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We propose a new variant of Non-negative Matrix Factorization (NMF), including its
model and two optimization rules. Our method is based on positively constrained pro-
jections and is related to the conventional SVD or PCA decomposition. The new model
can potentially be applied to image compression and feature extraction problems. Of
the latter, we consider processing of facial images, where each image consists of several
parts and for each part the observations with different lighting mainly distribute along
a straight line through the origin. No regularization terms are required in the objective
functions and both suggested optimization rules can easily be implemented by matrix
manipulations. The experiments show that the derived base vectors are spatially more
localized than those of NMF. In turn, the better part-based representations improve the
recognition rate of semantic classes such as the gender or existence of mustache in the
facial images.

Keywords: Non-negative matrix factorization; projective; facial image; principal compo-
nent analysis.

1. Introduction

In image analysis, a compressive or compact representation of the high-dimensional
input is often required. One of the standardly used methods is the Principal Com-
ponent Analysis (PCA), which applies the Singular Value Decomposition (SVD) on
the image covariance matrix and projects the input image on the resulting eigen-
vectors.

However, the base vectors of PCA fail to keep the non-negativity property of
the input signals. Recently, Lee and Seung proposed a method called Non-negative
Matriz Factorization (NMF),®> which imposes the non-negativity constraints in
learning the base images. Such constraints and the related multiplicative update
rules seem to yield part-based representations. Nevertheless, NMF is sensitive to the
initial values” and the additive parts learned by NMF are not necessarily localized.
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Some variants of NMF (e.g. Refs. 2 and 3) have later been proposed. Most of them
append one or more regularization terms to the objective function of NMF, and
they are reported to generate more highly part-based features. The updating rules
of these methods are albeit rather complicated and the localized representations
can be obtained only if the trade-off parameter is properly chosen.

In our previous work,® a new variant of NMF, called Projective Non-negative
Matriz Factorization (P-NMF), was proposed. The new method differs from NMF
in that it replaces the weight matrix in NMF with the inner product of the base
vectors and the input images. P-NMF does not involve any regularization terms or
trade-off parameters, but is still able to learn more spatially localized, part-based
representations of visual patterns. In the present work, we employ global normal-
ization instead of separate optimizations for individual base vectors. In addition
to recapitulate the model and algorithms of P-NMF, we also discuss the underly-
ing reason that leads to high orthogonality or sparseness by P-NMF, and present
both qualitative and quantitative comparison with NMF. Furthermore, the features
obtained by P-NMF are used as an input to classifiers for facial images.

The remainder of the paper is organized as follows. We start with a brief review
of NMF in Sec. 2. In Sec. 3, we first present the model of P-NMF and its connection
to the PCA approach. Then we review and correct the associated optimization rules,
with the discussion about the underlying reason of high orthogonality also included.
Experimental results on facial images are shown in Sec. 4. Finally, Sec. 5 concludes
the paper.

2. Non-Negative Matrix Factorization

Suppose that our non-negative data is given in the form of an m x n matrix V. Its n
columns are the data items, for example, a set of images that have been vectorized
by row-by-row scanning. Then m is the number of pixels in any given image.

Given V and a constant r, the Non-negative Matriz Factorization algorithm
(NMF)? finds a non-negative m x r matrix Q and another non-negative r x n
matrix H such that they minimize the optimality problem

Juin [V - QH]. (1)

This can be interpreted as follows: each column of the matrix Q contains a base
vector while each column of H contains the weights needed to approximate the
corresponding column in V using the base vectors from Q. So the product QH can
be regarded as a compressed form of the data in V.

3. Projective Non-Negative Matrix Factorization
3.1. Model

To improve locality of part-based representations, we incorporate the idea of com-
pressive SVD by finding a subspace B of R, and an m X m projection matrix P
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with given rank r, such that P projects the non-negative matrix V onto the sub-
space B and preserves the non-negativity property. Finally, it should minimize the
difference |V — PV]].

We can write any symmetric positive semi-definite projection matrix of rank r
in the form

P=wWwWT. (2)

Here we require W to be an orthonormal m x r matrix. Thus, we can solve the prob-
lem by searching for a non-negative W as the solution to the following optimality
problem

min |V - WW7'V||, (3)
W>0
where || - || is a matrix norm, e.g. the Frobenius norm. We call the new method
Projective Non-negative Matriz Factorization (P-NMF).
The physical model of the objective function (3) is illustrated as follows. Suppose

each observation v is composed of r nonoverlapped parts, i.e. v = 22:1 vp. We
model each part v, by the scaling of a base vector w,, plus a noise vector €:

Vp = QpW) + €p. (4)

If the base vectors are normalized so that wgwq =1 for ¢ = p and 0 otherwise,
then the reconstructed vector of this part is

