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Scheduling Sensors by Tiling Lattices∗

Andreas Klappenecker, Hyunyoung Lee, and Jennifer L. Welch

Abstract

Suppose that wirelessly communicating sensors are placed in a regular fashion on the points of a lattice.

Common communication protocols allow the sensors to broadcast messages at arbitrary times, which can

lead to problems should two sensors broadcast at the same time. It is shown that one can exploit a tiling

of the lattice to derive a deterministic periodic schedule for the broadcast communication of sensors that is

guaranteed to be collision-free. The proposed schedule is shown to be optimal in the number of time slots.

Keywords: distributed computing, scheduling sensors, lattice tiling, wireless communication.

1 Introduction

Sensors are sometimes distributed in a regular fashion to monitor an area. We assume that the sensors use

wireless communication. Most wireless communication protocols allow the sensors to send at arbitrary times.

However, this can cause the following collision problems : If two distinct sensors A and B send at the same time

and B is within the interference range of A, then frequently hardware limitations prevent B from receiving the

message of A correctly. In addition, if two distinct sensors A and B send at the same time and a sensor C is

within interference range of both A and B, then C will not be able to correctly receive either message. In these

cases, the sensors A and B need to resend their messages, which is evidently a waste of energy.

Let us assume that the sensors have access to the current time, represented by an integer t. One can assign

each sensor node an integer k and set up a periodic schedule such that a node with integer k is allowed to

broadcast messages at time t if and only if t ≡ k (mod m). The goal of this paper is to give a convenient

combinatorial formulation using lattice tilings that allows one to assign optimal schedules with minimal number

of time slots m such that no two sensors that are scheduled to broadcast simultaneously have intersecting

interference ranges; we call such schedules collision-free.

Related Work. Since most communication protocols for wireless sensor networks are probabilistic in nature,

there exist few prior works that are directly related to our approach. However, there exist a few notable

exceptions that we want to discuss here.
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Texas Higher Education Coordinating Board grant ARP-00512-0007-2006.
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Suppose for the moment that we are given a finite set of k sensors that share the same frequency band

for communication. The simplest way to ensure that the communication will be collision-free, is to use a time

division multiple access (TDMA) scheme. Here each of the k sensors is assigned a different time slot and

scheduling is done in a round robin fashion. Because of its simplicity, this scheme is used in many systems, see

e.g. [8, Chapter 3.4]. The obvious disadvantage of TDMA is that it does not scale: If the number k of sensors

is large, then the sensors cannot communicate frequently enough.

The basic TDMA scheme does not take advantage of the fact that each sensor typically affects only small

number of neighboring sensors by its radio communication. This prompts the question whether one can modify

the TDMA scheme and find a schedule with m time slots that is collision-free. To answer this question, consider

a directed graph that has a node for each sensor and an edge from vertex v to vertex u if and only if u is affected

by the radio communication of v. A valid schedule with m time slots corresponds to a distance-2 coloring

with m colors, that is, all vertices of distance ≤ 2 must be assigned a different color (= time slot) to avoid

collision problems. Therefore, the number of time slots m of an optimal collision-free schedule coincides with

the chromatic number of a distance-2 coloring. The distance-2 coloring problem is also known as the broadcast

scheduling problem in the networking community.

McCormick has shown that the decision problem whether a given graph has a distance-2 coloring with m

colors is NP-complete [6]. Lloyd and Ramanathan showed that the broadcast schedule problem even remains

NP-complete when restricted to planar graphs and m = 7 time slots [5].

Due to these intractability results, much of the subsequent research focused on heuristics for finding opti-

mal schedules; for instance, Wang and Ansari used simulated annealing [12], and Shi and Wang used neural

networks [9] to find optimal schedules. Another popular direction of research are approximation algorithms for

broadcast scheduling algorithms, see e.g. [7].

Contributions. The main contributions of this paper can be briefly summarized as follows (the terminology

is explained in the subsequent sections):

1) We develop a method that allows one to derive an optimal collision-free schedule from the tiling of a lattice.

2) Our scheme scales to an arbitrary number of sensors; in fact, we formulate our schedules for an infinite

number of sensors. Schedules for a finite number of sensors are obtained by restriction, and these schedules

remain optimal under very mild conditions (given in the conclusions).

