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ABSTRACT

Finite State Machine is a popular modeling notation for various systems, especially software and
electronic. Test paths can be automatically generated from the system model to test such systems
using a suitable algorithm. This paper presents a strategy that generates test paths and allows to start
and end test paths only in defined states of the finite state machine. The strategy also simultaneously
supports generating test paths only of length in a given range. For this purpose, alternative system
models, test coverage criteria, and a set of algorithms are developed. The strategy is compared
with the best alternative based on the reduction of the test set generated by the established N-switch
coverage approach on a mix of 171 industrial and artificially generated problem instances. The
proposed strategy outperforms the compared variant in a smaller number of test path steps. The
extent varies with the used test coverage criterion and preferred test path length range from none
to two and half fold difference. Moreover, the proposed technique detected up to 30% more
simple artificial defects inserted into experimental SUT models per one test step than the compared
alternative technique. The proposed strategy is well applicable in situations where a possible test
path starts and ends in a state machine needs to be reflected and, concurrently, the length of the test
paths has to be in a defined range.

Keywords System testing · software testing · internet of things · model-based testing · path-based testing · finite state
machines.
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Novel Strategy Generating Variable-length State Machine Test Paths

1 Introduction

In system testing, test scenarios are usually defined to describe tests performed on a System Under Test (SUT). The
core part of a test scenario is a sequence of actions that must be performed during the test [1]. Such sequences can be
created manually by a test analyst based on design documentation of the SUT. They can also be created based on the
knowledge of the system’s functionality. Such an approach might be ineffective for complex systems and is prone to
design defects in test scenarios. The approach may also lead to a set of test scenarios, for which it is not clear the tests
cover which parts of the SUT. The test design process can be automated to minimize these drawbacks, subject to the
established Model-Based Testing (MBT) discipline [2, 3].

In MBT, part or viewpoint on the SUT is modeled by a suitable notation. Then, given the required test coverage criteria,
test paths are generated from the model using dedicated algorithms [4]. A variety of SUT modeling notations can be
used within MBT, e.g., [3, 4]. This study focuses on Finite State Machine (FSM) to model parts of the SUT. FSM
and its variants are widely used in industry as a modeling notation for system modeling and testing. FSM describes
a natural aspect of a wide variety of systems, modules, or data objects processed by a system that is switching from
state to state. Therefore, FSMs are one of the fundamental modeling options. Here, FSM-based testing is one of the
key testing methods [5].

In real-world projects, budgets and testing time are typically limited [6]. Certain pragmatism and prioritization in
covering essential parts of the SUT by more thorough tests and less critical ones by more lightweight tests are highly
desirable here. From the test practitioner’s viewpoint, it is the foremost approach to achieve the best quality of a
SUT given these budget and time constraints. Test coverage criteria are used to determine the thoroughness of the
paths [1]. However, determining the suitable coverage criteria is tricky here. In addition, a careful algorithmic design
and implementation are needed to generate test paths that meet the designed coverage criteria. To this end, several test
coverage criteria and algorithms have been defined and examined for FSMs in the literature. A careful analysis of the
literature is given in Section 2.

With the availability of several strategies and studies, the current techniques do not sufficiently reflect the fact that the
test paths can effectively start and end only in certain states of the FSM. Attempting to start or end a test in certain states
might be highly ineffective or even futile [7,8]. In addition, the test path length is less explored in the literature, which
is more critical from the test practitioner’s perspective. Too long test paths are hard to maintain, and if interrupted by
a defect in an SUT, it is tricky to test the rest of the flow 2. Also, too short test paths might be ineffective because of
related overhead implied by the execution of the test paths. For example, putting the SUT into an initial state, cleaning
procedures after tests, or test reporting effort [9].

Considering the aforementioned gaps in the literature in a new strategy will lead to an effort-effective method of FSM
testing. To this end, this paper presents a strategy that supports both requirements and compares it with an ad-hoc
approach based on an established N-switch test path concept. The contributions of the paper are as follows: (1) Novel
strategy that generates FSM test paths concurrently, allowing one to limit their length and express in which states of
FSM a test path can start and end is presented, (2) a comparable strategy based on the established N-switch concept
is presented, and (3) both strategies are compared using several criteria, including their effectiveness in detecting
artificial defects in SUT models, and the results are discussed.

This paper is organized as follows. Section 2 introduces the formal preliminaries used in this work and summarizes
related works. Section 3 presents the proposed FSM test path generation strategy, starting with an SUT model and
the definition of the test coverage criteria. The algorithms that generate the test paths are presented here, and our
proposal can be compared with an alternative test path generation strategy. Section 6 presents the method used in the
experiments and their results. Section 7 discussed possible threats to validity and the last section concludes the paper.

2 Background and Related Work

One of the common notations of FSM used in MBT is based on a directed graph. The typical model is defined as a
directed graph G = (V,E, vs, Ve) such that V 6= ∅ is a finite set of vertices representing FSM states and E ⊆ N ×N
is a nonempty set of edges e ∈ E representing FSM transitions. Furthermore, vs ∈ V is the start state of the state
machine, Ve ⊂ V is a set of end states of the state machine [10, 11]. Within this graph, a test path t is a path in G.

Alternatively, part or aspect of the SUT expressed by FSM can be modeled by a Regular Expression (RE) [12]. RE
describes FSM so that every possible word (sequence of transitions in the FSM) that fits a pattern defined by RE

2https://dzone.com/articles/17-best-tips-to-write-effective-test-cases or https://reqtest.com/testing-blog/learn-how-to-write-effective-test-cases/
to give few examples

2



Novel Strategy Generating Variable-length State Machine Test Paths

corresponds to a path in this FSM. We denote RE, defining the model as φ. A test path t is a word allowed by φ. In
both models, T denotes a set of test paths.

T satisfies Node Coverage, when each v ∈ V ∈ G is presented in at least one t ∈ T . In the literature, the Node
Coverage is also alternatively denoted as All States Coverage. [1, 13]. T satisfies Edge Coverage, when all edges
(transitions) e ∈ E ∈ G are present in at least one t ∈ T . This criterion is commonly called 0-Switch coverage or All
Transitions Coverage [14, 15]. T also satisfies Edge-Pair Coverage when each path consisting of two adjacent edges
e ∈ E must occur at least once in at least one t ∈ T [1, 16]. Edge-Pair Coverage is also mentioned in the literature as
All Transition Pairs Coverage and 1-Switch Coverage [14]. Generalized N -Switch Coverage is satisfied, when every
combinations N + 1 adjacent transitions (edges of G) must occur at least once in a t ∈ T [17].

To generate T from G or φ, a number of algorithms can be found in the literature. These algorithms differ by the
test coverage criteria that are satisfied by the generated T . They also differ in the effectiveness of the generated T .
Generally, two test sets that satisfy the same test coverage criteria may still differ in a number of test steps or test paths,
which affects the overall effectiveness of the testing process. The algorithms were mostly implemented to generate
test cases for specific classes of applications.

Devroey et al. proposed an algorithm to generate test suites for software product lines using Feature Diagram and
Feature Transition System (FTS) as a SUT model [18]. Since FTS is a directed graph, this algorithm can also be
applied to solve the problem discussed in this study. The algorithm uses a branch-and-bound approach and uses
heuristics for efficient test path search. Instead of a breadth or depth-first search, the algorithm explores the graph
using priorities, where the branch is prioritized when it has a higher score. In the algorithm, a score is used describing
how this branch will visit many unvisited states, and how test sets generated by this branch will cover many new
states. The score is evaluated using an accessibility matrix computed using a modified Warshall algorithm. Instead
of distances, matrix cells contain feature expressions used to evaluate products capable of executing a transition,
respectively, a set of transitions changing state of a system from one to another.

Another comparable algorithm was implemented by Alava et. al. [19]. In their work, an approach is proposed to
generate automated tests for Java Page Flow web applications. The main input for this process is a directed graph
called Design View (DView). DView is a directed graph, where nodes are pages or actions, and edges are links or
forwards. The FSM of the page flows and the coverage criteria are obtained from DView. Comparable coverage
criteria used in this approach are All pages (equivalent to All Node Coverage) and All actions (equivalent to All Edge
Coverage). Test cases are generated to ensure the execution of these test paths.

Carvalho and Tsuchiya exploit model checking to generate test paths for SUT parts described as FSMs, as model
checkers can generate counterexamples as proof when a model does not satisfy the specification [14]. The tool uses
the NuSMV modeling language to define an FSM. The method aims to support Node Coverage, Edge Coverage, and
Edge-pair Coverage. The coverage criteria were defined using the NuSMV language. When the SUT model and the
test coverage criteria are prepared in NuSMV notation, the test paths are generated using a heuristic algorithm. Using
their model, the authors identified this test set generation problem as an NP-hard covering problem.