T T
T, _ T
E WW, V), = E ww, (apwy, + €p)
q=1 q=1
T T
— 2 : T T
= QpWoW, Wy, + E WeW, €
q=1 q=1

= apw, + quwgep. (5)
qg=1

The norm of the reconstruction error is therefore bounded by
ks T
Vp — quwgvp (I - quwg) €
q=1 q=1
T
(I - ZWqu) || el
q=1

<

T T T
=Tr (I - ququ> <I - ZW(IW?) e
q=1 q=1
“ (1 S ) e
g=1
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= (m—7)-[lepl, (6)
if 2-norm is used, and similar bound can be derived for other types of norms. In
other words, wpw;;rvp reconstructs v, well if the noise level €, is small enough.
According to this model, P-NMF can potentially be applied to signal processing
problems where the global signals can be divided into several parts and for each part
the observations mainly distribute along a straight line modeled by aj,w,,. This is
closely related to Oja’s PCA subspace rule,* which finds the direction of the largest
variation, except that the straight line found by P-NMF has to pass through the
origin.

If the columns of W are orthogonal to each other, the above derivation and
non-negativity property can be easily extended to multiple parts because two non-
negative vectors are orthogonal if and only if they do not have the same non-zero
dimensions.

An alternative measurement for the difference (3) is the matrix divergence® of
V from U= WW7”V, which is

mvwzgﬁw%%—m+%) )
D(V||U) is lower bounded by zero, and vanishes if and only if V.= WWTV.
Such a divergence can be viewed as a variant of the Kullback—Leibler divergence
and obtained as a negative log-likelihood under the assumption that each Vj; is
generated by a Poisson distribution with parameter U,;.6

3.2. Optimization rules

We first consider the Frobenius norm of (3). Define the function

1
F=3 > Wi — (WWTV),,1% (8)
,J
Then the unconstrained gradient of F' for W is given by

oF

= —2(VVIW);; + (WWIVVIW),; + (VVIWWIW),;. 9)
j
Using the gradient we can construct an additive update rule for minimization,
oF
Wiy — Wi — iy o, (10)

where 7;; is a positive step size. To guarantee that the elements of W;; remain
non-negative, we choose the step size as
Wi

e . 11
= (WWIVVIW),; + (VVIWWIW),; (11)
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Then the additive update rule (10) can be formulated as a multiplicative update
rule

2(VVTW),;
oy y ) 12
Wi = Wi GWTVVTW),, - (VVIWWTW),, (12)
For the divergence measure (7), the gradient is
OD(VIWWTV)
W3 - Z (WIV)jk + Z Wi Vi
k 1
— > Vi (WTV) 3/ (WWTV)
k
= > Vi > Wi, Vie/ (WWV),. (13)
k 1
Using the gradient, the additive update rule becomes
ID(VIWWTV)
Wij = Wij = Gij oW, : (14)
where (;; is a step size. Choosing this step size as
Wi,
Gij (15)

a Zk ((WTV)jk + Zl VVleik) 7
we obtain the multiplicative update rule

2 Vis(WIV) i /(WWT V)i 4+ 37, Vie 35, Wiy Vie/ (WWTV)

Wi — Wi
! ! ok (WIV)jp + 57, Wi Vik)

(16)

Please notice that (14)—-(16) correct the errors in Ref. 8 which resulted in reversed
order of the numerator and denominator in the multiplicative update rule.

The numerators in (12) and (16) originate from the negative terms in the partial
derivative while the denominators from the positive ones. Iteratively applying the
multiplicative update rules actually implements a kind of Hebbian learning. The
entries of W with the partial derivative larger than zero will be awarded an ampli-
fied factor, whereas those with negative partial derivative will be squeezed to zero.
In the terms of neural networks, this can be interpreted as a competition between
the elements, both within a neuron and across the neurons. In the matrix case,
more than one neuron compete for the energy from the objective function, and the
normalized Hebbian learning forces that only one of them wins over all the oth-
ers. This leads to high orthogonality between the learned base vectors. Therefore,
although the optimization of P-NMF does not involve an explicit orthogonalization
step, the resulting matrix W has high sparsity, locality and orthogonality.

However, the plain Hebbian learning may cause some entries of W to blow up
after a large number of iterations, and stabilizing the basis is therefore required.



1358 Z. Yang, Z. Yuan & J. Laaksonen

Suppose w;, i = 1,...,r, are the base vectors of P-NMF. We normalize them after
each multiplicative update (12) or (16) by

W W/ mae{ . (1)

The norms of all base vectors are not necessarily unitary after each iteration,
but we will show later that most base vectors will get close to the unit sphere after
sufficient learning.

4. Experiments

We have used the FERET database of facial images.® After face segmentation,
2409 frontal facial images (poses “fa” and “fb”) of 867 subjects were stored in the
database for the experiments. For the study we have obtained the coordinates of
the eyes from the ground truth data of the FERET collection and calibrated the
head rotation so that all faces are upright. All face boxes were normalized to the
size of 32x32, with fixed locations for the left eye (26,9) and the right eye (7,9).
We used the optimization rules (16) and (17) with the Kullback—Leibler divergence
norm in all the following experiments.

