
International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

TRANSFERRING KNOWLEDGE FROM MONITORED TO

UNMONITORED AREAS FOR FORECASTING PARKING SPACES

ANDREI IONITA

Computer Science, RWTH Aachen University

Aachen, Germany
andrei.ionita@rwth-aachen.de

ANDRÉ POMP

Institute of Information Management in Mechanical Engineering, RWTH Aachen University,

Aachen Germany
andre.pomp@ima.rwth-aachen.de

MICHAEL COCHEZ

Fraunhofer Institute for Applied Information Technology FIT, Aachen, Germany
Department of Computer Science, Vrije Universiteit Amsterdam, Netherlands

Faculty of Information Technology, University of Jyväskylä, Finland

michaelcochez@gmail.com

TOBIAS MEISEN

Chair of Technologies and Management of Digital Transformation, University of Wuppertal,

Wuppertal, Germany
meisen@uni-wuppertal.de

STEFAN DECKER

Computer Science 5, RWTH Aachen University, Germany

Fraunhofer Institute for Applied Information Technology FIT, Aachen, Germany
stefan.decker@dbis.rwth-aachen.de

Preprint of an article to be published in Int J. on Artificial Intelligence Tools (IJAIT) c©2019 [copyright World
Scientific Publishing Company] https://www.worldscientific.com/worldscinet/ijait.

Smart cities around the world have begun monitoring parking areas in order to estimate
available parking spots and help drivers looking for parking. The current results are

promising, indeed. However, existing approaches are limited by the high cost of sensors
that need to be installed throughout the city in order to achieve an accurate estima-

tion. This work investigates the extension of estimating parking information from areas
equipped with sensors to areas where they are missing. To this end, the similarity be-

tween city neighborhoods is determined based on background data, i.e., from geographic
information systems. Using the derived similarity values, we analyze the adaptation of
occupancy rates from monitored- to unmonitored parking areas.

Keywords: smart parking, machine learning, semantic annotation, data mining

1

ar
X

iv
:1

90
8.

03
62

9v
1

 [
cs

.L
G

]
 7

 A
ug

 2
01

9

https://www.worldscientific.com/worldscinet/ijait

2 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

1. Introduction

Parking problems and overall traffic congestion are commonplace in cities nowadays.

While the number of cars continues to increase1, studies show that about 30% of

the traffic in cities is caused by cars that are actively searching for parking2. Often

it is the lack of planning on behalf of cities that does not accommodate parking

facilities proportional to building developments3, which leads to double-parking,

more accidents due to distracted drivers, more busy traffic, and, ultimately, a waste

of fuel4. As infrastructure solutions are not always optimal and take a long time to

implement, there are other strategies to overcome these issues.

Parking can be managed more efficiently if parking spaces would work on an

allocation basis, with drivers reserving a spot of their choosing. Accounting for each

individual spot and managing its reservations is, however, unrealistic and unsus-

tainable at the moment. Merely providing an overview of areas with free parking

spaces would be a big help. Suppose a driver would have access to such a service

that indicates free parking spaces at the time when she is arriving in the area. The

system would take into account the usual parking levels in the respective area de-

pending on the day of the week and the time of day. Additional information such as

current traffic, event data and weather would improve its estimations. Being aware

of this sort of parking information beforehand, the driver would pick a traveling

path that is less busy through the city and spend significantly less time finding a

parking spot that is limited to the area indicated.

This work introduces an approach inspired by the vision to produce parking

occupancy estimations for city areas without any previous measurements by taking

into account the city infrastructure and the parking data from other areas. This

paper extends our previous work5,6, by enriching the evaluation of, and exploring

alternative assumptions as, the original approach. The approach distinguishes itself

from related research by including open Geographical Information System (GIS)

data into the prediction computation.

This paper is organized as follows. Following the introduction, an overview of the

research landscape in city parking is presented, before outlining the main assump-

tions behind our approach. The approach itself is broken down and described in

detail, after which its evaluation is set up and carried out. Finally, further possible

extensions are outlined and conclusions are drawn.

2. Smart Parking Research

Improving the parking situation using sensor data has been subject of research,

especially since around 2000. In a 2017 survey7,8, Lin compiles an overview of the

advances in smart parking by splitting the results into three categories: information

collection, system deployment, and service dissemination. We follow their catego-

rization below.

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 3

2.1. Information Collection

Under information collection, the survey lists techniques to acquire parking infor-

mation. Static sensors are usually mounted around parking meters, in the ground

or on nearby lamp posts. The dynamic sensors are usually managed through a wire-

less network infrastructure and are present inside cars, such as taxis, which travel

through the city and collect roadside information on parking. In both cases, the

transmitted information is the occupancy situation: either the car has left or ar-

rived at a parking space. A number of types of sensors are usually being used in the

process: example include infrared sensors, ultrasonic sensors, accelerators, optical

sensors, inductive loops, piezoelectric sensors, cameras, and acoustic sensors. Most

of the time, the captured data requires post-processing in the form of image or au-

dio recognition before arriving at the target occupancy information. Some captured

information also raises privacy issues as it contains sensitive data about the car and

driver. Smartphones provide means to collect data and have a great impact through

crowdsourcing if the users are given incentives to enable the respective smartphone

functions that automatically collect their information. Conversely, parking applica-

tions may give drivers incentives to initiate the data transmission themselves and

report the parking situation on site.

Data collection based on smartphone-integrated sensors has been studied in

numerous research publications, as it spared the authors to produce and mount

special-purpose senors. Xu et al.9 makes real-time parking availability estimations

based on a system that aggregates the data coming in from mobile phones. The

system uses algorithms based on statistical weighted schemes and Kalman filters.

Additionally, the authors create parking availability profiles based on historical data

and using statistical algorithms.

Chen et al.10 developed an Android application that finds a parking location

at park-and-ride facilities by calculating the probability of parking availability and

taking in consideration the shortest travel time. The authors employ fuzzy logic to

model the uncertainty of parking availability, with the fuzzy membership function

being linear. The authors proposed multiple criteria in finding the best parking

location, such as train frequency, service quality, and park-and-ride price.

PocketParker is a crowdsourcing system, proposed by Nandugudi et al.11 that

uses smartphone data to predict parking availability. The system is used for parking

lots. It requires no input from the user since it notices automatically when a user

starts to drive or stops, i.e., departure and arrival events. Based on these, the system

builds a probability distribution model that is used to answer queries about parking

availability. PocketParker has proved robust to hidden parkers, i.e., parking vehicles

that are not using the application. In the authors’ simulation, it has reached 94%

rate for parking availability prediction with 105 users over 45 days.

Koster et al.12 propose a smartphone-based solution that recognizes when drivers

arrive or leave parking spaces. A Bayesian approach and Hidden Markov Models

(HMM) are used to model the parking spaces and respond to user queries for the

4 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

next parking space. The HMMs are based on gathered historical data. The answer

to the user query is a parking space nearby and the probability that it is free at the

respective time. The authors emphasize the non-intrusive nature of their solution

where drivers only have minimal interaction with their phones to get a recommended

free parking space.

2.2. System Deployment

Regarding system deployment, the smart parking survey7 refers to the varieties of

parking systems, looks into how well they scale, and touches upon the data analysis

side. The parking system software is the interface between data sources and the

users. Software systems are often in the form of reservation systems, typically run

by municipalities or private car parks. These systems may also provide guiding

assistance in arriving to the desired parking lot or at the individual parking space.

The vacancy prediction component informs the drivers about availability of parking

spaces at the destination, either in real-time or at a specific date and time.

There are several publications that investigate parking system worth mentioning.

Rajabioun and Ioannou13 introduce an information system for parking guidance

that enables communication between vehicles and the infrastructure. It proposes

a prediction algorithm that forecasts the availability of parking locations based

on real-time parking information. It takes into account parameters such as parking

duration, arrival time, destination, pricing, walking distance, parking capacity, rates

of vehicles occupying and leaving parking spots, time restrictions, parking rules,

events that disrupt parking availability, etc. Their algorithm uses a probabilistic

density distribution model. The parking data was collected both from on-street

parking meters and off-street garages in Los Angeles and San Francisco, USA. In

a follow-up, Rajabioun and Ioannou14 propose a multivariate autoregressive model

that considers the temporal and spatial correlations of parking availability when

making predictions.

Tiedemann et al.15 present the development of a prediction system that esti-

mates occupancy of parking spaces. The occupancy data is collected online via

roadside parking sensors and the predictions are realized using neural gas machine

learning combined with data threads. The authors notice that some factors play a

significant part in the predictions, such as holidays, weather and use the neural gas

clustering to separate the data before the data thread method is applied.

