈ Reg. Then

π ∈Mhαn[Θ] :⇔ Hα,n(π) ∩K ⊂ε π&α ∈ Hα,n[Θ](π)

& ∀ξ ∈ Hξ,n[Θ ∪ {π}](π) ∩ α[π ∈M(Mhξn[Θ ∪ {π}])] (3)
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where ∀ξ ∈ Hξ,n[Θ ∪ {π}](π) ∩ α[· · ·] is a short hand for ∀ξ <ε α[ξ ∈ Hξ,n[Θ ∪
{π}](π) ∩ α → · · ·].

Mhαn :=Mhαn[{K}] =Mhαn[∅].

The following Propositions 2.4 and 2.5 are easy to see.

Proposition 2.4 Each of x = Hα,n(β) (α ∈ Ordε, β <ε I), β = Ψκ,nα (κ ∈
R+) and x =Mhαn[Θ] is a Σn+1-predicate as fixed points in ZF+ (V = L).

Proposition 2.5 (α, y) 7→ Hα,n[Θ](y) is weakly monotonic in the sense that

α ≤ε α′ ∧ y ⊂ y′ ∧ x = Hα,n[Θ](y) ∧ x′ = Hα′,n[Θ](y′) → x ⊂ x′.

Also (α, y) 7→ Hα,n[Θ](y) is continuous in the sense that if α = supi∈I αi

is a limit ordinal with an increasing sequence {αi}i∈I and y =
⋃

j∈J yj with a
directed system {yj}j∈J , then

x = Hα,n[Θ](β) ∧ ∀i ∈ I∀j ∈ J(xi,j = Hαi,n[Θ](yj)) → x =
⋃

i∈I,j∈J

xi,j .

Let An(α) denote the conjunction of ∀β <ε I∃!x[x = Hα,n(β)], ∀κ ∈
R+∀x[κ ∈ x = Hα,n(κ) → ∃!β(β = Ψκ,nα)] and ∀Θ ⊂fin (K + 1)∃!x[x =
Mhαn[Θ]].

The Σn+1-formula θn(x) in Theorem 1.3 is defined to be

θn(x) :≡ ∃y[y =Mhωn(I+1)
n ∧ x ∈ y].

The following Lemma 2.6.3 shows Theorem 1.3.1.
card(x) denotes the cardinality of sets x.

Lemma 2.6 For each n,m < ω, ZF+ (V = L) proves the followings.

1. y = Hα,n(x) → card(y) ≤ max{card(x),ℵ0}.

2. ∀α <ε ωm(I + 1)An(α).

3. If K is weakly compact and Θ ⊂fin (K + 1), then K ∈ Mh
ωm(I+1)
n [Θ] ∩

M(Mh
ωm(I+1)
n [Θ]).

Proof.
2.6.2. We show that An(α) is progressive, i.e., ∀α <ε ωm(I + 1)[∀γ <ε

αAn(γ) → An(α)].
Assume ∀γ <ε αAn(γ) and α <ε ωm(I + 1). ∀β <ε I∃!x[x = Hα,n(β)]

follows from IH and the Replacement.
Next assume κ ∈ R+ and κ ∈ Hα,n(κ). Then ∃!β(β = Ψκ,nα) follows from

the regularity of κ and Proposition 2.5.
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∃!x[x =Mhαn[Θ]] is easily seen from IH.

2.6.3. Suppose K is Π1
1-indescribable. We show

Bn(α) :⇔ ∀Θ ⊂fin (K + 1)[α ∈ Hα,n[Θ](K) → K ∈Mhαn[Θ] ∩M(Mhαn[Θ])]

is progressive in α.
Suppose ∀ξ <ε αBn(ξ), Θ ⊂fin (K + 1) and α ∈ Hα,n[Θ](K). We have

to show that Mhαn[Θ] meets every club subset C0 of K. K ∈ Mhαn[Θ] fol-
lows from K ∈ M(Mhαn[Θ]), cf. Proposition 2.9.2. We can assume that
∀π ∈ C0[(Hα,n(π) ∩ K ⊂ π) ∧ (α ∈ Hα,n[Θ](π))] since both of {π < K :
Hα,n(π) ∩ K ⊂ π} and {π < K : α ∈ Hα,n[Θ](π)} are club in K.

Since ∀π ≤ K[card(Hα,n[Θ ∪ {π}](π)) ≤ π], pick an injection f : Hα,n[Θ ∪
{K}](K) → K so that f”Hα,n[Θ ∪ {π}](π) ⊂ π for any weakly inaccessibles
π ≤ K.

Let R0 = {f(α)}, R1 = C0, R2 = {f(ξ) : ξ ∈ Hξ,n[Θ](K) ∩ α}, R3 =⋃
{(Mhξn[Θ ∪ {π}] ∩ K) × {f(π)} × {f(ξ)} : ξ ∈ Hξ,n[Θ](K) ∩ α, π ≤ K}, and

R4 = {(f(β), f(γ)) : {β, γ} ⊂ Hα,n[Θ ∪ {K}](K), β < γ}.
By IH we have ∀ξ ∈ Hξ,n[Θ](K)∩α[K ∈M(Mhξn[Θ])]. Hence 〈VK,∈, Ri〉i≤4

enjoys a Π1
1-sentence saying that K is weakly inaccessible, R0 6= ∅, R1 is a club

subset of K and

ϕ :⇔ ∀C:club ∀x, y[R2(x) ∧ θ(R4, y) → C ∩ {a : R3(a, y, x)} 6= ∅]

where θ(R4, y) is a Σ1
1-formula such that for any π ≤ K

Vπ |= θ(R4, y) ⇔ y = f(π)

Namely θ(R4, y) says that there exists a function G on the class Ord of or-
dinals such that ∀β, γ ∈ Ord[(β < γ ↔ R4(G(β), G(γ)) ∧ (G(β) < y)] and
∀z(R4(z, y) → ∃β ∈ Ord(G(β) = z)).

By the Π1
1-indescribability of K, pick a π < K such that 〈Vπ ,∈, Ri ∩ Vπ〉i≤4

enjoys the Π1
1-sentence.

We claim π ∈ C0 ∩Mhαn[Θ]. π is weakly inaccessible, f(α) ∈ Vπ and C0 is
club in π, and hence π ∈ C0. It remains to see ∀ξ ∈ Hξ,n[Θ ∪ {π}](π) ∩ α[π ∈
M(Mhξn[Θ∪{π}])]. This follows from the fact that ϕ holds in 〈Vπ ,∈, Ri∩Vπ〉i≤4,
and ∀ξ ∈ Hξ,n[Θ ∪ {π}](π) ∩ α(f(ξ) ∈ Vπ) by f”Hα,n[Θ ∪ {π}](π) ⊂ π and
Hξ,n[Θ ∪ {π}](π) ⊂ Hξ,n[Θ](K).

Thus K ∈M(Mhαn[Θ]). ✷

Definition 2.7 H(n) denotes a subset of Hωn(I+1),n(∅) such that every ordinal
is hereditarily less than ωn(I + 1).

This means α ∈ H(n) ⇒ α < ωn(I + 1), etc.

Corollary 2.8 For each n < ω, H(n) is well-defined in ZF+ (V = L).

Let us see some elementary facts.
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Proposition 2.9 1. α ∈ Hα,n[Θ](π)& π ∈Mhαn[Θ ∪ {ρ}] ⇒ π ∈Mhαn[Θ].

2. π ∈M(Mhαn[Θ ∪ {π}]) ⇒ π ∈Mhαn[Θ ∪ {π}].

3. π ∈ Mhαn[Θ]& ξ ∈ Hξ,n[Θ ∪ {π}](π) ∩ α ⇒ π ∈ Mhξn[Θ ∪ {π}], and
π ∈Mhαn[Θ]& ξ ∈ Hξ,n[Θ](π) ∩ α ⇒ π ∈Mhξn[Θ].

Proof.
2.9.2. This is seen from Proposition 2.9.1.

2.9.3. This is seen from Proposition 2.9.2.
✷

2.1 Greatly Mahlo cardinals

Let us compare the classMhαn[Θ] with Rathjen’s classMα in [12]. The difference
lies in augmenting finite sets Θ of ordinals, which are given in advance. Moreover
the finite set grows when we step down to previously defined classes, cf. (3).
For example if an ordinal ξ < α is Σ1-definable from {π, π+}, then ξ ∈ Hξ,n[Θ∪
{π}](π) for n ≥ 1. Hence Mhξn[Θ ∪ {π}] is stationary in π for such an ordinal
ξ < α if π ∈Mhαn[Θ]. Cf. Case 2 in the proof of Lemma 4.26 below.