4.1. Learning base components

The base images of NMF and P-NMF with r» = 16 are shown in Fig. 1. Each base
component consists of 32x32 pixels and corresponds to a column in the resulting
matrix W. Brighter pixels correspond to larger values in the basis. All the images
are displayed with the matlab command “imagesc” without any extra processing.
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Fig. 1. NMF (left) and P-NMF (right) bases of 16 dimensions.
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The base components of P-NMF are spatially more localized and nonoverlapped.
P-NMF clearly divides a facial image into several facial parts such as the lips and
eyebrows. In contrast, the base images of NMF are more holistic and their visible
parts are clearly overlapped.

4.2. Orthonormality tests

Two non-negative vectors are orthogonal if and only if they do not have same
non-zero dimensions. Hence, the orthogonality between the learned base vectors
reveals the sparsity of the resulting representations and, in turn, the localization
for facial images. Suppose the normalized inner product between two base vectors
w; and w; is

T
1

R = —4 9 _
o lwillllw

(18)
Then the orthogonality of the basis can be quantified by the following p
measurement:

p=R=T[/(r(r 1)), (19)

where || - || refers to the Frobenius matrix norm. Smaller p’s indicate higher orthog-
onality and p reaches 0 when the columns of W are completely orthogonal.

Figure 2(a) shows the resulting p’s of P-NMF and NMF with 16 dimensions.
NMF converges to a local minimum with p = 0.367 while P-NMF learns W with
p = 0.022 after 3000 iterations. We also trained P-NMF with different random seeds
for the initial values of W and the results are shown in Fig. 2(b). It can be seen
that P-NMF converges with very similar curves. That is, the high orthogonality
obtained by P-NMF does not take place by accident and is not sensitive to the
initial values.
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Fig. 2. p values of (a) P-NMF and NMF with 16 dimensions and (b) P-NMF with four different
random seeds.



1360 Z. Yang, Z. Yuan & J. Laaksonen

80

70t 1
60| 1
501 ]
40t 1
30f 1
20f
10+

% Y ‘ ‘ OE 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7
norm of the basis

number of the bases

Fig. 3. Histogram of the norms of the P-NMF base vectors after 20,000 iterations.

Next, we demonstrate that most base vectors approach the unit norm after suf-
ficient training. We have again used the same faces, but set r = 256 for convenient
histogram plotting. The results are shown in Fig. 3, from which we can clearly see
that most norms are between 0.8 and 1. The simple normalization rule (17) guar-
antees that the base vectors do not blow up, and together with the multiplicative
updates, finally forces the base vectors close to the unit sphere.

4.3. Classification

In this section we demonstrate an application of P-NMF and NMF which serves
as a preprocessing step before discriminative learning. The resulting coefficients of
P-NMF and NMF are further projected to a one-dimensional subspace created by
Fisher’s Linear Discriminant Analysis (LDA). 1204 images are used in the LDA
training and 1,205 for testing. LDA outputs only scalar values to discriminate
whether the person in the image has mustache (256 images) or not (2153 images).
Afterwards, a threshold is used to divide the values into two classes such that the
misclassification error rates on both classes are equal. The resulting equal error rate
(EER) for the procedure using P-NMF is 16.06% while for NMF it is 19.18%.

We also found that in some cases P-NMF can approach or even outperform
PCA. Because the features generated by P-NMF with different r’s represent the
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information of the image in different resolutions, we can follow the idea of
wavelet decomposition by concatenating the coefficients from multiple levels before
input to LDA. We tested the classification of gender using P-NMF with {r =
9,16, 25, 36,49, 64, 81} coeflicients and the compared it with PCA of 9 + 16 + 25 +
36 +49 4 64 + 81 = 280 principal components. The EER of the gender classification
is 15.27% with P-NMF features and 16.72% with PCA.

5. Conclusions

We have proposed a new variant of NMF, which differs from the original method
in two aspects. Firstly, the product QH is replaced by WW?'V. This corresponds
to an easily interpreted model and implies its suitable application range. Secondly,
W is normalized by a single scalar in each iteration. Unlike NMF, where the base
vectors are individually normalized by their vector sum, our scaling method does
not break the relationship between the base vectors during the optimization.

The empirical results have shown that P-NMF is able to learn highly localized
and part-based representations of facial images. The optimization turned out to
be insensitive to the initial values. Compared with other variants of NMF, our
derivation is more straightforward and the algorithm can be implemented more
efficiently. In addition, the model is ready to be extended to nonlinear cases, for
example, by generalizing the dot product between base vectors and input signals
to other kernel functions.
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