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The infection of respiratory coronavirus disease 2019 (COVID-19) starts with the upper

respiratory tract and as the virus grows, the infection can progress to lungs and develop
pneumonia. The conventional way of COVID-19 diagnosis is reverse transcription poly-

merase chain reaction (RT-PCR), which is less sensitive during early stages; especially

if the patient is asymptomatic, which may further cause more severe pneumonia. In
this context, several deep learning models have been proposed to identify pulmonary

infections using publicly available chest X-ray (CXR) image datasets for early diagnosis,
better treatment and quick cure. In these datasets, presence of less number of COVID-19

positive samples compared to other classes (normal, pneumonia and Tuberculosis) raises

the challenge for unbiased learning of deep learning models. All deep learning models
opted class balancing techniques to solve this issue; which however should be avoided
in any medical diagnosis process. Moreover, the deep learning models are also data

hungry and need massive computation resources. Therefore for quicker diagnosis, this
research proposes a novel pinball loss function based one-class support vector machine

(PB-OCSVM), that can work in presence of limited COVID-19 positive CXR samples

with objectives to maximize the learning efficiency and to minimize the false predictions.
The performance of the proposed model is compared with conventional OCSVM and ex-

isting deep learning models, and the experimental results prove that the proposed model
outperformed over state-of-the-art methods. To validate the robustness of the proposed
model, experiments are also performed with noisy CXR images and UCI benchmark

datasets.

Keywords: COVID-19; Chest X-ray; Pneumonia; Classification; Deep learning; Pinball
loss; One-class support vector machine.

1. Introduction

The respiratory coronavirus disease 2019 (COVID-19) is caused by severe acute res-

piratory syndrome coronavirus-2 (SARS-CoV-2) that is the most recently identified
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member of the coronavirus family [36]. This deadly disease was initially reported

during late December, 2020 and spread to all the countries worldwide [38]. World

health organization (WHO) declared this infectious disease as a public health emer-

gency of international concern (PHEIC) on January 30, 2020 as it reached to many

countries [43] and on Feb 11, 2020 named it “COVID-19”. On March 11, 2020

WHO declared this a pandemic [44]. After the fourteen months journey, this virus

caused over 160.5 million infections and more than 3.3 million deaths worldwide till

May 12, 2021 [16]. This fatal disease is highly infectious and to control its spread,

following three ways have been suggested as most promising preventive measures:

social distancing [32], use of mask [8] and early identification of infected people. The

social distancing and mask are the established preventive measures that people are

strictly following, but early diagnosis is still a challenge to the research commu-

nity. COVID-19 is highly infectious, thus the active patient must be quarantined

to break the chain of infection. The best known method of COVID-19 diagnosis

is real-time reverse transcription-polymerase chain reaction (RT-PCR) that came

into effect after the rapid antibody tests showed unreliable results, because anti-

bodies appear after 9-28 days of the infection and by this time, an infected person

may spread the disease, if not isolated [7]. The RT-PCR test is a costly and time

taking process, whereas inability to early-stage diagnosis and due to rapid growth

of infections, medical experts are continuously trying to search some other ways of

diagnosis.

SARS-CoV-2 virus initially affects the respiratory system of the infected person

and in later stages, it affects lungs that may cause severe pneumonia [12]. Statistics

show that ∼14% of the COVID-19 patients have shortness of breath and severe

cough due to pneumonia, because as the viral infection increases, it damages the

alveoli (small air sacs) and surrounding tissues. It is evident that the symptoms

of COVID-19 are extremely heterogeneous, ranging from minimal symptoms to

significant hypoxia with acute respiratory distress syndrome (ARDS) [25]. Like flu,

the common early symptoms of COVID-19 are fever, dry cough, nausea, diarrhea,

muscle aches, vomiting, headache, loss of smell or taste, sore throat, etc. COVID-19

starts affecting the lungs as soon as it reaches through the nose or throat. Statistics

show that 40%-45% of COVID-19 patients remain asymptomatic, but the virus

affects their respiratory system silently and resulting in severe pneumonia.

Aiming to the diagnosis at initial stage; especially for asymptomatic patients,

chest imaging may play a key role because the COVID-19 pneumonia is different

from normal pneumonia and tuberculosis [31]. Although for lung-related disease

diagnosis, chest CT imaging has been proven more effective, the CXR is preferred

because comparatively it is widely available, faster and cheaper. Biomedical image

segmentation and classification have become admired areas of research to make the

present healthcare system more robust and responsive [2, 6]. In this context, the

computing infrastructure advancements make it possible to apply the deep network

approaches for complex biomedical image analysis tasks and especially, variants of
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convolution neural networks (CNN) are found very effective and efficient feature

learning approaches in the field of biomedical image analysis [24,40].

Recently, several deep-learning based COVID-19 detection techniques have been

proposed [31] using collection of pneumonia CXR images from different datasets

[10], [18], [27], [37]. The limited availability of COVID-19 positive samples may lead

to biased outcome therefore, oversampling is opted as a solution by state-of-the-

art deep learning approaches. The oversampling of medical images is not always

a good practice to increase the classification accuracy, hence the present paper

proposes a novel one-class classification (OCC) approach for COVID-19 diagnosis

in the presence of a limited number of COVID-19 positive training samples. The

identification of COVID-19 infection or pneumonia in CXR images is an anomaly

detection task, which is specifically an one-class classification problem. It is evident

that OCSVCs (support vector data description (SVDD) and OCSVM) are more

suitable for anomaly/novelty detection tasks, where the negative class samples are

totally absent [3]. The OCSVCs are very sensitive to the noise, therefore the present

research proposes an extended version of OCSVM [34] under the supervision of

pinball loss function [17], named as PB-OCSVM. In present research work, CXR

images of COVID-19 [10], radiological society of North America (RSNA) images [37]

and U.S. national library of medicine (USNLM) collected montgomery country -

NLM(MC) [19] datasets are utilized for experiments to justify the workability of

proposed model. For experiments it is assumed that only COVID-19 infected CXR

images are available for training, whereas other type of pneumonia and normal

CXR images are totally absent at the time of training. The proposed PB-OCSVM

possesses the following advantages:

• It is less sensitive to the noise compared to conventional OCSVM.

