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CONVERGENCE THEOREMS FOR GRAPH SEQUENCES

FELIX POGORZELSKI

Abstract. In this paper, we deal with a notion of Banach space-valued mappings defined on
a set consisting of finite graphs with uniformly bounded vertex degree. These functions will be
endowed with certain boundedness and additivity criteria. We examine their normalized long-
term behaviour along a particular class of graph sequences. Using techniques developed by Elek,
we show convergence in the topology of the Banach space if the corresponding graph sequence
possesses a hyperfinite structure. These considerations extend and complement the correspond-
ing results for amenable groups. As an application, we verify the uniform approximation of the
integrated density of states for bounded, finite range operators on discrete structures. Further,
we extend results concerning an abstract version of Fekete’s Lemma for amenable groups and
cancellative semigroups to the geometric situation of convergent graph sequences.

Address

Technion, Israel Institute of Technology
Technion Campus, 32000 Haifa, Israel

felixp@technion.ac.il

Keywords: Graph convergence; hyperfiniteness; integrated density of states.

Mathematics subject classification: 05C25, 05C80, 46L60, 47A35.

1. Introduction

The following work is devoted to convergence results for Banach space valued functions with
particular (sub-)additivity properties. More precisely, those functions F will be defined on a
sequence (Gn) of finite graphs with uniform vertex degree bound d. Our main goal is to study the
normalized limit behaviour, i.e. to determine a class of sequences for which the limit

F := lim
n→∞

F (Gn)

|V (Gn)|

exists in the topology of the Banach space. This question is motivated by various mathematical
applications:

• For subadditive functions (with R as underlying Banach space), convergence theorems of
the above kind can be used to show the existence of invariants in topological dynamical
systems. Those quantities comprise topological entropy and topological mean dimension,
see [13, 22] in the situation of amenable groups and [4] for amenable, left cancellative
semigroups.

• The notion of almost-additivity for general Banach space-valued functions F has been
introduced in [17]. Defining F on the set of associated words in a subshift dynamical sys-
tem, the author characterizes unique ergodicity of the subshift by the normalized Banach
space convergence of F . A related result for Banach space valued functions on tilings of
Euclidean spaces can also be found in [20]. Further, it turns out that this class of almost-
additive function is also useful for spectral issues for operators on discrete structures. In
detail, it allows for the (uniform) approximation of the spectral distribution function (in-
tegrated density of states, IDS) via finite volume analogues, cf. [20, 9]. In the context of
abstract amenable groups, this has for instance been done in [15, 32, 19, 29, 28]. Related
results can also be found in [24, 25], where the authors prove almost-additive conver-
gence theorems that characterize unique ergodicity of Delone dynamical systems. Those
assertions lead to finite-dimensional spectral approximations as well.
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2 FELIX POGORZELSKI

However, all of those convergence theorems deal with Følner or van Hove sequences in amenable
groups or semigroups. In the present paper, we turn to a very general class of graph sequences
including Følner sequences in finitely generated groups. Proving convergence theorems along
those objects, we significantly extend the geometric framework of the above results. We do so by
identifying subadditive and almost-additive functions as mappings defined on graphs satisfying
a continuity property with respect to a particular distance function introduced in [9]. Precisely,
we determine sufficient and necessary conditions for naturally occurring graph sequences to be
Cauchy in this distance function. Our proof is based on the groundwork presented in [11]. Another
independent proof via algorithmic techniques has recently given by Newman and Sohler, cf. [26],
Theorem 3.1.

This leads to our first key result given in Theorem 3.1. As an immediate consequence, we
are able to derive strong Banach space-valued convergence results given in Corollary 4.3 (almost-
additive functions) and Theorem 5.3 (subadditive functions) for so-called hyperfinite (and weakly
convergent, see below) graph sequences as introduced in [7]. Roughly speaking, hyperfiniteness of
a family of graphs means that for all elements in the family, the proportion of edges that need to
be deleted in order to obtain (edge-)disjoint components with a uniform (vertex) size bound, is
small uniformly over the family. As a main example, every Følner sequence in a finitely generated,
amenable group is hyperfinite. A more general conjecture of Elek (Conjecture 1 in [9]) refers to
bounded vertex degree graphs with edges and vertices labeled by finitely many colours. So far,
we only have been able to cover the geometric situation ignoring the colours. Thus, within the
uncoloured situation, Corollary 4.3 brings out a unification of all results that concern amenable
Cayley graphs, see e.g. [18, 19, 29]. In addition to that, the graphs modeling quasicrystals in
[20, 21] belong just as well to the class to which our convergence theorem applies. Theorem 5.3
can be interpreted as a version of the ’Ornstein-Weiss’ lemma which is a crucial tool in the world of
group dynamics, see e.g. [13, 22, 16]. Our result extends an assertion by Gromov in [13]. Accept-
ing a monotonicity assumption on the function under consideration, it can be also be understood
as an upgrading of [16, 4] in the situation of sequences (in the latter papers, the authors are also
able to deal with Følner nets).
Before we explain the content of this paper in more detail, let us briefly overview the classes of
graph sequences which are crucial in our elaborations.
The original notion of convergent graph sequences (Gn) was introduced in the seminal work of
Benjamini and Schramm, cf. [3]. It means the existence of the occurrence frequencies for arbi-
trary geometric patterns as n → ∞. In the present work, we will refer to those sequences as weakly
convergent. In general, the limit is given by a so-called graphing which is a Borel probability space
consisting of countable, uniformly vertex-degree bounded graphs, see e.g. [8]. In particular situa-
tions, graph sequences might also converge to one deterministic, countable graph (almost-surely).
This is for instance the case for sofic approximations of finitely generated groups, cf. [33, 6, 9, 1].