This yields that any σ with σ ∈ Mhσ
+

n is a greatly Mahlo cardinal in the
sense of Baumgartner-Taylor-Wagon[9]. Moreover if K ∈MhK+1

n , then the class
of the greatly Mahlo cardinals below K is stationary in K as seen in Proposition
2.10.

Mα (α < K+) denotes the set of α-weakly Mahlo cardinals defined as follows.
M0 := Reg∩K, Mα+1 =M(Mα), Mλ =

⋂
{M(Mα) : α < λ} for limit ordinals

λ with cf(λ) < K, and Mλ := △{M(Mλi) : i < K} for limit ordinals λ with
cf(λ) = K, where supi<K λi = λ and the sequence {λi}i<K is chosen so that it
is the <L-minimal such sequence.

In the last case for π < K, π ∈Mλ ⇔ ∀i < π(π ∈M(Mλi)).

Proposition 2.10 For n ≥ 1 and σ ≤ K, the followings are provable in ZF +
(V = L).

1. If σ ∈ Θ, π ∈ Mhαn[Θ] ∩ σ, and α ∈ HullIΣ1
({σ, σ+} ∪ π) ∩ σ+, then

π ∈Mα.

2. σ ∈Mhσ
+

n [Θ] → ∀α < σ+(σ ∈M(Mα)).

3. The class of the greatly Mahlo cardinals below K is stationary in K if
K ∈MhK+1

n .

Proof.
2.10.1 by induction on α < σ+. Suppose σ ∈ Θ, π ∈ Mhαn[Θ] ∩ σ and

α ∈ HullIΣ1
({σ, σ+} ∪ π) ∩ σ+.

First consider the case when cf(α) = σ, and let {αi}i<σ be the <L-minimal
sequence such that supi<σ αi = α. Then {αi}i<σ ∈ HullIΣ1

({α, σ}) ⊂ HullIΣ1
({σ, σ+}∪

9



π). For i < π, αi ∈ HullIΣ1
({σ, σ+} ∪ π) ∩ α ⊂ Hαi,n[Θ ∪ {π}](π) ∩ α by

σ ∈ Θ. π ∈ Mhαn[Θ] yields π ∈ M(Mhαi
n [Θ ∪ {π}]). Now for a club subset

C in π, pick a ρ < π such that ρ ∈ C ∩Mhαi
n [Θ ∪ {π}]. We can assume that

αi ∈ HullIΣ1
({σ, σ+} ∪ ρ) by αi ∈ HullIΣ1

({σ, σ+} ∪ π). Thus IH yields ρ ∈Mαi ,
and hence π ∈M(Mαi) for any i < π.

Second consider the case when cf(α) < σ. Then cf(α) ∈ HullIΣ1
({α})∩ σ ⊂

HullIΣ1
({σ, σ+} ∪ π) ∩ σ ⊂ Hα,n[{σ}](π) ∩ σ ⊂ π by π ∈ Mhαn[Θ] and σ ∈ Θ.

Thus cf(α) < π. Pick a cofinal sequence {αi}i<cf(α) ∈ HullIΣ1
({σ, σ+} ∪ π).

Then for any i < cf(α) < π we have αi ∈ HullIΣ1
({σ, σ+} ∪ π) ∩ α, and hence

π ∈ M(Mhαi
n [Θ ∪ {π}]). As in the first case we see that π ∈ M(Mαi) for any

i < cf(α).
Finally let α = β+1. Then β ∈ HullIΣ1

({σ, σ+}∪π) together with IH yields
π ∈M(Mβ).

2.10.2. Suppose σ ∈ Mhσ
+

n [Θ] and ∃α < σ+(σ 6∈ M(Mα)). Let α < σ+ be the
minimal ordinal such that σ 6∈ M(Mα), and C be a club subset of σ such that
C ∩Mα = ∅. Then α ∈ HullIΣ1

({σ, σ+}) ∩ σ+ ⊂ Hα,n[Θ ∪ {σ}](σ) ∩ σ+. By

σ ∈Mhσ
+

n [Θ] we have σ ∈M(Mhαn[Θ∪{σ}]). Pick a π ∈ C∩Mhαn [Θ∪{σ}]∩σ.
Proposition 2.10.1 yields π ∈Mα. A contradiction.

2.10.3. If K ∈ MhK+1
n , then K ∈ M(MhKn ). Let σ ∈ MhKn ∩ K. Then σ+ ∈

Hσ+,n[{σ}](σ) ∩ K, and hence σ ∈ M(Mhσ
+

n [{σ}]). Proposition 2.9.2 yields

σ ∈Mhσ
+

n [{σ}]. From Proposition 2.10.2 we see that σ is greatly Mahlo. ✷

3 A theory for weakly compact cardinals

In this section the set theory ZF + (V = L) + (K is weakly compact) is para-
phrased to another set theory T(K, I) as in [7].

Let K be the least weakly compact cardinal, and I > K the least weakly
inaccessible cardinal above K. κ, λ, ρ ranges over uncountable regular ordinals
such that K < κ, λ, ρ < I.

In the following Definition 3.2, the predicate P is intended to denote the
relation

P (λ, x, y) ⇔ x = FΣ1

x∪{λ}(λ)& y = FΣ1

x∪{λ}(I) := rng(FΣ1

x∪{λ}) ∩Ord

and the predicate PI,n(x) is intended to denote the relation

PI,n(x) ⇔ x = FΣn

x (I).

Definition 3.1 1. Let ~X = X0, . . . , Xn−1 be a list of unary predicates. A
stratified formula with respect to the variables ~x = x0, . . . , xn−1 is a for-

mula ϕ[~x ] in the language {∈} obtained from a (first-order) formula ϕ[ ~X ]

in the language {∈}∪ ~X by replacing any atomic formula Xi(z) by z ∈ xi
for i < n.
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2. For a formula ϕ and a set x, ϕx denotes the result of restricting every
unbounded quantifier ∃z, ∀z in ϕ to ∃z ∈ x, ∀z ∈ x.

3. α ∈ Ord :⇔ ∀x ∈ a∀y ∈ x(y ∈ a) ∧ ∀x, y ∈ a(x ∈ y ∨ x = y ∨ y ∈ x), and
by α < β we tacitly assume that α, β are ordinals, i.e., α < β :⇔ {α, β} ⊂
Ord ∧ α ∈ β.

Definition 3.2 T(K, I, n) denotes the set theory defined as follows.

1. Its language is {∈, P, PI,n, Reg,K} for a ternary predicate P , unary pred-
icates PI,n and Reg, and an individual constant K.

2. Its axioms are obtained from those of Kripke-Platek set theory with the ax-
iom of infinity KPω in the expanded language, the axiom of constructibil-
ity, V = L together with the axiom schemata saying that

(a) the ordinals κ with Reg(κ) is an uncountable regular ordinal> K
(Reg(κ) → K < κ ∈ Ord) and (Reg(κ) → a ∈ Ord ∩ κ →
∃x, y ∈ Ord∩κ[a < x∧P (κ, x, y)]), and the ordinal x with P (κ, x, y)
is a critical point of the Σ1 elementary embedding from an Ly

∼=
HullIΣ1

(x∪ {κ}) to the universe LI (P (κ, x, y) → {x, y} ⊂ Ord∧ x <
y < κ ∧ Reg(κ) and P (κ, x, y) → a ∈ Ord ∩ x → ϕ[κ, a] → ϕy [x, a]
for any Σ1-formula ϕ in the language {∈}),

(b) there are cofinally many regular ordinals (∀x ∈ Ord∃y[x ≥ K → y >

x ∧Reg(y)]),

(c) the ordinal x with PI,n(x) is a critical point of the Σn elementary

embedding from Lx
∼= HullIΣn

(x) to the universe LI (PI,n(x) → x ∈
Ord and PI,n(x) → a ∈ Ord ∩ x→ ϕ[a] → ϕx[a] for any Σn-formula
ϕ in the language {∈}), and there are cofinally many such ordinals
x (K < a ∈ Ord → ∃x ∈ Ord[a < x ∧ PI,n(x)]),

(d) the axiom ‘K is uncountable regular’ is:

(K > ω) ∧ ∀α < K∀f ∈ αK∃β < K(f”α ⊂ β)

and the axiom saying that ∀B ⊂ K[K ∈ M(B) → ∃ρ < K(ρ ∈
M(B) ∧Reg(ρ))], which is codified by the following (4).

∀B ∈ LK+ [B ⊂ K → ¬τ(B,K) → ∃ρ < K(¬τ(B, ρ) ∧Reg(ρ))] (4)

where
τ(B, ρ) :⇔ ∃C ⊂ ρ[(C is club)ρ ∧ (B ∩ C = ∅)] (5)

and (C is club)ρ is a formula saying that C is a club subset of ρ.