• Its computational complexity is nearly equal to the conventional OCSVM,

because pinball loss function does not add any extra computation overhead.

• PB-OCSVM reduces to the original OCSVM when pinball loss parameter

tend to ‘1’, and thus OCSVM can be considered as a special case of the

proposed PB-OCSVM.

• PB-OCSVM computes a hyperplane similar to original OCSVM.

The rest of the manuscript is organized as follows: Section 2 discusses the recent

research contributions and Section 3 describes the utilized datasets. The proposed

methodology is discussed in Section 4 whereas the experiments and results are dis-

cussed in Section 5. Finally, the concluding remarks and future aspects are discussed

in Section 6.

2. Related work

CXR images are always preferred for disease diagnosis due to wide availability and

easy handling of X-ray machines. As discussed in the preceding section, the conven-

tional way of testing COVID-19 via RT-PCR technique is a time taking and error
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prone process, especially for asymptomatic patients. Hence, the CXR image analy-

sis is claimed to be a more robust alternate way to diagnose COVID-19. Concerning

the same, several binary and multi-class classifications based deep learning models

have been reported using collection of multiple CXR datasets [10], [18], [27], [37]

with a common objective to develop a fully automatic diagnosis system, because

the manual analysis is a time consuming process and require radiology experts.

In this context, it is also evident with deep insight into literature that one-class

classification approaches are not yet explored. The present research considers the

diagnosis of COVID-19 infection as an anomaly or novelty detection task and pro-

poses a novel variant of OCSVM named pin-ball OCSVM (PB-OCSVM), capable

to work with limited number of training samples and robust against the noise. The

proposed approach eliminates the need of oversampling of original samples as pre-

ferred by all deep learning approaches. This section gives comprehensive review of

the most recently proposed deep learning approaches for COVID-19 diagnosis using

CXR images.

2.1. Deep learning approaches

In the battle against the COVID-19 pandemic, researchers are continuously propos-

ing artificial intelligence (AI) based quicker and alternate approaches to identify

COVID-19 infection from CXR images. It is evident with deep insight into recent

COVID-19 related publications that deep learning models are capable to diagnose

infections using CXR images, that supplant the conventional testing methods and

helpful to reduce the growing burden on radiologists during this pandemic. It is

also true that there is always a chance of infection while collecting samples for swab

test, whereas CXR analysis is comparatively safer and easily manageable. Seeking

to identify COVID-19 infection using CXR images, Narin et al. [26] proposed deep

CNN based ResNet50, InceptionV3 and Inception-ResNetV2 pre-trained transfer

models. Later, Apostolopoulos et al. [4] applied state-of-the-art CNN architectures

based on transfer learning approaches for CXR image classification and for experi-

ments, two different datasets have been used where images belong to three different

categories: COVID-19, viral/bacterial pneumonia and normal cases. In the race

of COVID-19 diagnosis, Khalifa et al. [20] offered generative adversarial network

(GAN) based approach using CXR images while ensuring the robustness against

the over-fitting by generating more images. The utilized dataset contains 5863 CXR

samples of two classes: pneumonia and normal. For experiments, the GoogLeNet,

Squeeznet, Resnet18 and AlexNet deep learning architectures have been experi-

mented along with GAN, where Resnet18 along with GAN outperformed other

models. Further, Sethy et al. [35] introduced deep feature based support vector

machine (SVM) model for COVID-19 infection classification of CXR images. It is

found that SVM outperformed other models with extracted features from ResNet50.

Later, effectiveness of ResNet-50 architecture was proved by Bukhari et al. [5] under

three categories of CXR images: non-COVID pneumonia, normal and COVID-19
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pneumonia. The experimental results show that this approach efficiently diagnose

COVID-19 infection.

As an alternate way of COVID-19 infection detection, a customized ResNet-50

CNN based deep learning architecture named ‘COVIDResNet’ has been proposed

[13]. For experiments the input images are progressively resized to 128 × 128 ×
3, 224 × 224 × 3 and 229 × 229 × 3 pixels and the network is fine-tuned at each

stage with automatic learning rate selection, whereas the proposed model attained

higher accuracy with minimum computational complexity. Later, Zhang et al. [46]

proposed a novel deep anomaly detection method for quicker and early diagnosis.

To validate the performance of the proposed approach, CXR images of two different

categories have been considered: COVID-19 positive cases and other pneumonia.

To deal the class imbalance problem in the collected samples, authors proposed a

CXR based COVID-19 screening model through anomaly detection task [30]. Most

recently, Punn and Agarwal [31] proposed a transfer learning based deep learning

architecture for COVID-19 diagnosis, whereas the class imbalance problem was

handled via random oversampling and weighted class approaches have been used.

The experimental results show that the proposed approach outperformed other

state-of-the-art approaches.

Wang et al. [42] proposed a deep CNN for COVID-19 diagnosis called “COVID-

Net” and experimented over COVIDx dataset. The proposed COVID-Net was pre-

trained on the ImageNet dataset and then trained on the COVIDx dataset using

the Adam optimizer. Performance (Multi-class classification) of this approach was

compared with VGG19 and ResNet-50. Afterwards, Yujin et al. [28] proposed a

patch-based ResNet-18 to work with minimum number of trainable parameters,

where a novel probabilistic gradient-weighted class activation map (Grad-CAM)

method was also proposed that takes into account of patch-wise disease probability

in generating global saliency map. The proposed method outperformed COVID-Net

when the task was considered as multi-class classification problem. Later, Afshar et

al. [1] proposed a capsule network based approach for COVID-19 identification from

CXR images and named it COVID-CAPS, where to deal class imbalance problem

more weight is given to positive samples in the modified loss function. Experimental

results show that the proposed method outperformed state-of-the-art approaches.

In this context, Hall et al. [14] considered COVID-19 identification a binary clas-

sification task and proposed an ensemble of the three types of CNN classifiers for

COVID-19 diagnosis. In this approach pre-trained ResNet50 and VGG-16 models

work with a newly proposed small CNN in presence of balanced dataset obtained

by image augmentation.