Richter et al.16 address the parking prediction problem with the focus on model

storage in vehicles. The authors train models of various granularity that would

predict parking availability based on the information contained: A one-day model

per road segment, a three-day model per road segment, and a seven-day model per

road segment. Additionally, models based on regions and time intervals computed by

clustering are tried out. Hierarchical clustering with complete linkage is employed.

The models are evaluated on street data from the SFpark project17. The application

of clustering before building the models shows a 99% decrease of model storage

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 5

space. The prediction success rate is at about 70%.

With iParker, Kotb et al.18 propose a system that handles parking reservations.

It achieves resource allocation so that drivers pay less for parking, while parking

managers receive more resource utilization and hence reach higher revenue. The

system is based on mixed-linear programming (MILP). The system uses dynamic

resource allocation and pricing models to achieve its goal. In its evaluation, cost

cuts for drivers of 28% were reported, while achieving a 21% increase in resource

utilization and an increased total revenue for parking management by 16%.

Shin and Jun19 propose an algorithm for smart parking that assigns cars to

parking facilities in the city. The criteria based on which the assignment is realized

includes driving distance to the parking facility, walking distance from the parking

facility to the destination, parking cost, and traffic congestion. The real-time data

is collected from parking facilities and from sensors that are integrated in cruising

cars. The data is transferred from the central server, where it is managed through

a wired/wireless telecommunication network. The authors tested their approach in

Luxembourg City. The results of the simulations show improved figures for average

driving duration, average walking distance, parking failing rate, parking utilization

rate, average standard deviation on the number of guided cars to each parking

facility, average occupancy ratio of parking facility, and for the parking facility

occupancy rate.

ParkNet, developed by Mathur et al.20 is a system made up of vehicles that

capture parking space information while driving. Every ParkNet vehicle is equipped

with a GPS receiver and an ultrasonic sensor facing sideways. The latter determines

whether it passes by parking spaces and whether they are occupied. The data is

sent to a central server that aggregates it in order to build parking space occupancy

maps in real-time. The information is queried by clients that search for a free parking

space. The system was evaluated in Highland Park, New Jersey and San Francisco

on 500 miles road-side parking data and yield 95% accurate parking maps and

90% parking occupancy accuracy. The authors show that the system can further be

improved if the sensors are fitted into taxicabs or city buses.

2.3. Data Dissemination

Under data dissemination, the survey7 addresses the capability of sharing parking

information. This scenario occurs in decentralized parking systems, where the cars

find out about free parking spaces in an area where other cars merely drive by and

report the real-time situation.

A selected group of publications is driven by the information exchange approach.

Caliskan et al.21 model the prediction of available parking spaces as a vehicular ad-

hoc network (VANET). The network disseminates parking data in order to help

the estimation of future occupancy of parking lots. The pieces of disseminated data

are timestamp, total capacity of parking lot, number of parking spaces that are

currently occupied, the arrival rate, and the parking rate. The latter two are used

6 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

in the modeling of continuous-time homogeneous Markov chains. The approach is

otherwise based on queuing theory.

Klappenecker et al.22 builds on the result of Caliskan and uses an improved

version of continuous-time Markov chains for predicting availability of parking

spaces. Predictions are communicated between cars in an ad-hoc network. The ap-

proach simplifies the computations of transitional probabilities inside a Markov

chain model. The system applies to parking lots that are connected to the ad-hoc

network. These communicate the number of occupied spaces, capacity, arrival and

parking rate.

Also based on VANETs is Szczurek et al.23 work, which propose a novel approach

that combines machine learning with the information disseminated in ad-hoc ve-

hicular networks. The building blocks of the system are parking reports, which are

issued by vehicles leaving a parking space and comprise a report identifier, a loca-

tion, and a timestamp. The parking reports are being learned by a model, which

then indicates whether a parking is available for a specific vehicle. A conditional

relevance is used to determine whether a particular report is useful for a specific

vehicle. This is modeled using a Naive Bayes method. A parking availability report

R is labeled relevant by vehicle V, if the parking space referenced in R is avail-

able when V reaches it. Upon evaluation of the methods, the authors reported an

improvement in parking discovery times for vehicles.

3. The SFpark Project

To implement and evaluate our proposal, we use the data from the SFpark project.

This project was realized by the San Francisco Municipal Transportation Agency

(SFMTA), the city agency that manages the city’s transportation, which includes

on-street parking24,25, with the goal to improve parking availability. The SFMTA

had the possibility of changing parking rates for on-street parking meters on short

notice. Before the project started, parking rates were the same all day, every day,

independent of the parking demand. By implementing a demand responsive pricing

scheme, parking availability improved dramatically.

Dynamic pricing is a way to control parking occupancy. Parking prices are raised

in areas that are almost fully occupied, whereas areas with low parking rates get

assigned a lower price. A more advanced version adjusts the prices when enough

demands received by the parking system would point to a future parking overload

in the respective area.

In conducting the project, nine pilot areas were chosen for monitoring. Out of

these areas, seven were selected to have new pricing policies, while two were control

areas. The number of metered spaces used was 6,000, which amounts for 25% of the

city’s total. The meters allow rates to be deployed remotely, and they transmitted

data to a central server through a wireless connection.

The data was collected using parking sensors. These provided the central server

with the information needed to calculate the demand-responsive parking rates and

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 7

provided real-time parking availability information. A parking sensor is a magne-

tometer that detects changes in the earth’s electromagnetic field. A total of 11,700

sensors were deployed, resulting in 8,000 spaces that were equipped with one or

two sensors. The sensors delivered valid data from April, 2011 to December, 2013.

SFpark made available real-time information on parking rates and parking occu-

pancy through a smart phone application. The scale and scope of the SFpark project

and its freely available data sets played an important role when choosing to base

our project on it.

4. Rationale Behind Our Approach

The approach presented offers a solution to estimating parking occupancy without

the help of sensor data. It is based on the observation that parking is determined

by the specificities of city areas. Two residential neighborhoods of similar sizes,

perhaps far apart from each other, will have very similar parking occupancies: high

during nighttime and low during daytime. This will likely differ significantly from

office areas, which tend to have most parking spaces occupied during the day and

free during the night. Restaurants or shopping centers may represent another dis-

tinct category, where customers park usually during the evenings and on weekends,

while in the other times they are not very busy, therefore producing a low parking

occupancy.

Looking at a city, we can identify a pattern: the types of buildings and the time

people spend there determines parking behavior. The presented approach builds on

this pattern in order to estimate the level of parking occupancy. Specifically, it uses

amenity types and time-spent data to complement established machine learning

algorithms in order to arrive at parking levels in places where such forecasts cannot

be made only with straightforward models.

The approach does not infer parking levels solely based on building metadata

and busy times. This information is currently not enough and other factors regarding

the city would be needed to arrive at a direct result. Some cities have better parking

infrastructures while fitting the same number of people in the offices as cities with

scant parking facilities. In the former parking are likely concentrated around the

offices, while in the latter the cars are probably distributed uniformly around a

larger area around the offices. To circumvent these inconsistencies between cities,

we focus on single cities, where parking infrastructure is likely the same given the

type of amenities and their dimension. This could be extended to cities in a region

or a whole country, depending on the specifics.

The approach therefore uses the (dis)similarities between city areas, with their

respective amenity types and time-spent information to help infer parking occu-

pancy. It is assumed that an estimation model can be transferred from a source

city area A to a target city area B without any amendment, provided A and B are

perfectly similar according to their parking profile. In contrast, the parking occu-

pancy estimation would very much differ if A and B are dissimilar. Specifically, the

8 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

approach does not offer a precise result in this case, resorting to an interval that

expresses the possible parking level.

4.1. Motivational Example

The dimension of the problem we are attempting to solve here is best illustrated

with a concrete scenario.

Bob is excited about the interview with a big IT company in his city. He will

be driving to the office building located in one of the several office sites in the city.

Bob does not like being late, even more so on this occasion, and he wants to leave

himself enough buffer time before he arrives at the company reception desk. He has

no idea about the parking situation on site, however. In this city, he could spend

up to half an hour to find a free parking space. Therefore, Bob uses a new parking

app, that can estimate the parking levels at almost every location; the system does

not employ sensors everywhere, instead it works by extending the parking behavior

from one site to another depending on their specificity, be it offices, restaurants,

shopping, or residential. Bob likes the idea and enters his estimated time of arrival

at the site and sees that the parking occupancy there will be between 60% and 80%.

This is good enough for him, he knows that at least 1 out of 5 spaces will be free on

average and will likely find a spot in a few minutes. He is suddenly more confident

about his punctuality and can now drive more assured to the interview.

5. Approach

The approach, in its generic form, is split into several steps. It begins by acquiring

access to data that contains information about parking occupancy for a desired area.