Namely τ(B, ρ) says that the set B is thin, i.e., non-stationary in ρ.

Note that (C is club)ρ∧(B∩C = ∅) is stratified with respec to B,C,
and τ(B, ρ) is stratified with respec to B.
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The following Lemma 3.3 is seen as in [7].

Lemma 3.3 T(K, I) :=
⋃

n∈ω T(K, I, n) is equivalent to the set theory ZF +
(V = L) + (K is weakly compact).

4 Operator controlled derivations for weakly com-

pact cardinals

In this section, operator controlled derivations are first introduced, and infer-
ences (RefK) for Π1

1-indescribability are then eliminated from operator con-
trolled derivations of Σ1

2-sentences ϕ
VK over K.

In what follows n denotes a fixed positive integer. We tacitly assume that
any ordinal is in H(n).

For α <ε I = 〈1, 0〉, Lα = {〈0, x〉 : x ∈ L(α)1}. LI = {〈0, x〉 : x ∈
L} =

⋃
α<εI Lα denotes the universe. Both (LI ,∈ε) |= A and ‘A is true’ are

synonymous with A.

4.1 An intuitionistic fixed point theory FiXi(ZFLKn)

For the fixed positive integer n, ZFLKn denotes the set theory ZF + (V =

L) + (K ∈ Mh
ωn(I+1)
n ) in the language {∈,K} with an individual constant K.

Let us also denote the set theory ZF+ (V = L) + (K is weakly compact) in the
language {∈,K} by ZFLK.

To analyze the theory ZFLK, we need to handle the relation (Hγ [Θ0],Θ, κ, n) ⊢a
b

Γ defined in subsection 4.3, where n is the fixed integer, γ, κ, a, b are codes of
ordinals with a <ε ωn(I + 1), b <ε I ⊕ ω and κ ≤ε I the code of a regular ordi-
nal, Θ0,Θ are finite subsets of LI and Γ a sequent, i.e., a finite set of sentences.
Usually the relation is defined by recursion on ‘ordinals’ a, but such a recursion
is not available in ZFLKn since a may be larger than I. Instead of the recursion,
the relation is defined for each n < ω, as a fixed point,

Hn(γ,Θ0,Θ, κ, a, b,Γ) ⇔ (Hγ,n[Θ0],Θ, κ, n) ⊢
a
b Γ (6)

In this way the whole proof in this section is formalizable in an intuitionistic
fixed point theory FiXi(ZFLKn) over ZFLKn.

Throughout this section we work in an intuitionistic fixed point theory
FiXi(ZFLKn) over ZFLKn. The intuitionistic theory FiXi(ZFLKn) is introduced
in [7], and shown to be a conservative extension of ZFLKn. Let us reproduce
definitions and results on FiXi(ZFLKn) here.

Fix an X-strictly positive formula Q(X, x) in the language {∈,K,=, X} with
an extra unary predicate symbol X . In Q(X, x) the predicate symbol X occurs
only strictly positive. This means that the predicate symbol X does not occur
in the antecedent ϕ of implications ϕ → ψ nor in the scope of negations ¬
in Q(X, x). The language of FiXi(ZFLKn) is {∈,K,=, Q} with a fresh unary
predicate symbol Q. The axioms in FiXi(ZFLKn) consist of the following:
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1. All provable sentences in ZFLKn (in the language {∈,K,=}).

2. Induction schema for any formula ϕ in {∈,K,=, Q}:

∀x(∀y ∈ xϕ(y) → ϕ(x)) → ∀xϕ(x) (7)

3. Fixed point axiom:
∀x[Q(x) ↔ Q(Q, x)].

The underlying logic in FiXi(ZFLKn) is defined to be the intuitionistic (first-
order predicate) logic (with equality).

(7) yields the following Lemma 4.1.

Lemma 4.1 Let <ε denote a ∆1-predicate as described before Theorem 1.4.
For each n < ω and each formula ϕ in {∈,K,=, Q},

FiXi(ZFLKn) ⊢ ∀x(∀y <ε xϕ(y) → ϕ(x)) → ∀x <ε ωn(I + 1)ϕ(x).

The following Theorem 4.2 is seen as in [6, 7].

Theorem 4.2 FiXi(ZFLKn) is a conservative extension of ZFLKn.

In what follows we work in FiXi(ZFLKn) for a fixed integer n.

4.2 Classes of sentences

K ∈ L = LI =
⋃

α∈Ord Lα denotes a transitive and wellfounded model of
ZF+(V = L), where Lα+1 is the set of Lα-definable subsets of Lα. Ord denotes
the class of all ordinals in L, and I the least ordinal not in L, while Ordε denotes
the codes of ordinals less than ωn(I + 1).

Definition 4.3 For a ∈ L, rkL(a) denotes the L-rank of a.

rkL(a) := min{α ∈ Ord : a ∈ Lα+1}.

If a ∈ b ∈ L, then a ∈ b ⊂ Lβ for β = rkL(b) and a ∈ Lβ. Hence rkL(a) < β =
rkL(b).

The languageLc is obtained from the language {∈, P, PI,n, Reg,K} by adding
names(individual constants) ca of each set a ∈ L. ca is identified with a.

Then formulae in Lc is defined as usual. Unbounded quantifiers ∃x, ∀x are
denoted by ∃x ∈ LI , ∀x ∈ LI , resp.

For formulae A in Lc, qk(A) denotes the finite set of L-ranks rkL(a) of sets
a which are bounds of ‘bounded’ quantifiers ∃x ∈ a, ∀x ∈ a occurring in A.
Moreover k(A) denotes the set of L-ranks of sets occurring in A, while kE(A)
denotes the set of L-ranks of sets occurring in an unstratifed position in A.
Both k(A) and kE(A) are defined to include L-ranks of bounds of ‘bounded’
quantifiers. Thus qk(A) ⊂ kE(A) ⊂ k(A) ≤ I. By definition we set 0 ∈ qk(A).

In the following definition, V ar denotes the set of variables and set rkL(x) :=
0 for variables x ∈ V ar.
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Definition 4.4 1. k(¬A) = k(A) and similarly for kE , qk.

2. qk(M) = {0} for any literal M .

3. kE(M) = k(M) = {rkL(t) : t ∈ ~t } ∪ {0} for literals Q(~t ) with predicates
Q ∈ {P, PI,n, Reg}.

4. k(t ∈ s) = {rkL(t), rkL(s), 0} and kE(t ∈ s) = {rkL(t), 0}.

5. k(A0 ∨ A1) = k(A0) ∪ k(A1) and similarly for kE , qk.

6. For t ∈ LI∪{LI}∪V ar, k(∃x ∈ t A(x)) = {rkL(t)}∪k(A(x)) and similarly
for kE , qk.

For example kE(a ∈ b) = {rkL(a), 0}, and qk(∃x ∈ aA(x)) = {rkL(a)} ∪
qk(A(x)).

Definition 4.5 1. A ∈ ∆0 iff there exists a ∆0-formula θ[~x ] in the language
{∈} and terms ~t such that A ≡ θ[~t ]. This means that A is bounded, and
the predicates P, PI,n, Reg do not occur in A.

2. Putting Σ0 := Π0 := ∆0, the classes Σm and Πm of formulae in the lan-
guage {∈} with terms are defined as usual using quantifiers ∃x ∈ LI , ∀x ∈
LI , where by definition Σm ∪ Πm ⊂ Σm+1 ∩ Πm+1.

Each formula in Σm ∪ Πm is in prenex normal form with alternating un-
bounded quantifiers and ∆0-matrix.

3. A ∈ ∆0(λ) iff there exists a ∆0-formula θ[~x ] in the language {∈} and
terms ~t such that A ≡ θ[~t ] and k(A) < λ.

4. A ∈ Σ1(λ) iff either A ∈ ∆0(λ) or A ≡ ∃x ∈ LλB with B ∈ ∆0(λ).

Note that Σ(λ) ⊂ ∆0 for any λ < I.

5. The class of sentences Σm(λ),Πm(λ) (m < ω) are defined as usual.

6. Σ1
0(λ) denotes the set of first-order formulae on Lλ, i.e., Σ

1
0(λ) :=

⋃
m∈ω Σm(λ).

Note that the predicates P, PI,n, Reg do not occur in Σm-formulae nor in
Σ1

0(λ)-formulae.

Definition 4.6 A set ΣΣn+1(λ) of sentences is defined recursively as follows.

1. Σn+1 ⊂ ΣΣn+1(λ).