Another comparable approach was proposed by Liu and Xu [20] to generate a test set for FSM [20]. RFSM is an
extended FSM with a special label notation that gives the RFSM the ability to model more details, for example,
a number of transitions or different types of node repetitions [21]. This approach employs a Regular Finite State
Machine (RFSM) to model the SUT using an MTTool tool graphical interface. An algorithm is used to transform the
RFSM into ERE and then to generate the test paths. The used ERE is a classical regular expression for designing SUT
behavior with extended grammar, giving the ability to model the nature of synchronous and concurrent task execution
(transitions or sequences of transitions). ERE can be generated from RFSM. The SUT model in RFSM can be created
in two ways: using an MTTool tool graphical editor or text input, using the commands of the author’s proprietary
R language. The ERE model is parsed into a set of submodels to avoid state space explosion problems during the
generation of the test paths. The algorithm generating the test paths accepts this set of submodels and a set of test
requirements, where these test requirements are parts of the SUT model or their combinations that the generated test
paths must cover.

From the approaches using RE to model SUT behavior, Kilincceker et al. proposed a method that consists of the
toolchain for the generation of test paths from SUT parts modeled as a regular expression or from an FSM, which is
further conversed to RE [22]. In this approach, the context table is used during the generation of the test paths. Details
can be derived from the toolchain source code available in a GitHub repository [23]. The tool is available freely for
further analysis and comparison with newly developed alternatives.

Kilincceker et al. also presented an approach for generating test paths using a SUT specified in Hardware Description
Language (HDL) language [24]. The work transfers HDL code into the FSM model that gave this approach a more
expansive application field. During the generation of the test path, the FSM is further transformed to RE, in particular
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the extended RE model proposed by Liu et al. mentioned in [25]. The approach also includes a model minimization
process to speed up the generation of test paths. To obtain test paths, RE is parsed into a Syntax tree from which the
test paths are finally generated using an algorithm specified in the study.

Fazli and Mohsen proposed the Strongly Connected Component (SCC) for the generation of prime paths and test sets
based on them [26]. This method divides a problem of prime paths generation into smaller sub-problems that lead to
better time and space efficiency. The input of this method is a Component Flow Graph, and its output is a set of test
paths and a set of prime paths that have been covered. In their study, Fazli and Mohsen experimentally compare three
approaches for the generation of prime paths for FSM. The results of the comparison showed that SCC performed well
in terms of memory consumption and processing time.

Jia et al. proposed a method for the generation of whole program paths to satisfy branch coverage [27]. They employ
a divide-and-conquer approach to achieve this goal, which makes this method similar to the SCC-based method
discussed above. First, the authors generate a base path set (BPS) for each partial function of a Control Flow Graph,
which serves as the first part of the SUT model. Then, in this graph, the algorithm identifies function call nodes using
the second part of the SUT model, the Function Call Graph. These function call nodes are then joined with the test
paths generated for a particular function call. This process is top-down to gradually join all function call nodes with
function paths they call. Here, flags are used to mark functions that have actually been traversed. In this approach,
recursive function calls are not supported, adding limitations to the method, since the recursive call is a common
construct used routinely in programming.

From other alternatives, Klalil and Labiche presented an approach to generate FSM test paths, supported by a tool
called STAGE-1 [28]. Their test path generation method supports Round Trip Coverage. Besides that, Random, Depth
Traversal and Breadth Traversal criteria are discussed as alternatives. More test sets are produced for each given test
coverage criterion (worst, best, and average cases) for further analysis.

Despite the fact that FSM testing is the well-established subarea of the system testing discipline, no work we have
found so far is directly addressing: (1) the possibility to explicitly set a start and end of a test path in a SUT model and
(2) to determine expected length range of the test paths. Regarding the modeling notation, no major rework or model
redefinition is needed, and we easily build a SUT model for the proposed strategy by extension of G (see Section 3.1
later). Regarding the test coverage criteria to address the goals of this paper, we need to define alternative criteria. The
reason is to satisfy the first goal in which we need to neglect irrelevant or infeasible test paths (e.g., paths that are not
starting and ending in explicitly given FSM states) to produce an effective set of test paths.

Considering the available algorithms, the majority of the approaches discussed in this Section, unfortunately, assume
that a test path can start and end in any state of an FSM and does not provide a sufficient mechanism for expressing the
required test path length. The available methods primarily focus on optimizing the test set. The goal is to minimize
the number of test paths and steps while still satisfying the given test coverage criteria.

3 The Proposed Approach

The Flexible State Machine Test (FSMT) strategy is an alternative approach to generate a more effective set of test
paths to satisfy alternative test coverage criteria.

FSMT is based on the following adjustments to the traditional N-switch Coverage approach: (1) In addition to the start
and end of the tested state machine, we also introduced the possible start and end of the test path, and (2) instead of
sequences of uniform length implied by the N-switch Coverage criterion, we defined the length range of generated
test paths. A consequence of these adjustments is that we need to define alternative test coverage criteria that must be
satisfied by a set of test paths. We propose such criteria later in Section 3.2.

3.1 SUT model

We model the SUT as a directed multigraphG = (V,E, L, ε, vs, Ve, Vts, Vte), where V is a set of vertices representing
FSM states, E is a set of edges representing FSM transitions, and L is a set of edge labels. Edge e ∈ E defined by
ε : E → {(s, f, l) | s, f ∈ V ∧ l ∈ L}, where s is the start vertex of edge e, f is the end vertex of edge e, and l is
the label of edge e. Furthermore, vs ∈ V is the start vertex of the state machine, Ve ⊂ V is a set of end vertices of the
state machine, Vts ⊂ V is a set of possible start of test paths, Vte ⊂ V is a set of possible end of test paths, vs ∈ Vts

and Ve ⊂ Vte. Moreover, Vts and Vte can have nonempty intersect. During the creation of the SUT model, Vts and
Vte are defined by the test engineer using the design documentation of the SUT or his knowledge and experience with
SUT testability.
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The test path p is a path in G that starts at vts ∈ Vts and ends at vte ∈ Vte. A test path is a sequence of edges and P
is a set of all test paths. The SUT model G is an input to the test path generation strategy defined later in Section 3.3,
together with the test coverage criteria defined in Section 3.2.

3.2 Test coverage criteria

Test coverage criteria serve to determine a level of guarantee, how many possible path combinations would be exercised
by the paths present in a P . For this reason, the test coverage criterion is accepted as an input to an algorithm that
generates P .

We use two test coverage criteria, FSMT-level-1 Coverage and FSMT-level-2 Coverage, which differ by the number
of test path transitions. FSMT-level-1 Coverage is designed for lower intensity tests and FSMT-level-2 Coverage for
higher intensity tests. This, in turn, added more flexibility to select what fits the testing goal in practice.

A set of all test paths P satisfies FSMT-level-1 Coverage, when all the following conditions are satisfied:

1. Each of the test paths p ∈ P must start in a vertex from Vts and end in a vertex from Vte,
2. each vertex from Vts must be presented as the start vertex of a p ∈ P , and,
3. for each p ∈ P , minLenght ≤ length(p) ≤ maxLength, where length(p) is the length of a test path p in

the number of its edges.

In addition to the rules given above, FSMT-level-1 Coverage does not provide any additional requirement on how Vts

and Vte must be chained or combined in the test paths. Furthermore, it is not required that all vertices of Ve ∪ Vte

be present as an end vertex of a p ∈ P . Also, FSMT-level-1 Coverage in general does not require to visit either the
entire E ∈ G or even V ∈ G. The FSMT-level-1 Coverage criterion is designed for lower intensity FSM tests when
prioritization is needed for any reason, such as not having enough resources.

In the same way, a set of all test paths P satisfies FSMT-level-2 Coverage, when all the following conditions are
satisfied:

1. P satisfies FSMT-level-1 Coverage, and,
2. each e ∈ E ∈ G that can be part of a p ∈ P that starts at a vertex from {vs} ∪ Vts, ends in a vertex from

Ve ∪ Vte and minLenght ≤ length(p) ≤ maxLength, where length(p) is the length of p in the number of
its edges, must be present in p.

In this paper, we use a term subsume to indicate that the meeting of a test coverage criterion C1 subsumes C2 if each
test set that satisfies C1 will also satisfy C2. To this end, FSMT-level-2 Coverage subsumes the FSMT-level-1 Coverage
criterion.

In contrast to FSMT-level-1 Coverage, the FSMT-level-2 Coverage is designed for more intensive tests when all FSM
transitions must be executed during the tests. Still, FSMT-level-2 Coverage, in general, does not require visiting
neither E ∈ G nor V ∈ G. Furthermore, a consequence of FSMT-level-1 Coverage and FSMT-level-2 Coverage
that is defined in this way is that for certain G combined with certain ranges of minLenght and maxLenght, P it
could not exist. In such a case, the problem can be solved by changing minLenght and maxLenght, or adding more
possible Vts and Vte toG.