3) Our assumption on the set of prototiles ensures that an optimal schedule is obtained regardless of the chosen

tiling. In Section 4, we show that if our assumption on the set of prototiles is removed, then in general one

will not obtain an optimal schedule.

We formulate our results for arbitrary lattices in arbitrary dimensions, since the proofs are not more complicated

than in the familiar case of the two-dimensional square lattice. For the square lattice, there are polynomial-time

algorithms available to check whether a given prototile can tile the lattice; thus, despite the fact that finding

optimal schedules is NP-hard in general, one can use our method to easily construct optimal schedules in the case
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of a single prototile. This method of creating simple instances of an NP-hard problem might be of independent

interest.

2 Lattice Tilings and Optimal Schedules

A Euclidean lattice L is a discrete subgroup of Rd that spans the Euclidean space Rd as a real vector space.

In other words, there exist d vectors {v1, . . . , vd} in L that are linearly independent over the real numbers such

that

L =

{

d
∑

k=1

akvk

∣

∣

∣

∣

∣

ak ∈ Z for 1 ≤ k ≤ d

}

,

and for each vector v in L there exists an open set containing v but no other element of L. In particular,

the group L is isomorphic to the additive abelian group Zd. Two examples of lattices in two dimensions are

illustrated in Figure 1.

0 v1

v2 v1+v2

0 u1

u2 u1+u2

Figure 1: The figure on the left shows part of the square lattice LS = Z2 that is generated by the vectors v1 = (1, 0)

and v2 = (0, 1). The figure on the right shows the hexagonal lattice LH that is generated by the vectors u1 = (1, 0) and

u2 = ( 1
2
, 1

2

√

3).

Our goal is to find a deterministic collision-free periodic schedule for sensors located at the points of a lattice

L that is optimal in the number of time slots, i.e., no periodic schedule with a shorter period can be found that

is collision-free.

We call a finite subset N of L a prototile or a neighborhood of the point 0 if and only if it contains 0 itself.

The particular nature of N will be determined for instance by the type of antenna and by the signal strength

used by the sensor. The elements in N are the sensors affected by wireless communication of the sensor located

at the point 0 (that is, only the elements in N are within interference range of the sensor located at the point

0). We will first assume a homogeneous situation, namely the neighborhood affected by communication of the

sensor located at a point t in L is of the form t + N = {t + n |n ∈ N}, where the addition denotes the usual

addition of vectors in Rd. The set t+N contains t, since 0 is contained in N . Some examples of neighborhoods

N are given in Figure 2.

Our schedule will be a deterministic periodic schedule, that is, each sensor is assigned a certain time slot and

it is only allowed to send during that time slot. Since our schedule is required to be free of collision problems,

it follows that the sensors located at distinct points s and t in L cannot broadcast at the same time unless

(s+N) ∩ (t+N) = ∅.
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0 0 0

Figure 2: The three figures illustrate some possible shapes of the neighborhood N of 0. The elements in N are marked

by small crosses. The left figure is a ball of radius 1 in the Chebycheff (or ℓ∞) metric. The figure in the middle is a ball

of radius 1 in the Euclidean (or ℓ2) metric. The figure on the right provides an example of a neighborhood where the

sensor at 0 uses a directional antenna.

Let T denote a subset of L. We say that T provides a tiling of L with neighborhoods (or tiles) of the form

N if and only if the following two conditions hold:

T1.
⋃

t∈T
(t+N) = T +N = L,

T2. (s+N) ∩ (t+N) = ∅ for all distinct s, t in T .

The set T contains all the vectors that translate the prototile N . Condition T1 says that the whole lattice L is

covered by the translates t+N of the prototile N , when t ranges over the elements of T . Condition T2 simply

says that the translates of the tile N do not overlap.

The tilings provide us with an elegant means to construct an optimal deterministic schedule.

Theorem 1. Let T be a tiling of a Euclidean lattice L in R
d with neighborhoods of the form N . Then there

exists a deterministic periodic schedule that avoids collision problems using m = |N | time slots. The schedule

is optimal in the sense that one cannot achieve this property with fewer than m time slots.