2. Each literal including Reg(a), P (a, b, c), PI,n(a) and their negations is in
ΣΣn+1(λ).

3. ΣΣn+1(λ) is closed under propositional connectives ∨,∧.

4. Suppose ∀x ∈ bA(x) 6∈ ∆0. Then ∀x ∈ bA(x) ∈ ΣΣn+1(λ) iff A(∅) ∈
ΣΣn+1(λ) and rkL(b) < λ.

14



5. Suppose ∃x ∈ bA(x) 6∈ ∆0. Then ∃x ∈ bA(x) ∈ ΣΣn+1(λ) iff A(∅) ∈
ΣΣn+1(λ) and rkL(b) ≤ λ.

Definition 4.7 Let us extend the domain dom(FΣ1

x∪{κ}) = HullIΣ1
(x ∪ {κ}) of

Mostowski collapse to formulae.

dom(FΣ1

x∪{κ}) = {A ∈ Σ1 ∪ Π1 : k(A) ⊂ HullIΣ1
(x ∪ {κ})}.

For A ∈ dom(FΣ1

x∪{κ}), F
Σ1

x∪{κ}”A denotes the result of replacing each constant γ

by FΣ1

x∪{κ}(γ), each unbounded existential quantifier ∃z ∈ LI by ∃z ∈ L
F

Σ1
x∪{κ}

(I)
,

and each unbounded universal quantifier ∀z ∈ LI by ∀z ∈ L
F

Σ1
x∪{κ}

(I)
.

For sequent, i.e., finite set of sentences Γ ⊂ dom(FΣ1

x∪{κ}), put F
Σ1

x∪{κ}”Γ =

{FΣ1

x∪{κ}”A : A ∈ Γ}.

Likewise the domain dom(FΣn
x ) = HullIΣn

(x) is extended to

dom(FΣn
x ) = {A ∈ Σn ∪ Πn : k(A) ⊂ HullIΣn

(x)}

and for formula A ∈ dom(FΣn
x ), FΣn

x ”A, and sequent Γ ⊂ dom(FΣn
x ), FΣn

x ”Γ
are defined similarly.

Proposition 4.8 For F = FΣ1

x∪{κ}, F
Σn
x and A ∈ dom(F )

LI |= A↔ F”A.

The assignment of disjunctions and conjunctions to sentences is defined as
in [7].

Definition 4.9 1. If M is one of the literals a ∈ b, a 6∈ b, then for J := 0

M :≃

{ ∨
(Aι)ι∈J if M is false (in LI)∧
(Aι)ι∈J if M is true

2. (A0 ∨A1) :≃
∨
(Aι)ι∈J and (A0 ∧ A1) :≃

∧
(Aι)ι∈J for J := 2.

3.

Reg(a) :≃
∨

(a = a)ι∈J and ¬Reg(a) :≃
∧

(a 6= a)ι∈1

with

J :=

{
1 if a ∈ R

0 otherwise
.

4.

P (a, b, c) :≃
∨

(a = a)ι∈J and ¬P (a, b, c) :≃
∧

(a 6= a)ι∈J

with

J :=

{
1 if a ∈ R& ∃α ∈ Ordε[b = Ψa,nα&α ∈ Hα(b)& c = FΣ1

b∪{a}(I)]

0 otherwise
.
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5.

PI,n(a) :≃
∨

(a = a)ι∈J and ¬PI,n(a) :≃
∧

(a 6= a)ι∈J

with

J :=

{
1 if ∃α ∈ Ordε[a = ΨI,nα&α ∈ Hα(a)]
0 otherwise

.

6. Let (∃z ∈ b θ[z]) ∈ Σn for b ∈ LI ∪ {LI}, and (∃z ∈ b θ[z]) 6∈ Σ1
0(K

+).
Then for the set

µz ∈ b θ[z] := min
<L

{d : (d ∈ b ∧ θ[d]) ∨ (¬∃z ∈ b θ[z] ∧ d = 0)} (8)

with a canonical well ordering <L on L , and J = {d}

∃z ∈ b θ[z] :≃
∨

(d ∈ b ∧ θ[d])d∈J (9)

∀z ∈ b¬θ[z] :≃
∧

(d ∈ b→ ¬θ[d)d∈J

where d ∈ b denotes a true literal, e.g., d 6∈ d when b = LI.

This case is applied only when ∃z ∈ b θ[z] is a formula in {∈} ∪ LI , and
(∃z ∈ b θ[z]) ∈ Σn but (∃z ∈ b θ[z]) 6∈ Σ1

0(K
+).

7. Otherwise set for a ∈ LI ∪ {LI}

∃x ∈ aA(x) :≃
∨

(A(b))b∈J and ∀x ∈ aA(x) :≃
∧

(A(b))b∈J

for
J := {b : b ∈ a}.

This case is applied if one of the predicates P, PI,n, Reg occurs in ∃x ∈
aA(x) , or (∃x ∈ aA(x)) 6∈ Σn, or (∃x ∈ aA(x)) ∈ Σ1

0(K
+).

In particular we have

¬τ(B,K) :≃
∧

{(C 6⊂ K) ∨ ¬(C is club)K ∨ (B ∩ C 6= ∅) : C ∈ LK+}

τ(B,K) :≃
∨

{(C ⊂ K) ∧ (C is club)K ∧ (B ∩ C = ∅) : C ∈ LK+}

where
τ(B, ρ) :⇔ ∃C ⊂ ρ([(C is club)ρ ∧ (B ∩ C = ∅)] (5)

The definition of the rank rk(A) of sentences A in [7] is slightly changed as
follows. The rank rk(A) of sentences A is defined by recursion on the number
of symbols occurring in A.

Definition 4.10 1. rk(¬A) := rk(A).
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2. rk(a ∈ b) := rk(a 6∈ b) := 0.

3. rk(Reg(α)) := rk(P (α, β, γ)) := rk(PI,n(α)) := 1.

4. rk(A0 ∨ A1) := max{rk(A0), rk(A1)}+ 1.

5. rk(∃x ∈ aA(x)) := max{ωα, rk(A(∅)) + 2} for α = rkL(a).

Proposition 4.11 Let A ≃
∨
(Aι)ι∈J or A ≃

∧
(Aι)ι∈J .

1. A ∈ ΣΣn+1(λ) ⇒ ∀ι ∈ J(Aι ∈ ΣΣn+1(λ)).

2. For an ordinal λ ≤ I with ωλ = λ, rk(A) < λ⇒ A ∈ ΣΣn+1(λ).

3. rk(A) < I + ω.

4. rk(A) is in the Skolem hull of ωqk(A) ∪ {0, 1} under the addition with
ωqk(A) = {ωα : α ∈ qk(A)}.

5. ∀ι ∈ J(rk(Aι) < rk(A)).

Proof.
4.11.5. This is seen from the fact that a ∈ b ∈ L⇒ rkL(a) < rkL(b). ✷

4.3 Operator controlled derivations

κ, λ, σ, π ranges over R+.
Let H be an operator, Θ a finite set of ordinals, κ ∈ R+, Γ a sequent,

a ∈ Ordε and b < I + ω. We define a relation (H,Θ, κ, n) ⊢a
b Γ, which is read

‘there exists an infinitary derivation of Γ which is (κ, n)-controlled by H and Θ,
and whose height is at most a and its cut rank is less than b’.

Recall that R denotes the set of uncountable cardinals ρ such thatK < ρ < I,
and λ > K in the inference rules (Pλ) and (FΣ1

x∪{λ}).

Sequents are finite sets of sentences, and inference rules are formulated in
one-sided sequent calculus.

Definition 4.12

kEK(A) :=

{
kE(A) if A ∈ Σ1

0(K
+)

k(A) otherwise

Definition 4.13 (H,Θ, κ, n) ⊢a
b Γ holds if

kEK(Γ) :=
⋃

{kEK(A) : A ∈ Γ} ⊂ H := H(∅)& a ∈ H[Θ] (10)

and one of the following cases holds:

1. A ≃
∨
{Aι : ι ∈ J}, A ∈ Γ and for an ι ∈ J , a(ι) < a and rkL(ι) < κ ⇒

rkL(ι) < a

(H,Θ, κ, n) ⊢
a(ι)
b Γ, Aι

(H,Θ, κ, n) ⊢a
b Γ

(
∨
)
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2. A ≃
∧
{Aι : ι ∈ J}, A ∈ Γ and a(ι) < a for any ι ∈ J

{(H[{rkL(ι)}],Θ, κ, n) ⊢
a(ι)
b Γ, Aι : ι ∈ J}

(H,Θ, κ, n) ⊢a
b Γ

(
∧
)

3. rk(C) < b and an a0 < a

(H,Θ, κ, n) ⊢a0

b Γ,¬C (H,Θ, κ, n) ⊢a0

b C,Γ

(H,Θ, κ, n) ⊢a
b Γ

(cut)

4. α < λ ∈ R and {∃x < λ∃y < λ[α < x ∧ P (λ, x, y)]} ∪ Γ0 = Γ

∃x < λ∃y < λ[α < x ∧ P (λ, x, y)],Γ0
(Pλ)

5. Let λ ∈ R and x ∈ H[Θ] where for some b

x = Ψλ,nb.