The notion of weakly convergent graph sequences is widely used in the context of various
mathematical problems. Let us mention some examples:

• In [3], the authors prove that in the situation of planar graph sequences, almost all elements
in the graphing are recurrent.

• Further, graph sequences turn out to be useful in order to show that certain geomet-
ric quantities can be obtained as a limit of their finite-dimensional restrictions. A very
prominent question in this field is given by the so-called Lück conjecture concerning the
approximation of the von Neumann dimensions on finitely generated groups. The Lück
conjecture was proven to be true for very large classes of geometries, see e.g. [23, 5, 6, 31, 2].

• Moreover, the theory of weakly convergent graph sequences has been used before to draw
connections between the geometry and the spectral properties of discrete structures. In this
context, in [1], the authors characterize amenability of subgroups in a finitely generated
group via the limit behaviour of the spectral radii evolving from a convergent sequence of
Schreier graphs.

• It is also well-known that the distribution function of the spectrum of selfadjoint operators
on graphs can be approximated by finite-volume restrictions. In [9], the author defines
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a class of operator sequences defined over the elements of a weakly convergent graph
sequence. It turns out that the normalized spectral distributions converge in the sense of
weak convergence of measures. For the approximations of sofic, finitely generated groups, a
related result can be found in [30]. In fact, a group is sofic if it contains a weakly convergent
graph sequence approximating the local structures of the corresponding Cayley graph.

Considering further kinds of convergence for graph sequences, there is no unified mathematical
theory so far. However, for certain applications, it is essential to find refinements of the Benjamini-
Schramm convergence, see e.g. [14]. As it is our goal to prove uniform spectral approximation
results for operators on discrete structures, we will have to deal with a notion which strongly
takes into account the overall geometry of the graphs under consideration. It turns out that the
’right’ criterion relies on a metric introduced by Elek in [9]. We show that convergence in this
metric (so-called strong convergence) is equivalent to the sequence being weakly convergent and
hyperfinite. As a consequence, we are able to derive the uniform convergence of the spectral
distributions of finite range operators on weakly convergent, hyperfinite graph sequences. As
mentioned before, this widely opens the range of geometries that can be considered. However, in
the geometrically more restricted situation of amenable groups (Følner sequences), one may deal
with colourings allowing for more general dynamical systems, see e.g. [19, 29].
Let us briefly summarize the organization of this paper. In Section 2, we give the necessary
preliminaries and we introduce the notions of weak and strong convergence for graph sequences.
Further, we define hyperfiniteness for graph sequences and we provide some examples. Next,
we prove in Section 3 that for a weakly convergent sequence, hyperfiniteness is a necessary and
sufficient condition for its strong convergence, cf. Theorem 3.1. The proof relies on the so-called
Equipartition Theorem of Elek, cf. [11]. The following two Sections 4 and 5 are devoted to the
proofs of the announced Banach space valued convergence theorems. In Corollary 4.3, we show
the validity of the above limit relation for almost-additive functions. The corresponding result for
subadditive functions can be found in Theorem 5.3. Moreover, we provide an operator theoretic
framework for an application of the almost-additive convergence thorem, in Section 6. In detail,
just as well as in [9], we obtain the uniform convergence of the spectral distribution functions
for bounded, self-adjoint, finite hopping range operators towards an abstract notion of integrated
density of states (IDS) of the limit object (Theorem 6.7).

2. Graph convergence

For the main purposes of this work, we introduce in this section the notions of graph iso-
morphism classes and explain the concept of weakly convergent and strongly convergent graph
sequences. Before doing so, we clarify what we mean by graphs and we give the basic definitions
related to these objects.

In the following, we will always deal with countable (in most cases in fact finite) graphs. These
latter elements can be represented as a pair G := (V (G), E(G)), where V (G) is a countable set
called vertex set and E(G) ⊆ {{x, y} |x, y ∈ V (G), x 6= y} is the so-called edge set describing
abstract connections between pairs of vertices. If {x, y} ∈ E, we say that y is a neighbour of x
and vice versa. The number of neighbours of a vertex x ∈ V (G) is called the vertex degree in x.
Note that each countable graph can be endowed in a natural way with the path distance metric
dG. Thus, if for x, y ∈ V (G), there is a finite number of distinct vertices zj ∈ V (G), j = 1, . . . n
such that {x, z1}, {zj, zj+1}, {zn, y} ∈ E(G), (j = 1, . . . , n − 1), we say that there is a path of
length (n + 1) in G joining x and y (and vice versa). In this case, the value dG(x, y) is given by
the minimum of the lengths of paths joining x with y. As a convention, we set dG(x, y) = ∞ if
there is no such path. Next, we define first the notion of subgraphs which will become essential
in the considerations below.

Definition 2.1 (subgraphs). Let G be a countable graph with vertex set V (G) and edge set E(G).
We call H = (V (H), E(H)) a subgraph of G if

• V (H) ⊆ V (G) and
• E(H) ⊆ {{x, y} ∈ E(G) |x, y ∈ V (H)}.
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A special class of subgraphs of a graph G is given by graphs induced by a subset of the vertex
set V (G).