The parking data is mapped geographically using OpenStreetMap (OSM). Next, the

points of interest (POIs) contained in the OSM data are spatially clustered so that

the individual clusters are of about the same size. Afterwards, machine learning

models are trained on parking data for the computed clusters. For each cluster,

mathematical representations are constructed based on the OSM data, which are

then used to compute similarity values using cosine similarity and earth mover’s

distance. Finally, estimations of parking occupancy are computed by applying the

models on areas without parking data with the similarity values factored in. We

detail the process step by step below.

5.1. Overview

(i) Get access to appropriate parking data

To have a solid analysis foundation, it is essential to find a well-defined spatial

area for which parking measurements over a continuous period of time have been

made. Regular status updates, usually by hour, are preferred, if not as soon as

they happen. In case multiple distinct data sources for the spatial area and time

period are available, limiting oneself to the richest data source is recommended,

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 9

as multiple sources tend to have different time and space references, and can be

inconsistent with regard to sensor errors.

(ii) Map the parking data to OpenStreetMap layers

Another important part is geographically referencing the parking data. Open-

StreetMap layers such as points, lines, and polygons that include city artifacts

and geographical coordinates together with their metadata are suitable. These

are downloaded and associated with the parking occupancy information. The

information on amenities included in OSM layers together with the time people

spent in amenities is collected as well.

(iii) Cluster the spatially-referenced data into multiple city areas

Splitting the data corresponding to an entire city into multiple groups is a pre-

requisite of the approach. Especially, having city areas without parking data

completely separated from the city areas with parking data so that the latter

can later serve as estimation basis for the former. Splitting is performed spa-

tially. Including any other property, such as OSM metadata, in the clustering

algorithm results in noncontinuous areas, which would defeat the purpose of a

driver finding a parking space inside a certain radius. Furthermore, the resulting

clusters should be of about the same size, as this helps to make inferences later

in the process. Averaging the occupancy among the parking spaces inside a clus-

ter, for instance, is less representative for another cluster that has a number of

parking spaces of a different order of magnitude.

(iv) Build machine learning models for the clustered city areas

A freshly split city area that contains parking data will have a occupancy es-

timation model. In the training process, the predictor variables includes the

measurement timestamp, parking lot capacity, and parking price, while the tar-

get variable is the parking occupancy. Methods used for building the models are

decision trees, support vector machines, multilayer perceptrons, and boosted trees.

(v) Build mathematical representations for the city areas

Amenities and time spend information are organized in mathematical objects to

reflect the parking demand in their respective city areas. Cluster vectors, which

serve in cosine similarity computation and cluster Gaussians that contribute to

calculating earth mover’s distance between city areas are used.

(vi) Compute similarity values between any two city areas

The built mathematical representations make it possible to compute similarity

measures between city areas. Cosine similarity and earth mover’s distance are

defined and computed for every pair of city areas.

(vii) Apply models on city areas that do not have parking information

When computing the occupancy in clustered city areas with no parking data,

the elements built up to now come together. Basically, the machine learning

models are applied to the clustered areas without parking data. In the result,

the similarity measure between the originating model area and the target area is

factored in. In practice, this means that input data for the models will need to

be constructed. The result output of the model will be extended in form of an

10 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

interval upon applying the similarity value: the smaller the similarity, the more

the interval will be stretched around the original occupancy result. Occupancy

values are expressed between 0% and 100%.

5.2. Getting Access to Parking Data

We consider the following types of data as parking data:

(i) parking occupancy contains information on the availability of parking spaces

at a defined location

(ii) traffic data contains information regarding the street traffic intensity

(iii) weather data contains temperature and rain information for the geographical

location considered

(iv) event data contains information relating to events such as street closures which

may have an impact on parking

(v) parking revenue data contains economic information on parking pricing

(vi) fuel price data contains prices of fuel in the region

A detailed overview of the SFpark dataset is shown in table 1.

Each piece of data is geographically referenced by a location unit, i.e., street

block, street, district or entire city. In the prospect of using the parking data for

training estimation models, the different location unit poses a problem. For the

traffic and events data sets, it is entire streets; in the parking revenue dataset, it

is city districts, while in case of the weather and fuel price datasets, the location

reference is valid for the whole city of San Francisco. Hence, there is a need to

align the datasets before they can be used together. In the cases when aggregating

values associated to street blocks to the street level is performed, the aggregated

values leads to a poorer training performance. Even more so when aggregating

street blocks to the city level. Therefore, we were forced to continue without traffic-

, events-, parking revenue-, fuel price-, and weather data and rely strictly on the

occupancy data further in the process.

The occupancy data amasses 1.05 million entries with measurements between

04.2011 and 07.2013. The original file provided by SFpark is about 192M large. The

SFpark data are visualized in fig. 1 using a Leaflet application built as part of this

work.

5.3. Mapping Parking Data to OpenStreetMap Layers

We complement the parking data by downloading OpenSteetMapa data correspond-

ing to the location where the parking data belongs to. OSM data is generally avail-

able as shapefiles containing the geometry layers: points, polylines, and polygons.

We extract the points of interest (POIs), which, among multiple attributes, contain

ahttps://www.openstreetmap.org The maps used in this article are c©OpenStreetMap contribu-

tors.

https://www.openstreetmap.org

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 11

Table 1. Overview of the properties available in the data used from the SFpark project.

Parking Occupancy Traffic

timestamp Recorded at full hours timestamp Recorded at full hours or in pe-
riodic time intervals

parking capacity The total number of parking

spaces at the given location

traffic value Expressed as average traffic

road occupancy, average vehi-
cle count, median speed, or av-

erage speed of the traveling
cars

parking price The price of a ticket in dollars

at the certain location and the
given time

location unit Given as entire street

parking occupancy Expressed either as rate (sub-

unitary fraction or percent) or
in absolute numbers

location unit Given as street block

Events Weather

date and time Expressed as calendar date or

time interval within a day

date Expressed as calendar date

event name class Given as the name of the event

and its class: road closure or
rise of parking demand

temperature Expressed as the maximum

value of the day

location unit Given as entire street precipitation Expressed in the quantity of

rain or snow for the corre-
sponding time interval

location unit Given as entire city

Fuel Price Parking Revenue

type of fuel Provided as gasoline, diesel,

etc.

payment type Expressing the way the driver

opted to pay for parking: cash
or credit card

price per unit Provided as the price per gal-

lon

payed amount Expressed as the amount in US

dollars
location unit Given as entire city location unit Given as city district

the amenity attribute indicating the public service, facility, or type of building lo-

cated at this position as it was annotated by the OSM users (cf. fig. 2). The types of

the public amenities collected from the POIs are listed in table 2. The polylines layer

contains artifacts mostly in linear form, such as streets or foot paths. Polylines are

less interesting for our problem and therefore we ignore them. The polygons layer

contains artifacts of polygon shapes such as buildings, parks, university campuses,

etc. Polygon objects may contain an amenity attribute as well, in practice the au-

thors have found it often empty, however. When the attribute is present, it enables

us to compute the area of the amenity and make an inference towards the capacity

of the building.

For the San Francisco area corresponding to the SFpark project, the OSM file

containing the above described layers amounts to about 173M. Inside there are

12 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

Fig. 1. The blocks accounted in SFpark. The light blue ones are blocks without parking data, the

light red ones are with parking data 26.

30,798 POI entries, out of which 5,462 have a non-empty amenity attribute. The

number of polygon entries is 147,881.

Fig. 2. A map indicating public amenities (cafes, restaurants, banks) found at points of interest
in OSM (customly built by the authors).

Furthermore, we collect the vising duration corresponding to the amenities. We

have found that this information is offered by Google Places and FourSquare. The

latter data is available via an API, however the access is not free of charge. We

used Google Places instead and collected data corresponding to the parking data’s

location. An example of the service is found within Google Maps for smartphones.

It displays typical visiting duration or time spent values and popularity of the

place for specific time intervals, obtained by Google using a crowsourcing approach

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 13

Table 2. List of all OSM amenities found in the SFpark blocks.

arts centre dojo marketplace shelter conference centre

bank embassy music rehearsal place shop fire station
bar fast food music school spa fuel

biergarten grocery nightclub stripclub parking

bureau de change gym pet grooming shop studio place of worship
cafe hookah lounge pharmacy training social centre

clinic ice cream police veterinary swimming pool

clothes store karaoke post office vintage and modern resale theatre
community centre lan gaming centre pub bus station training

dentist laundry restaurant car rental bicycle parking
doctors library salon childcare car wash
brokarage community centre courthouse fountain nursing home

recycling social facility toilets

that averages the values received from users’ smart phone location (cf. fig. 3). To

obtain the time spent values, we manually extract information from 470 places in

San Francisco, for which a maximum duration of stay was provided (the minimum

duration is not always given)b. The results are shown in table 3 and the time spent

values are provided in minutes and have been rounded to the nearest integer. We

have included only amenities for which at least two stay duration sources were

found.