3.3 FSMT strategy

The FSMT strategy comprises a few algorithms that aim to generate effective test sets. Here, the strategy is to generate
a set of test paths for the SUT modelG, the expected length range of the test path, and the coverage criterion from the
options given in 3.2. To determine this test coverage criterion, we use a switch testCoverage where its value 1 means
FSMT-level-1 Coverage and 2 means FSMT-level-2 Coverage. For a certain test path length range minLength −
maxLength, it is possible that P would not meet the given test coverage criteria. In such a case, the test path length
range minLength−maxLength must be adjusted.

The main Algorithm 1 (GenerateTestPathsFSMT) accepts the SUT model G (defined in Section 3.1), minimal length
of test paths (denoted as minLength), maximum length of test paths (denoted as maxLength), and a switch for
the test coverage criterion (testCoverage, defined in Section 3.2). The algorithm returns a set of test paths P and
a set of uncovered edges Euncovered. First, the algorithm iterates at all vertices of G in which a test path can start
(denoted as Vts) and tries to find the shortest path in the range to a vertex in which a test path can end (denoted as
Vte). Vts and Vte are part of the SUT model G, which is given to the Algorithm 1 as input. In this iterating, the
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Algorithm 2 (FindShortestPathInRange) is used. Edges used in the paths found in this process are considered covered.
The uncovered edges, denoted as Euncovered, are those that are not part of any of these identified paths. After that, if
testCoverage = 2, the algorithm tries to satisfy the FSMT-level-2 criterion. In this case, it is taking random edges
from the set of uncovered edges and tries to find the shortest path that is (1) longer than minLength (inclusive),
and (2) shorter than maxLength (inclusive), and (3) composing of the maximum number of uncovered edges, using
Algorithm 4 (FindShortestPathInRangeForEdge).

The Algorithm 2 (FindShortestPathInRange) accepts the SUT model G, minimal length of test paths (minLength),
maximal length of test paths (maxLength), testCoverage switch, set of uncovered edges (Euncovered) and a vertex
in which the algorithm starts construction of a test path (denoted as vts). The Output of the Algorithm 2 is a set of
test paths P . At the beginning, the next path to proceed (denoted pnext) is set to an empty path. The start vertex of
the constructed path (denoted as vlast) is set to vts and the queue of paths to process Q is initiated empty. After that,
there is a cycle repeated while pnext is not empty. At the beginning of this cycle, the algorithm tests if the size of
pnext is the same as or lower than the maximal length of the test path (maxLen). If so, the algorithm checks if the
constructed path ends at one of the nodes of Vts. If this condition is met, the algorithm considers this path a test path
to be returned. Otherwise, it will check if the length of the constructed path is less than maxLen. If this is true, the
algorithm creates a new path pnew for each outgoing edge from vnext by concatenating this edge with pnext. This part
is done using the Algorithm 3 (RemoveParallelEdges). Then pnew is pushed to the queue Q which contains paths to
process. At the end of the cycle, ifQ is not empty, the algorithm pulls another path to be processed fromQ, assigns it
to pnext and sets vnext to the last vertex of pnext, otherwise pnext is set to be an empty path. At the end of the cycle,
there is no test path composed, so an empty path is returned.

The algorithm 3 (RemoveParallelEdges) accepts a set of edges from which parallel edges must be removed (denoted as
EtoF ilter), a set of uncovered edges (denoted as Euncovered) and testCoverage switch. The output of this algorithm
is a set of edges in which no parallel edges occur, denoted as Efiltered. The algorithm iterates over EtoF ilter, and
the actual iterated edge is denoted eunfiltered. The algorithm tries to find a parallel edge eparallel to the actual edge
eunfiltered in the set Efiltered. If eparallel does not exist, it will add eunfiltered to the set Efiltered. Otherwise, if all
edges have to be covered (as indicated by testCoverage switch) and if eparallel /∈ Euncovered, the algorithm swaps
eparallel ∈ Efiltered with the actual edge eunfiltered. Finally, the algorithm returns set Efiltered.

The algorithm 4 (FindShortestPathInRangeForEdge) accepts an edge euncovered that must be present on a built
test path, the SUT model G, minLen, maxLen, testCoverage and a set of uncovered edges Euncovered. The
algorithm starts its exploration in euncovered and from this edge, it traverses the graph G forwards (following the
edges directions) to an end vertex from Vte of a possible test path. The algorithm then traverses the G backwards (in
reverse direction than the directions of the edges) to a start vertex from Vts of a possible test path. The goal is to find
a test path that starts at a vertex of Vte, ends at a vertex of Vts, contains euncovered, is longer than minLen inclusive
and is shorter than maxLen inclusive. If no such path exists, an empty path is returned. This exploration is done by
the Breadth First Search (BFS) principle simultaneously in both discussed directions and is described in a technical
subroutine specified in Algorithm 5 (FindPathInRangeForEdgeDirected).

Algorithm 5 takes the next path to be processed, checks whether it is possible to use this path to create the full
test path, (in the current or later iteration) and initiates preparation of the next moves that will be processed by this
algorithm in the next iterations. The algorithm 5 uses two sub-routines, EvaluateCandidate, specified in Algorithm 6
and PrepareNextMoves, specified in Algorithm 7.

The Sub-routine EvaluateCandidate (Algorithm 6) accepts a semi-test path and evaluates whether this path can be
used altogether with an actual found semi-path for construction of the full test path. If it does so, it returns this full test
path. Otherwise, it stores the evaluated semi-test path for possible later usage. The Sub-routine PrepareNextMoves
(Algorithm 7) accepts a path, extends this path with the next step in an appropriate direction, and puts this path in a
queue of paths that are stored for further processing.

4 N-switch set reduction strategy

To have a comparable alternative to the proposed FSMT, in the initial experiments, we use N-switch Set Reduction
(NSR) strategy. It is based on the generation of all N-Switch Coverage test paths and subsequent filtering of these
paths. There are two levels of filtering done:

1. Remove the paths that do not start at a vertex from {vs} ∪ Vts and end at a vertex from Ve ∪ Vte, and,

2. remove further duplication in the test paths that can be removed from P , so that P still satisfies the test
coverage criteria defined in Section 3.2.
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Algorithm 1 Generate test paths for SUT model by FSMT strategy
Function: GenerateTestPathsFSMT
Input: G, minLength,maxLength, testCoverage
Output: Set of test paths P and set of uncovered edges Euncovered

1: P ← ∅ . an empty set of test paths
2: Euncovered ← E . a set of edges uncovered by test paths
3: for each vts ∈ Vts do
4: pnew ← FindShortestPathInRange(G, minLength, maxLength, testCoverage, Euncovered, vts)
5: if pnew is not empty then
6: Euncovered ← Euncovered \ {e | e is present in pnew}
7: P ← P ∪ {pnew}
8: if testCoverage = 2 then
9: while Euncovered is not empty do

10: euncovered ← any e ∈ Euncovered

11: Euncovered ← Euncovered \ {euncovered}
12: pnew ← FindShortestPathInRangeForEdge(euncovered,G, minLength, maxLength,

testCoverage, Euncovered)
13: if pnew is not empty then
14: Euncovered ← Euncovered \ {e | e is present in pnew}
15: P ← P ∪ {pnew}
16: return (P ,Euncovered) . return all found paths and a set of uncovered edges

Algorithm 2 Find the shortest path in range
Function: FindShortestPathInRange
Input: SUT modelG,minLength,maxLength, testCoverage,Euncovered, vts
Output: Path p . if no path is found then an empty path is returned

1: pnext ← empty path
2: vlast ← vts
3: Q is an empty queue of paths
4: do
5: if |pnext| ≤ maxLength then
6: if (|pnext| ≥ minLength) ∧ (vlast ∈ Vte) then
7: return pnext
8: if pnext < maxLength then
9: Eoutgoing ← edges outgoing from vlast

10: Eoutgoing ← RemoveParallelEdges( Eoutgoing, Euncovered, testCoverage )
11: for each eoutgoing ∈ Eoutgoing do
12: pnew ← pnext appended with eincoming at its end
13: push pnew toQ
14: ifQ is not empty then
15: pnext ← pull fromQ
16: vnext ← the last vertex of pnext
17: else
18: pnext ← empty path
19: while pnext is not empty
20: return empty path . no path found

7
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Algorithm 3 Remove parallel edges
Function: RemoveParallelEdges
Input: EtoF ilter, Euncovered, testCoverage
Output: Set of edges Efiltered