Definition 2.2 (induced graph). Let G be a countable graph with vertex set V (G) and edge set
E(G). Then, for each set T ⊆ V (G), we shall define the graph on T induced by G as G(T ) :=
(VT , ET ), where

VT := T,

ET := {{x, y} ∈ E(G) |x, y ∈ T }.

Note that induced subgraphs can be interpreted as subgraphs in the sense of Definition 2.1 with
maximal possible number of edges (for a given vertex set).

Following a concept introduced by Elek, see [11], we now turn to convergent graph sequences.
To do so, let d ∈ N and denote by Gd a set of finite graphs of vertex degree bounded by d. We
assume further that the graphs in Ad do not have loops and that there are no multiple edges. We
say that G ∈ Gd is a rooted graph of radius bounded by r ∈ N if there is one distinguished vertex
x := rt(G) ∈ V (G) (the root of G) such that dG(x, y) ≤ r for every y ∈ V (G), where dG is the
canonical shortest path metric in G, see above. In this sense we say that two graphs G1 and G2

are rooted isomorphic if there is a bijection ϕ : V (G1) → V (G2) mapping root to root and where
{ϕ(x), ϕ(y)} ∈ E(G2) if and only if {x, y} ∈ E(G1). We will write G1 ∼ G2 if G1 and G2 are
rooted isomorphic.
We denote by Ad the set of all rooted isomorphism classes of graphs of vertex degree bounded by
d and we define the radius of the classes α ∈ Ad

rad(α) := min{t ∈ N | dG(rt(α), y) ≤ t, y ∈ V (α)}.

For r ∈ N, we write Ar
d for the elements in Ad with radius exactly r. Note that it follows from

the fact that Ad =
⋃∞

r=1 A
r
d that Ad is a countable set.

Now for G ∈ Gd, r ∈ N and α ∈ Ar
d, we set

Tr(G,α) := {x ∈ V (G) |BG
r (x) ∼ α},

whereBG
r (x) := G(Br(x)) is the induced subgraph ofG with vertex setBr(x) := {y ∈ V (G) | dG(x, y) ≤

r}, i.e. the r-ball centered x ∈ V (G). Further, for each α ∈ Ad, the number

p(G,α) :=
|Trad(α)(G,α)|

|V (G)|

can be interpreted as the probability that the rad(α)-ball around a random vertex of G is rooted-
isomorphic to the element α. If we enumerate the elements of the (countable) set Ad, we get a
map

L : Gd → [0, 1]N : L(G) := (p(G,αi))i∈N,

cf. [11]. Further, we equip [0, 1]N with a metric dπ generating the usual product topology. With
no loss of generality, we represent dπ as

dπ(L(G),L(H)) :=

∞
∑

k=1

2−k |p(G,αk)− p(H,αk)|

1 + |p(G,αk)− p(H,αk)|

for G,H ∈ Gd. Note that the map L is ’almost’ injective in the sense that L(G) = L(H) implies
that there must be a graph K ∈ Gd such that both G and H are disjoint unions of K-copies, cf.
[11].

We are now in position to introduce notions of convergence for sequences (Gn)
∞
n=1 ⊆ Gd.

Definition 2.3 (Weak convergence of graphs). We say that a sequence (Gn) ⊆ Gd converges
weakly if for all r ∈ N and every α ∈ Ar

d, the limit

p(α) := lim
n→∞

p(Gn, α)

exists. So (Gn)
∞
n=1 is weakly convergent if and only if (L(Gn))

∞
n=1 is convergent pointwise, i.e. it

is a Cauchy sequence with respect to the the distance dπ .
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In fact, the sequence (Gn) consisting of finite graphs converges to a probability distribution of
possibly infinite graphs. This notion of convergence for graphs has been introduced in the influen-
tial work of Benjamini and Schramm, cf. [3]. So we will equivalently refer to weak convergence
as Benjamini-Schramm convergence.

By defining a particular metric δρ on Gd, Elek introduced the notion of strongly convergent
graph sequences in [9]. We briefly explain the construction of δρ. Assume first that the graphs
G,H ∈ Gd can be represented on the same vertex set V . Let

δ(G,H) :=
|{v ∈ V |SG(v) 6= SH(v)}|

|V |
,

where SG(v) stands for the 1-ball (the star) around v ∈ V in the graph G. In this context, the
6=-sign must be understood not only in the sense of rooted isomorphism classes, but it also takes
into account the differences in the vertex numberings (one can assume that all vertices in G and H
are marked by numbers {1, . . . , |V |}) of both stars. Then, δ defines a metric on the graphs G ∈ Gd

which are defined over the vertex set V (cf. [9], Lemma 2.1). As a convention, we set δ(G, ǫ) = 1
for all G ∈ Gd, where ǫ shall be the empty graph. In a next step, one can come up with a metric
which is invariant under permutations of the vertex numbering. In Lemma 2.2 of [9], it is shown
that for the graphs defined on the same vertex set V , the expression

δS(G,H) := min
σ∈S(V )

δ(G,Hσ)

is a well-defined metric, where S(V ) is the set of all possible permutations of the vertex numbering
in V and Hσ is the graph obtained by renumbering the vertices, also making sure that the edge
relations are preserved. Finally, for graphs G,H which are not necessarily defined on the same
vertex set, the so-called geometric distance

δρ(G,H) := inf
{q,p∈N | q|V (G)|=p|V (H)|}

δS(qG, pH)

has been introduced in [9], where the graph qG is represented by q disjoint copies of the graph G.
By Proposition 2.1 of the same work, δρ defines a metric on the set of isomorphism classes in Ad.
For some finite graph G ∈ Gd, we let α(G) be the corresponding isomorphism class in the set Ad.