Fig. 3. An example of time spent information found on Google Places 27.

In order to combine the parking and city data, both datasets require a common

location unit. For parking occupancy it is street blocks that are provided in latitude

and longitude for the coordinate reference system EPSG 4326. The POIs inside the

OSM data are expressed in the same geometry reference system and therefore a

merge distance that matches a parking space to a public amenity can be defined.

The merge distance can be intuitively understood as the radius around a public

bThis piece of information is not accessible yet via the Google Places API. Google Feature Request:
https://issuetracker.google.com/issues/35827350

https://issuetracker.google.com/issues/35827350

14 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

Table 3. All amenities listed with their corresponding mean time spent information as collected
from Google Places. The cat column indicates whether the average visiting time is under half an

hour (1), 31 to 90 minutes (2), or more than 1.5 hours (3).

amenity name mean stdev cat amenity name mean stdev cat

arts centre 110 37 3 laundry 78 16 2

bank 42 65 2 library 83 13 2

bar 121 38 3 music school 120 30 3

cafe 76 39 2 nightclub 189 20 3

clinic 100 29 3 pharmacy 25 20 1

clothes store 41 37 2 post office 16 2 1

community centre 119 40 3 pub 135 21 3

dentist 104 35 3 restaurant 135 32 3

doctors 60 42 2 salon 141 53 3

embassy 75 24 2 shelter 90 0 2

fast food 31 15 2 shop 43 21 2

grocery 20 10 1 spa 161 54 3

gym 100 22 3 stripclub 140 46 3

hookah lounge 130 17 3 studio 60 0 2

ice cream 23 7 1 veterinary 67 29 2

karaoke 188 15 3 vintage modern resale 38 32 2

amenity. It is defined to represent the parking area that is relevant for a particular

public amenity, or, more straightforward, the walking distance from the parked

car to e.g., the restaurant, the office, the bank, etc. Based on the above rationale,

concrete instances of the merging distance are set to 100m, 200m, and 400m. In

section 6.1, we discover which one delivers the best results.

5.4. The Clustering Process

By splitting into city areas, we are making sure that smaller regions lead to more

representative parking profiles and therefore parking estimations. As we want an ex-

clusively location-based separation, we may employ K-Means, DBSCAN or OPTICS

to cluster the city areas. The distance is calculated between (latitude, longitude)

-pairs of location unit coordinates corresponding to one street block. Since having

control over the number of clusters is the goal here, we choose to use K-Means,

where we provide the number of expected clusters as input. In practice, sklearn’s

kmeans module is used, specifically the K-Means++ algorithm, which initializes

the centroids purposefully distant from each other and therefore achieves faster

convergence.

There are two clustering processes executed, one for the city area with parking

data, another one for the city area without parking data. The number of clusters

chosen in each area is kept proportional to the number of total street blocks that

each area contains. It turns out that for SFpark data the proportion is approximately

2.6, following the division between the total number of blocks from each group. We

have chosen two numbers of clusters to run the evaluation, namely 8 clusters and

16 clusters. The area without parking data will therefore have 20 and 41 clusters,

respectively. In the evaluation, we will refer to the number of clusters with parking

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 15

data as the number of clusters.

After running the K-Means clustering process, the Leaflet application map re-

veals the individual clusters by highlighting them on mouse-over. The clusters with

parking data will turn dark red, while the clusters without parking data will appear

in dark blue (cf. fig. 4).

Fig. 4. Highlighted cluster with parking data on the left side and a cluster without parking data

on the right side 26.

5.5. Building Estimation Models

The estimation of parking occupancy is realized using machine learning. We choose

to explore this methodology following the solid results machine learning models

have delivered for the various smart parking investigations discussed in section 2.

A machine learning model M will be trained for every cluster with parking data.

The training data are composed of the parking occupancy data. Specifically, the

timestamp, parking capacity and parking price act as predictor variables, while the

occupancy rate is the target variable. Before training, data is aggregated across all

blocks so that it becomes comparable to other clusters and can be used when training

and testing models. The averaging is performed per timestamp, i.e., if multiple

blocks have an occupancy record for the same time and block, the occupancy rate

will be averaged across both of these. Features such as price and parking capacity

per block are averaged as well. See table 4 for an example of this process. This

means that the original collection of data records shrinks, which should decrease

the training time. In table 5, the shrinking rate is shown for various number of

clusters. The resulting parking capacity, parking price, and occupancy values are

taken as cluster representatives.

The model training and evaluation is performed in Python via the scikit-learn

library. During the training phase, we evaluate models such as decision trees, support

vector machines, multilayer perceptrons and boosted trees using:

(1) sklearn.tree.DecisionTreeRegressor,

(2) sklearn.svm.SV R,

(3) sklearn.neural network.multilayer perceptron.MLPRegressor, and

16 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

Table 4. Example of aggregating datapoints

block id timestamp price rate total spots occupied

902 2011-04-02 7:00:00 0 46 58

32800 2011-04-02 7:00:00 0 32 2

33005 2011-04-02 7:00:00 3 36 12

902 2011-04-02 8:00:00 2 46 54

32800 2011-04-02 8:00:00 4 32 5

33005 2011-04-02 8:00:00 3 36 22

timestamp price rate total spots occupied

2011-04-02 7:00:00 1 38 24

2011-04-02 8:00:00 3 38 27

Note: In the first subtable, three distinct blocks belonging to a cluster are trans-
formed into two entries by averaging price rate, total spots and occupied attributes

for the two distinct timestamps (second subtable).

Table 5. Number of datapoints aggregated per timestamp vs. all data-
points alongside the shrinking rate for 8, 16 and 32 clusters.

cluster size aggregated datapoints all datapoints shrinking rate

8 9741 128525 12.3

16 8409 73332 8.3

32 6257 29355 4.6

Note: Values have been averaged across clusters.

(4) xgboost.XGBRegressor respectively.

As error metric, we use root mean square error (RMSE) and perform a five-fold

cross-validation. A model will be evaluated on other clusters with parking occupancy

data.

Specific details on the actual training of the models can be found in the table

table 6. Upon training the models, the clusters can be visualized with the web

application as shown in fig. 5 as screenshot. Figure 6 displays the presented table

in more detail.

5.6. Building Mathematical Representations for City Areas

Using amenity data from OSM and time-spent information, we build cluster vectors

and density estimation kernels.

To form the cluster vectors, we first divide all amenities into categories

Cat1, Cat2, ..., Catn. The criteria for division will be their average time spent val-

ues. Each cluster gets represented by an n-dimensional vector, whose components

correspond to the amenity categories. The magnitude of component i is equal to the

number of amenities of category Cati that can be found in that particular cluster.

For example, a short duration category of up to 30 minutes, a medium duration

between 31 and 90 minutes and a large duration of above 90 minutes stay. Compare

fig. 7 for a general representation.

In the case of San Francisco, the categories are based on the time spent mean and

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 17

Table 6. Overview of the machine learning methods used, their inputs and parameters.

Predictor Variables Target Variable

timestamp split into year as integer, cal-
endar week : [1 - 52] as integer,

weekday : [1 - 7] as integer, and

hour : [0 - 23] as integer

parking occupancy : [0 - 100] as floating point
number

parking capacity as floating point number, when

aggregated, otherwise as inte-
ger

parking price as floating point number

Decision Tree Parameters SVM Parameters

Model Selection randomized search on hyper-
parameters for 10 iterations

Model Selection epsilon-support vector reges-
sion model with fixed param-

eters

min samples split : [2, 3, 4, 5] as the minimum
number of samples required to

split an internal node

kernel radial basis function

min samples leaf : [0.03 - 0.1] as the minimum
number of samples required to

be a leaf of a node

C penalty parameters equal to 1

max features : [0.7, 0.8, 0.9, 1] as the number

of features (as fraction from all

available features) to consider
at each split

gamma kernel coefficient for the kernel

equal to 0.01

criterion : [mean squared error, mean

absolute error] as the function
to measure the quality of a

split

min weight fraction leaf : [0, 0.1, 0.2] as the minimum
weighted fraction of the total

sum of weights from all the in-
put samples required to be a

leaf node

MLP Parameters XGB Parameters

Model Selection multi-layer perceptron regres-

sor with fixed parameters

Model Selection exhaustive search over speci-

fied parameter values for an ex-
treme gradient boosting model

hidden layer sizes (7, 11) as tuple representing

the number of neurons in each
hidden layer

max depth : [2, 3] as maximum tree depth

for base learners

max iterations 500 as the number of iterations

the solver iterates until conver-
genge

n estimators : [50, 100] as the number of

trees to fit

learning rate : [0.1, 0.25] as boosting learn-
ing rate (η)

are split in three categories. The assigned partitions for every amenity are shown in

table 3.