1: Efiltered ← ∅ . an empty set of edges
2: for each eunfiltered ∈ EtoF ilter do
3: eparallel ← an edge from Efiltered parallel to eunfiltered, if such an edge does not exist, eparallel ← nil
4: if eparallel is nil then
5: Efiltered ← Efiltered ∪ {eunfiltered}
6: else if testCoverage = 2 then
7: if eparallel /∈ Euncovered then
8: Efiltered ← (Efiltered \ {eparallel}) ∪ {eunfiltered}

Algorithm 4 Find the shortest path in the range of the edge
Function: FindShortestPathInRangeForEdge
Input: euncovered,G,minLength,maxLength, testCoverage,Euncovered

Output: Path p . if no path is found then an empty path is returned

1: Emap and Smap are empty maps of paths. The key in the map is the length of the path.
2: Equeue and Squeue are empty queues of paths
3: pend and pstart are paths one edge long created from euncovered
4: push pend to Equeue

5: push pstart to Squeue

6: startMin← 1, endMin← 1, startMinCount← 1, endMinCount← 1
7: startMaxCount← 0, endMaxCount← 0
8: while (Equeue is not empty) ∨ (Squeue is not empty) do
9: if Squeue is not empty then

10: (p, startMin, startMinCount, startMaxCount, Squeue, Smap)←
FindPathInRangeForEdgeDirected(
minLength, maxLength, testCoverage, startMin, endMin, startMinCount, startMaxCount,Smap, Emap, Squeue, Vts, TRUE
)

11: if p is not empty then return p

12: if Equeue is not empty then
13: (p, endMin, endMinCount, endMaxCount,Equeue, Emap)← FindPathInRangeForEdgeDirected(

minLength, maxLength, testCoverage, endMin, startMin, endMinCount, endMaxCount,Emap, Smap, Equeue, Vte, FALSE
)

14: if p is not empty then return p

15: return empty path

The strategy for the second filtering level differs depending on the test coverage criteria.

The main algorithm 8 (GenerateTestPathsNSR) accepts the SUT model G, minimal length of test paths
(minLength), maximal length of the test paths (maxLength) and a switch for the test coverage criterion
(testCoverage). The algorithm first generates all paths in G of length N , where minLength ≤ N ≤ maxLength.
This is done by a subroutine described in algorithm 9 (FindPathsInRange- ForEdgeRecursive) that iterates over all
G edges. In each iteration, the algorithm generates all possible paths of the required length beginning at the start
vertex of the iterated edge. This job is done recursively. In one iteration, Algorithm 9 checks if the path has the
required length. If so, it puts it in the set of results P . After that, the algorithm checks if this path can be extended. If
this condition is met, the algorithm calls itself recursively for each outgoing edge of the path the last vertex until this
exploration is within the given test path limit (minLength to maxLength).

After all possible paths of length N are generated, algorithm 10 (FilterTestPaths) reduces P to keep only paths that
are valid test paths from the FSMT-level-1 and FSMT-level-2 viewpoint - the test path starts in {vs} ∪ Vts and ends at
a vertex from Ve ∪ Vte. In this phase, P still contains a lot of duplication in the test path. Therefore, another reduction
P is performed using Algorithm 11 (ReduceTestPathsSet). Here,the paths of p are analyzed if more paths start in a
particular vertex from {vs} ∪ Vts and if so, only one of these paths is kept in P .

8
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Algorithm 5 Find the path in the range for the edge
Function: FindPathInRangeForEdgeDirected
Input: minLength,maxLength, testCoverage, processedMin, otherMin,
processedMinCount, processedMaxCount,Mprocessed,Mother, Qprocessed, Vdestination, backward
Output: path p, processedMin, processedMinCount, processedMaxCount, Qprocessed, Mprocessed . if no
path is found then an empty path is returned

1: pprocessed ← pull from Qprocessed, decrease processedMinCount by 1
2: if |pprocessed| ≤ maxLength then
3: if backward then
4: vprocessed ← start vertex of path pprocessed
5: else
6: vprocessed ← end vertex of path pprocessed
7: if vprocessed ∈ Vdestination then . Destination vertex reached, actual path will be evaluated as a candidate to

create full test path
8: (pfull,Mprocessed)← EvaluateCandidate( pprocessed, Mprocessed, Mother, backward, otherMin,

maxLength )
9: if pfull is not an empty path then

10: return (pfull, processedMin, processedMinCount, processedMaxCount, Qprocessed,
Mprocessed)

11: if (|pprocessed|+ 1 + otherMin) < maxLength then
12: (Qprocessed, processedMaxCount)← PrepareNextMoves( Qprocessed, pprocessed, vprocessed,

processedMaxCount )
13: if proccesedMinCount = 0 then
14: startMinCount← startMaxCount, startMaxCount← 0
15: processedMin← processedMin+ 1

16: return (empty path, processedMin, processedMinCount, processedMaxCount, Qprocessed, Mprocessed)

Algorithm 6 Evaluate candidate
Function: EvaluateCandidate
Input: pprocessed,Mprocessed,Mother, backward, otherMin,maxLength
Output: path p, Mprocessed . if no path is found then an empty path is returned

1: lowerBound← max( 0, minLength− |pprocessed| )+1
2: upperBound← maxLength− |pprocessed|+ 1
3: for each i ∈ {lowerBound, ... , upperBound} do
4: if Mother contains key i then
5: pother ←Mother[ i] . value for key i
6: if backward then
7: p← (pprocessed without its last edge) appended with pother
8: else
9: p← (pother without its last edge) appended with pprocessed

10: return (p, Mprocessed)
11: if (|pprocessed|+ otherMin) ≤ maxLength then
12: if Mprocessed does not contain key |pprocessed| then
13: Mprocessed[ |pprocessed| ] ← pprocessed
14: else if (testCoverage = 2) ∧ (Mprocessed[ |pprocessed| ] contains less edges from Euncovered than

pprocessed) then
15: Mprocessed[ |pprocessed| ] ← pprocessed
16: return (empty path, Mprocessed)

9
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Algorithm 7 Prepare next moves
Function: PrepareNextMoves
Input: Qprocessed, pprocessed, vprocessed, processedMaxCount
Output: Qprocessed, processedMaxCount . if no path is found then an empty path is returned

1: if backward then
2: Enext ← all edges incoming to vprocessed
3: else
4: Enext ← all edges outgoing from vprocessed
5: Enext ← RemoveParallelEdges( Enext, Euncovered, testCoverage )
6: for each enext ∈ Enext do
7: if backward then
8: pnew ← enext added at the start of pprocessed
9: else

10: pnew ← pprocessed with enext added at its end
11: push pnew to Qprocessed

12: processedMaxCount← processedMaxCount+ 1

13: return (Qprocessed, processedMaxCount)

Algorithm 8 Generate test paths for the SUT model by NSR strategy
Function: GenerateTestPathsNSR
Input: SUT modelG,minLen,maxLen, testCoverage
Output: Set of test paths P

1: P ← ∅ . empty set of paths
2: for each e ∈ E do
3: p← empty path
4: Pnew ← FindPathsInRangeForEdgeRecursive( p, P, e,G,minLen,maxLen )
5: P ← P ∪ Pnew

6: P ← FilterTestPaths(P,G )
7: P ← ReduceTestPaths(P,G, testCoverage )
8: return P

Algorithm 9 Find paths in range for edge
Function: FindPathsInRangeForEdgeRecursive
Input: p, P, e,G,minLen,maxLen
Output: Set of test paths P

1: if (|p| ≥ minLen ∧ |p| ≤ maxLen) then
2: P ← P ∪ {p}
3: if |p| < maxLen then
4: p← p with e added at its end
5: Eoutgoing ← edges outgoing of v, v is a vertex to which e is incoming
6: for each eoutgoing ∈ Eoutgoing do
7: Pnew ← FindPathsInRangeForEdgeRecursive(p, P, e,G, minLen, maxLen )
8: P ← P ∪ Pnew

9: return P

10
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Algorithm 10 Filter test paths
Function: FilterTestPaths
Input: P,G
Output: Set of test paths Pfiltered

1: Pfiltered ← ∅ . empty set of paths
2: for each p ∈ P do
3: vs ← the first vertex of p, ve ← the last vertex of p
4: if (vs ∈ Vts ∧ ve ∈ Vte) then
5: Pfiltered ← Pfiltered ∪ {p}
6: return Pfiltered

Algorithm 11 Reduce test paths set
Function: ReduceTestPathsSet Input: P,G, testCoverage
Output: Set of test paths Pfiltered

1: Preduced ← ∅ . empty set of paths
2: Scovered ← ∅, . empty set of vertices
3: EcoveredEdges ← ∅ . empty set of edges
4: for each p ∈ P do
5: vs ← the first vertex of p
6: if (vs /∈ Vts ∨ ((testCoverage = 2) ∧ an edge of p is not in EcoveredEdges)) then
7: Preduced ← Preduced ∪ {p}
8: Scovered ← Scovered ∪ {vs}
9: EcoveredEdges ← EcoveredEdges ∪ {edges of p}

10: return Preduced

5 Initial implementation of the proposed strategy

We have implemented the FSMT strategy on the Oxygen experimental MBT platform, developed by our research
group [29, 30]. The Oxygen platform is implemented in Java and can be downloaded and run as an executable JAR
file. Java 1.8 Standard Development Kit or Java Runtime 1.8 environment is required to be installed on a local machine.
The Oxygen platform with FSTM3 has been released for free public use. Oxygen provides a visual editor to create an
SUT model G. The schema is based on a simplified UML notation for state machines. Since the possible test paths
start and end in UML are not available, they are marked by the color filling of a particular state symbol. The FSM
states that are in Vts are marked by a green background, the states in Vte by a red background, and if a state belongs
to both Vts and Vte, yellow coloring is used.