From above discussion and deep insight into literature, it is evident that almost

all the existing solutions for COVID-19 diagnosis reported till date follow the deep

network architectures. Every deep learning model is data hungry and consumes

massive computing resources as well as time. Hence, a faster diagnosis process

is needed due to the rapid growth of COVID-19 cases and limited availability of

healthcare experts (especially doctors and pathologists). Meanwhile, due to limited
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availability of COVID-19 CXR images, class imbalance appears the most critical

issue that has been addressed by all recently proposed approaches with different

solutions. Therefore, a more robust solution is desired, capable of working in the

presence of limited number of positive class samples whereas the other class sam-

ples are absent. Naturally, the diagnosis of COVID-19 cases can be formulated as

an anomaly or novelty detection task where only COVID-19 positive samples are

available for training. With this notion, following are the key contributions of the

present research:

• Formulated the COVID-19 diagnosis as a one-class classification problem.

• Only COVID-19 positive CXR images are considered as training samples.

• All training and other class samples are treated as test samples.

• Performance comparison with recent deep learning approaches is done with

following parameters: accuracy, precision, specificity, sensitivity and confi-

dence interval.

• Experiments are performed in noisy environment to show the robustness

of the proposed model.

• To show generalization performance of proposed model, 10 benchmark UCI

datasets are also experimented.

3. Dataset Description

In present research, CXR images of COVID-19 [10], radiological society of North

America (RSNA) [37] and U.S. national library of medicine (USNLM) collected

Montgomery country - NLM(MC) [19] datasets are collectively utilized for exper-

iments to compare the performance of proposed method with existing state-of-

the-art approaches. The COVID-19 dataset [10] contains CXR images of following

pneumonia classes: SARSr-CoV-1 (SARS), SARSr-CoV-2 (COVID-19), Pneumo-

cystis spp., Streptococcus spp. and ARDS from multiple public domain resources

available without infringing patient’s confidentiality (Fig. 1 (b)). The dataset in-

cludes the statistics up to August 2020 with metadata: patient ID, offset, sex, age,

finding, survival, view, modality, etc. For experiments other samples from COVID-

19 infected images are considered as another class named as ‘other pneumonia’.

The current version of the dataset is more rich in number of samples and classes,

but to show the effectiveness of the proposed approach, the older version is used.

Another dataset used in this research has been introduced under RSNA pneu-

monia diagnose competition, which is a collection of 30,000 images chosen from

the NIH CXR14 dataset [37]. Among these samples, 15,000 images are pneumonia

infected and out of remaining 15,000 samples, 7,500 had no findings whereas other

7,500 had different symptoms from pneumonia. Medical experts and radiologists

annotated these images. Fig. 1(c) shows sample instances. Initially, this dataset

was published with 25,684 training and 1,000 test images and later, the 1000 test

samples were merged to the existing training set to form 26,684 training images

whereas 3,000 new images were introduced as test set. For more robust perfor-



May 27, 2022 1:45 Manuscript

Learning target class feature subspace 7

Fig. 1. Sample CXR images.

Table 1. Summary of utilized datasets.

Dataset Behaviour CXR images Total samples

COVID-19
COVID-19 108

153
Other pneumonia 45

RSNA
Normal 453

923
Other pneumonia 457

NLM(MC)
Tuberculosis 58

138
Normal 80

mance evaluation and comparative analysis, NLM(MC) [19] dataset is also utilized

that consists of 138 CXR images of classes: tuberculosis and normal. Table 1 shows

the description of fused dataset used in present research. The dataset is composed of

1214 posteroanterior CXR images with classes: COVID-19 (108), other pneumonia

(515), tuberculosis (58) and normal (533).

4. Proposed approach

From preceding sections, it is inferred that deep learning approaches are playing

a decisive role in advanced biomedical image analysis tasks. Several deep learning

models have been proposed for COVID-19 diagnosis but suffer with following key

issues:

• These models need massive computation power for training.

• Fails to work if samples of only one class (target class) are available for

training. This phenomenon is the motivation of this research.

• May give biased outcome if the dataset suffers with class imbalance prob-

lem.

The above issues are identified as the research gap and the present article pro-

poses a one-class classification approach to solve these issues. The conventional

OCSVM (a variant of OCSVCs) and the proposed PB-OCSVM are used as a one-

class classifiers, capable of working with only target class (also known as class of

interest (CoI)) samples. The OCC problem is different from conventional binary

and multi-class classification tasks, where only target class is well defined and the
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Fig. 2. Schematic of proposed model

other class samples are either totally absent or poorly sampled. In present research,

only COVID-19 infected CXR images are used as training samples and the perfor-

mance evaluation is done in two phases: considering all COVID-19 samples as test

samples and considering other class images as test samples. The aim of the present

research is to ensure maximum learning ability in presence of limited number of

CXR images with minimum false-rejection and false-acceptance. Fig. 2 schematic

of the proposed approach where it is assumed that only the target class samples

are available for training. Initially, data pre-processing is performed to remove the

noise from the images and then the processed images are fed to PB-OCSVM for

training. After training, test samples (in-class and other class samples) are tested.

4.1. Data pre-processing

In this article, COVID-19 infected posteroanterior CXR images of COVID-19

dataset [10] are used to train the PB-OCSVM. For performance evaluation of the

proposed model, the other pneumonia samples from COVID-19 dataset, RSNA [37]

and NLM(MC) [19] datasets are used as test samples along with COVID-19 samples.

The RSNA and NLM(MC) datasets contain samples of pneumonia and tubercu-

losis respectively along with normal cases. It is evident that the CXR images in

the aggregated dataset suffers with undesired artifacts such as varying resolutions,

pixel level noise, bright texts and unnecessary symbols, hence pre-processing is a

necessary step for further analysis. To overcome from the textual and symbolic

noise, in-painting is performed with the image mask generated using binary thresh-

olding [29] (Eq. 1), whereas image resizing is performed for a fixed size resolution of

331×331×3 (where 3 is number of channels) to work upon state-of-the-art models.
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N(x, y) =

{
Thmax, i(x,y) ≥ Thmin
0, otherwise

(1)

where for input image i(x, y), the mask is designed with minimum and maximum

threshold values defined as Thmin and Thmax respectively. Even after filtering out

undesired information, there is always a possibility of uncertainty at the deep pixel

level representation [15].

