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Abstract

We present a biologically motivated architecture for object recognition
that is capable of online learning of several objects based on interaction
with a human teacher. The system combines biological principles such
as appearance-based representation in topographical feature detection hi-
erarchies and context-driven transfer between different levels of object
memory. Training can be performed in an unconstrained environment by
presenting objects in front of a stereo camera system and labeling them by
speech input. The learning is fully online and thus avoids an artificial sep-
aration of the interaction into training and test phases. We demonstrate
the performance on a challenging ensemble of 50 objects.

1 Introduction

The human visual system shows an outstanding capacity for learning and ro-
bust recognition of numerous objects, at a level far superior to all currently
existing technical recognition approaches. A particular feature of human object
perception is the capability of quickly analyzing and remembering completely
unknown new objects. We refer to this ability in this contribution as online
learning, which is of high relevance for cognitive robotics and computer vision.
A typical application domain is to increase the knowledge of an assistive robot
in a changing and unpredictable environment [1, 2]. The capability of learning
online constitutes a fundamental difference to offline learning, since it enables



an interactive process between teacher and learner. The immediate feedback
about the current learning state can induce an instantaneous and active learn-
ing process that reduces the amount of necessary training data and allows an
iterative error correction based on user feedback.

In order to achieve online learning of many complex-shaped objects, we
present a system combining a flexible neural object recognition architecture
with a biologically motivated attention system for gaze control, and a speech
understanding and synthesis system for intuitive interaction. The target is to ob-
tain a flexible object representation system that is capable of high-performance
appearance-based object recognition of complex objects together with a particu-
larly rapid online learning scheme that can be carried out by cooperative training
with a human teacher. A high level of interactivity is achieved by avoiding an
artificial separation into training and testing phase, which is still the state-of-
the-art for most current trainable object recognition architectures. We do this
by using an incremental learning approach that consists of a two-stage memory
architecture comprising a context-dependent sensory memory and a persistent
object memory that can also be trained online.

Previous approaches to fast interactive object learning often had to resort to
simple histogram-based object representations [3], or strong assumptions on the
environment for figure-background separation [4]. We relax many of these con-
straints and do not impose any preconditions on the environment, except that
objects are presented to the system by showing them by hand. To allow online
learning in this difficult scenario, we use a dynamic segmentation approach that
performs a fast figure-ground separation based on an initial stereo-based coarse
object hypothesis. The object recognition architecture is motivated from the
ventral pathway of the human visual cortex and can be applied to arbitrary
complex-shaped objects. Fast online learning can be achieved with this archi-
tecture, because object-specific learning occurs only on the highest levels of the
hierarchical feature detection stages. The lower stages of the model correspond
to earlier and intermediate feature detection stages in the visual cortex and are
trained by sparse coding learning rules [5]. This results in a particularly robust
appearance-based representation of objects using a consistent library of typical
local shape elements. As was shown recently by Serre et al. [7] for a related,
but more biologically detailed model, such visual representation architectures
achieve a highly competitive recognition and detection performance on current
computer vision benchmarks for offline learning.

In the following we review related work in Section 2 and give an overview
over our system in Section 3. In Section 4 we describe the components of the
visual memory in more detail and show results on the performance and learning
behavior in Section 5. We give a discussion in Section 6 and conclude with
Section 7.

2 Related Work

Although offline training of model-free object recognition architectures has be-
come an established technique in pattern recognition and applications, only few
work has been done until now on online learning for complex-shaped objects.
The main problems are poor generalization due to the inherent high dimension-
ality of visual stimuli, and the difficulty to achieve incremental online learning
with standard classifier architectures like multi-layer perceptrons or support
vector machines.



To make online learning feasible, the complexity of the sensorial input has
been reduced to simple blob-like stimuli [8], for which only positions are tracked.
Based on the positions, interactive and online learning of behavior patterns can
be performed. A slightly more complex representation was used by Garcia et
al. [9], who have applied the coupling of an attention system using features like
color, motion, and disparity with a fast learning of visual structure for simple
colored geometrical shapes like balls, pyramids, and cubes.

Histogram-based methods are another common approach to tackle the prob-
lem of high dimensionality of visual object representations. Steels & Kaplan [3]
have studied the dynamics of learning shared object concepts based on color
histograms in an interaction scenario with a dog robot. Another model of
word acquisition that is based on multidimensional receptive field histograms
for shape representation and color histograms was proposed by Roy & Pentland
[10]. The learning proceeds online by using a short-term memory for identifying
reoccurring pairs of acoustic and visual sensory data, that are then passed to a
long-term representation of extracted audiovisual objects.