The start and end states of the FSM and its states are dragged to a canvas from the upper panel. If a state belongs to
Vts or Vte, it can be selected by a checkbox on the right panel when a particular state is selected in a diagram. FSM
transitions are created by dragging a mouse from one state to another. By default, nodes are marked by letters, and
transitions are marked by numbers when first placed on a canvas. These names can be changed in the right panel when
a particular object is selected to edit. Other metadata such as state or transition description or test step expected result
could be added there as well.

The created FSM can be validated for basic modeling errors such as inaccessible states, missing start, and others.
When a schema is valid for FSM, the implemented FSMT strategy can generate the test paths. At this stage, the
parameters minLength, maxLength, and testCoverage are entered into a dialog box. More test sets with different
parameters can be generated and are stored in the project tree in the left application panel. From this project tree, the
test set can be opened in a separate window and selected test paths can be visualized in the SUT model by a bold line
(see Figure 1).

The generated test paths can then be exported in open formats based on XML, CSV, and JSON. The exported files can
be easily used by a test management tool that supports a manual testing process or a test automation tool. In the same
way, we implemented the NSR strategy, which works as a baseline to compare FSMT within the initial experiments.

3http://still.felk.cvut.cz/download/oxygen3.zip
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Figure 1: Visualization of generated test paths in the Oxygen platform.

Table 1: Allowed test path length ranges for the experiments. LR stands for Length Range.
LR set ID minLength maxLength variability in test path length

1 2 4 2
2 2 6 4
3 2 8 6
4 4 8 4

6 Evaluation Experiments

Our FSMT strategy is unique in concurrently addressing the need for explicitly defined test paths that start and end
and address the possibility of specifying the expected length of the test paths. To this end, it is challenging to identify
a state-of-the-art strategy that would be completely comparable. So far, the NSR approach presented in Section 4
is the best comparable option for the proposed FSMT strategy. The FSMT has been successfully applied in Skoda
Auto car manufacturer to integration and acceptance tests of the produced automobiles. Due to the non-disclosure
agreement, we are not allowed to give extensive details; however, industrial FSMs from this project were used as
problem instances in the following experiments.

6.1 Experiment method and set up

In the following experiments, we used the FSMT and NSR implemented on the Oxygen platform to generate P for the
G problem instances described in Section 6.2. We run the FSMT and NSR for four sets of length ranges (determined
by the intervals minLength to maxLength), as specified in Table 1.

We analyze the following properties of the generated test paths:

• |P |
• len = total length of all p ∈ P , measured in the number of edges
• avlen = average length of all p ∈ P , measured in number of edges
• unique = number of unique edges in all p ∈ P

• ut = len
unique

The ut defined above expresses how many non-unique FSM transitions (G edges) need to repeat in a test path to test
all unique transitions. The higher ut is, the higher this ”edge duplication” is in a test set P .

12



Novel Strategy Generating Variable-length State Machine Test Paths

Figure 2: The infrastructure used for the experiments.

We used a benchmarking module that is part of the Oxygen platform. This module allows comparing individual
algorithms that compute the test paths for a set of SUT models. The selected set of algorithms run for individual SUT
models. The generated test paths are recorded in an Oxygen project. At the same time, the benchmarking module
determines the defined properties of the generated test paths and can export them in a special CSV format to allow
further analysis and processing of the experimental results. The whole experimental set-up is depicted in Figure 2.

As explained before, in this experiment, we used two types of problem instances, anonymized and modified
industrial FSMs from Skoda Auto and also artificially generated problem instances, generated by a special FSMT
generator (details follow in Section 6.2). These problem instances, together with the input parameters minLength,
maxLength, and testCoverage, are an input to benchmarking module. Two algorithms, FSMT and NSR, are
connected to this module. Then, all P is generated for all problem instances in the input. The benchmarking module
produces CSV reports with the properties of P described in this section and enriches the Oxygen project files with the
problem instances by these generated test paths.

6.2 The used problem instances

In the experiments, we used a mix of two types of problem instances: modifications of real industrial project state
machine models and artificial SUT models generated by a special tool. In the presented results, we used six initial
FSM-based models created by Skoda Auto test engineers. These models describe various parts of tested cars4. We
further modified these models by removing the names of the states and transitions and slight modifications of each FSM
to create four different problem instances. These modifications included adding cycles to an FSM, adding possible
test starts and test ends, adding or removing a state, and adding and removing a transition. The result was 24 problem
instances (G) for a set of initial experiments. The selected properties of these instances are presented in Table 2. For
individual properties, minimal, maximal, average, and median values are given.

In Table 2, cycles denotes the number of G cycles, avg cycle length denotes the average length of these cycles. The
parallel edge groups denotes the number of groups of parallel edges present in G, parallel edges denotes the total
number of parallel edges in G, and avg D+ denotes the average node incoming degree. The avg D− denotes the
average node outgoing degree, and avg D denotes the average node degree. By |Vts ∩ Vte| we denote states in which
a test path can both start and end.

We generated an additional set of problem instances by ModelGen, a specialized module of the Oxygen platform.
One of the functionality of this module is the generation of G problem instances by expected properties of the graph
entered as input. These properties include: |V |, |E|, number of G cycles, |Vts|, |Vte|, |Vts ∩ Vte|, and |Ve|. For
the experiments, we generated another 147 problem instances, varying by their properties as given in Table 3. The
meaning of the metrics is the same as in Table 2.

In total, we created 171 problem instances as presented in Table 4. We considered this sample extensive enough to
carry out the first experiments with the proposed strategy.

6.3 Measurement of defect detection potential of test path sets

An important question regarding the effectiveness of the generated P is its potential to detect possible defects present
in a SUT. This potential typically grows with the number of path combinations present in P , but the exact relation

4Due to the confidentiality and Non-disclosure agreement, the types and brands of the tested cars were not mentioned in this
paper.
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Table 2: Properties of problem instances created from industry project FSMs.

metric min max average median
|V | 31 57 40.7 38
|E| 41 95 64.8 66.5

cycles 0 18 6.5 5.5
avg cycle lenght 0 22 4.1 5.2

|Ve| 1 21 8.1 4.5
parallel edges 0 18 4 1

parallel edge groups 0 9 2 0.5
avg D+ 1 2 1.6 1.7
avg D− 1 2 1.6 1.7
avg D 2.1 4.1 3.2 3.4
|Vts| 1 17 7.5 6.5
|Vte| 1 25 8.4 5

|Vts ∩ Vte| 0 6 1.5 1.5
SINGLE type defects 6 49 19.6 18

PAIR type defects 5 57 16.7 13
ei to ea distance 0.6 2.8 1.6 1.6

Table 3: Properties of artificially generated problem instances.

metric min max average median
|V | 15 23 17.7 15
|E| 23 35 31 35

cycles 2 3 2.5 2.5
avg cycle lenght 4 30.7 10.3 9

|Ve| 1 1 1 1
parallel edges 0 0 0 0

parallel edge groups 0 0 0 0
avg D+ 1.5 2.3 1.8 1.5
avg D− 1.5 2.3 1.8 1.5
avg D 3 4.7 3.6 3.1
|Vts| 1 2 1.5 1.5
|Vte| 1 2 1.5 1.5

|Vts ∩ Vte| 0 2 1 1
SINGLE type defects 2 11 5.8 5

PAIR type defects 1 10 5.3 5
ei to ea distance 1.2 4 2.3 2.3

is difficult to identify. We added two types of fictional defects into experimental problem instances to evaluate P
produced by the presented FSMT strategy and baseline NSR.

A defect present in an SUT must be activated by a p ∈ P to allow its detection by a tester or an automated test. Defect
of a SINGLE type is defined at an e ∈ E ∈ G, and we consider it to be activated when a p ∈ P visits e.

