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Abstract

We show that the existence of a weakly compact cardinal over the
Zermelo-Fraenkel’s set theory ZF is proof-theoretically reducible to itera-
tions of Mostowski collapsings and Mahlo operations.

1 Introduction

It is well known that a cardinal is weakly compact iff it is IIi-indescribable.
From this characterization we see readily that the set of Mahlo cardinals below
a weakly compact cardinal is stationary, i.e., every club (closed and unbounded)
subset of a weakly compact cardinal contains a Mahlo cardinal. In other word,
any weakly compact cardinal is hyper Mahlo. Furthermore any weakly compact
cardinal x is in the diagonal intersection k € M = ({M(M®) : a < k} for
the a-th iterate M“ of the Mahlo operation M: for classes X of ordinals,

k€ M(X) = X Nk is stationary in k < VY C g[(Y is club) - X NY # ().

Note that k € M(X) is I} on V.

On the other side R. Jensen[I1] showed under the axiom V = L of con-
structibility that for regular cardinals k, x is weakly compact iff VX C k[ €
MX)=MX)Nk£0if VX Cklke M(X) = ke M(M(X))].

Jensen’s proof in [I1] yields a normal form theorem of ITj-formulae on L, =
Jy; uniformly for regular uncountable cardinals x as follows.

For a first order formula ¢[D] with unary predicates A, D, let

a € S¥(A) :& there exists a limit 8 such that « < B < a®,ANa € Jg,

(Jg, €, ANa) EVD C aplD],« is regular in 3 and

dp € VX [(pU{a} C X < Js) A (X Nais transitive) = X = Jg] (1)
where « is regular in 3 iff there is no cofinal function from a smaller ordinal< «

into ¢, which is definable on Jg.
The following Proposition [Tl is the Lemma 5.2 in [I1].
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Proposition 1.1 Let a € S¥(A) and B be an ordinal as in the definition of
S¥(A). Then « is ¥q-singular in B+ 1, i.e., there exists a cofinal function from
a smaller ordinal< « into o, which is ¥ -definable on Jgy1.

Fix a regular uncountable cardinal x, a set A C . For a finite set {4,...}
of subsets A,... of k and ordinals o < &, let N,(4,...) denote the least %;-
elementary submodel of J.+, No(A4,...) <5, J.+, such that aU{A,.. JU{x} C
Na(A,...). Namely No(4,...) is the T-Skolem hull Hullyr" (aU{A, ...} U{x})
of a U{A,...} U{k} on J+. Let

C(A,...) ={a<k:Nu(A,..)NKk Ca}.
Then it is easy to see that C(A4,...) is club in &, and definable over J,+.

Proposition 1.2 Let k be a regular uncountable cardinals k, A C k, ¢[D] a
first order formula with parameters A, D.

1. Suppose (J.+,€,A) EVD C k[D], and let C be a club subset of k. Then
the least element of the club set C'(A,C) is in S¥(A).

2. Suppose (J.+,€,A) VD C k¢[D], then S¥(A) N C(A) = 0.

Thus (J.+,€,A) E VYD C ro[D] iff S?(A) is stationary in k. And Kk is
weakly compact iff for any stationary subset S C k there exists an uncountable
reqular cardinal o < Kk such that S N« is stationary in .

Proof.

Suppose (J.+,€,A) E VD C kp[D], and let C be a club subset
of k. Consider the club subset C(A,C) of k. Then C(A,C) C C . We
show that a € S?(A) for the least element a of C(A4,C). Let 7 : (Jg, €
AN, CNa) =2 No(A,C) <5, Je+ be the transitive collapse of Ny (A4, C).
B is a limit ordinal with o < 8 < a™. From (J,+, €, 4) E VD C k¢[D] we see
(Jg, €, ANa) = VD C ayp[D], and ANa, CNar € Jg from A, C € No(A,C). Ttre-
mains to show () for p = {ANa, CNa}. Assume {ANa, CNa,a} C X < Jg and
XNa =« for an ordinal v < a. Then yU{A4,C,k} C 7" X < No(A,C) <5, Jo+.
This yields Ny (A, C) <5, 77X, and N,(A,C)Nk C (7" X)Nk =7"(XNa) =7
by No(A,C)Nk C «. This means that v € C(A,C), and hence X Na =~ = a.
Therefore 7’ X = N, (A, C), and X = Jg.

Suppose (J+,€,A) VD C kp[D]. Assume o € S¥(A) N C(A). Let
(Jg, €, AN a) = No(A) <, J+ be the transitive collapse of N, (A). Then
(Jg, €, ANa) =YD C ap[D]. On the other hand we have by a € S¥(A), there
exists a limit 8 such that (Jg,€,ANa) = VD C ay[D], and « is ¥X;-singular
in 4 1 by Proposition [LIl Hence f < 3 and « is ¥;-singular in §. This
means that s is ¥j-singular in k*. However  is assumed to be regular. A
contradiction. a

In this paper we show that the existence of a weakly compact cardinal over
the Zermelo-Fraenkel’s set theory ZF is proof-theoretically reducible to iterations
of Mostowski collapsings and Mahlo operations.



Let K denote the formula stating that ‘there exists a weakly compact cardinal
K.

For Yi-sentences ¢ = JYVX 0, let ¢'*¢ be IY C V,¥X C Vi 6V where
0¢ denotes the result of restricting any unbounded quantifiers 3z, Vz to Jz €
a,Vr € a, resp.

Theorem 1.3 There are %,,11-formulae 0,,(x) for which the following holds:
1. For each n < w,
ZF + (V = L) - VK[(K is a weakly compact cardinal) — 6,,(K)]
and

ZF + (V = L) F YK[0p41(K) = K € M({m < K : 0,()})].

2. For any Xi-sentences o, if
ZF - VK[(K is a weakly compact cardinal) — ¢"<],

then we can find an n < w such that

ZF + (V = L) F VK[0,(K) = ©'<].

Hence ZF + (V. = L) + (K is weakly compact) is 33 (K)-conservative over
ZF+ (V =L)+{0,(K) : n < w}, and ZF + (V = L) + K is conservative over
ZF +(V = L)+ {3K0,(K) : n < w}, e.g., with respect to first-order sentences
V10 for the least weakly inaccessible cardinal Iy.

Note that T,, = ZF + (V = L) + {3K 0,,(K)} is weaker than ZF + K, e.g.,
ZF + K proves the ezistence of a model of T;, for each n < w.

The X, 1-formulae 6,,(z) are defined by
On(z) 1o x € MhenU+D,

The %,,41-class M for ordinals ¢ is defined through iterations of Mostowski
collapsings and Mahlo operations, cf. Definition

Let us explain some backgrounds of this paper. II3-reflecting ordinals are
known to be recursive analogues to weakly compact cardinals. Proof theory
(ordinal analysis) of TIz-reflection has been done by M. Rathjen[I2], and [IL 2|
3.

As observed in [2 [B], ordinal analyses of IIxi-reflection yield a proof-
theoretic reduction of Iy -reflection in terms of iterations of Ily-recursively
Mahlo operations. Specifically we show the following Theorem [[4] in [8]. Let
KPw denote the Kripke-Platek set theory with the axiom of Infinity, Iy (a) a
universal ITy-formula, and RMy(&X) the IIy-recursively Mahlo operation for
classes of transitive sets X:

P e RMn(X) & VYbe P[P EIND) —3Q € XNP(Q Ey(b)))
(read:P is IIy-reflecting on X.)



The iteration of RMy along a definable relation < is defined as follows.
P € RMy(a; <) ¢ a € P € |{RMy(RMy(b;<)):b€ P =b=<a}.

Let Ord C V denote the class of ordinals, Ord® C V and <® be A-predicates
such that for any transitive and wellfounded model V' of KPw, < is a well
ordering of type 741 on Ord® for the order type I of the class Ord in V.
Specifically let us encode ‘ordinals’ a < er4;1 by codes [a] € Ord® as follows.
[a] = (0,q) for « € Ord, [I] = (1,0), [w*] = (2,[«a]) for @ > I, and [a] =
B, Jar],. . Ja ) fa=ar+ - +a, >T with g > -+ > a,, n >1and
3Bi(avi = wP?) for each a;. Then [w,(I + 1)] € Ord® denotes the code of the
‘ordinal” wy, (I 4+ 1).