Arsenio [11] has investigated a developmental learning approach for hu-
manoid robots based on an interactive object segmentation model that can
use both external movements of objects by a human and internally generated
movements of objects by a robot manipulator. Using a combination of tracking
and segmentation algorithms the system is capable of online learning of a few
objects by storing them in a geometric hashing representation.

Bekel et al. [12] proposed an approach to supervised online learning for object
recognition, consisting of three stages of vector quantization, local PCA, and a
local linear map classifier. The image acquisition of new object views is triggered
by pointing gestures on a table, and is followed by a short training phase, which
takes some minutes. The main drawback is the lack of an incremental learning
mechanism to avoid the complete retraining of the architecture. The approach
has been integrated in a larger architecture for cognitive vision [13].

Li et al. have presented a system for interactive object learning on a mo-
bile robot that features an elaborated multi-modal dialogue system to enable
context-dependent attention selection using speech references made by the user
[2]. Pointing gestures can be used in combination with speech to perform a color-
based segmentation of objects to be learned. The integration of a classifier for
actually performing object learning was, however, not yet accomplished.

Roth et al. developed an online learning system for the task of person detec-
tion on surveillance camera images [14]. The system employs a reconstructive
model using incremental principal component analysis for autonomously select-
ing positive examples for an online AdaBoost classifier. The same incremental
online AdaBoost was also combined with an adaptive tracking model for the in-
cremental learning of hand-held objects with limited pose variation [15]. In both
settings a static background was assumed and used for object segmentation.

Kirstein et al. [4] have presented an online learning architecture that is op-
erated in a more constrained scenario with defined black background to ease
the figure-ground segmentation. Their focus was the transfer from a short-term
to more condensed long-term memory representation using incremental vector
quantization methods.



Figure 1: Typical training situation. An object is presented within the periper-
sonal space and can be trained or recognized.

3 System Overview

We first describe an overview of the system (see Figure 2) and its key compo-
nents, before we give more details in Section 4.

We use a stereo camera head mounted on a pan-tilt unit, which delivers
left and right image pairs as the visual input. The gaze control of the head
is driven by an independent circuit that combines the cues of motion, color,
and depth for attention-driven selection of the gaze direction. The concept
of peripersonal space [16] is used to establish shared attention on a presented
object during learning. This means that the system will focus its attention on
an object that is presented within a particular short-distance range interval that
roughly corresponds to the biological concept of the manipulation space around
the body (see Figure 1). If nothing is present within this space, the cues of
motion and color/intensity determine the gaze selection of the system. All cues
are based on retinotopic activation maps, and we induce a higher priority for
motion detection with a higher weight of the corresponding map. (see [16] for
more details). A typical sequence of interaction thus consists of first catching
the system attention by waving, which centers the gaze direction towards the
interacting person. In the second step an object can be brought sufficiently
close to the camera to induce learning or recognition of the attended object in
the peripersonal space.

The online learning system is working with the camera output that is gener-
ated according to the gaze selection of the independent attention system. Based
on the current stereo view pair, a depth map is computed that is aligned with
the left camera image. The left camera image and the depth map are passed to
the peripersonal blob detection stage that generates a square region of interest
(ROT), based on the estimated distance of the current object hypothesis. Using
the distance, the apparent size of objects within the ROI can be normalized
with remaining uncertainties due to the limited precision of the depth compu-
tation. The square ROI with distance-dependent size in the original image is
scaled to a size of 144x144 pixels. The gaze selection and size normalization
remove largely the translation and scale variance inherent to the unconstrained
recognition task.