To preserve the original pixel value distribution, following two techniques are

experimented to generate final pre-processed images: the adaptive total variation

method [39] and automatic color equalization (ACE) approach [33]. Images of size

331× 331× 3 are used by these methods to generate final images.

4.1.1. Adaptive total variation method

Let, I is a grayscale image and γ is a bounded set over R2, such that γ ⊂ R2,

denoising image D that closely matches to observed image x = (x1, x2) ε γ - pixels,

given as:

D = arg min
D

(∫
γ

(D − I. lnD)dx+

∫
γ

(ω(x)|∆D|dx)

)
(2)

where ω(x) = 1
1+p mod Gσ∗∆D′ , Gσ is the Gaussian kernel, σ is variance , p > 0 is

contrast parameter and * is convolution operator.

4.1.2. Automatic color equalization

This method is based on a computational model of the human visual system that

merges the two basic global equalization mechanisms: “Gray World” (GW) and

“White Patch” (WP). ACE is able to adapt widely varying lighting conditions

and to extract visual information from the environment efficaciously. This is a two

stage process where initially, the GW and WP approaches are merged via a type of

lateral inhibition mechanism, weighted by pixel distance that results in local-global

filtering. Whereas the second stage maximizes the image dynamic via normalizing

the white at a global level.

Let the input image is I with c channels and initially, the chromatic/spatial ad-

justment produces as output image R in first stage, where every pixel is recomputed

according to the image content. Each pixel p of the output image R is computed

separately for each channel c as follows:

Rc(p) =
∑
j 6=p

r(Ic(p)− Ic(j))
d(p, j)

(3)
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where Ic(p) − Ic(j) decides the lateral inhibition mechanism, the distance d(.)

weights the amount of local or global contribution and r(.) is the relative light-

ness appearance of the pixel. Like human visual system, the distance d(.) weights

the global and local filtering effect. Euclidean distance is considered for distance

calculation. Relative pixel influence of each pixel is controlled by r(.) and d(.) for

the spatial channel lightness adjustment. The variation of the slope of the function

r(.) acts as a contrast tuner and in the present research Signum function is used.

Finally, the second stage linearly scales the range of values in Rc independently in

the relative channel c into the range [0; 255] using the formula:

Oc(p) = round[scRc(p)−mc] (4)

for each pixel p where sc is the slope of the segment [(mc, 0); (Mc, 255)], with Mc =

maxpRc(p) and mc = minpRc(p). To make this process more robust, dynamic of

the final image is always centered around the medium gray via means of White

Patch/Gray World (WP/GW) scaling as follows:

Oc(p) = round[127.5 + scRc(p)] (5)

For experiments, Euclidean distance and WP/GW scaling are used and sc is set to

20 for saturation function.

The complete data pre-processing operation is illustrated in Fig. 3, where the

histogram of resulting distributed pixels during every step of pre-processing is also

Fig. 3. Data pre-processing phases of chest X-ray image.
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shown. It is evident that the opted pre-processing approach is capable to eliminate

the irregular intensities while preserving the original nature of the pixel distribution.

After pre-processing of CXR images, intensive experiments are performed with

PB-OCSVM, OCSVM and state-of-the-art deep network models. For PB-OCSVM

and OCSVM, the COVID-19 positive samples are considered as training samples

whereas deep learning models are trained with multi-class samples (80% from each

class) obtained via respective class balancing techniques. For OCC approaches, all

in-class and other class samples are treated as test samples and for deep learning

models all training, remaining in-class and other class samples are treated as test

samples.

4.2. Preliminaries

This section gives brief description of OCSVM, variants of OCSVM with differ-

ent loss functions and Pinball-SVM. This discussion will help to understand the

formulation of proposed PB-OCSVM.

4.2.1. OCSVM

OCC algorithms are specifically used for anomaly/novelty detection tasks; espe-

cially when the non-target class is either ill-defined or totally absent. For unbiased

operation of binary or multi-class classifiers, presence of two well-defined classes is

necessary; but if the test sample belongs to unknown class, the classifier may exhibit

biased behaviour. In such scenarios, OCC techniques are proven as robust solutions,

majorly applicable for concept learning and outliers/novelty detection [21].

Tax et al. [41] proposed a novel OCC model termed as SVDD, where the target

class samples are enclosed by a hypersphere, and the boundary points are called

support vectors. If a data sample falls outside of the hypersphere, SVDD treats it

as outlier and rejects (Fig. 4). The objective function of SVDD is defined as:

L(R, a, αi, γi, ξi) =R2 + C
∑
i

ξi −
∑
i

αi{R2 + ξi−

(‖ xi ‖2 −2a.xi+ ‖ a ‖2)} −
∑
i

γiξi
(6)

subject to: ‖ xi − a ‖2≤ R2 + ξi, where ξi ≥ 0 ∀ i

where radius of the hypersphere is R, xi and a are outlier and center of hypersphere

respectively, the parameter C controls the trade-off between the erros and volume,

and ξ is slack variable to penalizes the outliers. With the Lagrange multipliers

αi ≥ 0, γi ≥ 0 where i ∈ {1, 2, . . . , N}, the objective is to minimize R of the

hypersphere while covering all target class samples with some penalty for outliers.

By putting partial derivatives to zero and substituting the constraints into Eq. 6,

following is obtained:
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Fig. 4. Support vector data description (SVDD).

L =
∑
i

αi(xi, xi)−
∑
i,j

αiαj(xi, xj) (7)

If the description value of a test sample xi is greater than C then it is treated

as an outlier. Kernels can be used to reformulate the SVDD as follows:

‖φ(x)− a‖2 ≤ R2 (8)

The SVDD outcome can be computed as follows:

R2 − ‖φ(x)− a‖2 (9)

The output of Eq. 9 is positive for samples inside the boundary and negative for

an outliers.