<€ is assumed to be a canonical ordering such that KPw proves the fact that
<¢ is a linear ordering, and for any formula ¢ and each n < w,

KPw b Va(vy <% 2 o(y) > (@) - Vo < [wn(l+ D]p(z)  (2)
For a definition of A-predicates Ord® and <¢, and a proof of @), cf. [7].
Theorem 1.4 For each N > 2, KPIIn 1 is lIn41-conservative over the theory
KPw+ {V € RMn([w,(I +1)];<%) :n € w}.

On the other side, we[7] have lifted up the ordinal analysis of recursively
inaccessible ordinals in [I0] to one of weakly inaccessible cardinals. This paper
aims to lift up [12] and [5] to the weak compactness.

Let us mention the contents of this paper. In the next section [ iterated
Skolem hulls Hq,n(X) of sets X of ordinals, ordinals ¥y, v for regular ordi-
nals k (K < k < I), and classes Mh%[O] are defined for finite sets © of ordi-
nals. It is shown that for each n,m < w, (K is a weakly compact cardinal) —

K e MY iy ZF + (V = L). In the third section Bl we introduce a the-
ory for weakly compact cardinals, which are equivalent to ZF + (V = L) +
(K is a weakly compact cardinal).

In the section @ cut inferences are eliminated from operator controlled deriva-
tions of Yi-sentences ¢"* over K, and ¢"* is shown to be true. Everything up
to this is seen to be formalizable in ZF 4+ (V = L)+ {6,,(K) : n € w}. Hence the
Theorem [L3] follows in the final section

2 Ordinals for weakly compact cardinals

In this section iterated Skolem hulls Hq (X)) of sets X of ordinals, ordinals
U, 7y for regular ordinals (K < k < I), and classes MhQ[©] are defined for
finite sets © of ordinals. It is shown that for each n,m < w, K € Mhﬁ’"(prl) i
ZF + (V = L) assuming K is a weakly compact cardinal.

Let Ord® and < are A-predicates as described before Theorem [[L4l In the
definition of Ord® and <¢, I with its code [I] = (1,0) is intended to denote the
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least weakly inaccessible cardinal above the least weakly compact cardinal K,
though we do not assume the existence of weakly inaccessible cardinals above
K anywhere in this paper. We are working in ZF + (V' = L) assuming K is a
weakly compact cardinal.

Reg denotes the set of uncountable regular ordinals above K, while R :=
Regn{p: K <p<I}and R" := RU{I}. k, A\, p, 7 denote elements of R. kT
denotes the least regular ordinal above k. © denotes finite sets of ordinals< K.
O Cyin X iff © is a finite subset of X. Ord denotes the class of ordinals less than
I, while Ord® the class of codes of ordinals less than the next epsilon number
EI+1 to I.

For admissible ordinals o and X C L., Hull§, (X) denotes the ¥,-Skolem
hull of X over Ly, cf. [T1. F(y) = F**(y; 0, X) denotes the Mostowski collapsing
F :Hully, (X) 4> L, of Hully;, (X) for a~y. Let F*»(0;0,X) :=~. Wheno =1,
we write Fy" (y) for F>n(y; 1, X).

In what follows n > 1 denotes a fized positive integer.

Code® denotes the union of codes Ord® of ordinals< €741, and codes Ly :=
{{0,z) : € L} of sets = in the universe L.

For o, 8 € Ord®, a® B,w* € Ord® denotes the codes of the sum and expo-
nentiation, resp.

Let

I:=(1,0), wy(I +1):=a,((3,(1,0),(0,1))), and Ly := {(0,z) : z € L}
and for codes X,Y € Code®
XCY:eVee X(zeY).

For simplicity let us identify the code x € Code® with the ‘set’ coded by =,
and €° [<¢] is denoted by € [<], resp. when no confusion likely occurs. For
example, the code (0, x) is identified with the set {(0,y) : y € x} of codes.

Define simultaneously the classes Ho n(X) C LiU{z € Ord® : © <® wp41(I+
1)}, and the ordinals ¥, ,,a (k € RT) for a <€ wy41(1 4+ 1) and sets X C Ly as
follows. We see that He ,(X) and ¥, ,a are (first-order) definable as a fixed
point in ZF + (V = L) cf. Proposition [Z4

He,n is an operator in the sense defined below.

Definition 2.1 By an operator we mean a map H, H : P(L;) — P(L;U{x €
Ord® : & <® wpq1(I +1)}), such that

1. VX C L;[X C H(X)].
2. VXY C Li[Y € H(X) = H(Y) C H(X)].

For an operator H and ©,A C L;, H[O)(X) := H(X UO), and H[O][A] :=
(H[O))[A], i.e., H[O][A|(X) = H(X UOUA).

Obviously H[©] is an operator.



Definition 2.2 H, ,(X) is a Skolem hull of {(0,0),, I} U X under the func-
tions @, a — w* k= k1 (k € R), ¥, ,, [a(k € RT), the Skolem hullings:

X Hullf, (XN1I)
and the Mostowski collapsing functions

=V, v Fful{ﬁ} (k € R)

and
=Y,y FE”

1. (Inductive definition of He ,(X)).

(a) {(0,0),KC, I} UX C Haon(X).

(b) 2,y € Ho(X) = 2@y, 0" € Han(X).

(c) k€ Han(X)N({K}UR) = kT € Hon(X).
(d) v € Han(X)Na= T,y € Hon(X).

(e) If k € Ham(X)NR, v € Han(X)Na and k € Hy n(k), then U, v €
Han(X).

(f)
Hulll, (Han(X)NL;) N Codet C Han(X).

Namely for any %, -formula @[z,#] in the language {€} and pa-
rameters @ C Hon(X) N Ly, if b € Ly, (L, €%) = ¢b,a] and
(L, €%) = gz, d], then b € Hon(X).

(9) k€ Haon(X)NR, v € Hon(X)Na, =T, ,v € Hon(X), k €
Hyn(k) and 0 € (HulllEl (xU{rHU{I})NHan(X), then FEUI{H} (0) €
Hon(X).

(h) If v € Han(X) N, 2 = Uy 0y € Han(X), and § € (Hullf (z) U
{I}) N Han(X), then FZn(5) € Hon(X).

2. (Definition of ¥, ,«).
Assume k € RY and k € Ha (k). Then

Uy noi=min{f <° £ : & € Han(B), Han(B) Nk C° B}
Definition is essentially the same as in [7].
The classes MhS[O] are defined for n < w, o < €741, and © Cpyy (K +1).

Definition 2.3 (MhZ[O])
Let © Cyin (K+1) and K > 7 € Reg. Then

me MhyO] & Hon(m)NK C*m&a € Haon[O](T)
& Ve Hen[OU {m})(m) Nalr € M(MhL[OU{m}])] (3)



where V€ € He ,[© U {r}](m) Naf -] is a short hand for V& <¢ a[¢ € He ,[O U
{m}(m)Na—--].
MRS := MhS{K} = Mh&[0].
The following Propositions 2.4] and are easy to see.

Proposition 2.4 Each of © = Hon(8) (@ € Ord®, 5 < I), = ¥, na(k €
RY) and x = Mh&[O)] is a X,,11-predicate as fized points in ZF + (V = L).

Proposition 2.5 (o, y) — Han[O](y) is weakly monotonic in the sense that
a<fd ANyCy ANe=HonOlW) A2 =HonOl(y) =z Ca.

Also (a,y) = Han[O](y) is continuous in the sense that if & = sup;c; oy
is a limit ordinal with an increasing sequence {i}ier and y = ;¢ y; with a
directed system {y;}jcs, then

2 =Hanl®)B) AVi € IVj € J(ij = Haun[Ol(y;) 2= | @iy
icel,jed

Let A,(a) denote the conjunction of V3 <¢ I3lz[z = Han(B)], V& €
R™Vzlk € © = Han(k) = BB = ¥ypna)] and VO Cypyp (K + 1)3zfz =
Mh3[O]].

The X, 1-formula 6, (x) in Theorem [[3]is defined to be
O, (2) := Jyly = MhETFD Az e y].