Proof. Suppose that N = {n1, . . . , nm} is the neighborhood of 0. For k in the range 1 ≤ k ≤ m, we schedule

the sensors located at the points nk + T at time t ≡ k (mod m). We first notice that each sensor located at a

point in L is scheduled at some point in time, since N + T = L by property T1 of a tiling.

Seeking a contradiction, we assume that the schedule is not collision-free. This means that at some time k

in the range 1 ≤ k ≤ m there exist sensors located at the positions nk + s and nk + t with distinct s and t in T

such that (nk + s+N)∩ (nk + t+N) 6= ∅. However, this would imply that (s+N)∩ (t+N) 6= ∅ for distinct s

and t in T , contradicting property T2 of a tiling. It follows that our schedule is collision-free.

It remains to prove the optimality of the schedule. Seeking a contradiction, we assume that there exists

a schedule with m0 < m time slots that is collision-free. This means that for some time slot k in the range

1 ≤ k ≤ m0 two elements n′ and n′′ of N must be scheduled. However, this would imply that the element

n′ + n′′ is contained in both sets (n′ +N) and (n′′ +N), contradicting the assumption that the schedule with

m0 time slots is collision-free.

We illustrate some aspects of the proof of the previous theorem in Figure 3.
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Figure 3: The figure on the left illustrates the previous theorem using a tiling with the neighborhood N given by the

rightmost example of Figure 2. Each of the eight elements of N is assigned a time slot from 1 to 8, the translated versions

t+N with t in T have the time slots at the corresponding translated positions. As a result, the broadcast during time

slot 1 affects only the neighborhoods shown in the tiling depicted by the figure. The figure on the right shows one dashed

neighborhood of a sensor broadcasting during time slot 2. Considering the neighborhoods of all sensors broadcasting

during time slot 2 one obtains once again a tiling, namely the tiling of LS obtained by right shifting the (solid gray)

neighborhoods of the sensors broadcasting during time step 1.

3 Existence of Tilings

Our concept of tiling a lattice with translates of a prototile N turned out to be convenient for our purposes. In

this section, we relate the tilings of a lattice to tilings of the Euclidean space Rd, so that we can benefit from

the large number of results that are available in the literature.

Any tiling of a lattice L can be converted into a tiling of Rd as follows. Let K denote the union of the closed

Voronoi regions about the points in N . Then the translates t+K with t in T yield a tiling of Rd. Conversely,

any tiling of Rd with translates of a tile consisting of the union of Voronoi regions of points in L evidently yields

a tiling of the lattice L in our sense. Figure 4 shows some two-dimensional examples of Voronoi regions.

Figure 4: (a) The figure on the left shows that the Voronoi region about a point in the square lattice LS is given

by a square of unit length; a tile K in the plane obtained by a union of unit squares about points in LS is called a

quasi-polyomino. (b) A Voronoi region about a point in the hexagonal lattice LH is a hexagon; a tile K in the plane

obtained from a union of these Voronoi-hexagons about points in LH is called a quasi-polyhex.

The union of Voronoi regions about points in a lattice are also known as quasi-polyforms. A quasi-polyform

that is homeomorphic to the unit ball in Rd is known as a polyform. The books by Grünbaum and Shepherd [4]

and by Stein and Szabó [10] contain numerous examples of tilings obtained by translating quasi-polyforms (and

especially polyforms). The polyforms in the square grid LS = Z2 are called polyominoes, the most well-known

type of polyforms; see Golomb’s book [3]. By abuse of language, we will also refer to a prototile N in LS as a

polyomino if the union of the Voronoi regions of N form a polyomino.
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A prototile N in a lattice L that admits a tiling is called exact. It is natural to ask the following question:

Q1. When is a given prototile N exact, i.e., when does there exist a subset T of L such that the conditions T1

and T2 are satisfied?

Beauquier and Nivat gave a simple criterion that allows one to answer Q1 for polynominos in the square lattice

LS . Roughly speaking, their criterion says that if N can be surrounded by translates of itself such that there

are no gaps or holes, then N is exact; see [1] for details. In particular, it immediately follows that each prototile

shown in Figure 2 is exact.