Later, Schlökopf et al. [34] proposed one-class support vector machine (OCSVM)

as an alternate OCC approach to SVDD, where a hyperplane separates the target

class samples from outliers as shown in Fig. 5. In OCSVM, class of interest (CoI)

samples are separated by a hyperplane with the maximal margin from the origin,

whereas the negative class samples reside in the subspace of the origin. The OCSVM

is defined as following quadratic equation (Eq. 10):

max
w,ξ,ρ

1

2
‖ w ‖2 +

1

υN

N∑
i

ξi − ρ (10)

subject to: w.φ(xi) ≥ ρ− ξi and ξi ≥ 0 ∀ i ∈ {1, 2, . . . n}.
where in feature space the data sample xi is represented by φ and the outlier is

penalized by slack variable ξi. υ ε (0,1] decides the lower bound on the number of

support vectors and upper bound on the fraction of outliers.

The dual optimization problem of Eq. 10 is defined as follows:

min
α

1

2

N∑
i=1

N∑
j=1

αiαjK(xi, xj) (11)
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Fig. 5. Working of OCSVM.

subject to: 0 ≤ αi ≤ 1
υN ,

∑N
i=1 αi = 1, i = {1, 2, . . . , n}.

where α = [α1, α2, . . . αN ]
T

and αi is the Lagrange multiplier, whereas the weight-

vector w can be expressed as:

w =

N∑
i=0

αiφx(i) (12)

ρ is the margin parameter and computed by any xi whose corresponding Lagrange

multiplier satisfies 0 < αi <
1
υN

ρ =

N∑
j=1

αjK(xj , xi) (13)

The decision function with kernel expansion can be written as:

f(x) =

N∑
i=1

αiK(xi, x)− ρ (14)

Label of any test sample x can be decided with the following:

ŷ = sign(f(x)) (15)

where sign(.) is sign function.

It is observed that both SVDD and OCSVM perform same with Gaussian kernel

and origin plays a key role because all outliers reside there. Norm of the centre of

SVDD is equal to margin of a hyperplane of OCSVM in unit norm feature space

is [22] as depicted in Fig. 6(a). Thus, reformulation of SVDD can be done by a

hyperplane as follows:

‖ φ(x)− a ‖2≤ R2 ⇔ wSV DD.φ(x)− ρSV DD ≥ 0 (16)
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Fig. 6. Representation of SVDD and OCSVM in unit norm space [35].

where a represents the the centre the hypersphere. wsvdd and ρsvdd are the normal

vector and the bias respectively of SVDD hyperplane and defined as below:

wSV DD =
a

‖ a ‖
, ρSV DD =‖ a ‖ (17)

In feature space, the virtual hyperplane passes through the origin and the sample

margin is defined by its distance from the image of the data x as shown in Fig. 6(b).

The SVDD’s sample margin is defined as below:

γSV DD(x) =
a.φ(x)

‖ a ‖
(18)

where γ(x) is the image of data x in feature space and the sample margin of OCSVM

is defined as follows:

γOCSVM (x) =
w.φ(x)

‖ w ‖
(19)

Because data samples exist on the surface of a unit hypersphere, the maximum

and minimum value of sample margin is defined as ‘1’ and ‘0’ respectively as follows:

0 ≤ γ(x) ≤ 1 (20)

Also, sample margin of unbounded support vectors xUSV ( 0 <αxUSV < 1
υN ) are

the same as the margin of hyperplane, therefore:

γ(xUSV ) = γSV DD =‖ a ‖ (21)

γ(xUSV ) = γOCSVM =
ρ

‖ w ‖
(22)
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In feature space, the distribution of samples is represented by the sample

margiin. Fig. 6(c) shows the distribution of sample margin of training data and

hyperplane of OCSVM in feature space. It is also observed that for RBF kernel

both SVDD and OCSVM perform equally, hence in the present research, OCSVM

is chosen for enhancement with the help of pinball loss function.

4.2.2. OCSVM with other loss functions

For every machine learning tasks such as classification, regression, etc., the loss

functions plays vital role. Consider the training set S = {x1, x2, . . . xn} , where

xi ∈ Rn are inputs and target class y is defined as y ∈ {1}. Let, f : Rn −→ R is

a mapping from xi ∈ Rn to y ∈ {1}. During training and testing the predicted

output value of samples is supervised by the associated loss functions.

• OCSVM with hinge loss function:

Like other machine learning tasks the hinge loss for OCSVM [45] is

defined as follows:

Hloss(zi) = max(0, ρ− zi) (23)

This unbounded loss function is capable to deal with the shortest dis-

tance of the target class samples, but sensitive to the noise. The hinge loss

OCSVM can be written as:

max
w,ξ,ρ

1

2
‖ w ‖2 −ρ+

1

υN

N∑
i

Hloss(zi) (24)

where zi = wφ(xi). The constraints defined in Eq. 24 are integrated into

Hloss(zi). The samples satisfying zi = w.φ(xi) ≥ ρ, are positioned above

the hyperplane and no penalty is added, hence Hloss(zi) = 0, whereas

samples satisfying zi = wφ(xi) < ρ are located on the other side of the

hyperplane and some penalty should be inflicted, therefore Hloss(zi) =

ρ−zi > 0, which says that if the samples move far away from the hyperplane

the penalty increases.