The following Lemma shows Theorem [L3|]
card(x) denotes the cardinality of sets x.

Lemma 2.6 For each n,m < w, ZF + (V = L) proves the followings.
1. y=Han(x) = card(y) < max{card(x),Ro}.
2. Va <f wp(I+1) A, ().

3. If K is weakly compact and © C i (K + 1), then K € Mh‘,‘{’"(IH)[@] N
M (MR V1e).

Proof.

We show that A, («) is progressive, i.e., Vo <% w,, (I + 1)[Vy <*
aAn(v) = An(a)].

Assume Vy < aA,(y) and o <® wy,(I +1). V8 <° [3z[z = Han(B)]
follows from ITH and the Replacement.

Next assume £ € RT and k € Ho n(k). Then 316(8 = ¥, pa) follows from
the regularity of x and Proposition 25



Ala[z = Mh2[O]] is easily seen from TH.
Suppose K is II}-indescribable. We show
By (@) :& VO Crin (K+1)[a € HanlO(K) = K € MAY[O] N M(MA[O])]

is progressive in o.

Suppose V& < a B,(€), © Crin (K+1) and o € Ho n[O](K). We have
to show that Mh%[O] meets every club subset Cy of K. K € Mh2[0O] fol-
lows from K € M(MhS[O]), cf. Proposition We can assume that
Vr € Col(Han(m) NK C m) A (e € Han[O](m))] since both of {m < K :
Han(m)NK Cr}and {m < K: o € Han[O](m)} are club in K.

Since Vr < Klcard(Hao,[0© U {n}](7)) < 7], pick an injection f : Hyn[© U
{K}(K) = K so that f"Han[© U{r}|(r) C 7 for any weakly inaccessibles
m < K.

Let Ry = {f(a)}, R1 = Co, Ro = {f(§) : £ € Hen[O)(K) Na}, Ry =
ULMRG[0 U{m}] N K) x {f(m)} x {£(€)} : € € Hen[O)(K) Na, 7 < K}, and
Ra— {(F(3), £(1) : 1Bsy} & Han® U UCN(K). B < 3.

By IH we have V¢ € He ,[0](K) NalK € M(Mh§[6])]. Hence (Vic, €, R;)i<a
enjoys a IIi-sentence saying that K is weakly inaccessible, R # ), Ry is a club
subset of I and

¢ = VC:club Vz, y[Ra(x) AO(R4,y) — CN{a: Rs(a,y,z)} # 0]
where 0(Ry,y) is a Xi-formula such that for any 7 < K

VTI' ': 9(R4ay) <y = f(?T)

Namely 6(R4,y) says that there exists a function G on the class Ord of or-
dinals such that V3,y € Ord[(f < v < R4(G(B),G(v)) A (G(B) < y)] and
Vz(Ry(z,y) — 3B € Ord(G(B) = z)).

By the II}-indescribability of K, pick a 7 < K such that (V, €, R; N Vi)i<a
enjoys the IT}-sentence.

We claim 7 € Cop N Mh%[O]. = is weakly inaccessible, f(«) € V; and Cj is
club in 7, and hence m € Cy. It remains to see V& € He o [© U {7 }](7) Nafr €
M (MhE[©U{r}])]. This follows from the fact that ¢ holds in (Vy, €, R;NVy)i<4,
and V¢ € Hen[© U{n}(m) Na(f(&) € Vi) by f"Han[© U {r}](7r) C m and
He a6 U {r}](m) © HenO)(K).

Thus K € M(Mh$[©]). O

Definition 2.7 #(n) denotes a subset of H, (741),,(0) such that every ordinal
is hereditarily less than w, (I + 1).
This means « € H(n) = a < w,(I + 1), etc.

Corollary 2.8 For each n < w, H(n) is well-defined in ZF + (V = L).

Let us see some elementary facts.



Proposition 2.9 1. a € H,,[O](m) &7 € MhY[OU{p}] = 7 € Mh%[O)].
2. me M(Mh[OU{r}]) =7 e MhX[OU{r}|.

3. e Mho[O]&E € Hen[® U {n}](n) N = m € MhE[O U {r}], and
T € Mh2[O)& € € He n[O)(m) Nav = 7 € MAS[O].

Proof.
2901 This is seen from Proposition 29|l

293l This is seen from Proposition 2.9l

2.1 Greatly Mahlo cardinals

Let us compare the class M hS[O] with Rathjen’s class M® in [12]. The difference
lies in augmenting finite sets © of ordinals, which are given in advance. Moreover
the finite set grows when we step down to previously defined classes, cf. (@]).
For example if an ordinal { < « is Xy-definable from {m, 7"}, then £ € H¢ ,[OU
{m}](m) for n > 1. Hence Mh&[O U {r}] is stationary in 7 for such an ordinal
¢ <aifme MhY[O]. Cf. Case 2 in the proof of Lemma 26 below.

This yields that any o with o € M hf is a greatly Mahlo cardinal in the
sense of Baumgartner-Taylor-Wagon[9]. Moreover if X € MhS*! then the class
of the greatly Mahlo cardinals below K is stationary in K as seen in Proposition
2.1 0]

M (o < KT) denotes the set of a-weakly Mahlo cardinals defined as follows.
MY := RegnN K, Mo+t = M(M®), M* = "{M (M%) : « < A} for limit ordinals
A with ¢f(\) < K, and M* := A{M(M??) : i < K} for limit ordinals A with
cf(A) = KC, where sup; x A; = A and the sequence {\;}i<x is chosen so that it
is the <y-minimal such sequence.

In the last case for 7 < K, 1 € M* & Vi < 7(r € M(M™)).

Proposition 2.10 Forn > 1 and o < K, the followings are provable in ZF +
(V=L).

1. Ifo € © 1€ MheO|No, and a € Hully, ({o,0F} Um) Not, then
Te M.

2. 0 € MhS'[O] = Vo < ot (0 € M(M®)).

3. The class of the greatly Mahlo cardinals below K is stationary in KC if
K € MhK+L.

Proof.

by induction on o < ot. Suppose ¢ € O, 7 € Mh%[O] N o and
o€ Hulllxl({a, ctium not.

First consider the case when cf(«) = o, and let {«;}i<s be the <p-minimal
sequence such that sup,_, &; = a. Then {o;}ico € Hullé1 {a,0}) C Hullé1 ({o, 0" }U



m. Fori < 7w «; € Hullél({o, octtum Na C Haonl® U {r}(r) N a by
o€ 0O. 1€ Mh¥[O] yields 7 € M(Mh%i[© U {r}]). Now for a club subset
C' in 7, pick a p < 7 such that p € CN Mh[© U {7}]. We can assume that
o € Hullél({a, ot}Up) by o; € Hullél({a, ot} Um). Thus IH yields p € M“:,
and hence m € M (M%) for any i < .

Second consider the case when c¢f(a) < 0. Then cf(a) € Hullé1 {a})no C
HullIEI({U, ot}UumNo C Honl[{o}(mr)No C by m € Mh[O] and o € O.
Thus cf(a) < 7. Pick a cofinal sequence {a;}iccf(a) € Hulllgl({o, ot} um).
Then for any i < c¢f(a) < 7 we have «; € Hullél({a, ot} Um) Na, and hence
7€ M(MRh2[©U{r}]). As in the first case we see that m € M (M%) for any
i <cf(a).

Finally let « = §4 1. Then § € Hullé1 ({o,07} Un) together with TH yields
7w € M(MP).

Suppose o € Mh? ' [0] and 3o < o (00 & M(M®)). Let o < o be the
minimal ordinal such that o ¢ M (M®), and C be a club subset of o such that
CNM® = 0. Then o € Hullf, ({o,0"}) Not € Han[O@U {o}](0) Not. By

o € Mh? ' [0] we have o € M(Mh2[©U{c}]). Pickam € CNMh2[OU{c}No.
Proposition ZT0M yields 7 € M*. A contradiction.

DIOB If K € MREFY then K € M(MAY). Let 0 € MRX N K. Then ot €
Ho+ n[{o}(0) N K, and hence o € M(MhS [{o}]). Proposition E0Z yields
o € Mh? [{o}]. From Proposition ZI0E we sce that o is greatly Mahlo. O

3 A theory for weakly compact cardinals

In this section the set theory ZF + (V = L) + (K is weakly compact) is para-
phrased to another set theory T(/C, I) as in [7].