Algorithmic criteria for deciding the question Q1 are particularly interesting. For polyominoes in the square

lattice LS, one can decide this question in time polynomial in the length of the boundary of the polyomino

(described by a word over the alphabet {u, d, l, r}, which is short for up, down, left, and right), as Wijshoff

and van Leeuwen have shown [13]. The characterization of exactness of a polyomino by Beauquier and Nivat

[1] mentioned above leads to an O(n4) algorithm, where n is the length of the word describing the boundary.

Recently, Gambini and Vuillon [2] derived an improved O(n2) algorithm for this problem.

Less is known for arbitrary (not necessarily connected) prototiles in a general lattice. Szegedy [11] derived

an algorithm to decide whether a prototile N in a lattice L is exact assuming that the cardinality of N is a

prime or is equal to 4.

4 Generalization to Several Prototiles

We have seen that the conditions for tiling a lattice with a single prototile are somewhat restrictive. For example,

we might want to allow different rotated versions of the tile if the radiation pattern of the antenna used by

a sensor is asymmetrical. We might want to consider different tiles corresponding to various different signal

strength settings. Furthermore, we might want to allow sensors with various different styles of antenna.

We can accommodate all these different situations by allowing translates of several prototiles instead of just

a single one. In this section, we show that one can still obtain an optimal periodic schedule which guarantees

that the schedule is collision-free, as long as sensors of the same type and setting are deployed within each tile

and a constraint on the tiles is satisfied.

Let L be a lattice in Rd. Let N1, . . . , Nn be prototiles in the lattice L, that is, Nk is a subset of L that

contains 0 for 1 ≤ k ≤ n. Let T1, . . . , Tn be pairwise disjoint nonempty subsets of L. We say that T1, . . . , Tn

provide a tiling of L with prototiles N1, . . . , Nn if and only if the following two conditions are satisfied:

GT1.

n
⋃

k=1

⋃

tk∈Tk

(tk +Nk) =

n
⋃

k=1

(Tk +Nk) = L.

GT2. For all k, ℓ ∈ {1, . . . , n}, we have (sk +Nk)∩ (tℓ +Nℓ) = ∅ for all sk in Tk and tℓ in Tℓ such that sk 6= tℓ.

Condition GT1 ensures that the lattice L is covered by translates of the prototiles N1, . . . , Nn. Condition GT2

ensures that two distinct tiles will not overlap. The set Tk contains all vectors that are used to translate the

tile Nk, that is, the set {tk +Nk | tk ∈ Tk} contains all shifted versions of Nk that occur in the tiling of L. Since
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the sets T1, . . . , Tn are pairwise disjoint, it is clear that (sk +Nk) ∩ (tℓ +Nℓ) = ∅ whenever k 6= ℓ. Condition

GT2 requires further that the translates of the prototile Nk with elements in Tk do not overlap.

We will call a tiling of L respectable if and only if the prototile N1 contains all other prototiles Nk, that is,

N1 ⊇ Nk for 2 ≤ k ≤ n. If this is the case, then we call N1 the respectable prototile.

Suppose that we are given a tiling T1, . . . , Tn of L respectively with neighborhoods of the form N1, . . . , Nn.

We will assume that the sensors are deployed in the following fashion:

D1. A sensor at location sk in the neighborhood tk +Nk of an element tk in Tk affects precisely the neighbors

sk +Nk by interference, where k is in the range 1 ≤ k ≤ n.

Loosely speaking, condition D1 says that all elements in the neighborhood tk+Nk have neighborhood type Nk.

Theorem 2. Let T1, . . . , Tn be a respectable tiling of a Euclidean lattice L with neighborhoods of the type

N1, . . . , Nn. Suppose that the sensors are deployed according to the scheme D1. Then there exists a deterministic

periodic schedule that avoids collision problems using m = |N1| time slots. The schedule is optimal in the sense

that one cannot achieve this property with fewer than m time slots.

Proof. The periodic schedule is specified as follows. Let N =
⋃n

k=1
Nk = {n1, . . . , nm}. For all ℓ in the range

1 ≤ ℓ ≤ n, we schedule the elements nk + Tℓ at time t ≡ k (mod m) if and only if nk is contained in the

neighborhood Nℓ.