The normalized ROI around the object hypothesis together with the cor-
responding part of the depth map is passed to the figure-ground segmenta-
tion stage of processing, the adaptive scene-dependent filters (ASDF) [17]. The
ASDF method makes no strong assumptions on the objects like e.g. being single-
colored. Based on the depth map, a relevance map is obtained that covers the
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Figure 2: Overview of the visual online learning architecture. Based on the
depth estimation, an object is selected and segmented. The segment is passed
through the visual feature hierarchy and subsequent views of the current context
are stored in the sensory memory. Transfer to the object memory is guided by
speech-based feedback.

object only coarsely with considerable overlap to the background. For each
pixel location in the ROI, a local feature vector is computed based on RGB
color channels, depth, and pixel position. Using a dynamic vector quantization
model, first an unsupervised segmentation is computed using the local feature
vectors in the ROI as input ensemble. Then the input image is segmented ac-
cording to the mapping to the Voronoi cells of the found vector quantization
centers. Due to a sufficient number of centers, we obtain an oversegmentation
and can then select object segments as those that are sufficiently contained
within the relevance map (see [17] for more details). The method obtains an in-
trinsic stability by continuously iterating the vector quantization based on state
of the previous frame. We additionally use skin color detection [18] to remove
parts of the hand that hold the object. The output of the ASDF stage is a mask
describing the current figure-ground hypothesis on the ROI.

The selected ROI and the segmentation mask from the ASDF stage are fed
into the model of the ventral visual pathway of Wersing & Korner [5] to obtain
a complex feature map representation that is based on 50 shape and 3 color
feature maps. The color channels are downsampled images in the three RGB
channels. The output is a high-dimensional view-based representation of the
input object which is passed to the higher object memory representation stages
for learning and recognition.

To allow a particularly interactive online learning, we use a memory con-
cept that is separated into a sensory memory carrying the currently attended
object and a persistent memory that carries consolidated and consistently la-
beled object view representations. As long as an object is presented within the
peripersonal space and has not been labeled or confirmed, the obtained feature
map representations of views are stored incrementally within the sensory mem-
ory. At the same time, all newly appearing views are being classified using the
persistent object memory. If the human teacher remains silent, then the system
will either generate a class hypothesis or reject the presented object as unknown
and verbalize this using the speech output module. The human teacher can con-



firm the hypothesis or make a new suggestion on the correct object label. As
soon as feedback by the teacher is available, the learning architecture starts the
concurrent transfer from the sensory memory buffer into the consolidated ob-
ject memory. This extends over the whole history of collected views during the
presentation phase and also proceeds with all future views, as long as the object
is still present in the peripersonal space. The labeling of the current object can
be done by the teacher at any time during the dialogue and is not restricted to
being a reaction on a class hypothesis of the recognition system. The concept of
a context-dependent memory buffer avoids a separation into training and test-
ing phases. The transfer from the sensory to the object memory is sufficiently
fast to remain unnoticed to the human trainer and the learning success can be
immediately tested, allowing for a real online learning interaction.

The speech input and output is very important for the intuitive training
interaction with the system. We use a system [19] with a headset, which is the
current state-of-the-art for speaker-independent recognition. The vocabulary of
object classes is specified beforehand. To be able to label arbitrary objects we
also use wildcard labels such as “object one”, “object two” etc.

4 Object Memory Representation

In the following we describe in more detail the main components of the ob-
ject memory and recognition system. For a more detailed description of the
attention, gaze selection and stereo processing system we refer the reader to
[16].

4.1 Hierarchical Feature Processing

The output of the ASDF figure-ground segmentation stage is a binary mask
signal m®8 that is combined with the candidate ROI image I (of size 144x144
pixels) and fed into the hierarchical model of the ventral visual pathway devel-
oped by Wersing & Korner [5]. To obtain invariance against rotations in the
image plane, which is normally a problem for appearance-based recognition, we
determine the principal axes of the figure-ground mask and rotate the ROI and
mask aligned with the horizontal direction. This normalization introduces much
better robustness for the recognition of elongated objects like e.g. bottles.

The rotation-normalized ROI is processed using a hierarchy of feature de-
tection and pooling stages that achieves a robust appearance-based represen-
tation of an object view as a collection of several sparsely activated feature
map representations (see Figure 3). Starting from an RGB input color image
I, = (IF 1%, 1B), we compute an intensity image I} = 1/3 IF +1/31¢ +1/3 15.
The first feature-matching stage S1 consists of four orientation-sensitive odd
Gabor filters, a Winner-Takes-Most competition between features at the same
position and a final threshold function. We adopt the notation that vector in-
dices run over the set of neurons within a particular feature plane of a particular
layer. To compute the response ¢! (z,y) of a simple cell in the first layer S1,
responsive to Gabor type [ at position (z,y), first the image vector I’ is mul-
tiplied with a Gabor filter w! (z,y), and pointwise multiplied with the binary
segmentation mask m*8(z,y) € {0,1}:

ai(z,y) = [wi(z,y) « I'| - m*5(z,y). (1)