Let K be the least weakly compact cardinal, and I > K the least weakly
inaccessible cardinal above K. &, A, p ranges over uncountable regular ordinals
such that K < k, A\, p < I.

In the following Definition B.2] the predicate P is intended to denote the
relation

P\ x,y) e x= FEJ{A}(/\)&y = FEJ{A}(I) = rng(FmEUl{A}) N Ord

and the predicate Py, (z) is intended to denote the relation
Pro(z) & o= F>(I).

Definition 3.1 1. Let X = Xo,...,Xn_1 be a list of unary predicates. A
stratified formula with respect to the variables © = xg,...,Tp—1 is a for-
mula ¢[Z] in the language {€} obtained from a (first-order) formula ¢[X ]
in the language {€} U X by replacing any atomic formula Xi(z) by z € ;
for i < n.
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2. For a formula ¢ and a set x, ¢* denotes the result of restricting every
unbounded quantifier 3z,Vz in ¢ to 3z € x,Vz € x.

3. a€Ord:s Ve eaVy e ax(y €a)A\Ve,y€alr eyVae=yVyce<x), and
by a < 8 we tacitly assume that «, 8 are ordinals, i.e., a < 8 = {«a, 8} C
Ord \Na € f.

Definition 3.2 T(K,I,n) denotes the set theory defined as follows.

1. Tts language is {€, P, P; ,,, Reg, K} for a ternary predicate P, unary pred-
icates Pr, and Reg, and an individual constant /C.

2. Its axioms are obtained from those of Kripke-Platek set theory with the ax-
iom of infinity KPw in the expanded language, the axiom of constructibil-
ity, V' = L together with the axiom schemata saying that

(a)

(b)
(c)

(d)

the ordinals x with Reg(x) is an uncountable regular ordinal> K
(Reg(k) — K < k € Ord) and (Reg(k) — a € Ord Nk —
Jz,y € OrdNkla < A P(k,x,y)]), and the ordinal « with P(k,z,y)
is a critical point of the ¥; elementary embedding from an L, =
Hullé1 (x U{k}) to the universe Ly (P(k,x,y) = {z,y} C Ord Az <
y < kA Reg(r) and P(k,z,y) = a € Ord Nz — @[k, a] = Y[z, a)
for any X;-formula ¢ in the language {€}),

there are cofinally many regular ordinals (Vo € Ord3ylx > K — y >
x A Reg(y)]),

the ordinal = with Py ,(x) is a critical point of the ¥,, elementary
embedding from L, 2 Hull{, (z) to the universe L; (Pr,(z) — x €
Ord and Py, (z) = a € OrdNa — pla] — ¢*[a] for any ¥,-formula
¢ in the language {€}), and there are cofinally many such ordinals
z (K <aeOrd— 3z e Ordla<xA Pr,(x)]),

the axiom K is uncountable regular’is:
(K >w)AVa < KVf e *K3p < K(f"a CB)

and the axiom saying that VB C KK € M(B) — 3p < K(p €
M(B) A Reg(p))], which is codified by the following ().

VB € Li+[B C K — —7(B,K) — 3p < K(—=7(B, p) A Reg(p))] (4)
where
7(B, p) :& 3C C p|(C is club)” A (BN C = 0)] (5)

and (C' is club)” is a formula saying that C is a club subset of p.
Namely 7(B, p) says that the set B is thin, i.e., non-stationary in p.

Note that (C is club)? A(BNC = () is stratified with respec to B, C,
and 7(B, p) is stratified with respec to B.

11



The following Lemma is seen as in [7].

Lemma 3.3 T(K,I) := U, c, T(K,I,n) is equivalent to the set theory ZF +
(V = L)+ (K is weakly compact).

4 Operator controlled derivations for weakly com-
pact cardinals

In this section, operator controlled derivations are first introduced, and infer-
ences (Refy) for Il}-indescribability are then eliminated from operator con-
trolled derivations of ¥-sentences p"* over K.

In what follows n denotes a fixed positive integer. We tacitly assume that
any ordinal is in H(n).

For a <* I = (1,0), Lo = {{0,2) : © € L, }. Ly = {(0,z) : © €
L} = Uycer Lo denotes the universe. Both (L7, €%) = A and ‘A is true’ are
synonymous with A.

4.1 An intuitionistic fixed point theory FiX'(ZFLK,,)

For the fixed positive integer n, ZFLK,, denotes the set theory ZF + (V =
L)+ (K € Mhﬁ"(prl)) in the language {€, K} with an individual constant K.
Let us also denote the set theory ZF + (V = L) 4 (K is weakly compact) in the
language {€, K} by ZFLK.
To analyze the theory ZFLK, we need to handle the relation (#,[0¢], ©, k,n)

I' defined in subsection [£.3] where n is the fixed integer, v, x,a, b are codes of
ordinals with a <¢ w, (I +1), b <® I ®w and x <° I the code of a regular ordi-
nal, ©g, © are finite subsets of L; and I' a sequent, i.e., a finite set of sentences.
Usually the relation is defined by recursion on ‘ordinals’ a, but such a recursion
is not available in ZFLK,, since a may be larger than I. Instead of the recursion,
the relation is defined for each n < w, as a fixed point,

Hn(’77®07®7l€7a/7bar) = (ny)n[("')o],@,li,n) l_g r (6)

In this way the whole proof in this section is formalizable in an intuitionistic
fixed point theory FiX‘(ZFLK,) over ZFLK,,.

Throughout this section we work in an intuitionistic fixed point theory
FiX*(ZFLK,,) over ZFLK,,. The intuitionistic theory FiX"(ZFLK,,) is introduced
in [7], and shown to be a conservative extension of ZFLK,,. Let us reproduce
definitions and results on FiX‘(ZFLK,,) here.

Fix an X-strictly positive formula Q(X, x) in the language {€, K, =, X } with
an extra unary predicate symbol X. In Q(X, z) the predicate symbol X occurs
only strictly positive. This means that the predicate symbol X does not occur
in the antecedent ¢ of implications ¢ — % nor in the scope of negations —
in Q(X, ). The language of FiX'(ZFLK,) is {€,K,=,Q} with a fresh unary
predicate symbol Q. The axioms in FiX‘(ZFLK,,) consist of the following:

12



1. All provable sentences in ZFLK,, (in the language {€, K, =}).

2. Induction schema for any formula ¢ in {€,IC, =, Q}:
Vz(Vy € zp(y) = @()) = Vo p(z) (7)

3. Fixed point axiom:

Vz[Q(z) < Q(Q, z)].

The underlying logic in FiX*(ZFLK,,) is defined to be the intuitionistic (first-
order predicate) logic (with equality).
(@) yields the following Lemma [Z11

Lemma 4.1 Let <® denote a A;-predicate as described before Theorem [17)
For each n < w and each formula ¢ in {€,K,=,Q},

FiX*(ZFLK,,) F Vz(Yy < zo(y) = ¢(z)) = Vo < w,(I + 1)p(z).
The following Theorem is seen as in [6] [7].
Theorem 4.2 FiX'(ZFLK,,) is a conservative extension of ZFLK,,.

In what follows we work in FiX’(ZFLK,,) for a fixed integer n.

4.2 Classes of sentences

K€L =Li = Uycorg La denotes a transitive and wellfounded model of
ZF+(V = L), where L, is the set of L,-definable subsets of L,. Ord denotes
the class of all ordinals in L, and I the least ordinal not in L, while Ord® denotes
the codes of ordinals less than w, (I + 1).

Definition 4.3 For a € L, rky(a) denotes the L-rank of a.
rky(a) := min{a € Ord : a € Lot1}.

Ifaebe L,thenae€bC Lg for 8 =rky(b) and a € Lg. Hence rky(a) < g =
YkL (b)

The language L. is obtained from the language {€, P, Pr ,,, Reg, K} by adding
names(individual constants) ¢, of each set a € L. ¢, is identified with a.

Then formulae in L, is defined as usual. Unbounded quantifiers 3z, Va are
denoted by Jdx € L;,Vx € Ly, resp.