If Γ = Λ ∪ (FΣ1

x∪{λ}”Γ0), Γ0 ⊂ Σ1, a0 < a and

k(Γ0) ⊂ HullIΣ1
((H ∩ x) ∪ {λ})

then
(H,Θ, κ, n) ⊢a0

b Λ,Γ0

(H,Θ, κ, n) ⊢a
b Λ, FΣ1

x∪{λ}”Γ0

(FΣ1

x∪{λ})

where FΣ1

x∪{λ} denotes the Mostowski collapse FΣ1

x∪{λ} : HullIΣ1
(x∪{λ}) ↔

L
F

Σ1
x∪{λ}

(I)
.

6. α < I and {∃x < I[α < x ∧ PI,n(x)]} ∪ Γ0 = Γ

∃x < I[α < x ∧ PI,n(x)],Γ0
(PI,n)

7. Let
x = ΨI,nb ∈ H[Θ].

If Γ = Λ ∪ (FΣn
x ”Γ0), Γ0 ⊂ Σn, a0 < a and

k(Γ0) ⊂ HullIΣn
(H ∩ x)

then
(H,Θ, κ, n) ⊢a0

b Λ,Γ0

(H,Θ, κ, n) ⊢a
b Λ, FΣn

x ”Γ0
(FΣn

x )

where FΣn
x denotes the Mostowski collapse FΣn

x : HullIΣn
(x) ↔ L

F
Σn
x (I).
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8. If max{aℓ, ar} < a, and B ⊂ K, B ∈ HullIΣ1
({K,K+}), then

(H,Θ, κ, n) ⊢aℓ

b Γ,¬τ(B,K) (H,Θ, κ, n) ⊢ar

b Γ, ∀ρ < K τ(B, ρ)

(H,Θ, κ, n) ⊢a
b Γ

(RefK)

where
τ(B, ρ) :⇔ ∃C ⊂ ρ[(C is club)ρ ∧ (B ∩ C = ∅)] (5)

which is stratified with respec to B.

An inspection to Definition 4.13 shows that there exists a strictly positive
formula Hn such that the relation (Hγ,n[Θ0],Θ, κ, n) ⊢a

b Γ is a fixed point of
Hn as in (6).

In what follows the relation should be understood as a fixed point ofHn, and
recall that we are working in the intuitionistic fixed point theory FiXi(ZFLKn)
over ZFLKn defined in subsection 4.1.

Proposition 4.14 (H,Θ, κ, n) ⊢a
b Γ&λ ≤ κ⇒ (H,Θ, λ, n) ⊢a

b Γ.

We will state some lemmata for the operator controlled derivations with
sketches of their proofs since these can be shown as in [10] and [7].

In what follows by an operator we mean an Hγ [Θ] for a finite set Θ of
ordinals.

(H, κ, n) ⊢a
b Γ :⇔ (H, ∅, κ, n) ⊢a

b Γ

Lemma 4.15 (Tautology)

(H[kEK(A)], I, n) ⊢
I+2rk(A)
0 Γ,¬A,A.

Lemma 4.16 (∆0(I)-completeness) If Γ ⊂ ∆0(I) and
∨
Γ is true, then

(H[kEK(Γ)], I, n) ⊢
I+2rk(Γ)
0 Γ

where rk(Γ) = rk(A0)# · · ·#rk(An) for Γ = {A0, . . . , An}.

Lemma 4.17 (Elimination of false sentences)

Let A be a false sentence, i.e., LI 6|= A, such that k(A) ⊂ HullIΣ1
((K + 1) ∪

{K+}) ∩ K+. Then

(H,Θ, κ, n) ⊢a
b Γ, A⇒ (H,Θ, κ, n) ⊢a

b Γ.

Proof.
Consider the case when A is a main formula of an (FΣ1

x∪{K+}) with x > K.

We have FΣ1

x∪{K+}(a) = a for any a with rkL(a) < x.

We claim FΣ1

x∪{K+}”A ≡ A. Let b ∈ k(A). Then rkL(b) ∈ HullIΣ1
((K + 1) ∪

{K+}) ∩ K+ ⊂ HullIΣ1
(x ∪ {K+}) ∩ K+ ⊂ x. Hence FΣ1

x∪{K+}(b) = b. ✷
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Lemma 4.18 (Embedding)
For each axiom A in T(K, I, n), there is an m < ω such that for any operator
H

(H[{K}], I, n) ⊢I·m
I ‘K is uncountable regular’ → A.

Proof.
The axiom for Π1

1-indescribability

∀B ∈ LK+ [B ⊂ K → ¬τ(B,K) → ∃ρ < K(¬τ(B, ρ) ∧Reg(ρ))] (4)

follows from the inference rule (RefK) and (4) ≃
∧
(B ⊂ K → ¬τ(B,K) →

∃ρ < K(¬τ(B, ρ)∧Reg(ρ))B∈LK+
for B := µB ∈ LK+(B ⊂ K∧¬τ(B,K)∧∀ρ <

K(Reg(ρ) → τ(B, ρ))) ∈ HullIΣ1
({K,K+}). ✷

Lemma 4.19 (Inversion)
Let d = µz ∈ bA[~c, z] for (∃z ∈ bA) ∈ Σn \ Σ1

0(K
+).

(H,Θ, κ, n) ⊢a
b Γ, ∃z ∈ bA[~c, z] ⇒ (H,Θ, κ, n) ⊢a

b Γ, d ∈ b ∧ A[~c, d]

and

(H,Θ, κ, n) ⊢a
b Γ, ∀z ∈ b¬A[~c, z] ⇒ (H,Θ, κ, n) ⊢a

b Γ, d ∈ b→ ¬A[~c, d]

Lemma 4.20 (Reduction)
Let C ≃

∨
(Cι)ι∈J .

1. Suppose C 6∈ {∃x < λ∃y < λ[α < x ∧ P (λ, x, y)] : α < λ ∈ R} ∪ {∃x <
I[α < x ∧ PI,n(x)] : α < I}.

Then

(H,Θ, κ, n) ⊢a
c ∆,¬C &(H, κ, n) ⊢b

c C,Γ&K ≤ rk(C) ≤ c⇒ (H,Θ, κ, n) ⊢a+b
c ∆,Γ

2. Assume C ≡ (∃x < λ∃y < λ[α < x ∧ P (λ, x, y)]) for an α < λ ∈ R and
β ∈ Hβ.

Then
(Hβ , κ, n) ⊢

a
b Γ,¬C ⇒ (Hβ+1, κ, n) ⊢

a
b Γ

3. Assume C ≡ (∃x < I[α < x ∧ PI,n(x)]) for an α < I and β ∈ Hβ.

Then
(Hβ , κ, n) ⊢

a
b Γ,¬C ⇒ (Hβ+1, κ, n) ⊢

a
b Γ

Lemma 4.21 (Predicative Cut-elimination)

1. (H, κ, n) ⊢b
c+ωa Γ& [c, c + ωa[∩({λ + 1 : λ ∈ R} ∪ {I}) = ∅& a ∈ H ⇒

(H, κ, n) ⊢ϕab
c Γ.

2. For λ ∈ R, (Hγ , κ, n) ⊢b
λ+2 Γ& γ ∈ Hγ & ⇒ (Hγ+b, κ, n) ⊢ωb

λ+1 Γ.
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3. (Hγ , κ, n) ⊢b
I+1 Γ& γ ∈ Hγ & ⇒ (Hγ+b, κ, n) ⊢ωb

I Γ.

4. (Hγ , κ, n) ⊢b
c+ωa Γ& max{a, b, c} < I & a ∈ Hγ ⇒ (Hγ+ϕab, κ, n) ⊢ϕab

c Γ.

Definition 4.22 For a formula ∃x ∈ dA and ordinals λ = rkL(d) ∈ R+, α,
(∃x ∈ dA)(∃λ↾α) denotes the result of restricting the outermost existential quan-
tifier ∃x ∈ d to ∃x ∈ Lα, (∃x ∈ dA)(∃λ↾α) ≡ (∃x ∈ LαA).