18 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

Fig. 5. Selected cluster with parking data and the pop-up table in the Leaflet application 26.

Fig. 6. The pop-up table for the Leaflet application view of fig. 5 26.

Cat 1

Cat 2

Cat 3

Cluster Vector

Fig. 7. An example of a cluster vector representing amenity time spent information composed

from for three categories.

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 19

(i) < 30 min,

(ii) 30 to 90 minutes, and

(iii) > 90 minutes.

A cluster Gaussian is a kernel density estimation among the probability dis-

tribution of an amenity’s time spent value. We use a Gaussian kernel to express

the probability distribution, hence the name. To construct a cluster Gaussian, we

first collect the mean and standard deviation of the individual amenities’ time spent

values and then we construct its corresponding Gaussian curve. Multiple amenities,

each appearing multiple times, will result in a curve that is the linear combination

of the individual representations of the amenities as normal distribution curves.

Compare fig. 8 for a visualization of the summing process.

emd(Ci) =

|amenities|∑
j=1

Kij ×Aj (1)

∀i ∈ {1, ..|clusters|} and ∀j ∈ {1, ..|amenities|}
where Aj is an amenity that appears Kij times in the cluster Ci.

Fig. 8. The iterative summing of Gaussian curves representing the amenity time spent informa-

tion resulting in a cluster Gaussian as the outer hull (graph obtained inside the Python application
using the matplotlib package.

In practice, the computation is discretized using bins. A bin represents a unit

on the X axis, the same on which the time spent value is expressed. We will take

a number of bins equal to the maximum amenity mean and buffer them with 3×
the largest standard deviation, as it is known that within 3× standard deviation

20 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

on both sides of the mean over 99% of the Gaussian sum is covered. Moreover, an

offset on the X-axis equal to 3× the maximum standard deviation is used. This

way, we are sure the landscape of summed Gaussians will easily fit into the number

of bins. The Gaussians are computed using Python’s Optimal Transport package

(OT), specifically using the ot.datasets.make 1D gauss module, by providing the

number of bins, mean and standard deviation values.

5.7. Computing Similarities Between City Areas

The cosine similarity between two vectors is defined as the cosine of the angle be-

tween the two vectors. The cosine similarity implementation uses the direct mathe-

matical formula by plugging in the magnitudes of the respective vector components.

cos(θ) =
A ·B

‖A‖2‖B‖2
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(2)

where Ai and Bi are the components of vector A and respectively.

The earth mover’s distance (emd) is a measure used in statistics that roughly

expresses the difference between position and magnitude of two curves. It is best

explained by regarding the curves as the hull of earth piles. For two separate earth

piles, emd computes the minimum effort of rearranging a pile so that the shape of

the other pile is obtained. Moving P particles over a distance D is equal to the effort

P × D. A prerequisite for this operation is that the two piles need to contain the

same quantity of earth.

More rigorously, emd is better known in mathematics as Wasserstein Metric.

Given two normal distributions µ1 = N (m1, C1) and µ2 = N (m2, C2), where m1

and m2 ∈ Rn are their respective expected values and C1 and C2 ∈ Rn×n, their

2-Wasserstein distance between µ1 and µ2 is:

W2(µ1, µ2)2 = ‖m1 −m2‖22 + trace(C1 + C2 − 2(C
1/2
2 C1C

1/2
2)1/2) (3)

Notice that emd is applicable only when the sum under both Gaussian curves

is equal. Therefore, all cluster Gaussians will get normalized before emd is com-

puted. In practive, after summing up the respective Gaussians and arriving at the

cluster Gaussians, the scipy.stats module is used to compute emd by means of the

wasserstein distance method. Provided here are the bin ranges on the X axis and

their Y axis values corresponding to the computed cluster Gaussians.

5.8. Computing Parking Occupancy Estimations

Once all models M have been built for the clusters with parking data, making

estimations on parking occupancy in these areas is straightforward. The input data

fed to the model is manufactured from averaging the predicted variables from the

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 21

areas with parking data. However, we want to apply these models on the clusters

that are missing parking data. We derive the estimation interval for cluster Cjwout

based on the model of cluster Ciwith as follows.

For cosine similarity :

E(Ciwith, C
j
wout) = [M(Ciwith)− (1− simij), M(Ciwith) + (1− simij)] (4)

where simij = sim(Ciwith, C
j
wout) ∈ [0, 1]

For emd:

E(Ciwith, C
j
wout) = [M(Ciwith)− emdij , M(Ciwith) + emdij] (5)

where emdij = emd(Ciwith, C
j
wout) ∈ [0, 1]

∀i ∈ {0, ..., |Cwith| − 1} and ∀j ∈ {0, ..., |Cwout| − 1}

.

The result is an estimation interval that stretches the punctual estimation into

an interval depending on the similarity value. The lower the similarity value is, the

larger the length of the resulting estimation interval will be.

Furthermore, we define an estimation intersection interval, whose purpose is to

narrow down the computed estimation interval. An estimation intersection interval

for the clusters Ciwith and Cjwout is computed by intersecting the estimation intervals

that have a better similarity among the clusters with data C0with, ..., C
i−1
with and the

same cluster without data Cjwout.

EII(Ciwith, C
j
wout) =

i−1⋂
k=0

EI(Ckwith, C
j
wout) (6)

where

sim(Ckwith, C
j
wout) < sim(Ciwith, C

j
wout), k ∈ {0, .., i− 1} for emd (7)

sim(Ckwith, C
j
wout) > sim(Ciwith, C

j
wout), k ∈ {0, .., i− 1} for cosine (8)

∀i ∈ {0, ..., |Cwith| − 1} and ∀j ∈ {0, ..., |Cwout| − 1}

.

22 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

6. Evaluation

We evaluate various pieces of the system that has been presented. Firstly, we estab-

lish the machine learning method that achieves best results on average across clus-

ters. Afterwards, we compare the cluster models’ test errors with the independently-

computed similarity values between clusters. More specifically, a source cluster’s

model will tested on a target cluster and the error is correlated to the similarity

between the source and the target clusters. Both cosine and emd functions will be

used. The correlations will be expressed as Pearson- and Spearman’s rank coeffi-

cients. Afterwards, we take a look at the results of applying the models to clusters

without parking data and visualize the results.

Furthermore, some alternative method are investigated. Firstly, we look at the

model test errors and correlation results by skipping the aggregating step, i.e.,

instead of averaging the datapoints over timestamp per cluster, we build the cluster

models using the entire occupancy data directly. Secondly, we use the amenity

area as the basis for the similarity functions in calculating the correlations between

model test errors and similarity values. Finally, we question whether the similarity

function approach is the most efficient and transfer its purpose to the machine

learning phrase. The model will receive absolute cosine vectors and cluster Gaussian

values as additional features and its model test error and correlation values will be

compared to the ones from the original approach.

6.1. Best model method

Of the models were trained using the four methods (decision trees, support vector

machines, multilayer perceptrons, and gradient boosted trees), table 7 shows the

distribution of best machine learning methods in case of 8 and 16 clusters. The

values were obtained by summing up the number of times a method produced the

smallest estimation error, i.e., RMSE, among the four methods for all combinations

of clusters with parking data (Csource, Ctarget). Extreme gradient boosting claims

the first spot in both cases. In further experiments in the evaluation we shall only

report on models trained using extreme gradient boosting.

Table 7. The fraction of best models among deci-
sion trees, support vector machines, multilayer per-
ceptrons and extreme gradient boosting measured as
RMSE when applied on all pairs of clusters.

dt svm mlp xgb

8 clusters 24.6% 17.5% 12.3% 45.6%

16 clusters 14.6% 13.8% 13.8% 57.9%

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 23

6.2. Similarity Values vs. Estimation Errors

The central goal of this work is estimate the occupancy of clusters where no park-

ing data is available by using model predictions and pair-wise cluster similarity

values. For the purpose of evaluating the models, we shall use clusters with parking

data that were left out from the training dataset as the application target of the

prediction models, while the computed similarity values will serve to confirm the

prediction errors. The higher the absolute correlation between the cluster similarity

values and the model test errors, the better the accuracy of the cluster similarity.

Concretely, for every pair of clusters (Csource, Ctarget), a model MCsource
is

trained on Csource and its test error (MCsource(Ctarget)) shall be correlated with

the cosine and emd similarity values between Csource and Ctarget. Here, we use two

correlation coefficients: the Pearson correlation coefficient and Spearman’s rank cor-

relation coefficient, which results in four correlation measures:

(i) cosine (Pearson) correlation

(ii) cosine (Spearman’s) rank correlation

(iii) emd (Pearson) correlation

(iv) emd (Spearman’s) rank correlation.