For formulae A in L., qk(A) denotes the finite set of L-ranks rky(a) of sets
a which are bounds of ‘bounded’ quantifiers 3= € a,Vx € a occurring in A.
Moreover k(A) denotes the set of L-ranks of sets occurring in A, while k¥ (A)
denotes the set of L-ranks of sets occurring in an unstratifed position in A.
Both k(A) and k¥(A) are defined to include L-ranks of bounds of ‘bounded’
quantifiers. Thus qk(A4) C k(A) C k(A) < I. By definition we set 0 € gk(A).

In the following definition, Var denotes the set of variables and set rky,(z) :=
0 for variables x € Var.

13



Definition 4.4 1. k(=A) = k(A) and similarly for k¥, qk.

gk(M) = {0} for any literal M.

KE(M) = k(M) = {rky(t) : t € £} U {0} for literals Q() with predicates
Qe {P, PI,naReg}'

. k(t € s) = {rkr(t), 1k (s),0} and kE (¢t € s) = {rk.(t),0}.

k(Ag V Ay) = k(Ag) Uk(A;) and similarly for k%, gk.

Fort € LyU{L;}UVar, k(3z € t A(x)) = {rkr(t)} Uk(A(x)) and similarly
for k¥, gk.

For example k¥(a € b) = {rkr(a),0}, and qk(3z € a A(x)) = {rki(a)} U
ak(A(z)).

Definition 4.5 1. A € Ay iff there exists a Ap-formula 0[Z] in the language

b.
0.

{€} and terms  such that A = @[t]. This means that A is bounded, and
the predicates P, Pr y,, Reg do not occur in A.

Putting 3¢ := Il := Ay, the classes X, and II,, of formulae in the lan-
guage {€} with terms are defined as usual using quantifiers 3z € L;,Va €
L;, where by definition ¥, UIL,, C ¥,,4+1 NIL,41.

Each formula in ¥, UL, is in prenex normal form with alternating un-
bounded quantifiers and Ag-matrix.

A € Ag(N) iff there exists a Ag-formula 0[Z] in the language {€} and
terms # such that A = [f] and k(A) < .

. A e (N iff either A € Ag(N\) or A =3z € L) B with B € Ag()).

Note that Z(\) C Ag for any A < I.
The class of sentences 2, (), II,, (A) (m < w) are defined as usual.

$§(N) denotes the set of first-order formulae on Ly, i.e., B3(\) := U Ym(N).

mew

Note that the predicates P, Pr,, Reg do not occur in 3,,-formulae nor in
Y (\)-formulae.

Definition 4.6 A set ©¥7+1()) of sentences is defined recursively as follows.

1.
2.

St C D0 (N).

Each literal including Reg(a), P(a,b, ¢), Pr»(a) and their negations is in
YE+1(N).

YEn+1()\) is closed under propositional connectives V, A.

. Suppose Vo € bA(x) € Ag. Then Vr € bA(x) € R=+1()) iff A()) €

YE+1()) and tky (b) < A.
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5. Suppose 3z € bA(z) € Ag. Then 3z € bA(z) € L=+1(N) iff AD) €
YEa+1(\) and 1kz(b) < A.

Definition 4.7 Let us extend the domain dom(FxEUl{K}) = Hullél(x U {k}) of
Mostowski collapse to formulae.

dom(F>, \)={Ae % Ul : k(A) C Hulllgl(x U{x}h}.

zU{K}

For A € dom(FmEUl {H}), Fful {N}”A denotes the result of replacing each constant ~y

by Fful{n}(wv each unbounded existential quantifier 32 € Ly by 3z € L >, 1y
zU{K}

and each unbounded universal quantifier Vz € Ly by Vz € L= -
zU{r}

For sequent, i.e., finite set of sentences I' C dom(Fij{n}), put FEJ{K}”F =
{F>, "A:AecT}.

zU{r}
Likewise the domain dom(F>n) = HullIEn (x) is extended to

dom(F>") = {A € ¥, UII, : k(A) C Hull{, (z)}

and for formula A € dom(F>), F=»” A, and sequent I' C dom(F>"), F>»"T
are defined similarly.
Proposition 4.8 For F' = FIEUI{H}, FZn and A € dom(F)

L] lZA(—>F”A.

The assignment of disjunctions and conjunctions to sentences is defined as
in [7].
Definition 4.9 1. If M is one of the literals a € b,a € b, then for J :=0

af o d V(A)ues i M is false (in Ly)
o /\(AL)LGJ if M is true

2. (Ao VA1) i~V (A)es and (Ao A Ay) i A(A,) e for J:=2.

Reg(a) >~ \/(a =a),es and = Reg(a) =~ /\(a #a).e1

with
g 1 ifaeR
" | 0 otherwise
4.
P(a,b,c) i~ \/(a =a),es and = P(a,b,c) i~ /\(a #a)eg
with

;.- 1 ifa€R&3Ia€Ordfb="onakaeHalb) &= Fytay (D]
"1 0 otherwise
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Prn(a) i~ \/(a =a),es and =P ,(a) i~ /\(a #+a),eg
with
1 if 3o € Ordela =9 pa& o € Hy(a)]
J = ) )
0 otherwise
. Let (32 € b0[z]) € %, for b € Ly U{Ls}, and (32 € b0[z]) € SH(LT).
Then for the set

wz € bo[z] == n<11n{d (debnbld)V (-Fze€blz]Ad=0)} (8)
L
with a canonical well ordering <z, on L , and J = {d}

3z €bblz] = \/(debAbld))acs (9)
Vzeb-flz] i~ \(deb— bd)acs

2

where d € b denotes a true literal, e.g., d ¢ d when b = Lj.

This case is applied only when 3z € b6[z] is a formula in {€} U L;, and
(3z €b0[z]) € £, but (Jz € bO[z]) € BHKT).

. Otherwise set for a € Ly U{L;}

Iz € a A(w) = \[(A(b))pes and Va € a A(z) = N\ (A(D))es

for
J:={b:be€a}.

This case is applied if one of the predicates P, Pr ,, Reg occurs in dz €
aAz) ,or (3z € aA(x)) & Xy, or (Jz € a A(x)) € BEKLT).

In particular we have
-7(B,K) =~ N{(C¢K)V~(Ciscub)* VvV (BNC #0):C € Lic+}
7(B.K) =~ \{(CCK)A(Cisclub)A(BNC=0):C € L+}

where

7(B, p) := 3C C p([(C is club)? A (BN C = ()] @)

The definition of the rank rk(A) of sentences A in [7] is slightly changed as

follows. The rank rk(A) of sentences A is defined by recursion on the number
of symbols occurring in A.

Definition 4.10 1. rk(=A) :=rk(A).
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2. 1k(a € b) :==rk(a € b) := 0.
5. tk(Reg(a)) = tk(P(a, .7)) = tk(Pr n(0)) = 1.
4. k(A V A1) := max{rk(Ap),rk(A;)} + 1.
5. 1k(3z € a A(z)) := max{wa, rk(A(0)) + 2} for a = rky(a).
Proposition 4.11 Let A ~\/(A,).es or A~ N\(A,).e.
1. A€ ¥%nr1()) = Ve € J(A, € £E+1(N)).
2. For an ordinal X < I with w\ = X, tk(A) < A = A € REn+1()\).
3. tk(A) < I+ w.

4. tk(A) is in the Skolem hull of wgk(A) U {0,1} under the addition with
wak(A) = {wa : a € qk(A)}.

5. Vee J(rk(A4,) < rk(A)).

Proof.
This is seen from the fact that a € b € L = rky(a) < rky(b). O

~—

4.3 Operator controlled derivations

K, \, 0, T ranges over RV.

Let H be an operator, © a finite set of ordinals, k € RT, I" a sequent,
a € Ord® and b < I +w. We define a relation (H, O, x,n) k¢ I', which is read
‘there exists an infinitary derivation of I" which is (k,n)-controlled by H and O,
and whose height is at most a and its cut rank is less than b’.

Recall that R denotes the set of uncountable cardinals p such that < p < I,
and A > K in the inference rules (Py) and (Fii{”).