In what follows Fx,λ denotes FΣ1

x,λ when λ ∈ R, and FΣn
x when λ = I.

Lemma 4.23 (Boundedness)
Let λ ∈ R+, C ≡ (∃x ∈ dA) and C 6∈ {∃x < λ∃y < λ[α < x ∧ P (λ, x, y)] : α <
λ ∈ R} ∪ {∃x < I[α < x ∧ PI,n(x)] : α < I}. Assume that rk(C) = λ = rkL(d).

1.

(H,Θ, λ, n) ⊢a
c Λ, C & a ≤ b ∈ H ∩ λ⇒ (H,Θ, λ, n) ⊢a

c Λ, C(∃λ↾b).

2.

(H,Θ, κ, n) ⊢a
c Λ,¬C & b ∈ H ∩ λ⇒ (H,Θ, κ, n) ⊢a

c Λ,¬(C(∃λ↾b)).

Though the following Lemma 4.24(Collapsing down to I) is seen as in Lemma
5.22(Collapsing) of [7], we reproduce a proof of it since [7] has not yet been
published.

Recall that
(H, κ, n) ⊢a

b Γ :⇔ (H, ∅, κ, n) ⊢a
b Γ

Lemma 4.24 (Collapsing down to I)

Suppose γ ∈ Hγ,n[Θ] with Θ ⊂ Hγ,n(ΨI,nγ), and

Γ ⊂ ΣΣn+1(I)

Then for â = γ + ωI+a

(Hγ,n[Θ], I, n) ⊢a
I+1 Γ ⇒ (Hâ+1,n[Θ], I, n) ⊢

ΨI,nâ

ΨI,nâ
Γ.

Proof.
By induction on a.
First note that ΨI,nâ ∈ Hâ+1,n[Θ] = Hâ+1,n(Θ) since â = γ + ωI+a ∈

Hγ,n[Θ] ⊂ Hâ+1,n[Θ] by the assumption, {γ, a} ⊂ Hγ,n[Θ].
Assume (Hγ,n[Θ][Λ], I, n) ⊢a0

I+1 Γ0 with Λ ⊂ Hγ,n(ΨI,nγ). Then by γ ≤ â,
we have â0 ∈ Hγ,n[Θ][Λ] ⊂ Hγ,n(ΨI,nγ) ⊂ Hâ,n(ΨI,nâ). This yields that

a0 < a⇒ ΨI,nâ0 < ΨI,nâ (11)

Second observe that kEK(Γ) ⊂ Hγ,n[Θ] ⊂ Hâ+1,n[Θ] by γ ≤ â+ 1.
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Third we have
kEK(Γ) ⊂ Hγ,n(ΨI,nγ) (12)

Case 1. First consider the case: Γ ∋ A ≃
∧
{Aι : ι ∈ J}

{(Hγ,n[Θ ∪ {rkL(ι)}], I, n) ⊢
a(ι)
I+1 Γ, Aι : ι ∈ J}

(Hγ,n[Θ], I, n) ⊢a
I+1 Γ

(
∧
)

where a(ι) < a for any ι ∈ J .
We claim that

∀ι ∈ J(rkL(ι) ∈ Hγ,n(ΨI,nγ)) (13)

Consider the case when A ≡ ∀x ∈ b¬A′. There are two cases to consider. First
consider the case when J = {d} for the set d = µx ∈ bA′. Then kEK(A) =

k(A), and ι = d = (µx ∈ bA′) ∈ HullIΣn
(k(A)), and rkL(ι) ∈ HullIΣn

(k(A)) ⊂
Hγ,n(ΨI,nγ) by (12). Otherwise we have J = b and either A ∈ Σ1

0(K
+) and

b ∈ LK+∪{LK+}, or rkL(b) < I. In the second case we have b ∈ k(A) = kEK(A) ⊂
Hγ,n[Θ]. In the first case each ι ∈ b has L-rank rkL(ι) < K+. On the other
hand we have K+ ∈ Hγ,n(ΨI,nγ)∩ I ⊂ ΨI,nγ by I > K+. Thus rkL(ι) < ΨI,nγ.
In the second case we have rkL(ι) ≤ rkL(b) ∈ Hγ,n(ΨI,nγ) ∩ I ⊂ ΨI,nγ by
rkL(b) < I.

Hence (13) was shown.
SIH yields

{(H
â(ι)+1,n

[Θ ∪ {rkL(ι)}], I, n) ⊢
ΨI,nâ(ι)

ΨI,nâ(ι)
Γ, Aι : ι ∈ J}

(Hâ+1,n[Θ], I, n) ⊢
ΨI,nâ

ΨI,nâ
Γ

(
∧
)

for â(ι) = γ + ωI+a(ι), since ΨI,nâ(ι) < ΨI,nâ by (11).

Case 2. Next consider the case for an A ≃
∨
{Aι : ι ∈ J} ∈ Γ and an ι ∈ J

with a(ι) < a and rkL(ι) < I ⇒ rkL(ι) < a

(Hγ,n[Θ], I, n) ⊢
a(ι)
I+1 Γ, Aι

(Hγ,n[Θ], I, n) ⊢a
I+1 Γ

(
∨
)

Assume rkL(ι) < I. We show rkL(ι) < ΨI,nâ. By ΨI,nγ ≤ ΨI,nâ, it suffices to
show rkL(ι) < ΨI,nγ.

Consider the case when A ≡ ∃x ∈ bA′. There are two cases to consider.
First consider the case when J = {d} for the set d = µx ∈ bA′. Then kEK(A) =

k(A), and ι = d = (µx ∈ bA′) ∈ HullIΣn
(k(A)), and rkL(ι) ∈ HullIΣn

(k(A)) ⊂
Hγ,n(ΨI,nγ) by (12). If rkL(ι) < I, then rkL(ι) ∈ Hγ,n(ΨI,nγ) ∩ I ⊂ ΨI,nγ.

Otherwise we have J = b, and either A ∈ Σ1
0(K

+) and b ∈ LK+ ∪ {LK+},
or b ∈ k(A) = kEK(A) ⊂ Hγ,n[Θ]. In the second case we can assume that
ι ∈ k(Aι) = kEK(Aι) ⊂ Hγ,n[Θ]. Otherwise set ι = 0.
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In the first case each ι ∈ b has L-rank rkL(ι) < K+. On the other hand we
have K+ ∈ Hγ,n(ΨI,nγ) ∩ I ⊂ ΨI,nγ by I > K+. Thus rkL(ι) < ΨI,nγ. In the
second case we have rkL(ι) < rkL(b) ≤ I, and rkL(ι) ∈ Hγ,n(ΨI,nγ)∩I ⊂ ΨI,nγ.

SIH yields for â(ι) = γ + ωI+a(ι)

(H
â(ι)+1,n

[Θ], I, n) ⊢
ΨI,nâ(ι)

ΨI,nâ(ι)
Γ, Aι

(Hâ+1,n[Θ], I, n) ⊢
ΨI,nâ

ΨI,nâ

(
∨
)

Case 3. Third consider the case for an a0 < a and a C with rk(C) < I + 1.

(Hγ,n[Θ], I, n) ⊢a0

I+1 Γ,¬C (Hγ,n[Θ], I, n) ⊢a0

I+1 C,Γ

(Hγ,n[Θ], I, n) ⊢a
I+1 Γ

(cut)

Case 3.1. rk(C) < I.
We have by (12) kEK(C) ⊂ Hγ,n(ΨI,nγ). Proposition 4.11.4 yields rk(C) ∈

Hγ,n(ΨI,nγ)∩I ⊂ ΨI,nγ ≤ ΨI,nâ. By Proposition 4.11.2 we see that {¬C,C} ⊂
ΣΣn+1(I).

SIH yields for â0 = γ + ωI+a0

(Hâ0+1,n[Θ], I, n) ⊢
ΨI,nâ0

ΨI,nâ0
Γ,¬C (Hâ0+1,n[Θ], I, n) ⊢

ΨI,nâ0

ΨI,nâ0
C,Γ

(Hâ+1,n[Θ], I, n) ⊢
ΨI,nâ

ΨI,nâ
Γ

(cut)

Case 3.2. rk(C) = I.
Then C ∈ ΣΣn+1(I). C is either a sentence ∃x < I[α < x ∧ PI,n(x)], or a

sentence ∃x ∈ LI A(x) with qk(A) < I.
In the first case we have (Hγ+1,n[Θ], I, n) ⊢a0

I+1 Γ by Reduction 4.20.3, and
IH yields the lemma.