Notice that all elements in L will be scheduled at some point in time by property GT1. Furthermore,

condition GT2 ensures that an element in L is not scheduled more than once within m consecutive time steps.

We claim that this schedule is collision-free. Seeking a contradiction, we assume that two distinct elements in

L are scheduled at the same time, but yield a collision problem. In other words, there must exist integers k and

ℓ in the range 1 ≤ k, ℓ ≤ n, an element n ∈ N such that n is contained in both Nk and Nℓ, and elements sk ∈ Tk

and tℓ ∈ Tℓ with sk 6= tℓ such that (n+ sk +Nk)∩ (n+ tℓ+Nℓ) 6= ∅. This implies that (sk +Nk)∩ (tℓ +Nℓ) 6= ∅

for sk 6= tℓ, contradicting property GT2. Therefore, our schedule is collision-free.

Without loss of generality, we may assume that the point 0 in L has a respectable neighborhood N1 (other-

wise, simply shift the tiling such that this condition is satisfied). Seeking a contradiction, we assume that there

exists a deterministic periodic schedule with m0 < m time slots that is collision-free. It follows that there must

exist two distinct elements n′ and n′′ in N1 that are scheduled at the same time. However, this would imply

that the element n′+n′′ is contained in both n′+N1 and n′′+N1; thus, (n
′+N1)∩ (n′′+N1) 6= ∅, contradicting

the fact that the schedule with m0 time slots is collision-free.

The previous theorem is a natural generalization of Theorem 1. A salient feature of Theorems 1 and 2 is

that the optimal schedule is independent of the nature of the tiling of L.

Notice that one can obtain a collision-free periodic schedule even when there does not exist a respectable

prototile. In fact, the respectable prototile was only used in the last part of the proof of Theorem 2 to establish

the optimality of the schedule. Therefore, one might wonder what will happen in the non-respectable case.
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Let us agree on some ground rules. We would like to maintain the fact that for each translated version

of a prototile the schedule is the same, as this simplifies configuring the sensor network. However, in the

non-respectable case we might have different prototiles of the same size, so we allow that the schedules in the

different prototiles can be independently chosen, as long as this does not lead to collision problems. Figure 5

shows that the number of time steps in an optimal schedule depends on the chosen tiling when the tiling is

non-respectable.
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Figure 5: The figure on the left shows a schedule for a non-respectable tiling with two tetrominos (i.e., prototiles with

4 elements). The tiling contains two Z-shaped tetrominos that are surrounded by S-shaped tetrominos (rotating the

figure clockwise by 90◦ might help identifying the S and Z shapes). The schedule was determined with the algorithm

given in the proof of Theorem 2. It is not difficult (though tedious) to show that this schedule with m = 6 time steps

is optimal. However, if the lattice is tiled in the symmetric fashion shown in the right figure, then the optimal schedule

has m = 4 time steps. Therefore, in the non-respectable case the number of time steps of an optimal schedule depends

on the chosen tiling.

5 Conclusions

We have introduced a deterministic periodic schedule for sensors using wireless communication that are placed

on the points of a lattice. We have shown that the schedule is optimal assuming that there exists a respectable

prototile. A natural question is whether the schedule remains optimal if one restricts the schedule from the

lattice L to a finite subset D of L. This question has an affirmative answer if D contains a translate of the set

N1+N1, as the latter set consists of the respectable prototile N1 and its neighbors, in which case our optimality

proof carries over without change.

Another natural question is whether one can extend the method to the case of mobile sensors. This question

has an affirmative answer. Indeed, one straightforward way is to use our schedule to assign time slots to the

locations rather than to the sensors. Let us assume that the lattice points are spaced fine enough to ensure that

only one sensor is within a Voronoi region of a lattice point. If the time slot k is assigned to a lattice point p,

then a sensor s within the open Voronoi region about p can send at time t if and only if t ≡ k (mod m) and the
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interference range of s fits within the tile of p. Clearly, this yields a collision-free schedule for mobile sensors.

However, it should be stressed that there are many other solutions possible, but a comparison of such methods

is beyond the scope of this paper.
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