Sequents are finite sets of sentences, and inference rules are formulated in
one-sided sequent calculus.
Definition 4.12

KE(A) = kF(A) ifAe ;5(K+)
K k(A)  otherwise

Definition 4.13 (H,0,k,n) F¢ T" holds if
k() == | J{k£(A) : A €T} C H :=H(D) & a € H[O] (10)
and one of the following cases holds:

1. A~ \{A, :ve J}, AeT and for an ¢ € J, a(t) < a and tkz(¢) < k =
tkz (1) < a

(H,0,k,n) I—Z(L) T, A,
(H,0,k,n) F¢ T

(V)
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A2 N{A, :veJ}, AeT and a() < a for any ¢ € J

{(H[{rkr(1)}], 0, K, n) FZ(L) A, :1eJ}

(H,0,k,n) F¢ T (A)

. tk(C) < b and an ap < a

(H,@,Ii,n) FZO F,—‘O (H,@,Ii,n) FZO O7F
(H7 @7 H’ n) '7? F

(cut)

ca<AeRand {Jz < Ay < AMa <z AP\ z,y))}Uly=T

P
dz <Ay < AMa <z AP\ z,y)],To (Px)
. Let A € R and = € H[O] where for some b
xr = \I/>\7nb.
T =AU (FEJ{A}’TO), I'o C 31, ap < a and
k(To) C Hully;, (H Nx) U{A})
then
(vavﬁ’an) Fgo AaFO oM
( zu{)\})

(H,0,k,n) FE A, FEJ{A}”FO
where Fij{)\} denotes the Mostowski collapse Fij{)\} : HullIE1 (xU{\}) &

L~ .
F.oon M

La<Tand {3z <Ila<zAPr,(x)]}Uuly=T

Pin
Jr < Ilao < & A Prp(z)],To (Prn)

. Let

xr = \If]mb S H[@]
IfT =AU (FFTy), 'y C %y, ag < a and
k(o) C Hully, (HNz)

then
(H,0,k,n) F,° A, T

(H,0,K,n) F& A, FZ""T

(F3)

where F>» denotes the Mostowski collapse F>n : Hulllzn (2) & LFE"(I)'
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8. If max{as,a,} < a, and B C K, B € Hull,, ({K,K*}), then

(H,0,k,n) F, T, —~7(B,K) (H,0,k,n) " T')Vp < K1(B,p)
(H,0,k,n) ¢ T

(Refi)

where
7(B, p) 1 3C C p[(C is club)? A (BN C = 0)] @

which is stratified with respec to B.

An inspection to Definition shows that there exists a strictly positive
formula H,, such that the relation (#..,[O0],©,k,n) F¢ I' is a fixed point of
H, as in ([@).

In what follows the relation should be understood as a fixed point of H,,, and
recall that we are working in the intuitionistic fixed point theory FiXi(ZFLKn)
over ZFLK,, defined in subsection [A.1]

Proposition 4.14 (H,0,k,n) Ff T&A < k= (H,0,\,n) ¢ T.

We will state some lemmata for the operator controlled derivations with
sketches of their proofs since these can be shown as in [I0] and [7].

In what follows by an operator we mean an H,[©] for a finite set © of
ordinals.

(H,k,n) H T (H,0,k,n) 3 T
Lemma 4.15 (Tautology)
HIKE(A)], 1,n) Fy PP T -4, A,
K 0
Lemma 4.16 (A(I)-completeness) IfI' C Ag(I) and \/T is true, then
HKED)], L,n) Fp 2O T
K 0
where 1k(T') = rk(Ag)# - - - #rk(A,) for T = {Ao,..., A, }.
Lemma 4.17 (Elimination of false sentences)

{ f}e)t A b.f a false sentence, i.e., Ly = A, such that k(A) C Hullél((lc +1)U
KT NKT. Then

(H,0,k,n)Ff T A= (H,0,k,n) F T.

Proof.
Consider the case when A is a main formula of an (Ffb{/ﬁ}) with z > K.

We have F>* (a) = a for any a with rky(a) < .

zU{K+}
We claim F} o "A = A. Let b € k(A). Then rkg(b) € Hull§, (K + 1)U
{K*}) N K+ C Hullf, (z U{K+})N K+ C 2. Hence Ffd{Kﬂ(b) =b. ]
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Lemma 4.18 (Embedding)
For each aziom A in T(K,I,n), there is an m < w such that for any operator

H
(H[{K}],I,n) FE™ ‘€ is uncountable regular’ — A.

Proof.
The axiom for II}-indescribability

VB € Li+[B C K — —7(B,K) — 3p < K(=7(B, p) A Reg(p))] @

follows from the inference rule (Refi) and @) ~ A(B ¢ K — —-7(B,K) —
Jp < K(=7(B, p)AReg(p))per,., for Bi:=pB € Lic+(B C KA=7(B,K)AVp <
K(Reg(p) = 7(B, p))) € Hullg, ({K,L7}). O

Lemma 4.19 (Inversion)
Let d = pz € bA[G, 2] for (32 € bA) € X, \ TEKLT).

(H,0,k,n) 2 T,32 € bA[C, 2] = (H,0,k,n) i T',d € b A A[C, d]
and
(H,0,k,n) Fp T,Vz € b-A[C, 2] = (H,0,k,n) FE T',d € b — —A[¢, d]

Lemma 4.20 (Reduction)
Let C ~\/(C,),e.

1. Suppose C ¢ {Fx < Ay < AMa < 2 AP\ z,y)]:a< e RpU{Tx <
Ilao <z A Pry(z)]:a<I}.

Then

(H,0,5,n) F* A, ~C & (H,k,n) FLC. T &K <1k(C) < ¢ = (H,0,k,n) FTP AT

2. Assume C' = (Fz < ANy < Ma <z AP\ z,y)]) for an o < X € R and
I} EHg.

Then
(Hp,k,n) Hp T, =C = (Hgt1,k,n) H§ T

3. Assume C' = (Fx < Ilao < & A Prp(x)]) for an oo < I and 5 € Hp.

Then
(Hﬁv R, n) FZ Fv -C = (HﬁJrlv R, n) Fg r

Lemma 4.21 (Predicative Cut-elimination)

1. (Hokon) oo T& [e,c+wN{A+1: X € RIU{I}) =0&a e H =
(H,k,n) F£ T,

2. For N€ R, (Hy,k,n) Fo s T &y € Hy & = (Hoypyhyn) FS T
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3. (Hy kon) FY  T&y e Hy&k = (Hyg, 5, 1) Hldb r
4. (Hy k,m) FU o T& max{a,b,c} < I&a € Hy = (Hytpab, kyn) FEP T

Definition 4.22 For a formula 3z € d A and ordinals A = rkz(d) € R, a,
(3 € d A)FN) denotes the result of restricting the outermost existential quan-
tifier 3x € d to 3w € Lo, (Fr € dA)NY = Tz € L, A).

In what follows [, » denotes Ff;\ when A € R, and FE" when \ = 1.

Lemma 4.23 (Boundedness)
Let \e RY,C =3z €dA) and C ¢ {Fz < My < Ma <z AP\ z,y)] : a <
A€ RYU{3z < Ia <z APry(z):a<I}. Assume that tk(C) = X = rky(d).

1.

(H,0,\,n)F2 A, C&a<beHNA= (H,0,\n) A, CEWP).

(H,0,5,n) F2 A, ~C&be HNA= (H,0,r,n) A, =(CEW),

Though the following Lemma[Z24] Collapsing down to I) is seen as in Lemma
5.22(Collapsing) of [7], we reproduce a proof of it since [7] has not yet been
published.

Recall that

(H,k,n) T (H,0,k,n) H3 T

Lemma 4.24 (Collapsing down to I)
Suppose v € Hy n[0O] with © C Hyn(¥rn7y), and

I C X¥+1(])
Then for a = v+ w!*®

(H%"[GLI? n) F?Jrl I'= (HdJan[@]’I’ n) '7\1,1,71[1 T.

\I’I,naf

Proof.

By induction on a.

First note that Uy ,a € Har1.,[0] = Har1.(0) since a = v + wlt® €
Heyn[O] C Hat1,,[0] by the assumption, {v,a} C H, »[O].