Consider the second case. From the right uppersequent, SIH yields for â0 =
γ + ωI+a0 and β0 = ΨI,nâ0 ∈ Hâ0+1,n[Θ]

(Hâ0+1,n[Θ], I, n) ⊢β0

β0
C,Γ

Then by Boundedness 4.23.1 and β0 ∈ Hâ0+1,n[Θ], we have

(Hâ0+1,n[Θ], I, n) ⊢β0

β0
C(∃I↾β0),Γ

On the other hand we have by Boundedness 4.23.2 from the left uppersequent

(Hâ0+1,n[Θ], I, n) ⊢a0

µ Γ,¬(C(∃I↾β0))

Moreover we have ¬(C(∃I↾β0)) ∈ ΣΣn+1(I). SIH yields for â0 < â1 = â0 + 1 +
ωI+a0 = γ + ωI+a0 + 1 + ωI+a0 < γ + ωI+a = â and β1 = ΨI,nâ1

(Hâ1+1,n[Θ], I, n) ⊢β1

β1
Γ,¬C(∃I↾β0)
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Now we have âi ∈ Hâi,n(ΨI,nâ) and âi < â for i < 2, and hence β0 = ΨI,nâ0 <

β1 = ΨI,nâ1 < ΨI,nâ. Therefore rk(C(∃I↾β0)) < β1 < ΨI,nâ.
Consequently

(Hâ1+1,n[Θ], I, n) ⊢β1

β1
Γ,¬C(∃I↾β0) (Hâ0+1,n[Θ], I, n) ⊢β0

β0
C(∃I↾β0),Γ

(Hâ1+1,n[Θ], I, n) ⊢β1+1
β1

Γ
(cut)

Hence (Hâ+1,n, I, n) ⊢
ΨI,nâ

ΨI,nâ
Γ.

Case 4. Fourth consider the case for an a0 < a

(Hγ,n[Θ], I, n) ⊢a0

I+1 Λ,Γ0

(Hγ,n[Θ], I, n) ⊢a
I+1 Γ

(F)

where Γ = Λ ∪ F”Γ0 and either F = FΣ1

x∪{ρ}, Γ0 ⊂ Σ1 for some x and ρ, or

F = FΣn
x , Γ0 ⊂ Σn for an x. Then Λ ∪ Γ0 ⊂ Σn. SIH yields the lemma. ✷

4.4 Elimination of Π1

1
-indescribability

In the subsection we eliminate inferences (RefK) for Π
1
1-indescribability.

For second-order sentences ϕ on Lπ with parameters A ⊂ Lπ and ordinals
α < π, ϕ(α,π) denotes the result of replacing second-order quantifiers ∃X ⊂
Lπ, ∀X ⊂ Lπ by ∃X ⊂ Lα, ∀X ⊂ Lα, resp., first-order quantifiers ∃x ∈ Lπ, ∀x ∈
Lπ by ∃x ∈ Lα, ∀x ∈ Lα, resp. and the parameters A by A ∩ Lα. For sequents
Γ, Γ(α,π) := {ϕ(α,π) : ϕ ∈ Γ}.

Proposition 4.25 Let Γ ⊂ Π1
1(π) for π ∈Mhαn[Θ]. Assume

∃ξ ∈ Hξ,n[Θ ∪ {π}](π) ∩ α∀ρ ∈Mhξn[Θ ∪ {π}]
∨

(Γ(ρ,π)).

Then
∨
(Γ) is true.

Proof.
By π ∈ Mhαn[Θ] we have π ∈ M(Mhξn[Θ ∪ {π}]) for any ξ ∈ Hξ,n[Θ ∪

{π}](π) ∩ α, cf. (3).
Suppose the Σ1

1(π)-sentence ϕ :=
∧
(¬Γ) :=

∧
{¬θ : θ ∈ Γ} is true. Then

the set {ρ < π : ϕ(ρ,π)} is club in π.
Hence for any ξ ∈ Hξ,n[Θ ∪ {π}](π) ∩ α we can pick a ρ ∈ Mhξn[Θ ∪ {π}]

such that ϕ(ρ,π). ✷

Hγ,n[Θ] ⊢a
b Γ :⇔ (Hγ,n,Θ, I, n) ⊢

a
b Γ.

Lemma 4.26 (Collapsing down to K)

Let γ be an ordinal such that γ ∈ Hγ,n.
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Suppose for a finite set Θ of ordinals and an ordinal a

Hγ,n[Θ] ⊢a
0 Γ

where Γ consists of sentences ¬τ(B,K), (B ∩ C 6= ∅), ∀ρ < K τ(B, ρ) for a
B ⊂ K with B ∈ HullIΣ1

({K,K+}) and sets C ∈ LK+1 such that C is a club
subset of K, and their subformulas:

τ(B, ρ) :⇔ ∃C ⊂ ρ[(C is club)ρ ∧ (B ∩ C = ∅)] (5)

Then for ξ = γ + a

∀π ∈Mhξn[Θ]{|= Γ(π,K)}.

which means that
∨
(Γ(π,K)) is true for any π ∈Mhξn[Θ].

Proof.
By induction on a. Let π ∈Mhξn[Θ] and ξ = γ + a.

Case 1. First consider the case when the last inference is a (RefK): we have
{aℓ, ar} ⊂ Hγ,n[Θ] ∩ a and B ⊂ K with B ∈ HullIΣ1

({K,K+}).

Hγ,n[Θ] ⊢aℓ

0 Γ,¬τ(B,K) Hγ,n[Θ] ⊢ar

0 Γ, ∀ρ < K τ(B, ρ)

Hγ,n[Θ] ⊢a
0 Γ

(RefK)

We have ξr := γ+ar ∈ Hξr,n[Θ](π)∩ξ by ξr ≥ γ and ar < a. By Proposition
2.9.3 with ξr ∈ Hξr ,n[Θ](π) we have π ∈ Mhξrn [Θ]. IH yields

∨
(Γ(π,K)) ∨ ∀ρ <

π τ(B, ρ).
On the other hand we have ξℓ := γ + aℓ ∈ Hξℓ,n[Θ](π) ∩ ξ. By IH we have

for any ρ ∈ Mhξℓn [Θ ∪ {π}] ∩ π,
∨
(Γ(ρ,K)) ∨ ¬τ(B, ρ). Hence we have ∀ρ ∈

Mhξℓn [Θ ∪ {π}] ∩ π{
∨
(Γ(ρ,K)) ∨

∨
(Γ(π,K))}. Proposition 4.25 yields

∨
(Γ(π,K)).

Case 2. Second consider the case when the last inference introduces a Π1
1(K)-

sentence ¬τ(B,K) with a B ⊂ K such that B ∈ HullIΣ1
({K,K+}).

{Hγ,n[Θ ∪ {rkL(C)}] ⊢
a(C)
0 Γ, (C 6⊂ K) ∨ ¬(C is club)K ∨ (B ∩ C 6= ∅) : C ∈ LK+}

Hγ,n[Θ] ⊢a
0 Γ,¬τ(B,K)

(
∧
)

where ∀C ∈ LK+(a(C) ∈ Hγ,n[Θ ∪ {rkL(C)}] ∩ a) and ¬τ(B,K) ≃
∧
{(C 6⊂

K) ∨ ¬(C is club)K ∨ (B ∩ C 6= ∅) : C ∈ LK+}. For each C, (C 6⊂ K) ∨
¬(C is club)K ∨ (B ∩ C 6= ∅) is stratified with respec to C.

Let
Cπ := µC ∈ Lπ+ [(C ⊂ π) ∧ (C is club)π ∧ (B ∩ C = ∅)]

Then ¬[(Cπ ⊂ π)∧(Cπ is club)π∧(B∩Cπ = ∅)] ⇒ ¬τ(B, π) ≡ (¬τ(B,K))(π,K).
We can assume that (Cπ ⊂ π) ∧ (Cπ is club)π. Otherwise (¬τ(B,K))(π,K)

and hence
∨
(Γ(π,K)) ∨ (¬τ(B,K))(π,K).
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Let
C = {γ ∈ K : ∃x, y < K(γ = π · x+ y ∧ y ∈ Cπ ∪ {0})}

Then C is an LK-definable club subset of K, C ∈ LK+1, and
C ∈ J ∩ HullIΣ1

({π, π+,K, B}) ⊂ HullIΣ1
({π, π+,K,K+}) ⊂ Hγ,n[Θ ∪ {π}].

Hence rkL(C) ∈ Hγ,n[Θ ∪ {π}] and a(C) ∈ Hγ,n[Θ ∪ {π}]. By inversion

Hγ,n[Θ ∪ {π}] ⊢
a(C)
0 Γ, C 6⊂ K,¬(C is club)K, B ∩ C 6= ∅

Eliminate false sentences C 6⊂ K and ¬(C is club)K by Lemma 4.17.