Definition 2.4 (Strong convergence of graphs). We say that a sequence (Gn) ⊆ Gd converges
strongly, if (α(Gn))

∞
n=1 is a Cauchy sequence in the δρ-metric.

It is a well-known fact that strong convergence of graphs implies weak convergence, see e.g.
[9], Proposition 2.2. We will show in the next section that under the additional assumption of
hyperfiniteness, the converse is also true.

Definition 2.5. A family P ⊆ Gd is called hyperfinite or amenable if for every ε > 0, one can find
a number Kε ∈ N such that we can remove from every G ∈ P less than ε |E(G)| edges such that
the resulting graph consists of disjoint components containing at most Kε vertices.

Remark 2.6. In the literature, hyperfinite graphs are also referred to as so-called anti-expanders.

Examples 2.7. • Let P = {Pn}∞n=1, where Pn is a path of length n. Then P is hyperfinite.
One may e.g. choose Kε = 2/ε for ε > 0.

• Let P = {Fn}∞n=1, where (Fn)
∞
n=1 are the Cayley graphs of the sets in a Følner sequence

in a finitely generated, amenable group. Using the Ornstein/Weiss ε-quasi tiling theory
(cf. [27, 29]), it can be seen that P is hyperfinite.

• Let P = {Gn}∞n=1 be a graph sequence of subexponential growth, i.e. for all n ∈ N, for each
x ∈ V (Gn) and every r ∈ N, we have |BGn

r (x)| ≤ f(r), where f : N → N is a function
which has subexponential growth. Precisely, this latter property means that for each β > 0,
there exists a number rβ > 0 such that f(r) ≤ exp(β r) whenever r ≥ rβ , cf. [9]. Then, P
is a hyperfinite family.

In fact, one can verify that strongly convergent graph sequences are hyperfinite.
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Proposition 2.8 (cf. [9], Proposition 2.3). If (Gn) ⊆ Gd is strongly convergent, then the family
P = {Gn}∞n=1 is hyperfinite.

3. Hyperfiniteness and weak convergence

The fundamental insight that two statistically alike graphs with the same number of vertices
are also close in their geometry (i.e. w.r.t. δρ as introduced before) has been obtained in [11]
(Theorem 5) and independently in [26] (Theorem 3.1). We deduce from this that hyperfinite,
weakly convergent graph sequences are in fact strongly convergent. This confirms a conjecture of
Elek in [9] for the case of graphs with uncoloured vertices and colourless edges. This section is
devoted to a proof which relies on techniques of Elek’s work, cf. [11].

Theorem 3.1. Let P := (Gn) ⊆ Gd be a weakly convergent sequence of graphs which is also
hyperfinite. Then, (Gn) is in fact strongly convergent.

For the proof of Theorem 3.1, we need the so-called Equipartition Theorem stating that statis-
tically similar graphs in a hyperfinite family can be partitioned similarly, cf. [11], Theorem 4.

Theorem 3.2 (Elek, Equipartition Theorem, cf. [11], Theorem 4). Let P ⊆ Gd be a hyperfinite
family. Then, for any ε > 0, there exists Kε ∈ N with the following property: for any β > 0, there
exists δ > 0 such that if G ∈ P and H ∈ Gd with dπ(L(G),L(H)) ≤ δ, then there is a way to
remove less than 2ε|E(G)| egdes of G and less than 2ε|E(H)| edges of H such that

• in the remaining graphs G
′

and H
′

, all connected components have size at most Kε,

•
∑

α∈Ad: |V (α)|≤Kε
|cG

′

α − cH
′

α | < β,

where CG
′

α is the set of points that are in a component of G
′

isomorphic to α, and cG
′

α :=

|CG
′

α |/|V (G
′

)|.

We now prove Theorem 3.1.

Proof of Theorem 3.1. Let ε > 0. Further, choose ε1 := ε/(6d). For any n ∈ N, we remove

ε1|E(Gn)| edges from Gn such that in the remaining graphs {G
′

n}
∞
n=1, all connected components

have at most Kε1 vertices, where the number Kε1 is chosen according to the Equipartition The-

orem 3.2. For n ∈ N, we call a vertex x ∈ G
′

n exceptional if we removed at least one of the edges
incident to x. Hence, there can be at most 2dε1|V (Gn)| exceptional vertices in Gn. We denote by
α1, α2, . . . , αMε1

(Mε1 ∈ N) the isomorphism classes in Ad consisting of at most Kε1 vertices. So

for n ∈ N and 1 ≤ i ≤ Mε1 , we write κ
n
i ∈ N for the number of connected components in G