The evaluation was performed for configurations of 8 and 16 clusters respectively.

Additionally, we varied the merge distance between 100m, 200m, and 400m to see

how the correlation behaves. In table 8 the final results are shown. A correlation

result is averaged across all clusters. Due to their mathematical meaning, the cosine

similarity values below zero express a positive correlation, whereas emd values above

zero express a positive correlation.

We notice that the cosine similarity achieves better results than emd for the

same testing configuration, peaking for 8 clusters and 100m merge distance. Its

average Pearson coefficient is −0.55, while the mean Spearman rank coefficient is

−0.49. emd positively correlates the most for the same testing configuration (8

clusters, 100m), when the average Pearson coefficient is at 0.28 and Spearman’s

rank coefficient equals 0.23. There is a clear descending trend in correlations, as the

merge distance increases. Also, the results for 8 clusters are superior to the ones

when the city is split in 16 clusters. Further in the evaluation runs we fix the merge

distance to 100m.

6.3. Estimations for clusters without parking data

We apply the models trained on SFpark data on clusters without parking data. The

testing data records are composed of values equal to the averages of the respective

data types in the clusters with parking data. This is the case for parking price

and parking capacity. One piece of data that still needs to be provided so that the

estimation is computed is the timestamp. For convenience, we choose the next day

relative to when we ran the expriment and 8 times spread throughout the day. A

sample of the input values fed to the model is show in table 9, while the results of the

24 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

Table 8. Correlations between similarity values and model
estimations errors for pairs of clusters with parking data

(Csource, Ctarget).

8 clusters

merge distance cosine rank cosine emd rank emd

100m -0.55 -0.49 0.28 0.23

200m -0.34 -0.30 0.26 0.23

400m -0.23 -0.08 0.25 0.27

16 clusters

merge distance cosine rank cosine emd rank emd

100m -0.20 -0.17 0.10 0.11

200m -0.13 -0.11 0.02 0.02

400m -0.17 -0.17 0.08 0.11

Note: For cosine similarity the values show a negative correla-

tion tendency, while for the correlation based on emd similarity
expresses a positive correlation tendency. The correlations are

measured using Pearson coefficient and Spearman’s rank coef-

ficient.

estimation which includes the similarity values is visualized in the web application

as in fig. 9.

Fig. 9. The pop-up table of a cluster without data. Notice the drop-down list from which the

time can be selected. There are 8 times to select, equally spaced throughout the day that followed
our experiment. The similarity values are rounded off. The results are expressed in intervals of
occupancy. The successive intersection of intervals succeeds only for the first two values, afterwards

it is empty 26.

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 25

Table 9. Input data for models when predicting
occupancy for city areas without parking data. The

date has been chosen arbitrarily with several times
equally spaced throughout the day. The price rate

and total spots values are equal to the approximate

averages of the entire parking dataset.

Date Time Price Rate Total Spots

2017-11-04 00:00 1.0 20
03:00 1.0 20

06:00 1.0 20

09:00 1.0 20
12:00 1.0 20

15:00 1.0 20

18:00 1.0 20
21:00 1.0 20

6.4. Models built on all occupancy datapoints

Up to now, the evaluation involved models trained and tested- on aggregated dat-

apoints. We ask ourselves, however, whether a model trained on all datapoints

performs better than when tested on an aggregated cluster. Or whether an aggre-

gate model delivers better results on an all-datapoints cluster than a model trained

on all datapoints? Here, we experiment these combinations by training models on

both all- and aggregate datapoints and apply them on both types of aggregation

forms.

See table 10 for an overview of test errors for 8 and 16 clusters. One observes

that the errors from models applied on aggregated datapoints are about 5 unit

points (5%) smaller than the errors from models applied on all datapoints. This is

naturally accounted for by the smaller spread of occupancy values that the aggrega-

tion brings with itself. As far as source models are concerned, there is no significant

difference between the aggregate and all datapoint models, i.e., the margin is under

1%. Regarding the number of clusters, the values for 8-cluster models are slightly

better than 16-cluster models for aggregated datapoints, but lose when the testing

bed is equal to all datapoints.

In table 11 the resulting correlations of testing errors with cosine- and emd

similarity values are listed for models of 8 and 16 cluster configurations. It follows

that the cosine- and rank cosine correlation values are on average closer to -1 in the

8-cluster case. The same applies for emd- and rank emd correlation values, which are

closer to 1 in this case. The correlation values for 16 clusters are obviously weaker

than for 8 clusters. In both sections, the aggregate datapoints target is superior to

the all datapoints target.

6.5. Amenity area as similarity basis

We considered time spent information to complement the amenity information as

the basis for creating the mathematical representation. However, there are other

26 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

Table 10. Test error for ML models build alternatively with all- and
aggregated datapoints.

cluster size datapoints source datapoints target test error

8 aggregate aggregate 20.19

8 all aggregate 21.37

8 aggregate all 26.25

8 all all 26.68

16 aggregate aggregate 20.47

16 all aggregate 21.32

16 aggregate all 25.97

16 all all 26.52

Note: Test errors for the same number of clusters can be accurately
compared when the datapoints target is the same. All models above

were build using extreme gradient boosting.

Table 11. Resulting correlation values for ML models built using all- and aggregated datapoints.

cluster size datapoints source datapoints target cosine rank cosine emd rank emd

8 aggregate aggregate -0.53 -0.52 0.30 0.17

8 all aggregate -0.53 -0.43 0.37 0.27

8 aggregate all -0.35 -0.36 0.20 0.14

8 all all -0.41 -0.43 0.34 0.25

16 aggregate aggregate -0.16 -0.11 0.10 0.05

16 all aggregate -0.18 -0.17 0.22 0.17

16 aggregate all -0.09 -0.06 0.08 0.00

16 all all -0.10 -0.11 0.17 0.08

factors that affect the parking demand towards an amenity. Obviously, one of them

is the amount of people visiting the amenity. As we do not have data about this

aspect, we use the area of the amenity as a proxy, assuming that larger places

would have more visitors. OpenStreetMap provides a polygon layer for a certain

geographic bounding box, which contains information across all the surfaces in that

region. See fig. 10 for a visualization of the polygons and their areas in OSM.

To extract this information we investigated two options.

(i) Polygon containing POI. Matching the amenities’ POIs with the containing

OSM polygon and then computing the polygon areas per amenity was the

option tried first. This has several drawbacks. The relation POI : polygon

is in practice by no means 1 : 1. Many cases arose where multiple POIs

were contained by the same polygon, in which situation the area was split

between them; a POI might also be on the edge of several polygons, in which

case we have to either (arbitrarily) assign it to the first polygon or to all. The

deciding factor against this approach was, however, the fact that the coefficient

of variation, i.e., the ratio between the standard deviation and the mean of the

sample, is larger than 1, i.e., 2.1 to be precise.

(ii) Amenity attribute in polygon layer. The other option was to use the

amenity attribute from the polygon layer of the region. We could avoid the

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 27

Fig. 10. OSM screenshot emphasizing polygons as buildings and the amenities that are housed

by them 28.

cumbersome matching by leveraging solely the polygon layer and calculating

the amenity area mean and its standard deviation. The results are listed in ta-

ble 12. On top of that, the coefficient of variation is 0.9 in this case, significantly

lower than before.

Note that we have reduced the values in the table by a factor of 20, as it

turned out that the actual mean and standard deviation were large enough to

make the emd Gaussian computation extremely slow. As the standard deviation

is linear with regard to the mean, both mean and standard deviation values

were reduced conveniently.

By applying the procedure using the amenity area as similarity basis, we obtain

the correlations values listed in table 13 for 8- and 16 cluster configurations. The

superiority of the correlation values using time spent value is observed both for

cosine- and rank cosine correlations, which are closer to -1, and for the emd- and

rank emd correlations respectively, which are nearer to 1. All correlation values for

16 clusters are, however, relatively weak in absolute measures.