The inner product is denoted by *, i.e. for a 144 x 144 pixel image I and w! (z, )
are 20736-dimensional vectors. We apply the masking after the edge detection,
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Figure 3: Hierarchical object representation and object memory. Based on a
ROI with additional segmentation mask, the input is processed in a sequence of
topographically organized feature detection (S1,52) and pooling stages (C1,C2).
The object memory provides an exemplar-based representation of views embed-
ded in the high-dimensional C2-feature space.

to avoid the occurence of spurious edges at wrong segmentation borders. In a
second step, a soft Winner-Takes-Most (WTM) mechanism is performed with

(2)
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where M = maxy, ¢¥(x,y) and r}(z,y) is the response after the WTM mech-
anism which suppresses sub-maximal responses. The parameter 0 < v < 1
controls the strength of the competition. The activity is then passed through a
simple threshold function with a common threshold 6, for all cells in layer S1:

hll(xvy) :H(Tll(x’y) _91)7 (3)

where H(z) = 1 if > 0 and H(x) = 0 else and h}(z,y) is the final activity of
the neuron sensitive to feature [ at position (x,y) in the S1 layer. The activities
of the first layer of pooling Cl-cells are given by

ci(z,y) = tanh (g1(z,y) *s}), (4)

where g1 (z,y) is a normalized Gaussian pooling kernel with width o1, identical
for all features [, and tanh is the hyperbolic tangent function. From S1 to C1
we perform a four-fold resolution reduction in x and y directions.

The features in the intermediate layer S2 are sensitive to local combinations
of the features in the planes of the previous layer, and are thus called com-
bination cells in the following. We use 50 features that were trained using a
sparse coding unsupervised learning approach (see [5]), and which provide an
efficient representation of the combined local edge feature responses. We in-
troduce the layer activation vectors as ¢; = (ci,...,cf), wl = (whl, ..., wiF)
with K=4. Here wif(x,7) is the receptive field vector of the S2 cell of feature
[ at position (z,y), describing connections to the plane k of the previous C1
cells. The combined linear summation over previous planes is then given by



¢s(z,y) = wh(z,y) * ;. After the same WTM procedure with strength v, as
in (2), the activity in the S2 layer is given by hb(x,y) = H(r\(z,y) — 02) after
thresholding with a common threshold #3. The step from S2 to C2 is analo-
gous to (4) and given by ch(x,y) = tanh(ga(x,y) * s5), with Gaussian spatial
pooling kernel ga(x,y) with range o2 and two-fold reduction in x and y dimen-
sion. The final resolution is 18x18 for each C2 feature map. As was shown
before, the output of the feature representation of the C2 feature layer can be
used for robust object recognition that is competitive with other state-of-the-art
models, when offline training is being used [5]. The free parameters are chosen
as 71 = 0.9,0; = 03,01 = 4,7 = 0.9,0, = 0.75,00 = 2, according to the
optimized choice evaluated in [5].

The efficiency of the representation is achieved by sparse coding ensuring
that object views are represented using only sparse activation in the high-
dimensional feature space. To represent also coarse color information, the
3 RGB channels are used as a downsampled ROI I; = (IF,1¢,1P) at the
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same resolution of 18x18 as the shape features. We denote the combined
color and shape feature map output as x;(I;) = (c3,...,c3?, IF IF¥ 1P). Al-

though the complete dimensionality of a single view representation x; is thus
(504-3)x18x18=17172, the effective dimensionality is much smaller, due to the
sparsity of the representation vector and the confinement of activation to the
figure-ground mask. Nevertheless it is a key feature of our biologically motivated
visual processing model that robustness, generalization and speed of learning is
not achieved by a dimension reduction as in most other current online learning
models [8, 9, 3, 10, 11, 12, 14]. The key element is a transformation of the input
into a sparse robust feature map representation that captures relevant locally
invariant structures of the objects.

4.2 Sensory and Object Memory

The object representation system for online learning and recognition is sepa-
rated into two subsystems: A sensory memory for temporarily remembering
the currently attend object within focus and a persistent object memory that
integrates all object knowledge incrementally over time.