Hγ,n[Θ ∪ {π}] ⊢
a(C)
0 Γ, B ∩C 6= ∅

IH yields for ξ(C) = γ+ a(C), ∀ρ ∈Mh
ξ(C)
n [Θ∪ {π}]∩ π{

∨
(Γ(ρ,K))∨ (B ∩C 6=

∅)(ρ,K)}, where (B ∩ C 6= ∅)(ρ,K) ≡ (B ∩ Cπ ∩ ρ 6= ∅) ≡ ((B ∩ C 6= ∅)(π,K))(ρ,π).
Proposition 4.25 with ξ(C) ∈ Hξ(C),n[Θ∪{π}](π)∩ξ yields

∨
(Γ(π,K))∨(B∩C 6=

∅)(π,K), and hence
∨
(Γ(π,K)) ∨ (¬τ(B,K))(π,K).

Case 3. Third consider the case : Γ ∋ (B ∩ C 6= ∅) with B ⊂ K, B ∈
HullIΣ1

({K,K+}) and a club subset C of K.

Hγ,n[Θ] ⊢a0

0 Γ, (d ∈ B) ∧ (d ∈ C)

Hγ,n[Θ] ⊢a
0 Γ

(
∨
)

where a0 < a and d ∈ K.
Then (B ∩ C 6= ∅)(π,K) ↔ (B ∩ C ∩ π 6= ∅) and ((d ∈ B) ∧ (d ∈ C))(π,K) ↔

(d ∈ (B ∩ π)) ∧ (d ∈ (C ∩ π)). IH with Proposition 2.9.3 yields the lemma.

Case 4. Fourth consider the case : Γ ∋ ((d ∈ B) ∧ (d ∈ C)) with B ⊂ K,
B ∈ HullIΣ1

({K,K+}) and a club subset C of K.

Hγ,n[Θ] ⊢a0

0 Γ, d ∈ B Hγ,n[Θ] ⊢a1

0 Γ, d ∈ C

Hγ,n[Θ] ⊢a
0 Γ

(
∧
)

where a0, a1 < a.
IH with Proposition 2.9.3 yields the lemma.

Case 5. Fifth consider the case: for a true literal M ≡ (d ∈ B), M ∈ Γ, where
B ⊂ K such that either B ∈ HullIΣ1

({K,K+}), or B is a club subset of K, and
d ∈ K.

Hγ,n[Θ] ⊢a
0 Γ

(
∧
)

Then M (π,K) ≡ (d ∈ (B ∩ π)) ∈ Γ(π,K).
It suffices to show d = rkL(d) < π. We have by (10) d ∈ kE(d ∈ B) ∩ K ⊂

Hγ,n ∩K ⊂ π by π ∈Mhξn[Θ], i.e., by Hξ,n(π) ∩ K ⊂ π.
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Case 6. Sixth consider the case when the last inference introduces a sentence
∀ρ < K τ(B, ρ).

{Hγ,n[{ρ}][Θ] ⊢
a(ρ)
0 Γ, τ(B, ρ) : ρ < K}

Hγ,n[Θ] ⊢a
0 Γ, ∀ρ < K τ(B, ρ)

(
∧
)

We have for any ρ < π and ξ(ρ) = γ + a(ρ), ξ(ρ) ∈ Hξ(ρ),n[Θ](π). Proposition

2.9.3 yields π ∈ Mh
ξ(ρ)
n [Θ]. By IH we have ∀ρ < π{

∨
(Γ(π,K)) ∨ τ(B, ρ)}, and

hence (
∨
(Γ)∨∀ρ < K τ(B, ρ))(π,K) with (∀ρ < K τ(B, ρ))(π,K) ≡ ∀ρ < π τ(B, ρ).

Case 7. Seventh consider the case when the last inference introduces a sentence
∀x ∈ c ϕ(x) ∈ Γ for c ∈ LK and kE(ϕ(x)) < K& k(ϕ(x)) < K+.

{Hγ,n[{rkL(b)}][Θ] ⊢
a(ρ)
0 Γ, ϕ(b) : b ∈ c}

Hγ,n[Θ] ⊢a
0 Γ

(
∧
)

Then γ = rkL(c) ∈ kE(Γ) ∩K and hence γ < π as in Case 5. As in Case 6 we
have by IH ∀b ∈ c(

∨
(Γ(π,K))∨ϕ(b)) where ϕ(b) ≡ (ϕ(b))(π,K). Hence

∨
(Γ(π,K)).

Case 8. Eighth consider the case when the last inference introduces a sentence
∃x ∈ c ϕ(c) ∈ Γ for c ∈ LK, b ∈ c and kE(ϕ(x)) < K& k(ϕ(x)) < K+.

Hγ,n[Θ] ⊢a0

0 Γ, ϕ(b)

Hγ,n[Θ] ⊢a
0 Γ

(
∨
)

As in Case 7 we see rkL(c) < π. IH with Proposition 2.9.3 yields
∨
(Γ(π,K)) ∨

ϕ(b), and
∨
(Γ(π,K)).

Case 9. Ninth consider the case when the last inference is an (F) where either
F = FΣ1

x∪{λ} for a λ ∈ R or F = FΣn
x .

In each case if A ∈ rng(F ) for an A ∈ Γ, then we claim F”A ≡ A. Suppose
x = FΣ1

x∪{K+}(K
+) ≤ rkL(B) < K+ for the set B ∈ HullIΣ1

({K,K+}). However

by x > K we have rkL(B) ∈ HullIΣ1
({K,K+})∩K+ ⊂ HullIΣ1

(x∪{K+})∩K+ ⊂ x.
Hence this is not the case.

IH yields the assertion. ✷

Collapsing down to K 4.26 yields the following Theorem 4.27.

Theorem 4.27 (Elimination of (RefK))

Let γ ∈ Hγ,n, B ⊂ K, and B ∈ HullIΣ1
({K,K+}).

[Hγ,n ⊢a
0 ¬τ(B,K)] ⇒ [¬τ(B, π) is true]

for any π ∈Mhξn with ξ = γ + a.
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5 Proof of Theorem 1.3

Let ϕ be a Σ1
2-sentence, and assume that ZF proves the sentence

∀K[(K is a weakly compact cardinal) → ϕVK ].

Under V = L, Vσ = Lσ for any inaccessible cardinals σ, and we have
∀K[(K is a weakly compact cardinal) → ϕLK ]. Hence T(K, I) ⊢ ϕLK . By
Proposition 1.2 we can assume that the sentence (‘K is uncountable regular’ →
ϕLK) is of the form ‘∃B ⊂ K(Sϕ(B) ∩ K is stationary in K)’.

Let B := µB ⊂ K(Sϕ(B) ∩ K is stationary in K) ∈ HullIΣ1
({K,K+}).

In what follows work in an intuitionistic fixed point theory FiXi(ZFLKn)

over ZFLKn = ZF+ (V = L) + (K ∈ Mh
ωn(I+1)
n ) for a sufficiently large n < ω.

By Embedding 4.18 pick anm < ω such that (H0,n, I, n) ⊢
I·(m−1)
I+m−1 ¬τ(B,K). By

Predicative Cut-elimination 4.21 we have (H0,n, I, n) ⊢
ωm−2(I·(m−1))
I+1 ¬τ(B,K).

Then by Collapsing down to I 4.24 we have for a = ωm(I+1) and b = ΨI,na,
(Ha,n, I, n) ⊢b

b ¬τ(B,K). Again by Predicative Cut-elimination 4.21 we have

(Ha,n, I, n) ⊢
ϕbb
0 ¬τ(B,K).

Elimination of (RefK) 4.27 yields ¬τ(B, π) for any π ∈ Mhξn with ξ =
a+ ϕbb ∈ Hξ,n(K) ∩ ωm+1(I + 1).

Proposition 4.25 with K ∈Mh
ωm+1(I+1)
n yields ¬τ(B,K), and hence Sϕ(B)∩

K is stationary in K. Since the whole proof is formalizable in FiXi(ZFLKn),
we conclude FiXi(ZFLKn) ⊢ ϕVK . Finally Theorem 4.2 yields ZFLKn ⊢ ϕVK .

Therefore ϕVK follows from θn(K) :⇔ K ∈Mh
ωn(I+1)
n over ZF+(V = L). Thus

Theorem 1.3.2 was shown.
Since the least weakly inaccessible cardinal I0 is below the least weakly

Mahlo cardinal,

ZF+K ⊢ ϕVI0 ⇒ ZF+ {∃K θn(K) : n < ω} ⊢ ϕVI0

for any first-order sentence ϕ, etc.
This completes a proof of Theorem 1.3.
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