Assume (M, n[O][A],I,n) F7%, To with A C H, (¥Y7,,7). Then by v < a,
we have do € Hyn[O][A] C Hy (V1 ny) C Han(¥rna). This yields that

ag < a = \I/])ndb < \If]md (11)

Second observe that kZ(T') C H~.n[0] C Hat1,,[0] by v <@+ 1.
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Third we have
kid(D) € Hoyn(W1,07) (12)

Case 1. First consider the case: T 5 A~ A{A,: 1€ J}

{(Hyn[OU {tkp (1)}, I,n) F3Y) T, A, 0 € T}
(H’Y,n[@]v Iv n) |—?+1 F

where a(i) < a for any ¢ € J.
We claim that
Vi€ J(rkp (1) € Hoyn (V1 07)) (13)

Consider the case when A = Va € b—A’. There are two cases to consider. First
consider the case when J = {d} for the set d = pz € bA’. Then kE(A4) =
k(A), and . = d = (uz € bA') € Hulll, (k(A)), and rkp(¢) € Hully, (k(4)) C
Hoy (V1) by [[2). Otherwise we have J = b and either A € X(KT) and
b€ Li+U{Lx+}, orrky(b) < I. In the second case we have b € k(A4) = kE(A) C
H~n[O]. In the first case each ¢ € b has L-rank rky(:) < K£*. On the other
hand we have KT € H, (U7, y) NI C Uy ,y by I > KT, Thus rky (1) < Uy 7.
In the second case we have rky(¢) < rkp(b) € Hyn(¥rny) NI C ¥y by
rky, (b) < 1.
Hence ([I3]) was shown.

SIH yields
W nale)
{(Hogy 0@ U{rke (W3], 1, n) F\Pj’ (;8 LA e J}
- (A)
(H&-{-l,n[@]a Iv n) Fg;::g F

— —

for a(1) = v + w!te®) since U ,a() < ¥y ,a by D).

Case 2. Next consider the case for an A ~ \/{A4, : 1 € J} €T and an € J
with a(t) <a and rkz (1) < T = k(1) < a

(Hon[O], I,n) F$Y) T, A,
(H’Y-,n[e]v Iv n) F74—1 r

Assume rky, (1) < I. We show rkz (1) < Uy ,a. By ¥,y < Uy ,a, it suffices to
show rkp (1) < U1 7.

Consider the case when A = 3z € bA’. There are two cases to consider.
First consider the case when J = {d} for the set d = uz € b A’. Then kE(A) =
k(A), and ¢ = d = (uz € bA') € Hullf, (k(A)), and rky(:) € Hullf, (k(A)) C
Hoyn(Vrny) by @A), If rkp(e) < I, then rkr () € Hoyn (Wi ny) NI C Vs 7.

Otherwise we have J = b, and either A € Y}(KT) and b € Lx+ U {Lx+},
or b € k(4) = kE(A) C H,,[0]. In the second case we can assume that
L€ k(A,) =kE(A,) C Hn[O]. Otherwise set ¢ = 0.
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In the first case each ¢ € b has L-rank rky (¢) < K. On the other hand we
have KT € Hy,(Vr,y) NI C Uy py by I > KT, Thus ki () < Uy ,7y. In the
second case we have rky, (¢) < rkp () < I, andrky(¢) € Hayn(Yr,y)NI C Ur 0.

SIH yields for a(1) = v + w!T®)

e \I’I,na(L)
(Ha(b)+1,n[®]7 I’ n) F‘I’I,na/(?) F’ AL

(Hat1.n[0], I,n) Fy'm2

\I/I,naf

(V)

Case 3. Third consider the case for an ap < a and a C' with rk(C') < I + 1.

(H~y,n[©],1,n) I—‘}"H r,-C (H,n0©],1,n) I—?Srl c,r
(H’Y,n[@]v Iv n) |—?+1 r

(cut)

Case 3.1. 1k(C) < I.

We have by [I2) kE(C) C Hy,n(V1,7). Proposition EITM yields rk(C) €
Hoyn(Urny)NI C Uy ny < Uy na. By Proposition ETTI2 we see that {-C,C'} C
S+ (]).

SIH yields for ap = v + w! T

(Has 100, 1,0) by "8 T, ~C (Hgya1 a[6), L) by "2 C,T

\I/I,na

- (cut)
(Has1n[0],1,n) Fyime T

Vi na

Case 3.2. 1k(C) = 1.

Then C € ¥*n+1(I). C is either a sentence Ir < I[a < z A Pr ()], or a
sentence Jx € Ly A(x) with qk(A) < I.

In the first case we have (H41,[0],1,n) =79, I' by Reduction E20I3] and
IH yields the lemma.

Consider the second case. From the right uppersequent, SIH yields for ag =
v+ w!t® and By = Vi nap € Hagr1,0[6)]

(Hap41.0). 1) Ff C.T
Then by Boundedness and By € Hay11,,[0], we have
(Has41,0[0), I,m) Hjo CEMP0) T
On the other hand we have by Boundedness from the left uppersequent
(Hag11,0[0],1,n) H50 T, ~(C3190))

Moreover we have =(CG1%0)) ¢ ¥¥n+1(T). SIH yields for ap < a3 = ap + 1 +
witeo =y 4 ltao 4 1 4 pltao <44 te =g and g = ¥ a1

(Haz+1.2[0], 1, 1) I—'gi T, —(311Bo)
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Now we have @; € Hg, n(¥1,a) and @; < a for i < 2, and hence By = ¥y a0 <
B1 =V ,a1 < Vp,a. Therefore rk(CG0)) < g1 < Uy 4.
Consequently

(Haz41,0[0), 1,n) F3E T,=CCI5) (g 0], 1,n) Hao ¢Gl%0), 1
(Haz41,0[0]. L) F 1 T

(cut)
Hence (Hay1.m,1,n) kigzg T.
Case 4. Fourth consider the case for an ag < a

(Hon[0], 1,n) F92 A, T
(H%n[GL Iv n) F?Jrl F

where I' = AU F”’Ty and either F' = Fij{p}, Ty C ¥ for some x and p, or

F=F> TyCY, foran z. Then AUy C %,,. SIH yields the lemma. O

4.4 Elimination of II}-indescribability

In the subsection we eliminate inferences (Refy) for I1}-indescribability.

For second-order sentences ¢ on L, with parameters A C L, and ordinals
a < m, o) denotes the result of replacing second-order quantifiers 3X C
L., VX CL,bydX C L,,VX C L, resp., first-order quantifiers 3x € L,,Vx €
Ly by dz € L,V € L, resp. and the parameters A by AN L,. For sequents
I, D@m= {plem) . e T,

Proposition 4.25 Let I' C II}(7) for 7 € Mh%[O]. Assume
3¢ € Hen[© U{m})(m) N aVp € MES[O U {x}]\/(T™).
Then \/(T) is true.

Proof.

By m € Mh&[O] we have 71 € M(Mh5[O© U {r}]) for any & € H¢ [0 U
{m}(m) Na, cf. @).

Suppose the X} (7)-sentence ¢ := A(-T') := A{=0 : § € T} is true. Then
the set {p < 7 : o™} is club in 7.

Hence for any & € He [0 U {7}](7) N o we can pick a p € Mh§[O U {r}]
such that "™, ]
HynO)F3 T e (Hyn,©,1,n) Fy T

Lemma 4.26 (Collapsing down to K)

Let v be an ordinal such that v € H p.
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Suppose for a finite set © of ordinals and an ordinal a
Hyn[©] Fg T

where T' consists of sentences —=7(B,K), (BN C # 0), Vp < K7(B,p) for a
B C K with B € Hulllzl({lC,lC"'}) and sets C' € L1 such that C is a club
subset of KC, and their subformulas:

7(B, p) 1 3C C p[(C is club)? A (BN C = 0)] @)

Then for éE =~v+a
Vr € MRS [O]{E IO,
which means that \/(T\™X)) is true for any m € Mh$[O].

Proof.
By induction on a. Let 7 € Mh§[0O] and ¢ = v + a.

Case 1. First consider the case when the last inference is a (Ref): we have
{a¢,a,} € M, (0] Na and B C K with B € Hullf, ({K,K*}).