The high-dimensional output vectors of the feature hierarchy are continu-
ously stored within the sensory memory. The task of this memory is to capture
all current views of an object to be able to use them for transfer to the object
memory when a speech label has been given. This means that also those views
can be used for training that were recorded before a labeling of the object was
obtained from the human trainer, relaxing the constraints on the training di-
alogue. The sensory memory is realized as an incremental vector quantization
model S, which consists of K representative vectors sy € S,k =1,..., K. A
new representative sx 1 = x; is added if the feature map output x;(I;) of the
current input image is sufficiently dissimilar to all current entries in the sensory
memory: ||x; —sg|| > Ts for all k, where Ts is a similarity threshold. The simi-
larity is measured based on FEuclidean distance in the feature map vector space.
Due to the sparsity of the feature map vectors the distance computation can
be very efficiently implemented [4]. If the focus of attention is lost, because the
object is retracted from the peripersonal space, the sensory memory is cleared.

When a labeling signal arrives, because the human teacher has named an
object or has confirmed a hypothesis generated from the object memory, the
information accumulated in the sensory memory is transferred to the object
memory in real time. Here we use the same incremental vector quantization



model. We denote the object memory as a collection of individual object rep-
resentations O,, for object n with M, representatives o' € Oy,l =1,..., M,.
If there are already some views available in the object memory, the comparison
is performed against the already existing representation (see Figure 3). If the
current object is labeled as object m, then for all the vectors in the sensory
memory s; € S, a new object representative o ., = si is added when the
sensory memory representative sy is sufficiently dissimilar to all current entries
in the object memory: ||sy —o]*|| > Tp for alll =1,..., M,,, where Tp is the
object similarity threshold. If the training continues after the labeling signal
was received, and the object remains within the focus of attention, all following
feature map inputs x; are directly passed to the object memory according to
the same dissimilarity criterion with threshold 7.

The main advantage of the template-based representation is that training
is fully incremental and non-destructive with regard to previous information.
This representation can be later condensed and consolidated using additional
learning mechanisms that operate on a slower time scale [4].

Every arriving view is being classified based on the information in the object
memory using a nearest-neighbor classifier (NNC) based on the labeled repre-
sentatives. The corresponding NNC class hypothesis m; of view x; is given by
m; = argmin, (min; [|x; — o}'||). Since the system is running at a sufficient
frame rate, we can use a temporal integration over different views to improve
the classification results considerably. Our results have shown that a majority
voting scheme is particularly efficient in combination with the nearest-neighbor
classification approach in the object memory, since it allows to use more ensem-
ble information of the exemplar-based representation stored in memory. In our
experiments we use a history of 10 classifications and assign the output class
that received most single classification votes. An object is rejected as unknown
if this majority vote is less than 50% or if the mean similarity to the major-
ity representatives, measured in the Euclidean feature space, is below a fixed
threshold.

5 Results

The complete system has been realized on a cluster of one dual processor PC
for gaze control and image capture, one desktop PC running the speech recog-
nition and synthesis system, and one dual processor PC performing all visual
processing and online learning after the gaze selection. The recognition system
is running at a frame rate of roughly 6Hz, which enables interaction and online
learning with direct feedback on the learning result. A generic training scenario
is shown in Figure 1. We have selected a large object set containing 50 objects
for our experiments, shown in Figure 4 with typical ROI views that are deliv-
ered from the attention system. During all experiments the objects were freely
rotated by hand to obtain a strong appearance variation.

5.1 Interactive Training

We visualize the actual time course of the different memory types during a
training session of 18 objects in Figure 5. The plot displays the number of used
representatives in the sensory and object memories together with the training
dialogue (abbreviated, the actual dialogue is a little more elaborate). Starting
from a completely empty object memory, we first perform a training of 10 ob-
jects. In this first phase the system first consistently matches the cola can to the



Figure 4: Overview over the set of 50 objects used for training and testing. The
objects were freely rotated, a changing background is obtained due to the gaze
control fixating the objects.

previously trained “sun cream” object, and thus classifies the cola can initially
as “sun cream”, which is then corrected by the teacher. Due to the similar red-
white color and shape composition the “mini car” is also first confused with the
cola can, and is corrected. Due to the shape similarity the green bottle is first
labeled as blue bottle, which is a reasonable error, as long as no correction signal
is given. After the feedback by the teacher, the system has learned to discrimi-
nate the first 10 objects after 5 minutes of training from many different viewing
angles, which is evaluated directly afterwards. In the second training phase 8
objects are added. The initial confusion occurs quite reasonably between cola
can and a yellow can, another red car and the mini car, a new blue mug and
the first blue patterned mug, and a new blue rubber duck and the initial yellow
one. After the initial training in the second phase, the garlic press and police
car object have to be additionally refined. After that second retraining phase,
all 18 objects are classified from any reasonable viewing angle without further
€rrors.