PAIR type defect simulates data consistency defects in an SUT. It is defined as (ei, ea), ei, ea ∈ E ∈ G, where there
exists a path from ei to ea. Transition ei causes simulated inconsistency of data stored in the SUT and transition ea
causes its defective behavior. To activate the defect, p ∈ P must visit ei and then visit ea.

The numbers of SINGLE and PAIR type of artificial defects in experimental problem instances are given in Table 4.
for all problem instances, in Table 2 for problem instances generated from industry project FSMs and in Table 3 for
artificially generated problem instances. In Table 2, 3 and 4, ei to ea distance denotes the number of edges between
ei and ea, averaged for all problem instances.

In the evaluation of P properties, we further analyze the numbers of activated simulated defects, denoted as AS for
the SINGLE type and AP for the PAIR type. Then we measure the average number of simulated defects activated by
one test path step, denoted as ES = SINGLE activated

steps for the SINGLE type and EP = PAIR activated
steps for the PAIR

type.
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Table 4: Properties of all problem instances used in the experiments.

metric min max average median
|V | 15 57 21 15
|E| 23 95 35.8 35

cycles 0 18 3.1 3
avg cycle lenght 0 30.7 9.5 8.7

|Ve| 1 21 2 1
parallel edges 0 18 0.6 0

parallel edge groups 0 9 0.3 0
avg D+ 1 2.3 1.8 1.5
avg D− 1 2.3 1.8 1.5
avg D 2.1 4.7 3.5 3.1
|Vts| 1 17 2.4 2
|Vte| 1 25 2.5 2

|Vts ∩ Vte| 0 6 1.1 1
SINGLE type defects 2 49 8 6

PAIR type defects 1 57 7.1 6
ei to ea distance 0.6 4 2.2 2.3

Table 5: Number of test path sets found for individual length ranges, strategies and test coverage criteria. LR stands
for Length Range.

LR set ID Strategy Test Coverage Nall Nindustry Nartificial

1 FSMT FSMT-level-1 143 119 24
1 FSMT FSMT-level-2 143 119 24
1 NSR FSMT-level-1 138 119 19
1 NSR FSMT-level-2 138 119 19
2 FSMT FSMT-level-1 148 124 24
2 FSMT FSMT-level-2 148 124 24
2 NSR FSMT-level-1 143 124 19
2 NSR FSMT-level-2 143 124 19
3 FSMT FSMT-level-1 152 128 24
3 FSMT FSMT-level-2 152 128 24
3 NSR FSMT-level-1 147 128 19
3 NSR FSMT-level-2 147 128 19
4 FSMT FSMT-level-1 147 123 24
4 FSMT FSMT-level-2 147 123 24
4 NSR FSMT-level-1 142 123 19
4 NSR FSMT-level-2 142 123 19

6.4 Experiment results and discussion

As explained in Section 3.2, for certain G in combination with certain test set length ranges minLenght to
maxLenght, P might not exist. This situation can be solved by changing minLenght and maxLenght, or adding
more possible Vts and Vte to G. However, this effect was present in the experiments and detail of its extent is given
in Table 5. For defined test set length ranges (see Table 1), out of total 171 problem instances, P was returned for 138
up to 152 instances, depending on the strategy and test coverage criterion, denoted as Nall in Table 5. More detail is
given separately for industrial (Nindustry) and artificial (Nartificial) problem instances.

Table 6 shows the experimental results for FSMT and NSR the problem instances summarized in Table 4 and expected
test path length ranges as specified in Table 1. In Table 6, the average values for all results are given and diff is a
value for NSR divided by a value for FSMT.

Starting with FSMT-level-1 Coverage, FSMT outperformed NSR in parameters len, |P | and avlen for the four test
path length ranges examined. Taking into account len, the total number of FSM transitions (test steps) in a test set,
which is the parameter that gives the closest idea of the effort needed to execute the test paths, the difference between
the strategies changed with the test path length range interval. For the test path length range set ID 1 (see Table 1)
where maxLength −minLength = 2, the diff was 1.6. For length range sets ID 2 and 4, where maxLength −
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Table 6: Overall experimental results for FSMT and NSR (averages for all problem instances).

Strategy len |P | avlen unique ut AS AP ES EP
Length range set 1: minLength = 2, maxLength = 4

FSMT-level-1 Coverage
NSR 9.5 3.0 3.2 6.8 1.4 3.55 0.25 0.29 0.017

FSMT 6.0 2.5 2.6 5.1 1.1 2.28 0.04 0.35 0.009
diff 1.6 1.2 1.3 1.3 1.2 1.6 6.0 0.8 2.0

FSMT-level-2 Coverage
NSR 19.4 5.8 3.3 10.9 1.6 6.15 0.58 0.25 0.023

FSMT 21.3 7.6 2.9 13.6 1.5 7.08 0.56 0.27 0.018
diff 0.9 0.8 1.1 0.8 1.1 0.9 1.0 0.9 1.3

Length range set 2: minLength = 2, maxLength = 6
FSMT-level-1 Coverage

NSR 15.1 3.4 4.4 9.2 1.6 4.48 0.65 0.25 0.036
FSMT 7.2 2.7 2.8 6.0 1.2 2.65 0.11 0.35 0.013
diff 2.1 1.3 1.6 1.5 1.4 1.7 5.9 0.7 2.7

FSMT-level-2 Coverage
NSR 33.4 7.0 4.5 14.2 2.1 7.63 1.40 0.20 0.035

FSMT 32.0 9.7 3.6 17.3 1.8 8.67 0.87 0.23 0.024
diff 1.04 0.7 1.3 0.8 1.2 0.9 1.6 0.9 1.4

Length range set 3: minLength = 2, maxLength = 8
FSMT-level-1 Coverage

NSR 20.6 3.6 5.5 10.7 1.9 5.15 1.19 0.23 0.048
FSMT 7.8 2.8 3.0 6.4 1.2 2.71 0.11 0.34 0.014
diff 2.6 1.3 1.8 1.7 1.6 1.9 11.3 0.7 3.5

FSMT-level-2 Coverage
NSR 45.8 7.5 5.8 16.1 2.6 8.15 1.97 0.17 0.040

FSMT 37.8 10.4 4.0 19.3 1.9 9.21 1.11 0.21 0.029
diff 1.2 0.7 1.4 0.8 1.3 0.9 1.8 0.8 1.4

Length range set 4: minLength = 4, maxLength = 8
FSMT-level-1 Coverage

NSR 21.7 3.4 6.2 10.7 2.0 5.37 1.31 0.22 0.052
FSMT 10.9 2.5 4.5 8.0 1.3 3.53 0.36 0.30 0.034
diff 2.0 1.4 1.4 1.3 1.5 1.5 3.6 0.7 1.5

FSMT-level-2 Coverage
NSR 46.6 7.0 6.4 15.7 2.7 8.30 2.10 0.17 0.042

FSMT 39.2 8.2 5.1 18.2 2.0 9.12 1.53 0.20 0.039
diff 1.2 0.9 1.3 0.9 1.3 0.9 1.4 0.8 1.1

minLength = 4, differences were 2.1 and 2.0. For length range sets ID 3 where maxLength−minLength = 6, the
difference was the largest, 2.6. No such trend is obvious for |P | in relation to the expected test path length difference.
However, as expected, this trend is present for avlen in the same way for len (difference increasing from 1.3 to 1.8
with growing maxLength−minLength).

The test sets produced by NSR contain more unique FSM transitions, which is a consequence of the fact that these
sets contain more transitions in general. Regarding ut, which measures the extent to how many FSM transitions have
to be repeated to test one unique FSM transition, the results for FSMT are better than for NSR. The difference in ut
also increases with maxLength−minLength. However, not as obviously as in the case of len.

To give an overall summary, averaged by all test path length ranges, for FSMT-level-1 Coverage, FSMT produced test
paths with approximately one-half of the total steps than NSR and approximately by 25% lower number of test paths
in P .

Regarding the potential of test path sets to detect artificial defects inserted into SUT models, overall, longer test paths
generated by NSR detected more SINGLE and PAIR type defects (AS and AP in Table 6). This is a natural effect,
and to evaluate the effectiveness of the set of test paths, the indicators ES and EP must be analyzed. Here, FSMT
constantly outperformed NSR in the detection of SINGLE type defects (ES) for all length range sets, diff ranging
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Table 7: Overall experimental results for FSMT and NSR for industrial problem instances separately (averages for all
problem instances).