′

n which
are rooted isomorphic to αi. We further set γn

i := κn
i /|V (Gn)| for n ∈ N and 1 ≤ i ≤ Mε1 . Note

that due to the weak convergence, the sequence (Gn) is Cauchy in the dπ-distance and the Equipar-

tition Theorem 3.2 is applicable. Therefore, using that κn
i := |C

G
′

n

αi
|/|V (αi)| ≤ |C

G
′

n

αi
|, where C

G
′

n

αi

is defined as in the Equipartition Theorem, we find for β := ε1/(Mε1 Kε1) some number L ∈ N

such that

|γn
i − γm

i | < β =
ε

6dMε1 Kε1

for all n,m ≥ L and all 1 ≤ i ≤ Mε1 . Next, using Lemma 2.3 of [9], we conclude that indeed,

dρ(Gn, Gm) ≤ 4d ε1 + 2Mε1Kε1β ≤ ε

for all n,m ≥ L. �

4. A Banach-space valued convergence theorem

This section is devoted to the proof of a general convergence result for so-called almost additive
functions on Gd which take their values in an arbitrary Banach space. Precisely, we show that for
strongly convergent graph sequences (Gn) ⊆ Gd, the expression F (Gn)/|V (Gn)| converges in the
Banach space topology as n tends to infinity, where F belongs to the class of functions under con-
sideration. Similar results in the situation of general (not necessarily finitely generated) amenable
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groups can already be found in [19, 29] and [28].

We start with the definition of almost-additive functions on Gd. Let X be a Banach space
equipped with a norm ‖ · ‖.

Definition 4.1. A mapping

F : Gd → (X, ‖ · ‖)

is called almost-additive (on Gd) if F (ǫ) = 0 (in case the empty graph ǫ ∈ Gd) and if there is a
constant D > 0 depending on d such that if G,H ∈ Gd and p, q ∈ N are such that p |V (G)| =
q |V (H)|, then

‖pF (G)− q F (H)‖ ≤ D δS(pG, qH) p |V (G)|.

We call this the almost-additivity property of F .

The following statements are straight forward consequences from Definition 4.1 and the consid-
erations of the previous Section 3.

Theorem 4.2. Assume that F is an almost-additive mapping on Gd with values in a Banach space
(X, ‖ · ‖). Then, if (Gn) ⊆ Gd is a strongly convergent graph sequence, then there is an element
F ∈ X such that

lim
n→∞

∥

∥

∥

∥

F (Gn)

|V (Gn)|
− F

∥

∥

∥

∥

= 0.

Proof. Choose ε > 0 and find L ∈ N such that dρ(Gn, Gm) ≤ ε whenever n,m ≥ L. By the
definition of dρ, for each choice of integers n and m, we find p, q ∈ N with p|V (Gn)| = q|V (Gm)|
such that dS(pGn, qGm) ≤ 2 ε. Consequently, we can use the almost-additivity property of F to
compute

∥

∥

∥

∥

F (Gn)

|V (Gn)|
−

F (Gm)

|V (Gm)|

∥

∥

∥

∥

=

∥

∥

∥

∥

pF (Gn)

p |V (Gn)|
−

q F (Gm)

q |V (Gm)|

∥

∥

∥

∥

≤ 2D ε

for all n,m ≥ L. It follows that (F (Gn)/|V (Gn)|)∞n=1 is a Cauchy sequence in the Banach space
X and hence convergent to some element F ∈ X . �

The following corollary demonstrates that in the situation of translation invariance of the
almost-additive function under consideration, the convergence result of [29] along Følner sequences
in a finitely generated, amenable group can be extended to graph sequences. In fact, Definition 4.1
includes periodicity of the function F in the sense that F (G) = F (H) if G is rooted isomorphic to
H . Introducing graph colourings in [29], the authors are able to work with a slightly weaker notion
of invariance. However, the corresponding geometric situation is far more restricted as the graph
sequences are given as subgraphs of the Cayley graph of the group induced by the elements of
the Følner sequence under consideration. This latter graph sequence is in fact weakly convergent
with limit probabilities 0 or 1. Moreover, as we have mentioned in the Examples 2.7 above, the
sequence is also hyperfinite. It follows from this that in the translation invariant situation, the
setting in [29] is a special case of the next corollary.

Corollary 4.3. Assume that F is an almost-additive mapping on Gd with values in a Banach
space (X, ‖ · ‖). Then, if (Gn) ⊆ Gd is a weakly convergent, hyperfinite graph sequence, then there
is an element F ∈ X such that

lim
n→∞

∥

∥

∥

∥

F (Gn)

|V (Gn)|
− F

∥

∥

∥

∥

= 0.

Proof. This follows directly from the previous Theorem 4.2 and Theorem 3.1. �



8 FELIX POGORZELSKI

5. Subadditive convergence

Note that Fekete’s Lemma is a well known, elementary statement providing essential applica-
tions in various mathematical areas. It reads as follows.

Lemma 5.1. Let (an)n∈N ∈ R
N be a subadditive sequence, i.e.

am+n ≤ am + an

for all n,m ∈ N. Then the sequence (an

n
) converges to its infimum (which might be −∞).