An important property of the system is that learning occurs most of the time
and is not separated into artificial training and testing phases. This can be seen
from the time course in Figure 5, where during the first evaluation of the first
10 objects between 320s and 420s the object memory is still expanding, due
to the confirmation signals of the human teacher on the system classifications.
The same applies to the second evaluation and error correction phase between
640s and 850s. The complete duration of the session until no further recognition
errors are encountered is about 12 minutes. This highlights the gain in learning
speed that can be achieved due to the active error correction process during
learning. When the object memory is enlarged over time, we encounter a slight
slowing down of the system frame rate from 6Hz to approximately 4Hz, since
the comparison to the memory takes longer.

5.2 Recognition Performance

In Figure 6 we show plots of the recognition performance versus training time
during online learning. For this evaluation we train 49 objects from our training

10



Number Representatives

500 T O Ix = ) T =) T ) T
o E 2 g 5 2 3 & g2 x5 8 x5
450—§§§§ 52 S & g S S5 S g < $8 s c 8 ég,
400w2«sm§;§9 S 3 % ¥x%2¢G5 o & o8 2x ¥ 85§
= 5 3 cQ 3 o) c2 23 T =2 o & IS =
28333 256 2 E 9% $EBzhs ¢ & L & ¥ &L
350+ ® O o s =
cc® ¢ ¢ IS E c c 2 gcﬂ’ zgjcc:@: L 2 2 c s ‘_c%\
308 35 2 32 §8 2 5 E 2583598 § §E =3 5. 3888
2 2 2 8 & o & 2 o 2L g = o © 2 Soc SO0
EEZS 2 2 882 2 S3gesEcg E S 3 E oS08 g2BE
b S& 55 8as5 5 o admmEdeEsS60 S @ S5 5 SmsS
200+ / {
150 | r% -
1001 : ; 4 ‘
i / M /} I
ul AMMAWW /l AN /ol i
200 600 700 800

300
T| me (seconds)

A

Red car Patternmug Blue duck Police car

Garlic press  Pliers Brush  Yellow can

Figure 5: Temporal learning dynamics during a training session for 18 objects.
The plot shows the number of representatives for the sensory memory (“saw-
tooth” at bottom of plot) and representatives for each object in the object mem-
ory over time. The corresponding training dialogue is stated synchronously at
the top. The top row states the given labels by the human trainer, while the
bottom row gives the classification results of the system, before a human label-
ing is given. Errors of the system are printed in bold italics. From 0 to 310s
the first 10 objects are trained, the recognition of these 10 objects is evaluated
from 320s to 420s without any errors. From 420s to 730s another 8 objects are
added, and all 18 objects are checked after 730s without errors.

set of 50 objects that was generated by storing 300 views per object from a typ-
ical training session. Then the 50th object is trained in steps of 10 images (1.67
sec in Figure 6) and a testing step is performed. The test is done by classifying
a completely disjoint test set of 100 views per object that was collected using a
different person. Test performance is measured over all 100 test images of the
currently trained object giving the classification rate as percentage of correctly
recognized objects at this point of online learning. Then training proceeds un-
til all 300 training images are used. The plots in Figure 6 show the resulting
classification rate, averaged over an ensemble of experiments, where each of the
50 objects was one time the final object.

We compare in Figure 6 the conditions of either using ASDF segmentation,
ASDF segmentation with subsequent rotation normalization, and no segmenta-
tion. Each of the three settings is plotted with and without temporal integration
with voting over a past history of 10 classifications. The results demonstrate
that due to the cluttered background, training with the ASDF speeds up learn-
ing considerably and gives a signigicantly higher recognition rate. Performing
the rotation normalization gives a further small gain in performance. The con-
tribution of the temporal integration is much more substantial, and reduces the
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Figure 6: Recognition performance versus training time. The plot shows the av-
erage test performance for training the 50th object after 49 objects were already

trained. We compare segmentation, rotation normalization, and unsegmented
performance with and without temporal integration.

error rate to about one half for training times larger than 30 seconds for both
segmented and rotation-normalized cases.