• OCSVM with ramp loss function:

As described above, the hinge loss function is unbounded and sensitive

to the noise, the ramp loss function was introduced to OCSVM to make

the model more robust [45]. The ramp loss function is described as follows:

Rloss(ρ,l)(zi) =


0, zi ≥ ρ
ρ− zi, ρl < z < ρ

ρ− lρ, zi ≤ ρl
(25)
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where 0 < l < 1. When zi > lρ, the ramp loss is same to the hinge loss;

whereas for zi ≤ lρ, the ramp loss is a constant that is an advantage over

hinge loss which increases as zi decreases. This loss function is capable to

deal with the shortest distance of the target class samples and less sensitive

to the noise. The ramp loss OCSVM can written as:

max
w,ξ,ρ

1

2
‖ w ‖2 −ρ+

1

υN

N∑
i

Rloss(zi) (26)

where zi = wφ(xi). Due to non-convexity of ramp loss the OCSVM prob-

lem is no longer a convex optimization. This problem is solved by the phe-

nomenon that the Rloss is actually the difference between two hinge loss

functions and the modified formulation of the ramp loss OCSVM consists

of the convex part and the concave part. This new problem is solved by

“Concave-Convex Procedure” (CCP) procedure [11].

• Pin ball SVM: The pinball loss function is given as follows, which can be

regarded as a generalized l1 loss.

Pτ (u) =

{
u, u ≥ 0

−τu, u < 0
(27)

where range of τ is [0, 1] [17]. For quantile regression [23], [9], the pinball

loss Pτ has been successfully applied.

Huang et al. [17] derived quantile classification using the idea of support

vector machine (SVM). It has been shown that pinball and hinge loss SVM

have similar consistency property and computational complexity, moreover

the pinball loss SVM is less sensitive to noise.

Huang et al. [17] introduced pinball loss into the SVM. Consider the

data points to be classified denoted by the set T . To solve the classification

task, w ∈ Rn and b ∈ R must be identified such that:

wTφ(xi) + b ≥ 1 for yi = 1

wTφ(xi) + b ≤ −1 for yi = −1
(28)

where φ(.) is a nonlinear mapping from the input space to a new feature

space. The optimal hyperplane wTφ(x) + b = 0, lies exactly between the

supporting parallel hyperplanes given by:

wTφ(x) + b = 1 and wTφ(x) + b = −1 (29)

and separates the binary class samples from each other with a margin of 1
‖w‖

on each side. Data points residing on the supporting hyperplanes (Eq. 29)

are termed as support vectors. The classifier is obtained by maximizing the

margin. If the data points of two different classes are not linearly separable
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in feature space then to separate all the data points correctly, pinball loss

Pτ (x, y, f(x)) is introduced to allow the existence of data points that violate

the constraints yi(w
Tφ(xi) + b) ≥ 1. Finally, the nonlinear Pin-SVM is

formulated as follows:

max
w,b

1

2
‖ w ‖2 +c

t∑
i=0

Pτ (zi) (30)

After employing the pinball loss function in Eq. 30, following quadratic

programming problem (QPP) come into existence for Pin-SVM:

max
w,ξ,ρ

1

2
‖ w ‖2 +c

t∑
i=1

ξi (31)

s.t.

yi(w
Tφ(xi) + b) ≥ 1− ξi,

yi(w
Tφ(xi) + b) ≤ 1 +

ξi
τ
, i = 1, 2, . . . N

(32)

where ξ = (ξ1, ξ2, ..., ξN )T is a slack variable and c > 0 is a penalty param-

eter. The parameter c determines the weight between the two terms ‖ w ‖2
and

∑t
i=1 ξi. Pin-SVM has an advantage of noise insensitivity. Meanwhile,

Pin-SVM has similar time complexity to that of standard SVM. Note that

the second constraint of Eq. 32 becomes ξ ≥ 0 when τ = 0, and thus

Pin-SVM reduces to the hinge loss SVM.

4.3. OCSVM with pinball loss function (PB-OCSVM)

From above discussion it is clear that the hinge loss is sensitive to the noise. To

overcome from this problem and to improve the performance of OCSVM, pinball

loss function [17] is fused to standard OCSVM to obtain pinball OCSVM (PB-

OCSVM). This enhanced version deals with quantile distance [23] that reduces the

sensitivity to the noise. After introducing pinball loss function, the conventional

OCSVM can be rewritten as follows.

max
w,ξ,ρ

1

2
‖ w ‖2 −ρ+

1

υN

N∑
i

Pτ (zi) (33)

where Pτ is pinball loss as shown in Eq. 27 with zi = wTφ(xi) which helps to the

slope on the target class. Substituting the pinball loss into Eq. 33, following QPP

is obtained:
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max
w,ξ,ρ

1

2
‖ w ‖2 −ρ+

1

υN

N∑
i

ξi

subject to: w.φ(xi) ≥ ρ− ξi

w.φ(xi) < ρ+
ξi
τ

(34)

4.3.1. Dual problem and kernel formulation

Now after introducing a kernel based formulation to the PB-OCSVM, the La-

grangian with αi ≥ 0, βi ≥ 0 of Eq. 34 is as follows:

L(w, b, ξ, α, β) =
1

2
‖ w ‖2 + c

N∑
i=1

ξi −
N∑
i=1

αi(w.φ(xi)−

ρ+ ξi)−
N∑
i=1

βi(w.φ(xi)− ρ−
ξi
τ

)

(35)

According to:
δL
δw = w +

∑N
i=1 αiφ(xi) = 0,

δL
δρ =

∑N
i=1 αi − βi = 0,

δL
δξ = c− αi − 1

τ βi = 0,∀i = 1, 2, . . . , N

the dual problem of Eq. 35 is obtained as follows:

max
α,β
−1

2

N∑
i=1

N∑
j=1

(αi − βi)φ(xi)
Tφ(xj)(αj − βj) +

N∑
i=1

(αi − βi)

subject to:

N∑
i=1

(αi − βi) = 0,

αi +
1

τ
βi = c, i = 1, 2, . . . N,

αi ≥ 0, βi ≥ 0, i = 1, 2, . . . N

(36)

Introducing the positive definite kernel K(xi, xj) = φ(xi)
Tφ(xj) and variables

λi = αi − βi, we get
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max
α,β
−1

2

N∑
i=1

N∑
j=1

λiK(xi, xj)λj +

N∑
i=1

λi

subject to:

N∑
i=1

λi = 0,

λi + (1 +
1

τ
)βi = c, i = 1, 2, . . . N,

λi + βi ≥ 0, βi ≥ 0, i = 1, 2, . . . N

(37)

With kernel expansion the decision function can be defined as follows:

{(x) =

N∑
i=1

λiK(xi, x)− ρ (38)

Finally, the test instance x can be labelled as follows:

ŷ = sign({(x)) (39)

where sign(.) is sign function.