For the sake of applications, one may raise the question whether the integer index set can be
replaced by more complicated structures, such as sets or graphs. Quite recently, a corresponding
result was proven in [4], where the authors prove subadditive convergence for amenable, cancella-
tive semigroups in order to apply it to problems concerning the entropy of measure preserving
dynamical systems. Including a natural additional condition on the function h under considera-
tion, we prove convergence along hyperfinite graph sequences. Precisely, we need the subadditive
function to be non-decreasing with respect to the subgraph ordering. This extends the geometric
situation in results obtained by Lindenstrauss and Weiss, cf. [22] as well as by Gromov, cf.
[13] in the context of amenable groups. Let us clarify first what we mean by subadditive functions.
Assume that h : Gd → R is a subadditive function, i.e. it satisfies the following properties:

• there exists a constant C > 0 such that h(G) ≤ C |V (G)| for all G ∈ Gd (boundedness);

• if G ∈ Gd is a subgraph of G̃ ∈ Gd, then

h(G) ≤ h(G̃) (monotonicity);

• if G and G′ are Gd-subgraphs of some G̃ ∈ Gd with V (G) ⊔ V (G′) = V (G̃),

h(G̃) ≤ h(G) + h(G′) (subadditivity);

in the edge-disjoint situation, i.e. if we also have and e ∈ E(G̃) if and only if either
e ∈ E(G) or e ∈ E(G′), then we have in fact

h(G̃) = h(G) + h(G′) (special additivity);

• it is true that h(G) = h(G′) if G is isomorphic to G′ in Gd (pattern-invariance).

Remark 5.2. We need the special additivity assumption for the edge-disjoint case as a technical
feature of the more general subadditivity poperty. Note that in many settings, this is a pathological
situation, e.g. if one considers sequences consisting of connected graphs. However, this property
will become relevant in the proofs below, where the strong graph metric δρ forces us to work with
q-fold (q ∈ N) vertex- and edge-disjoint copies of finite graphs G ∈ Gd. For those objects, the
special additivity assumption and the pattern-invariance condition guarantee that h(qG) = q h(G).

Theorem 5.3. Assume that h : G → R is a subadditive function. Then, for every weakly conver-
gent, hyperfinite graph sequence (Gn) ⊆ Gd, there is a number λ ∈ R ∪ {−∞} such that

lim
n→∞

h(Gn)

|V (Gn)|
= λ.

Proof. By Theorem 3.1, the sequence (Gn) is in fact strongly convergent. Further, we set

λ := lim inf
n→∞

h(Gn)

|V (Gn)|
,

which is an element in the infinite interval [−∞, C] due to the boundedness of h from above. We
denote by K ⊆ N an infinite set containing the indices of a subsequence of (h(Gn)/|V (Gn)|)n that
converges to λ. We fix an arbitrary positive number ε > 0 and we choose k0 ∈ K such that for
all n, k ≥ k0, we have δρ(Gn, Gk) < ε. We fix such n and k, where we also make sure that k ∈ K.
By definition of δρ, there exist integer numbers qn, qk ∈ N such that qn|V (Gn)| = qk|V (Gk)| and

δS(qnGn, qkGk) ≤ 2 ε. (5.1)

Assuming that both qnGn and qkGk are defined on a common vertex set Vn,k we can find a subset

Ṽn,k ⊆ Vn,k containing those vertices such that the 1-balls (including vertex numbering) coincide
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in both graphs. By Inequality (5.1), we have |Ṽn,k| ≥ (1 − 2ε)|Vn,k|. For this set Ṽn,k, we denote

the associated induced subgraph in qnGn (in qkGk respecively) by G̃n,k. Thus, using the special
additivity property, as well as subadditivity, boundedness and pattern-invariance of h, we obtain

h(Gn)

|V (Gn)|
=

h(qnGn)

qn|V (Gn)|
≤

h(G̃n,k)

|Vn,k|
+ 2C ε. (5.2)

Since h is non-decreasing, it follows that h(G̃n,k) ≤ h(qkGk). Further, the special additivity prop-

erty and the pattern-invariance condition of h yield h(G̃n,k) ≤ qkh(Gk). Continueing Inequality
(5.2), we arrive at

h(Gn)

|V (Gn)|
≤

qkh(Gk)

|Vn,k|
+ 2C ε =

h(Gk)

|V (Gk)|
+ 2C ε.

Note that this latter relation holds true for all large enough k ∈ K and all large enough n ∈ N.
Since ε > 0 was arbitrary, we have

lim sup
n→∞

h(Gn)

|V (Gn)|
≤ lim inf

n→∞

h(Gn)

|V (Gn)|
+ 2C ε = λ+ 2C ε

for all ε > 0. Hence, sending ε → 0 concludes the proof. �

6. Integrated density of states

In this section, we demonstrate that the notion of almost-additive, Banach space valued map-
pings is the right one in order to verify uniform approximation results concerning the integrated
density of states for certain operators. More precisely, in the situation of a strongly convergent
graph sequence, we show that the spectral distribution functions of the associated operators de-
termined by the local patterns of the graph converge uniformly. As the results of this section
have already been proven in [9], we do not claim originality, but emphasize the application of the
Banach space convergence theorem, Corollary 4.3. A related IDS result for random Schrödinger
operators has been proven in [10]. To complete this section, we add a short discussion concern-
ing an alternative method to derive uniform convergence in general geometric situations. The
corresponding result is not new and detailed elaborations can be found in [31, 2].

6.1. The model. The following setting is deduced from [9]. Suppose that G is a graph with
countable vertex set V (G) and with vertex degree bound d ∈ N. Assume further that a function

h : V (G)× V (G) → R

is given and possesses the following properties.