Strategy len |P | avlen unique ut AS AP ES EP
Length range set 1: minLength = 2, maxLength = 4

FSMT-level-1 Coverage
NSR 25.6 7.8 3.4 16.9 1.4 10.57 0.91 0.30 0.024

FSMT 18.0 7.7 2.3 14.0 1.2 5.83 0.09 0.36 0.007
diff 1.4 1.0 1.5 1.2 1.2 1.8 10.5 0.8 3.5

FSMT-level-2 Coverage
NSR 58.6 17.0 3.5 31.0 1.8 20.78 2.09 0.23 0.036

FSMT 79.1 29.8 2.6 50.9 1.5 26.91 2.52 0.27 0.028
diff 0.7 0.6 1.3 0.6 1.1 0.8 0.8 0.8 1.3

Length range set 2: minLength = 2, maxLength = 6
FSMT-level-1 Coverage

NSR 40.9 8.5 4.8 22.6 1.7 12.35 1.78 0.25 0.041
FSMT 21.2 8.3 2.4 16.5 1.2 6.96 0.30 0.36 0.015
diff 1.9 1.0 2.0 1.4 1.4 1.8 5.9 0.7 2.8

FSMT-level-2 Coverage
NSR 92.4 18.2 4.9 36.1 2.4 24.48 4.61 0.17 0.042

FSMT 100.5 34.0 2.9 57.7 1.7 31.26 3.13 0.25 0.029
diff 0.9 0.5 1.7 0.6 1.4 0.8 1.5 0.7 1.5

Length range set 3: minLength = 2, maxLength = 8
FSMT-level-1 Coverage

NSR 54.8 8.9 6.2 25.5 2.0 15.48 3.61 0.23 0.055
FSMT 21.8 8.4 2.5 16.6 1.2 7.00 0.17 0.36 0.009
diff 2.5 1.1 2.5 1.5 1.6 2.2 20.8 0.6 5.9

FSMT-level-2 Coverage
NSR 117.3 17.7 6.4 36.9 3.0 25.09 5.78 0.14 0.041

FSMT 106.7 34.8 3.0 59.2 1.8 32.12 3.35 0.24 0.029
diff 1.1 0.5 2.1 0.6 1.7 0.8 1.7 0.6 1.4

Length range set 4: minLength = 4, maxLength = 8
FSMT-level-1 Coverage

NSR 54.6 8.0 6.6 24.3 2.1 15.09 3.61 0.22 0.055
FSMT 29.8 7.1 4.1 20.6 1.3 9.04 0.87 0.30 0.037
diff 1.8 1.1 1.6 1.2 1.6 1.7 4.2 0.7 1.5

FSMT-level-2 Coverage
NSR 116.5 16.5 6.8 35.5 3.2 24.57 5.78 0.14 0.041

FSMT 109.8 25.3 4.3 53.2 1.9 29.91 4.26 0.21 0.042
diff 1.1 0.6 1.6 0.7 1.6 0.8 1.4 0.6 1.0

from 0.7 to 0.8 (for evaluation of artificial defects, smaller diff means better result). This is a significant result - test
path sets generated by FSMT detect approximately 20-30% more defects per one test path step than NSR.

On the contrary, NSR outperforms FSMT in effectiveness in detecting PAIR type defects (EP ) and diff ranges from
1.5 to 3.5. However, this result has to be interpreted in the context of the number of detected PAIR type defects, which
is very low compared to the SINGLE type. The results suggest that the state-machine-based testing technique with
test coverage criteria as defined in this study is potentially ineffective for such a type of defect. Considering the results
for baseline NSR in this aspect, the question is if a state-machine-based testing technique, in general, is effective in
detecting PAIR type defects. However, the answer is beyond the scope of this study. For PAIR type defects, alternative
techniques based on the life-cycle of data objects, e.g. the Data Cycle Test (DCyT) [9], are available.

For FSMT-level-2 Coverage (which subsumes FSMT-level-1 Coverage criterion), the results of FSMT are better than
those of NSR. However, the difference is not so significant as in the case of FSMT-level-1 Coverage. Regarding len,
no significant differences are present for test path length range sets ID 1 and 2 having maxLength ≤ 6. But the
difference is 1.2 for sets ID 3 and 4 of the length range having maxLength = 8. Here, for more complex test path
generation problems, FSMT starts outperforming NSR.
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Table 8: Overall experimental results for FSMT and NSR for artificial problem instances separately (averages for all
problem instances).

Strategy len |P | avlen unique ut AS AP ES EP
Length range set 1: minLength = 2, maxLength = 4

FSMT-level-1 Coverage
NSR 6.8 2.2 3.2 5.1 1.3 2.19 0.13 0.28 0.016

FSMT 4.0 1.6 2.6 3.6 1.1 1.60 0.03 0.34 0.009
diff 1.7 1.4 1.2 1.4 1.2 1.4 3.8 0.8 1.7

FSMT-level-2 Coverage
NSR 12.8 3.9 3.3 7.5 1.6 3.32 0.29 0.25 0.021

FSMT 11.7 3.9 3.0 7.3 1.4 3.25 0.18 0.27 0.016
diff 1.1 1.0 1.1 1.0 1.1 1.0 1.6 0.9 1.3

Length range set 2: minLength = 2, maxLength = 6
FSMT-level-1 Coverage

NSR 10.8 2.5 4.4 6.9 1.6 3.02 0.44 0.25 0.035
FSMT 4.9 1.7 2.9 4.3 1.1 1.85 0.07 0.35 0.013
diff 2.2 1.4 1.5 1.6 1.4 1.6 6.0 0.7 2.6

FSMT-level-2 Coverage
NSR 23.5 5.1 4.5 10.6 2.0 4.50 0.81 0.20 0.033

FSMT 20.6 5.6 3.7 10.6 1.8 4.48 0.45 0.22 0.023
diff 1.1 0.9 1.2 1.0 1.1 1.0 1.8 0.9 1.4

Length range set 3: minLength = 2, maxLength = 8
FSMT-level-1 Coverage

NSR 14.9 2.7 5.4 8.2 1.8 3.30 0.76 0.22 0.047
FSMT 5.5 1.8 3.1 4.7 1.1 1.94 0.09 0.33 0.015
diff 2.7 1.5 1.7 1.7 1.6 1.7 8.1 0.7 3.2

FSMT-level-2 Coverage
NSR 33.9 5.8 5.7 12.6 2.5 5.10 1.28 0.17 0.040

FSMT 26.3 6.3 4.2 12.6 1.9 5.09 0.71 0.20 0.029
diff 1.3 0.9 1.3 1.0 1.3 1.0 1.8 0.8 1.4

Length range set 4: minLength = 4, maxLength = 8
FSMT-level-1 Coverage

NSR 16.2 2.6 6.2 8.4 2.0 3.55 0.88 0.22 0.052
FSMT 7.7 1.7 4.6 5.9 1.3 2.50 0.27 0.30 0.034
diff 2.1 1.5 1.4 1.4 1.5 1.4 3.3 0.7 1.5

FSMT-level-2 Coverage
NSR 35.0 5.4 6.3 12.5 2.6 5.26 1.41 0.17 0.043

FSMT 27.4 5.3 5.2 12.4 2.1 5.24 1.02 0.20 0.039
diff 1.3 1.0 1.2 1.0 1.3 1.0 1.4 0.8 1.1

Regarding the number of test paths |P |, FSMT produces a slightly higher number of test paths, on average 25%. No
clear trend is observed in relation to the testing path length range. Consequently, the average length of test paths
(avlen) is, on average, 30% lower for FSMT.

Taking into account the presence of unique FSM transitions in the test paths measured by ut, FSMT gives a
slightly better result than NSR for maxLength = 6, where the difference is 1.2, which further increases to 1.3
for maxLength = 8.

To summarize, for FSMT-level-2 Coverage, FSMT produced test paths having approximately 20% fewer steps than
the test paths produced by NSR for test path length ranges that have maxLength = 8. On the contrary, no significant
differences are observed for maxLength ≤ 6. Regarding the overall number of these test paths, FSMT produced
test sets with approximately 25% more test paths than NSR. Lower len practically implies lower testing costs, and at
this point, this metric is much more significant than |P |. Hence, for one-half of examined cases (maxLength = 8).
We can conclude that FSMT outperformed NSR, and for the second half, there is no significant difference between
the results of the algorithms. To this end, it is worth noticing that FSMT-level-2 Coverage subsumes FSMT-level-1
Coverage and is designed for more intense tests.
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Figure 3: Difference in len between FSMT and NSR for all problem instances together, then separately for industrial
and artificial problem instances. FSMT-level-1 and FSMT-level-2 coverage criteria apply to both FSMT and NSR
strategies.