It is well known that the computational complexity of OCSVM is O(N3
Tc

) where

NTc is the number of the only target class samples, whereas the computational

complexity of PB-OCSVM is found same as OCSVM i.e. O(NTc
3). Therefore, the

complexity of the PB-OCSVM is equal to conventional OCSVM, hence pinball loss

function does not increase the computation time of PB-OCSVM.

5. Experiments and results

COVID-19 positive samples of COVID-19 dataset [10] are used as training samples

for OCSVM and the proposed PB-OCSVM whereas other samples of this dataset

along with samples of datasets RSNA [37] and U.S. national library of medicine

(USNLM) collected Montgomery country - NLM(MC) [19] are used for testing.

All the images of fused dataset is pre-processed as discussed in Subsection 4.1 that

outputs the images of size 331×331×3, where 3 is the number of channels. For PB-

OCSVM and OCSVM, the COVID-19 positive samples are considered as training

samples whereas deep learning models are trained with multi-class samples (80%

from each class) obtained via respective class balancing techniques. For OCC ap-

proaches, all in-class and other class samples are treated as test samples and for

deep learning models all training, remaining in-class and other class samples are

treated as test samples. Once training is done with suitable parameters, OCSVM

and PB-OCSVM are used for testing in two scenarios: test with training samples

and other samples of all three datasets. For performance evaluation five benchmark

parameters have been used to show effectiveness of the proposed model: accuracy,
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precision, sensitivity, specificity and confidential interval (CI) with 95% and 98%

confidence (Eq. 40). Comparison of performance of OCSVM and PB-OCSVM is

done with recently proposed deep learning models as shown in Table 2. It is known

that all deep learning models need huge amounts of data and at the same time all

classes must be well defined. Hence, it is necessary to oversampling of COVID-19

samples to any deep learning model. It is observed that all recent deep learning

architectures [28], [1], [42], [4], [14] used oversampling to deal with the data imbal-

ance problem and after massive computational efforts were able to give significant

performance.

Accuracy =
TN + TP

TN + FN + TP + FP

Precision =
TP

TP + FP

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

Confidence Interval = z ∗ (
√
accuracy ∗ (1− accuracy)/N

(40)

where z is standard deviation (1.96 for 95% confidence and 2.33 for 98% confidence)

and N = 1214 is number of samples.

There are total four classes in fused dataset: COVID-19, normal, Tuberculosis

and other pneumonia. Some existing models have been proposed considering all four

classes whereas some articles considered Tuberculosis and other pneumonia classes

as a single class that gives three classes: COVID-19, normal and other pneumonia.

Few papers considered normal, Tuberculosis and other pneumonia as non COVID

class that gives two classes COVID and non COVID. For existing deep learning

architectures, experiments have been performed in three categories with consider-

ation of 4, 3 and 2 classes. For exhaustive comparative analysis, all scenarios have

also been considered for OCSVM and PB-OCSVM and it is observed that both

the models exhibited the consistent performance due of their working principle.

Whereas it is identified that deep learning models perform better in case of binary

class classification approach. It is also observed that both adaptive total variation

and ACE performed nearly equal.

5.1. Workability of proposed PB-OCSVM in presence of noise

To validate the robustness of the proposed PB-OCSVM against the noise, and

to demonstrate its generalized behaviour experiments are performed considering

following scenarios:

a. Images obtained after inpainting operation as discussed in Subsection 4.1.
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Table 2. Performance comparison.

Authors Technique Classes
Adaptive total variation Automatic color equalization

A P S Sp 95% & 98% CI A P S Sp 95% & 98% CI

Yujin et al. [28] Fine Tuning

4

0.88 0.83 0.86 0.96 ± (1.83% - 2.17%) 0.86 0.86 0.88 0.92 ± (1.95% - 2.32%)

Afshar et al. [1] Fine Tuning 0.95 0.92 0.90 0.95 ± (1.10% - 1.31%) 0.94 0.94 0.92 0.91 ± (1.36% - 1.58%)

OCSVM 0.97 0.97 0.93 0.96 ± (0.96% - 1.14%) 0.96 0.96 0.94 0.95 ± (1.10% - 1.31%)

PB-OCSVM 0.98 0.99 0.98 0.98 ± (0.79% - 0.94%) 0.97 0.98 0.98 0.98 ± (0.95% - 1.14%)

Wang et al. [42] Fine Tuning

3

0.92 0.91 0.88 0.89 ± (1.53% - 1.81%) 0.92 0.91 0.9 0.91 ± (1.53% - 1.81%)

Apostolopoulos et al. [4] Fine Tuning 0.87 0.93 0.92 0.98 ± (1.89% - 2.25%) 0.89 0.94 0.93 0.95 ± (1.76% - 2.09%)

OCSVM 0.97 0.97 0.93 0.96 ± (0.96% - 1.14%) 0.96 0.96 0.94 0.96 ± (1.10% - 1.31%)

PB-OCSVM 0.98 0.99 0.98 0.98 ± (0.79% - 0.94%) 0.96 0.96 0.95 0.97 ± (1.10% - 1.31%)

Hall et al. [14] Fine Tuning

2

0.91 0.88 0.88 0.93 ± (1.61% - 1.91%) 0.89 0.89 0.88 0.93 ± (1.76% - 2.09%)

Apostolopoulos et al. [4] Fine Tuning 0.98 0.97 0.92 0.98 ± (0.79% - 0.94%) 0.96 0.95 0.92 0.95 ± (1.10% - 1.31%)

OCSVM 0.97 0.97 0.93 0.96 ± (0.96% - 1.14%) 0.95 0.95 0.94 0.94 ± (1.22% - 1.46%)

PB-OCSVM 0.98 0.99 0.98 0.98 ± (0.79% - 0.94%) 0.97 0.98 0.98 0.98 ± (0.95% - 1.14%)

* A- Accuracy, P- Precision, S- Sensitivity, Sp- Specificity

b. Images generated after introducing Gaussian, laplacian and uniform noise

to the final images obtained by adaptive total variation method.

c. Experiments with 10 benchmark UCI datasets.