6.6. Extended prediction models

An alternative to building mathematical representation of city areas and applying

similarity functions is to let the machine learning model find out the similarities

by itself. One can choose to add the city data as further training information for

clusters. The purpose is to produce better predictions by leveraging unknown pat-

terns in the city data. Hence, features representing the cosine and emd functions

are added to the model, as follows:

(i) k features corresponding to the k categories the amenities are split in, i.e. the

magnitudes of the vectors for each category;

28 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

Table 12. Amenity area values gathered and averaged from OMS polygon layer for the SFpark
region.

amenity name mean stdev cat amenity name mean stdev cat

arts centre 68 60 2 bank 39 20 2

bar 19 8 1 bicycle parking 8 7 1

biergarten 11 12 1 brokerage 39 9 2

bus station 588 737 3 cafe 17 10 1

car rental 70 43 2 car wash 43 48 2

childcare 101 130 3 cinema 75 43 2

clinic 61 32 2 community centre 52 74 2

conference centre 401 519 3 courthouse 459 201 3

dentist 17 12 1 doctors 324 568 3

embassy 68 38 2 fast food 25 24 1

fire station 52 27 2 fountain 24 22 1

fuel 25 27 1 library 102 124 3

marketplace 325 228 3 music rehearsal place 33 15 1

nightclub 32 9 1 nursing home 97 47 2

parking 182 309 3 pharmacy 65 38 2

place of worship 60 62 2 police 137 124 3

post office 39 11 2 pub 25 25 1

public building 280 236 3 recycling 28 20 1

restaurant 22 16 1 school 740 1280 3

social centre 30 21 1 social facility 356 801 3

stripclub 50 10 2 studio 268 307 3

swimming pool 16 9 1 swingerclub 27 4 1

theatre 174 191 3 toilets 7 5 1

training 72 94 2 veterinary 21 7 1

Note: The mean and standard deviation values were reduced by a 20x factor. The categories for

cosine vectors are 0 - 35, 36 - 100, 100+.

Table 13. The correlation results computed using similarity values based on amenity area.

cluster size amenity type datapoints (train/test) cosine rank cosine emd rank emd

8 time spent agg/agg -0.53 -0.52 0.30 0.17

8 area agg/agg 0.05 0.11 0.14 0.22

16 time spent agg/agg -0.16 -0.11 0.10 0.05

16 area agg/agg -0.09 -0.03 0.09 0.07

Note: All models above were build, trained, and tested on aggregated datapoints.

(ii) a feature corresponding to the emd Gaussian value for that cluster, loosely

interpreted as the ”total accumulated time spent value” for that cluster, in

case of time spent, or the ”total accumulated area” among all amenities in that

cluster, for the amenity area; mathematically it is expressed in eq. (9)

feature(emd) = x · f(x) (9)

where x =

{
duration in minutes, if sim = time spent

area in square meters, if sim = amenity area.
and f is the constructed emd Gaussian function that equals the number of

amenities in the cluster for any value x.

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 29

We subsequently build extended machine learning models that additionally con-

tain the features above. Since these features are identical for all datapoints in a

cluster, the model needs to be trained on multiple clusters. Therefore, models on

n − 1 out of n clusters will be build and tested on the remaining cluster. These

all-but-one or total models will be constructed for all n combinations of n− 1 clus-

ters and their averaged test errors will compared to total models that contain the

normal features. To build the models, the same methods and parameters are used

as described before.

The resulting test errors are shown in table 14 for various number of clusters.

In three out of four cases, the addition of the two features did not help with finding

better parking occupancy values for the test clusters, at least using the gradient

boost model we used in our experiments. For the 16-cluster case, the total model

returns a superior result. In the one case, the simple total models achieved a better

prediction performance.

Table 14. Total models extended with cosine and

emd features compared to total models with the pre-
vious feature set.

cluster size model test error average

4 xgb 14.92

4 xgb total 16.18

8 xgb 18.12

8 xgb total 19.58

16 xgb 18.19

16 xgb total 18.09

32 xgb 18.65

32 xgb total 20.38

7. Further Possible Variations

To further investigate parking occupancy prediction given the assumptions in this

work, there are several improvements or alternative approaches that can be exper-

imented with:

(i) Use parking data from other locations. In the present work, several pieces

of data could not be integrated because of merging issues, i.e., the location units

among multiple datasets did not coincide. Traffic, events, weather, etc. might

improve estimation results and hence the final estimations for clusters without

parking data. Other sources for parking occupancy data can be found for the

cities of Cologne 29, Zurich 30, Santa Monica 31. In Germany, Deutsche Bahn

provides an API to obtain data from parking around train stations 32. Data

pertaining to street occupancy is, however, hard to find. At the time of writing,

open data portals mostly provide the location of parking lots, parking meters,

parking prices and opening times, if applicable.

30 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

(ii) Gather better time spent information Accessing data on the time dura-

tions people spend in various amenities is restricted by Google by not providing

an API for it. Other social media services, such as Foursquare offers information

on how busy an amenity is by means of the number of check-ins that people

send from their phonesc d. The API is however subject to costs and we have

not tried it. By gathering more information automatically than we managed

to collect manually, the evaluating similarity values based on the time spent

information will likely increase in accuracy and so will the resulting correlation

values.

(iii) Use more OSM (meta)data. The mathematical representations in the

present work are relying on public amenities available from OpenStreetMap.

OSM has great potential as a collaborative map service but it currently still

lacks many pieces of information that could be useful (in comparison with

Google’s time spent information, for example). Data such as opening hours,

if it would be widely available, would be interesting to include in the math-

ematical representations, which would then take into account the number of

public amenities that are available at a certain point in time. Overall, more and

finer city data, together with an appropriate representation and similarity func-

tion could eventually improve the occupancy estimations for clusters without

parking data.

(iv) Experiment with other clustering methods Our approach is dependent on

the fact that the computed K-Means clusters are of approximately the same size.

Ideally, this would mean that the number of amenities of a certain time spent

value is virtually equal between clusters. But since for both cosine similarity

and emd it is not the absolute number of amenities for a certain time spent value

that matters, instead the relative number between certain time spent values, it

may be that clusters of clearly opposite sizes are very similar. All the more is

the reason to experiment with other clustering methods, such as DBSCAN and

OPTICS. Both focus on detecting clusters based on density of neighborhoods,

which may translate in practice into separating regions in the city that are more

sparse, e.g., large office areas, from regions that are very dense, e.g., residential

or old town areas.

(v) Apply semi-supervised machine learning. Another relevant machine learn-

ing approach in this case is based on organizing the city areas as an undirected

graph. The vertices represent the clusters with their respective occupancy data,

while the edges between them are assigned similarity values. Initially, only a

part of the vertices have the occupancy value known, i.e., the clusters with park-

ing data, while the rest has undetermined occupancy, i.e., the clusters without

parking data. At each step, the value for a vertex whose value is undetermined

is being computed by considering the occupancies of the linked vertices and

chttps://developer.foursquare.com/docs/api/endpoints
dhttps://developer.foursquare.com/docs/api/venues/details

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 31

their corresponding similarity values.

(vi) Accounting for completely filled parking spaces in the vicinity. Cur-

rently, we only take information from nearby amenities into account for the

model. However, one could imagine that when nearby areas have completely

full parking areas, then cars will ‘spill over’ to the area under investigation. A

model having to account for this type of factors would, however, be a lot more

complicated to express.

8. Conclusion

We presented our work on approximating street parking occupancy in cities. Given

the fact that parking sensors cannot capture all parking areas and assuming that

parking demand can be modeled using urban features, we proposed an alternative

solution to the ones previously developed for this problem. The data used was com-

posed of parking data from the SFpark project, that investigated parking pricing in

San Francisco, and OpenStreetMap. The two data sources were merged and after-

wards split into small city areas that separated the regions that contained parking

data and other regions that did not contain parking data. We built mathematical

representations for amenities, any form of facility or building in a city, and their time

spent information, visiting duration that have been gathered using smartphones.

This led to computing similarity values between city areas by applying functions

such as cosine similarity and earth mover’s distance to the mathematical objects.

The K-Means algorithm was used to cluster the city areas, while four methods were

employed to train models for the clusters: decision trees, support vector machines,

multilayer perceptrons and extreme gradient boosting. The occupancy estimations

for clusters without parking data were defined in terms of model estimations from

clusters with parking data and the corresponding cluster similarity values. The es-

timations are expressed as intervals which extend the model prediction values by

the magnitude of the similarity values.

The data source for our work, the SFpark project, gathered parking data for

more than 2 years starting in 2011 in San Francisco and now offers it for free usage.

The city data was collected from OpenStreetMap as amenity information, and from

Google Places as stay duration values. Both sources are open and free of charge.

Over 30 types of public amenities were found in the San Francisco blocks and data

from over 470 Google Places sources was collected.

Following our experiments, the best machine learning model for our problem set-

ting turned out to be extreme gradient boosting. We used the clusters with parking

data for the evaluation of the similarity values and calculated correlation coefficients

between the similarity values and the estimation errors, using both absolute values

and ranks. The best correlation were reached for the 100m merge distance for 8

clusters. In the same configuration, both cosine similarity and emd reached their

best results from all the experimented configurations.

We further investigated the test error and correlation values when models were

32 Andrei Ionita, André Pomp, Michael Cochez, Tobias Meisen, Stefan Decker

built and tested on all datapoints instead of aggregated datapoints. The aggregation

factor has been shown to play a role in finding the best estimations.