For FSMT-level-2 Coverage, FSMT outperformed NSR in the detection of SINGLE type defects (ES) for all length
range sets, diff ranging from 0.8 to 0.9, practically meaning that P generated by FSMT detect approximately 10-20%
more defects per one test path step than NSR. NSR outperformed FSMT in effectiveness to detect PAIR type defects
(EP ), diff ranging from 1.1 to 1.4. It is noticeable that this difference is much smaller than in the case of FSMT-level-1
Coverage criteria, but regarding the low number of PAIR type defects, the result for SINGLE type defect is much more
significant.

The presented results showed good performance of the proposed FSMT strategy compared to the NSR strategy. The
results show that a strategy such as NSR, based on the generation of all possible N-switch Coverage test paths and
their subsequent filtering, is not optimal to generate a test set satisfying FSMT-level-1 and FSMT-level-2 criteria. Our
FSMT is needed to construct the test paths.

Particular data and differences for industrial and artificial problem instances separately are given in Tables 7 and 6.
However, the trends in the data are very similar to the overall results discussed in this section for the properties of the
set of test paths, as well as their potential to detect artificial defects for both SINGLE and PAIR types.

Overall summary of len, the main proxy for the testing costs is given in Figure 3. The difference in len for FSMT
and NSR is shown separately for all the four expected test path (TP) length ranges (specified in Table 1) and for all
instances of problems together, followed by instances of industrial problems and instances generated artificially.

As we consider the len as the main indicator used in the experiments, its relation to the length of general test cases and
the input parameter minLength shall be mentioned. As we explained in Section 1, too short test cases are considered
suboptimal by test engineers. However, what is ”too short” might differ from project to project; hence, we give the
engineer the liberty to determine the minimal length of the test paths by the minLength parameter. This minimal
length is part of the test coverage criteria that the generated set of test path P must satisfy. During the process of P
generation, the proposed FSMT strategy tries to minimize the total length of these test paths (len). However, P must
satisfy defined test coverage criteria, so its test paths cannot be shorter than minLength specified by the test engineer.

Table 9 compares averaged properties of P generated by FSMT and NSR for the FSMT-level-1 and FSMT-level-2
coverage criteria for all problem instances. In Table 9, ratio of averaged value of P properties for all problem instances
for FSMT-level-2 to this averaged value for FSMT-level-1 is presented. The last two lines of Table 9 present the average
of these differences for all ranges of test path lengths.

For NSR, the difference between FSMT-level-2 and FSMT-level-1 is 2.2 on average in len avergaed for all problem
instances and 2 in |P |. For FSMT, this difference is 4.1 for len and 3.4 for |P |. These differences have to be interpreted
in the context of the average values len and |P | for the coverage criteria FSMT-level-2 and FSMT-level-1 separately
(see Table 6). As NSR produces P with more test path steps and more test paths in general, and this difference is more
significant for FSMT-level-1 test coverage, this effect is also reflected in the differences presented in Table 9.

There is no significant difference in avlen for NSR and a slight difference of 1.2 for FSMT. The difference between
unique edges on the test paths (unque) is 1.5 for NSR and 2.7. for FSMT, which corresponds to the difference for len.
Figure 4 presents the data analyzed for FSMT.

To summarize, test path sets that satisfy FSMT-level-2 Coverage criterion that subsumes FSMT-level-1 Coverage
criterion generally consist of the approximately two times higher total number of steps in test paths for NSR and
approximately four times for FSMT (although, the total number of steps in test path sets generated by FSMT does not
exceed this number for NSR; see Table 6).
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Figure 4: Comparison of averaged properties of all test path sets for FSMT-level-1 and FSMT-level-2 coverage criteria
for the FSMT strategy.

Table 9: Comparison of test path set properties for FSMT-level-1 and FSMT-level-2 Coverage levels for all problem
instances

Strategy len |P | avlen unique ut AS AP ES EP
Length range set 1: minLength = 2, maxLength = 4

NSR 2.0 1.9 1.0 1.6 1.1 1.7 2.3 0.9 1.4
FSMT 3.6 3.0 1.1 2.7 1.4 3.1 14.0 0.8 2.0

Length range set 2: minLength = 2, maxLength = 6
NSR 2.2 2.1 1.0 1.5 1.3 1.7 2.2 0.8 1.0

FSMT 4.4 3.6 1.3 2.9 1.5 3.3 7.9 0.7 1.8
Length range set 3: minLength = 2, maxLength = 8

NSR 2.2 2.1 1.1 1.5 1.4 1.6 1.7 0.7 0.8
FSMT 4.8 3.7 1.3 3.0 1.6 3.4 10.1 0.6 2.1

Length range set 4: minLength = 4, maxLength = 8
NSR 2.1 2.1 1.0 1.5 1.4 1.5 1.6 0.8 0.8

FSMT 3.6 3.3 1.1 2.3 1.5 2.6 4.3 0.7 1.1
Average for length range set 1-4

NSR 2.2 2.0 1.0 1.5 1.3 1.6 1.9 0.8 1.0
FSMT 4.1 3.4 1.2 2.7 1.5 3.1 9.1 0.7 1.8
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Regarding the question, how much FSMT-level-1 Coverage and FSMT-level-2 Coverage criteria differ in the potential
of test paths to detect defects, the differences in ES and EP in Table 9 must be analyzed. The results suggest that,
on average, test path sets that satisfy FSMT-level-1 Coverage detect approximately 30% more SINGLE type defects
per one test path step for FSMT and 20% more for NSR. However, this fact has to be interpreted in proper context;
despite this result, test path sets satisfying FSMT-level-2 Coverage detect more defects in total (see AS in Table 9).
Regarding the low potential of both FSMT and NSR to detect PAIR type defects, we consider the difference for EP to
be insignificant.

7 Threats to validity

In this set of experiments, a few threats may cause bias in the results. The first threat is whether the NSR used in the
experiments is the best to compare with FSMT objectively. The second issue is whether a set of 171 problem instances
used in the experiments is extensive enough. In the experiments, we used a combination of industrial and artificially
generated FSMs with a wide variety of sizes and other properties as well as four expected test path length ranges (see
Table 1). The related question is whether the examined problem instances are close enough to real-world examples.
In the experiments, we used 24 problem instances created by an independent industrial team from FSMs models for
various parts of Skoda Auto cars. Taking into account the trends observed for all problem instances (see Table 6)
and comparing them with the trends observed for these industrial problem instances (see Table 7) and the generated
problem instances (see Table 8) separately, the results and trends are very similar. Therefore, no significant bias shall
be caused by the choice of the SUT models used in the experiments.

The last threat is related to the selection of the appropriate criteria for the comparison. In this study, we presented
properties of test sets based on their size that are good proxies for estimating the required test effort, which is one
of the key aspects in the real industrial testing process. In the comparison, we also use the number of two types of
defects detected by a test path step. However, defects used in the experimental evaluation are artificial and randomly
distributed in SUT models; this fact has to be taken into account when drawing conclusions from the results.

8 Conclusion

In this study, we proposed an MBT technique to generate test paths for FSM in an implemented strategy. The new
strategy allows us to concurrently express the possible start and end of test paths in an FSM and generate those that
have a length in the given interval. The already published literature may address these requirements separately but
not concurrently. The practical applicability of the proposed approach has already been verified through several real
models from the car industry. We have compared the proposed FSMT with the best comparable alternative, NSR. We
evaluated data from 1368 runs in total. We used a combination of 171 problem instances, two coverage criteria, and
four test path length ranges. For all problem instances and all test path length ranges, FSMT clearly outperformed NSR
for FSMT-level-1 Coverage where it produced test paths with approximately only 50% of total steps compared to the
test paths produced by NSR. Furthermore, the number of total test paths in P produced by FSMT was approximately
25% lower than for NSR.

For FSMT-level-2 Coverage the difference in the total number of steps in test paths was not significant for test length
ranges that have maxLength ≤ 6, but relevant for ”longer” test path length ranges having maxLength = 8, where
FSMT produced test paths with approximately less 20% total steps than the test paths produced by NSR. As a trade-off,
FSMT produced test sets with approximately 25% more test paths than NSR.

As the total number of steps in test paths is the most important indicator that has a direct impact on testing costs,
we can consider that FSMT outperforms NSR in all situations examined for FSMT-level-1 Coverage and one-half of
examined situations for FSMT-level-2 Coverage, were in the second half, there was no significant difference.

Regarding the potential of test path sets to detect artificial defects inserted in a SUT model, FSMT generated test
path sets detected approximately 20-30% more SINGLE type defects per test path step than NSR for FSMT-level-1
Coverage criterion and 10-20% for FSMT-level-2 Coverage criterion. The number of detected PAIR type defects was
generally very low and suggested potential inefficiency of this version of the state-machine-based testing technique to
detect them.

The results show good applicability of the proposed FSMT in situations when possible test path starts and ends in
FSM needs to be reflected and, concurrently, the length of the test paths have to be in a defined range.
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