• symmetry: h(x, y) = h(y, x) for all x, y ∈ V (G).
• finite hopping range: there exists some constant R > 0 such that h(x, y) = 0 whenever
dG(x, y) > R.

• pattern invariance: it holds true that for the same constant R > 0, for each x ∈ V (G), the
function hx = h(x, ·) : V (G) → R is determined by the R-neighborhood of x. Precisely,
this means that if BG

R (x) ∼ϕ α for some α ∈ AR
d , then there is a map hα : V (α) → R with

hx(y) = h(x, y) = hα(ϕ(y))

for every y ∈ V (BG
R (x)).

In this situation, we call the number R the overall range of the function h. Note that the pattern
invariance condition makes sure that h is a translation invariant function. Precisely, if there is
another x′ ∈ V (G) such that BG

R (x′) ∼ BG
R (x) with associated isomorphism ϕx,x′ : V (BG

R (x)) →
V (BG

R (x′)), ϕx,x′(x) = x′, then

h(x, y) = h(x′, ϕx,x′(y))

for all y ∈ V (BG
R (x)). Hence, indeed the function h only depends on the local patterns of the

graph G.
In the following, we will refer to functions of the kind as h as admissible kernel functions.
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Definition 6.1. Let (Gn) ⊆ Gd be a weakly convergent graph sequence. Then, we call H := (Hn)
a corresponding weakly convergent operator sequence if

• there is a sequence of admissible kernel functions (hn), hn : V (Gn)× V (Gn) → R, where
the parameter R, as well as the values of hα (α ∈ AR

d ) for the hn do not change with
n ∈ N,

• for all n ∈ N, the operator Hn : ℓ2(V (Gn)) → ℓ2(V (Gn)) is given by

(Hnu)(x) :=
∑

y∈B
Gn

R
(x)

hn(x, y)u(y).

Example 6.2. A simple example for a weakly convergent operator sequence are the discrete
Laplacians ∆ := (∆n),

∆n : ℓ2(Fn) → ℓ2(Fn) : (∆nu)(x) :=
∑

y∼x

(u(y)− u(x)) ,

where (Fn) is a sequence of Cayley graphs associated with a Følner sequence in a finitely generated,
amenable group Γ, cf. [9] and [29].

Definition 6.3. We call (Hn) a null operator sequence if (hn) is a weakly convergent operator
sequence such that for all α ∈ AR

d with p(α) 6= 0, we have hα = 0.

Further, it is well-known that for a fixed, weakly convergent graph sequence G := (Gn), the
set OG of corresponding convergent operator sequences possess an algebra structure, i.e. if H1

and H2 are in OG , then H1 + H2 and H1 · H2 are as well. For a more detailed discussion,
the interested reader may e.g. refer to [9]. In the following, we will write NG for the set of all
nulloperator sequences associated with G. The following proposition is an easy observation which
can be proven in the same manner as in [9].

Proposition 6.4 ([9], Proposition 3.1). Let H = (Hn) be a convergent operator sequence on a
weakly convergent graph sequence G = (Gn). Then, the limit

lim
n→∞

1

|V (Gn)|

∑

x∈V (Gn)

hn(x, x)

exists and is equal to

trG(H) :=
∑

α∈AR

d

p(α)hα(rt(α)),

where the parameters R, hα are as in Definition 6.1.

We will call trG(H) the trace of H in the algebra OG . The next proposition shows that this
latter notion contains valuable information on the structure of the quotient space QG := OG/NG ,
as well as on its closure with respect to a particular (weak) topology.

Proposition 6.5 (Elek, cf. [9], Prop. 3.1, Lemmas 3.2, 3.3, 3.4). Let G := (Gn) be a weakly con-
vergent graph sequence and assume that H1 := (H1

n) and H2 := (H2
n) are arbitrary corresponding

convergent operator sequences in OG . Then the following statements hold true.

(i) trG(H1 · H2) = trG(H2 · H1).
(ii) trG is faithful on QG, i.e. trG(H1 · H1) > 0 if H1 /∈ NG and trG(H1) = 0 for H1 ∈ NG .
(iii) the algebra QG is a pre Hilbert space with inner product

〈[H1], [H2]〉 = trG(H
2 · H1),

where [Hi] stands for the class of Hi in QG.
(iv) the representation L[H1] [H] := [H1 ·H] (H ∈ OG) for [H

1] ∈ QG is a bounded (multiplication)
operator on the quotient space QG.

(v) The weak closure QG of QG is a von-Neumann algebra. Consequently, the trace

trG([H
1]) = 〈L[H1] 1,1〉

extends to QG as a ultraweakly continuous, faithful trace.
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(vi) L[H1] is a bounded, self-adjoint operator on QG with supn∈N ‖H
1
n‖ ≤ K(H1) for some constant

K(H1) > 0.

For convenience, we simply write [H] instead of L[H] ([H] ∈ QG) and we call [H] := (Hn)

the limit operator (which actually is defined on QG) of the sequence H ∈ OG . We have seen in
the above proposition that [H] is a bounded, self-adjoint operator. It follows from the spectral
theorem that there must be a decomposition

[H] =

∫

R

λdE
[H]
λ ,

where E
[H]
λ ∈ QG is the spectral projection 1]−∞,λ]([H]) for λ ∈ R. Further, the integrated density

of states of [H] can be defined by

N[H](λ) := trG(E
[H]
λ ).