For scenarios a and b all state-of-the-art methods are evaluated along with

proposed method whereas for scenario c conventional OCSVM and proposed PB-

OCSVM are evaluated. In scenario a the images obtained after binary thresholding

as discussed in Subsection 4.1 are used for computation. The partially processed

images are used by all the above discussed classifiers. Whereas, to illustrate the ef-

fectiveness of the proposed method, the output images obtained after pre-processing

are further fused with Gaussian, laplacian and uniform noise are used in scenario

b. Table 3 shows the comparative performance of state-of-the-art approaches and

proposed approach (best results are represented in bold). To tune the hyperparam-

eters of OCSVM and PB-OCSVM, grid search mechanism is used. Results show

that the in the presence of noise, the proposed method outperformed compared to

deep learning models and conventional OCSVM.

Table 3. Performance comparison in noisy environment

Scenario-a (Partially

processed images)

Scenario-b (in presence of noise)

Authors Classes
AUC

A P S Sp Gaussian Laplacian Uniform

Yujin et al. [28]

4

0.82 0.86 0.87 0.89 0.83 0.84 0.86

Afshar et al. [1] 0.83 0.81 0.86 0.82 0.79 0.78 0.81

OCSVM 0.82 0.81 0.85 0.83 0.84 0.83 0.88

PB-OCSVM 0.85 0.86 0.88 0.89 0.88 0.89 0.88

Wang et al. [42]

3

0.82 0.82 0.85 0.84 0.84 0.85 0.84

Apostolopoulos et al. [4] 0.85 0.84 0.85 0.81 0.75 0.79 0.81

OCSVM 0.82 0.81 0.85 0.83 0.83 0.89 0.84

PB-OCSVM 0.88 0.86 0.89 0.91 0.89 0.89 0.88

Hall et al. [14]

2

0.81 0.83 0.82 0.84 0.81 0.82 0.84

Apostolopoulos et al. [4] 0.79 0.82 0.84 0.85 0.76 0.78 0.81

OCSVM 0.86 0.86 0.85 0.87 0.83 0.86 0.84

PB-OCSVM 0.91 0.89 0.91 0.92 0.88 0.89 0.89

* A- Accuracy, P- Precision, S- Sensitivity, Sp- Specificity
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To illustrate the generalized effectiveness of the proposed model, 10 benchmark

UCI datasets are experimented with OCSVM and PB-OCSVM. Table 4 shows the

description of datasets used and AUC score of both the classifiers. Experimental re-

sults show that the PB-OCSVM performs marginally better than the conventional

OCSVM. To ensure the workability in minimum number of samples, 80% of the tar-

get class samples are randomly chosen for training whereas all target class samples

and other class instances are selected for testing as done in earlier experiments.

Table 4. Experimental results with UCI datasets

Dataset NTarget NOutliers Attributes NTraining NTest
AUC

OCSVM PB-OCSVM

Blood Transfusion 178 570 4 142 606 0.86 0.85

Wholesale Customers 298 142 7 238 202 0.94 0.96

Breast Cancer 77 186 9 62 201 0.93 0.96

Glass 70 77 10 56 91 0.98 0.98

Heart 120 150 13 96 174 0.95 0.96

Climate Model 294 46 18 235 105 0.94 0.98

Hepatitis 123 32 19 98 57 0.95 0.95

Parkinsons 147 48 22 118 77 0.97 0.98

QSAR biodegradation 356 699 41 285 770 0.95 0.94

Sonar 111 97 60 89 119 0.93 0.95

* NTarget: number of target samples, NOutliers: number of other class samples etc.

6. Conclusion

The present research proposes a novel pinball OCSVM (PB-OCSVM) for early-

detection of COVID-19 in presence of limited number of samples. Recently, several

deep learning based automated approaches have been proposed for diagnosis of

COVID-19 using CXR images. All these solutions need enormous multi-class data

samples for unbiased operation. Due to limited availability of CXR images, it is

evident that all deep learning approaches use collection of multiple datasets and

prefer oversampling strategies to ensure smooth functioning. The COVID-19 is a

newly known deadly pandemic and its precise characteristics are still unknown;

therefore, oversampling must not be considered as a concrete solution to achieve

higher diagnosis accuracy.

In present research, the COVID-19 diagnosis is considered as an anomaly/ nov-

elty detection task and a novel variant of OCSVM is proposed under the supervision

of pinball loss function called PB-OCSVM capable to work with limited number of

COVID-19 infected CRX images. The proposed model does not add extra computa-

tion overhead and ensures quicker diagnosis. For experiments collection of multiple

datasets are used where the available COVID-19 infected X-ray images are used for

training whereas all in-class and other class samples are treated as test samples. The

same fused dataset is used to evaluate state-of-the-art deep learning models and

conventional OCSVM. Experimental results show that PB-OCSVM outperformed

state-of-the-art deep learning models and conventional OCSVM. Meanwhile, it is
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also evident that the proposed model ensures negligible false-positive and false-

negative rates compared to OCSVM and attains significantly better accuracy, pre-

cision, specificity and sensitivity.

To validate the performance and robustness of PB-OCSVM, experiments are

performed with noisy images. Two noisy scenarios are considered for experiments

and results show that PB-OCSVM performs better in both the scenarios compared

to state-of-the-art approaches. For generalized performance evaluation of proposed

model, experiments are also performed with 10 benchmark UCI datasets. Experi-

mental results proves that PB-OCSVM performs significantly better than conven-

tional OCSVM.

The disease diagnosis in healthcare domain is especially an anomaly or novelty

detection task where one-class classification approaches are proven more promising

compared to conventional binary or multi-class classification approaches. In this

context, it is believed that the application of proposed model is not limited and

can also be extended to other disease diagnosis tasks. Meanwhile, the same work

can also be extended to other application domains for anomaly/novelty detection

objectives.
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