H%"[G] Fge Fv _‘T(B,IC) H’%"[G] FST F,Vp < ICT(Ba p)
Hyn[O] G T

(Ref)()

We have &, := v+a, € He, »[0](m)NE by & > 7 and a, < a. By Proposition
with & € He, n[0](7) we have m € Mh§[O]. TH yields \/(T'(™X)) v Vp <
7 7(B,p).

On the other hand we have & := v + ag € He, »[O](m) NE. By IH we have
for any p € Mh&[© U {r}] N =, V(T'PK)) v =7(B,p). Hence we have Vp €
Mg O U {n}] Na{\/ (TR v \/(T'™K))}. Proposition yields \/(T'(7K)).

Case 2. Second consider the case when the last inference introduces a II} (K)-
sentence -7 (B, K) with a B C K such that B € Hullél({IC,IC"’}).

{Hym[®U {tk(C] FEO T, (C ¢ K) v =(C is club)* v (BN C # ) : C € Lic+}

Hyn[O] G T, =7(B, K) (N)

where VC' € Li+(a(C) € Hyn[© U {1k (C)}] Na) and —-7(B,K) ~ A{(C ¢
K)V=(Cisclub)* v (BNC # 0) : C € Lg+}. For each C, (C ¢ K)V
=(C is club)* v (BN C # 0) is stratified with respec to C.
Let
Cr:=pC € L +[(C Cm)A(Cisclub)™ A(BNC =10)

J
Then =[(C C m)A(Cy is club)™ A(BNCy = 0)] = —7(B, ) = (-7(B, K))(™%),
We can assume that (C; C w) A (Cy is club)™. Otherwise (ﬁT(B,IC))(”JC)
and hence \/(F(’T*’C)) Vv (—7(B, ]C))(ﬂJC)_
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Let
C={yeK:I,y<K(y=m-z+yAyeCrU{0})}

Then C'is an Li-definable club subset of K, C' € Li41, and
C € JnHullg, ({m,7",K,B}) ¢ Hully, ({m, 77, K,K*}) C H,yn[O U {7}].
Hence rkz(C) € H,»n[0 U {r}] and a(C) € H,,[© U {7}]. By inversion

Hon[@U{m}] FE O T, C ¢ K,~(C is club)®, BN C # §
Eliminate false sentences C' ¢ K and —(C'is club)X by Lemma EI7
Hon[OU{r} O T, BnC 0
TH yields for £(C) = v+ a(C), Vp € MAS (O U {x}] na{\/ (TR v (B NC +
0)PK)} where (BN C # 0)*X) = (BN CrNp#0) = ((BNC #P)mK)em),

Proposition 28 with £(C) € He(oy,n[@U{m}](7)NE yields /(D™ v(BNC #
0)(=X) and hence \/(T(™X)) v (=7(B, K))(™%)

Case 3. Third consider the case : I' 3 (BNC # 0) with B ¢ K, B €
Hullf, ({K,K*}) and a club subset C of K.

H, a0l FO T, (de B)A(deC)
WO Fg T V)

where ap < a and d € K.
Then (BNC # 0)™X) < (BNC N7 #0) and ((d € B) A (d € C)(™F) «
(de (BNm))A(de (Cnm)). TH with Proposition 208 yields the lemma.

Case 4. Fourth consider the case : T' 5 ((d € B) A (d € C)) with B C K,
B € Hullf, ({K,K*}) and a club subset C of K.

Hyn[OFO T, de B H,,[0]F T,deC "
Hyn[O] FET

where ag, a1 < a.
IH with Proposition 2.913] yields the lemma.

Case 5. Fifth consider the case: for a true literal M = (d € B), M € T', where
B C K such that either B € Hullf, ({K,K*}), or B is a club subset of K, and
de k.

Hyn[O]FGT (N

Then M(™K) = (d € (BN 7)) € DK,
It suffices to show d = rky(d) < m. We have by ([0) d € kP(d € B)nK C
Hon NK C by me MhS[0O], ie., by He,(m)NK C 7.
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Case 6. Sixth consider the case when the last inference introduces a sentence
Vp < K7(B,p).

{Hynl{p})O] F3 T, 7(B,p) : p < K}
Hyn[O] FG T, Vp < K7(B, p)

(A)

We have for any p < m and {(p) = v + a(p), £(p) € Hep),n[O](m). Proposition

yields 7 € MASP[0]. By IH we have Vp < 7{\/(T(™X) v 7(B, p)}, and
hence (\/(T)VVp < K7(B, p))™X) with (Vp < K7(B, p))™) =Vp < 7 7(B, p).

Case 7. Seventh consider the case when the last inference introduces a sentence
Vo € cp(z) €T for ¢ € L and kE(p(z)) < K& k(p(z)) < K.

{Hy ul{rkr (0)}][6] H3” T, p(b) 1 b e ¢}
Hyn[O]FG T

(A

Then v = rky,(¢) € kE(I') N K and hence v < 7 as in Case 5. As in Case 6 we
have by TH Vb € ¢(\/(T(™X)) v ¢ (b)) where ¢(b) = (p(b))™X). Hence \/(T' (™).

Case 8. Eighth consider the case when the last inference introduces a sentence
3z € cp(c) €T for ¢ € Ly, b € c and kE (p(z)) < K & k(p(z)) < K.

Hy.al0] T, 0(b)
HonlO] g T

(V)

As in Case 7 we see rkz(c) < 7. TH with Proposition EXOB] yields \/(T'(™%)) v
p(b), and \/(DTM),

Case 9. Ninth consider the case when the last inference is an (F) where either
F=F}, forae Ror F=F".
In each case if A € rng(F') for an A € T, then we claim F” A = A. Suppose

xr = FEJ{,C+}(IC+) < 1kr(B) < K* for the set B € Hully; ({K,*}). However

by © > K we have rkz,(B) € Hullf, ({K,K*})NK+ € Hullg, (zU{KT}HNK* C .
Hence this is not the case.
IH yields the assertion. O
Collapsing down to K yields the following Theorem

Theorem 4.27 (Elimination of (Refy))
Let v € Hyp, BC K, and B € Hull, ({K,K*}).
[Hoyn G —7(B,K)] = [-7(B, ) is true]

for any © € MRS, with € = v+ a.
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5 Proof of Theorem

Let ¢ be a Yi-sentence, and assume that ZF proves the sentence
VK[(K is a weakly compact cardinal) — ¢"%].

Under V = L, V, = L, for any inaccessible cardinals o, and we have
VE[(K is a weakly compact cardinal) — ¢<]. Hence T(K,I) - ¢t<. By
Proposition[[L2lwe can assume that the sentence (‘K is uncountable regular’ —
©Pr) is of the form ‘IB C K(S?(B) N K is stationary in K)’.

Let B := uB C K(S¥(B) NK is stationary in ) € Hullf;, ({K,K*}).

In what follows work in an intuitionistic fixed point theory FiX’(ZFLK,,)
over ZFLK,, = ZF + (V = L) + (K € MR ") for a sufficiently large n < w.

By Embedding I8 pick an m < w such that (Ho ., [,n) Fﬁ:ﬁ:ll) -7(B,K). By

Predicative Cut-elimination [£.21] we have (Ho n, I, n) l—}drl’Q(I'(m_l)) -7(B,K).

Then by Collapsing down to I E24we have for a = wy, (I +1) and b = ¥ ,a,
(Han, I,n) b =7(B,K). Again by Predicative Cut-elimination EEZI] we have
(Han, I,n) FE™ =7(B,K).

Elimination of (Refi) yields =7(B,7) for any m € Mh§ with ¢ =
a+ pbb € He n(K) Nwimp1 (L +1).

Proposition M2 with K € Mas™ U yields -7(B, K), and hence S¥(B)N
K is stationary in K. Since the whole proof is formalizable in FiX‘(ZFLK,,),
we conclude FiX‘(ZFLK,) F ¢"¢. Finally Theorem yields ZFLK,, F ©¥x.
Therefore V% follows from 6,,(K) = K € Mg over ZF + (V = L). Thus
Theorem was shown.

Since the least weakly inaccessible cardinal Iy is below the least weakly
Mahlo cardinal,

ZF +KF "0 = ZF + {3K0,(K) 1 n < w} - "%

for any first-order sentence ¢, etc.
This completes a proof of Theorem
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