Given a convergent operator sequence [H] = (Hn), then for each n ∈ N, we set

nHn
(λ) := #{E ≤ λ |E is an eigenvalue of Hn} (λ ∈ R),

as the cumulative eigenvalue counting function for the (matrix) operator Hn. The symbol # shall
express that the eigenvalues are counted with multiplicities. The corresponding spectral distri-
bution functions are just the cumulative eigenvalue distributions (normalized eigenvalue counting
functions) given by

NHn
(λ) :=

nHn
(λ)

|V (Gn)|
, n ∈ N, λ ∈ R.

With these notions at hand, it is not hard to show the weak convergence of the eigenvalue counting
functions towards the integrated density of states.

Theorem 6.6 (c.f. e.g. [9], Theorem 1). Let H = (Hn) be a convergent operator sequence on a
weakly convergent graph sequence G := (Gn). Then, for any continuity point λ ∈ R, we have

lim
n→∞

NHn
(λ) = N[H](λ)

Proof. See e.g. [9], Theorem 1. �

6.2. Uniform approximation of the IDS. We will now outline how the uniform convergence
of the IDS can be obtained by using the Banach space convergence theorem, Corollary 4.3.

Theorem 6.7. Let H = (Hn) be a convergent operator sequence on a weakly convergent, hy-
perfinite graph sequence G := (Gn). Then, we have in fact uniform convergence of the spectral
distributions, i.e.

lim
n→∞

‖NHn
(·)−N[H](·)‖∞ = 0.

Remark 6.8. The validity of Theorem 6.7 has already been verified in [9] (cf. Proposition 3.2).
However, we would like to emphasize that it is a different approach is to represent the functions
NHn

(·) as abstract, almost-additive mappings on Gd = {Gn}, where the Banach space under
consideration is (Crb(R), ‖ · ‖∞), i.e. the collection of right-continuous functions endowed with
supremum norm. Thus, using Corollary 4.3 for the proof of uniform convergence towards the
integrated density of states, we also show that the notion of almost-additive mappings is an
appropriate abstract description for this spectral issue.

The validity of Theorem 6.7 follows essentially from the following proposition.

Proposition 6.9. Let H = (Hn) be a convergent operator sequence on a weakly convergent graph
sequence G := (Gn). Then for Gd := {Gn}, the mapping

F : Gd → Crb(R) F (Gn) := nHn
(·)

is almost-additive.



12 FELIX POGORZELSKI

We will not give a proof of the above proposition as it follows essentially from the definition
of the metric δS in combination with a uniform rank estimate for the difference of the eigenvalue
counting functions of self-adjoint, finite dimensional operators, see e.g. [19], Proposition 7.2. Very
similar computations can also be found in [21], [29], [28] and [9], [10]. Combining the above propo-
sition with Corollary 4.3, we have indeed verified the validity of Theorem 6.7.

It can already be noticed in the group situation that one cannot expect the Banach space
convergence of Theorem 4.2 to hold for non-amenable structures. Indeed, it has been shown in
[12] (Proposition 4.1) that sofic approximations of groups are hyperfinite if and only if the group
under consideration is amenable. Thus, we infer from Proposition 2.8 that our notion of almost-
additive functions will not allow for normalized convergence along approximating sequences in
non-amenable groups. However, as far as the question of pointwise (or uniform) convergence of
spectral distribution functions is concerned, one can bypass this problem by extending the algebraic
eigenvalue conjecture (see e.g. [5]) to the general geometric case of graph sequences. This issue has
been addressed by Abért, Thom and Virág in [2]. The method is to use the number theoretic
techniques developed in [31] for the proof of the conjecture in the case of sofic groups. Precisely, if
νn and ν are the positive measures associated with NHn

and N[H] respectively, then the following
assertion holds true.

Theorem 6.10 (cf. [2]). Let (Gn) ⊆ Gd be a weakly convergent graph sequence. Assume that [H] :=
(Hn) is an associated weakly convergent operator sequence with integer coefficients (admissible
kernel functions), i.e. for all α ∈ Ad, we have that hα takes its values in Z. Then,

lim
n→∞

νn({λ}) = ν({λ}) (6.1)

for every λ ∈ R.

Now well-known arguments can be used to derive from the limit relation (6.1) the uniform
convergence of (NHn

), see e.g. [21], Lemma 6.3. Thus, one obtains the uniform existence of the
integrated density of states for bounded, integer coefficient operators on all approximable, discrete
structures with vertex degree bound. To the knowledge of the author, this is still an open question
for arbitrary coefficients, see the remark following Theorem 4.4 in [31].
These elaborations show that strong spectral approximation results hold true even if one does not
have a Banach space valued convergence theorem at hand. However, one may raise the question
whether one can find a class of Banch space valued functions which comprises spectral distributions
and which are endowed with suitable conditions for a convergence theorem to hold. This will be
a subject of future investigations.
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[19] D. Lenz, F. Schwarzenberger, and I. Veselić. A Banach space-valued ergodic theorem and the uniform ap-

proximation of the integrated density of states. Geometriae Dedicata, 150(1):1–34, 2010. Erratum: DOI:
10.1007/s10711-011-9657-1 (2012).

[20] D. Lenz and P. Stollmann. An ergodic theorem for Delone dynamical systems and existence of the density of
states. J. Anal. Math., 97:1–23, 2005.
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