Overall, we touched upon several aspects that influence parking occupancy and

provide a ground for further experimentation, which can further improve parking

occupancy estimations when transferring models from monitored to unmonitored

regions.

References

1. M. N. Smith, The number of cars worldwide
is set to double by 2040 (2016), https://www.weforum.org/agenda/2016/04/the-

number-of-cars-worldwide-is-set-to-double-by-2040.
2. D. Shoup, Free parking or free markets (2001), https://www.accessmagazine.org/

spring-2011/free-parking-free-markets/.
3. M. K. Zavitsas, I.Kaparias, Transport problems in cities (2012), https://trimis.

ec.europa.eu/sites/default/files/project/documents/20120402_173932_

45110_D%201.1%20-%20Transport%20problems%20in%20cities%20-%20v3.pdf.
4. INRIX, Searching for parking costs americans 73 billion us dollars a year (2017),

http://inrix.com/press-releases/parking-pain-us/.
5. A. Ionita, A. Pomp, M. Cochez, T. Meisen and S. Decker, Where to park?: Predicting

free parking spots in unmonitored city areas, in Proceedings of the 8th International
Conference on Web Intelligence, Mining and Semantics WIMS ’18, (ACM, New York,
NY, USA, 2018), pp. 22:1–22:12.

6. A. Ionita, Extending estimation of parking occupancy to untracked city areas using
city background information, master’s thesis (December 2017).

7. T. Lin, H. Rivano and F. Le Mouël, A survey of smart parking solutions, IEEE Trans-
actions on Intelligent Transportation Systems 18 (Dec 2017) 3229–3253.

8. T. S. Lin, Smart Parking: Network, Infrastructure and Urban Service, theses, INSA
Lyon, (INSA Lyon, December 2015).

9. B. Xu, O. Wolfson, J. Yang, L. Stenneth, S. Y. Philip and P. C. Nelson, Real-time
street parking availability estimation, in 2013 IEEE 14th International Conference on
Mobile Data Management 1, IEEE, (IEEE, June 2013), pp. 16–25.

10. Z. Chen, J. C. Xia and B. Irawan, Development of fuzzy logic forecast models for
location-based parking finding services, Mathematical Problems in Engineering 2013
(2013).

11. A. Nandugudi, T. Ki, C. Nuessle and G. Challen, PocketParker: Pocketsourcing park-
ing lot availability, in Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing UbiComp ’14, (ACM, New York, NY, USA,
2014), pp. 963–973.

12. A. Koster, A. Oliveira, O. Volpato, V. Delvequio and F. Koch, Recognition and rec-
ommendation of parking places, in Advances in Artificial Intelligence – IBERAMIA
2014 , eds. A. L. Bazzan and K. Pichara Springer, (Springer International Publishing,
Cham, 2014), pp. 675–685.

13. T. Rajabioun, B. Foster and P. Ioannou, Intelligent parking assist, in 21st Mediter-
ranean Conference on Control and Automation IEEE, (IEEE, June 2013), pp. 1156–
1161.

14. T. Rajabioun and P. A. Ioannou, On-street and off-street parking availability pre-
diction using multivariate spatiotemporal models, IEEE Transactions on Intelligent
Transportation Systems 16(5) (2015) 2913–2924.

15. T. Tiedemann, T. Voegele, M. Krell, J. Metzen and F. Kirchner, Concept of a data

https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
https://www.accessmagazine.org/spring-2011/free-parking-free-markets/
https://www.accessmagazine.org/spring-2011/free-parking-free-markets/
https://trimis.ec.europa.eu/sites/default/files/project/documents/20120402_173932_45110_D%201.1%20-%20Transport%20problems%20in%20cities%20-%20v3.pdf
https://trimis.ec.europa.eu/sites/default/files/project/documents/20120402_173932_45110_D%201.1%20-%20Transport%20problems%20in%20cities%20-%20v3.pdf
https://trimis.ec.europa.eu/sites/default/files/project/documents/20120402_173932_45110_D%201.1%20-%20Transport%20problems%20in%20cities%20-%20v3.pdf
http://inrix.com/press-releases/parking-pain-us/

Transferring knowledge from monitored to unmonitored areas for forecasting parking spaces 33

thread based parking space occupancy prediction in a Berlin pilot region 29, (AAAI,
2015).

16. F. Richter, S. Di Martino and D. C. Mattfeld, Temporal and spatial clustering for a
parking prediction service, in 2014 IEEE 26th International Conference on Tools with
Artificial Intelligence (IEEE, Nov 2014), pp. 278–282.

17. San Francisco Municipal Transportation Agency, SFpark - open data (2011–2013),
http://sfpark.org/how-it-works/open-data-page/.

18. A. O. Kotb, Y.-C. Shen, X. Zhu and Y. Huang, iParker – a new smart car-parking
system based on dynamic resource allocation and pricing, IEEE Transactions on In-
telligent Transportation Systems 17(9) (2016) 2637–2647.

19. J.-H. Shin and H.-B. Jun, A study on smart parking guidance algorithm, Transporta-
tion Research Part C: Emerging Technologies 44 (2014) 299–317.

20. S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser and
W. Trappe, ParkNet: Drive-by sensing of road-side parking statistics, in Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services
MobiSys ’10, (ACM, New York, NY, USA, 2010), pp. 123–136.

21. M. Caliskan, A. Barthels, B. Scheuermann and M. Mauve, Predicting parking lot
occupancy in vehicular Ad Hoc networks, in 2007 IEEE 65th Vehicular Technology
Conference - VTC2007-Spring IEEE, (IEEE, April 2007), pp. 277–281.

22. A. Klappenecker, H. Lee and J. L. Welch, Finding available parking spaces made easy,
Ad Hoc Networks 12 (2014) 243–249.

23. P. Szczurek, B. Xu, O. Wolfson, J. Lin and N. Rishe, Learning the relevance of parking
information in vanets, in Proceedings of the Seventh ACM International Workshop on
VehiculAr InterNETworking VANET ’10, (ACM, New York, NY, USA, 2010), pp.
81–82.

24. San Francisco Municipal Transportation Agency, SFpark (2011–2013), http://

sfpark.org.
25. San Francisco Municipal Transportation Agency, SFpark – pilot project evaluation

summary (2011–2013), http://sfpark.org/wp-content/uploads/2014/06/SFpark_

Eval_Summary_2014.pdf.
26. A. Ionita, Parking prediction web application (2017), https://datalab.rwth-

aachen.de/parking-prediction/.
27. Google, Google my business (2017), https://www.google.com/business/.
28. O. Community, OpenStreetMap (2004), https://www.openstreetmap.org/.
29. Stadt Köln and DKAN, Öffene Daten Köln (2015), https://www.offenedaten-

koeln.de/dataset/taxonomy/term/52/field_tags/Transport%20und%20Verkehr-

52?query=park&sorting=changed%7CDESC.
30. Stadt Zürich, Stadt Zürich - open data (2015), https://data.stadt-zuerich.ch/

dataset/parkleitsystem.
31. City of Santa Monica, Santa Monica – open data (2014), https://data.smgov.net/

Transportation/Parking-Lot-Counts/ng8m-khuz.
32. DB BahnPark GmbH, DB - Parkplätze API (2016), http://data.deutschebahn.com/

dataset/api-parkplatz.

http://sfpark.org/how-it-works/open-data-page/
http://sfpark.org
http://sfpark.org
http://sfpark.org/wp-content/uploads/2014/06/SFpark_Eval_Summary_2014.pdf
http://sfpark.org/wp-content/uploads/2014/06/SFpark_Eval_Summary_2014.pdf
https://datalab.rwth-aachen.de/parking-prediction/
https://datalab.rwth-aachen.de/parking-prediction/
https://www.google.com/business/
https://www.openstreetmap.org/
https://www.offenedaten-koeln.de/dataset/taxonomy/term/52/field_tags/Transport%20und%20Verkehr-52?query=park&sorting=changed%7CDESC
https://www.offenedaten-koeln.de/dataset/taxonomy/term/52/field_tags/Transport%20und%20Verkehr-52?query=park&sorting=changed%7CDESC
https://www.offenedaten-koeln.de/dataset/taxonomy/term/52/field_tags/Transport%20und%20Verkehr-52?query=park&sorting=changed%7CDESC
https://data.stadt-zuerich.ch/dataset/parkleitsystem
https://data.stadt-zuerich.ch/dataset/parkleitsystem
https://data.smgov.net/Transportation/Parking-Lot-Counts/ng8m-khuz
https://data.smgov.net/Transportation/Parking-Lot-Counts/ng8m-khuz
http://data.deutschebahn.com/dataset/api-parkplatz
http://data.deutschebahn.com/dataset/api-parkplatz