To investigate the scaling of the architecture with the number of objects, we
show in Figure 7 a plot of the final performance after training for 80 seconds
(corresponds to 300 training views), when we vary the number of objects from
5 to 50. Again we compare all the settings that were already described for
the plot in Figure 6 and the qualitatively observable gains of segmentation and
temporal integration are similar. For the best setup we obtain a slow decrease
of classification rate from 100% for 5 objects till about 90% for 20 objects. From
20 to 50 objects the performance stays roughly at about 90% correct, with small
fluctuations induced by the different difficulty levels of the objects. This shows
that the representational capacity is large enough to capture 50 objects with
their natural appearance variations.

6 Discussion

We have performed an extensive investigation of our online learning architec-
ture using a large ensemble of 50 objects of various different shapes, colors and
textures. Compared to previous approaches to online learning [11, 12, 15] which
were only applied to smaller and limited object ensembles, we could demonstrate
that the capacity of our object representation is sufficiently high to accommo-
date larger numbers of objects. This is caused by the high-dimensional em-
bedding space of our object representation, contrary to other approaches using
dimension reduction for generalization.

An interesting question is the degree of generalization over different envi-
ronment and light conditions that is achieved by our model. We do not impose
particular constraints where objects are presented apart from being within the
peripersonal space around the camera head. This has the consequence that the
overall illumination strength and the direction of light sources is varying in the
object view data. From the observed performance we conclude that our prin-
ciple of hierarchical feature representation like in the human ventral pathway
of visual processing can deal with these modest variations in a robust way. We
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Figure 7: Recognition performance depending on the number of objects. The
plot gives the recognition performance after 80 seconds of training for the test
error of the n-th object after n-1 objects have already been trained. We again
compare segmentation, rotation normalization, and unsegmented performance
with and without temporal integration.

also observed that the online learning system can naturally cope with changes
of environment that are sufficiently similar for training and testing, because the
learned representation is collected consistently according to the present condi-
tions. For the cases of strongly differing light situations between training and
test we observed a graceful degradation of results, with strongly cast shadows
posing the greatest problems for the appearance-based approach we are using.

The final representation for classification is exemplar-based and its complex-
ity increases linearly with the number of training views seen by the architec-
ture. Due to the sparsity of the representation the amount of memory necessary
can be strongly reduced by representing only nonzero feature responses. Nev-
ertheless, if we extend the number of classes by another order of magnitude,
such an exhaustive storage becomes infeasible and reaches the limits of current
standard computer memory systems. There is evidence that exemplar-based
representations play an important role in visual object memory (see [20, 21]
for reviews). This poses the question how an appropriate generalization can
be obtained based on the available exemplars. Poggio & Bizzi [21] suggest a
radial basis function-like tuning as a key mechanism of generalization. Kirstein
et al. [4] have proposed an extended memory architecture, that implements a
condensation of the representation into long-term memory by shifting the view
representatives in the embedding space in order to minimize the classification
error. This architecture was, however, not yet implemented for a real-time
application.

The ability to perform online learning in direct interaction makes it possible
to utilize human feedback during training for higher-level control of behavior.
Goerick et al. [22] have integrated the object learning architecture described in
this contribution in a system that autonomously learns new visual behaviors
in interaction. The learning is governed by an internal needs dynamics that
explores new parameterizations of the basic visual interaction loop. The needs
dynamics is fed by an unspecific interaction reward and by the specific reward of
acquiring new views for the object memory. This is an example of coordinated
online learning processes that operate on different time-scales.
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7 Conclusion

We have presented an architecture for online learning of arbitrary objects that
uses aspects of biologically motivated visual processing in an efficient and robust
way. To our knowledge it is the first system that focuses on real online learning
of several objects of arbitrary color and shape and their later robust recognition
in an unconstrained scenario. The representation is based on a neural model of
the ventral pathway and combines a large storage capacity with robustness in
difficult real-world environments. Due to the integration of speech dialogue with
a context-dependent memory architecture we achieve a high level of interactivity
that makes the training procedure simple and intuitive. We consider this as an
important step towards cognitive vision systems for robotics and man-machine
interfaces that gain considerable flexibility by learning.
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