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Abstract. In this paper we study the state complexity of catenation combined with symmetric difference.
First, an upper bound is computed using some combinatoric tools. Then, this bound is shown to be tight
by giving a witness for it. Moreover, we relate this work with the study of state complexity for two other
combinations: catenation with union and catenation with intersection. And we extract a unified approach
which allows to obtain the state complexity of any combination involving catenation and a binary boolean
operation.

1 Introduction

The study of state complexity is a very active research area for about 20 years. Its starting point
is usually dated from 1994 with [22] although some early related works can be cited (especially
[2,15,1]). Initially, was studied the state complexity of individual operations (see, for example,
[11,10] and the survey [7]), then the complexity of combined operations was investigated since
2007. Initiated by [19], it has resulted in numerous articles ([8,12,13], for example). Among them,
we pay special attention to [4] where is studied the combination of catenation with union and
intersection.

In their paper, the authors observe that "the state complexity of a combined operation is not
simply a mathematical composition of the state complexities of its component operations". Indeed,
the state complexity of a regular n-ary operation is a function giving, from n integers standing for
the sizes of minimal and complete DFAs, the maximal states number of a minimal and complete
DFA accepting the resulting language of the operation applied over n languages recognized by the
DFAs whose sizes are given as inputs. And, not surprisingly, when combining two operations, the
language obtained to reach the state complexity of the first applied operation is not necessarily a
relevant input to reach the state complexity of the second operation.

The state complexity of the catenation of a m-states DFA with a n-states DFA is (m− 1)2n +
2n−1 ([22]) and the state complexity of any binary, non trivial, boolean operation of a n-states
DFA with a p-states DFA is np ([7]). In [4] it is proven that the state complexity of catenation
combined with intersection corresponds to the mathematical combination of these complexities:
(m − 1)2np + 2np−1 whereas, when catenation is combined with union, the state complexity falls
down to (m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2. And the authors conclude their paper with the
following question: "Why are the state complexity results on these two very similar combined
operations so different ?" They also mentioned that "although there is only a limited number of
individual operations, the number of combined operations is unlimited".

In this paper we provide some answers to these remarks and interrogations. Indeed, we will see
that the combination L1(L2 ◦ L3) of catenation with any regular, non trivial, binary operation is
equivalent to the combination L1(L op L′) of catenation with either ∪, either ∩ or ⊕ applied to
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languages chosen among L2, L3 and their complements. That is, it is sufficient to know the state
complexities of catenation combined with these three binary operations to obtain all other cases.
Moreover, while studying the only missing combination of the three (catenation with symmetric
difference), it will emerge a unifying approach for the calculus of the three state complexities giving,
by the way, a satisfactory answer to the question concerning the so different obtained complexities.

The article mainly focuses on calculus of the state complexity for the combination of catena-
tion with symmetric difference. In particular, it will need some non trivial combinatorial tools in
addition to the classical automata handling. The next section gives some definitions and notations
about automata and combinatoric. Section 3 contains some specific constructions needed later and
describes more precisely how our approach meets, in standardizing them, the works done for cate-
nation combined with union and intersection. In Section 4, we give an upper bound for the state
complexity of L1(L2 ⊕ L3), assuming the number of some particular objects can be computed. In
Section 5, we show how to compute these objects, curiously connecting our work to well known
numbers in combinatorial area. In Section 6, we build a witness proving the tightness of the bound
given in Section 4. To achieve this work, we use the family of languages defined by Brzozowski in
[3].

2 Background

In all this paper, Σ denote a finite alphabet. The set of all finite words over Σ is denoted by Σ∗.
The empty word is denoted by ε. A language is a subset of Σ∗. The set of subsets of a finite set A
is denoted by 2A and #A denotes the cardinality of A. The symmetric difference is denoted by the
symbol ⊕. We denote by ⊎ the union of disjoint sets. The symbol ◦ denotes any boolean operation
on languages. In the following, by abuse of notation, we often write q for any singleton {q}.

A finite automaton (FA) is a 5-tuple A = (Σ,Q, I, F, ·) where Σ is the input alphabet, Q is a
finite set of states, I ⊂ Q is the set of initial states, F ⊂ Q is the set of final states and · is the
transition function from Q × Σ to 2Q. A FA is deterministic (DFA) if #I = 1 and for all q ∈ Q,
for all a ∈ Σ, #(q ·a) ≤ 1. Let a be a symbol of Σ. Let w be a word of Σ∗. The transition function
is extended to any word by q · aw =

⋃
q′∈q·a q

′ · w and q · ε = q.
A symmetric use of the dot notation leads to the following definition. Let w ·q = {q′ | q ∈ q′ ·w}.

We extend the dot notation to any set of states S by S ·w =
⋃

s∈S s · w and w · S =
⋃

s∈S w · s. A
word w ∈ Σ∗ labels a successful path in a FA A if I · w ∩ F 6= ∅.

In this paper, we assume that all FA are complete which means that for all q ∈ Q, for all a ∈ Σ,
#(q · a) ≥ 1. A state q is accessible in a FA if there exists a word w ∈ Σ∗ such that q ∈ I ·w. The
language recognized by a FA A is the set of words labeling a successful path in A. Two automata
are said to be equivalent if they recognize the same language.

Let D = (Σ,QD, iD, FD, ·) be a DFA. Two states q1, q2 of D are equivalent if for any word w
of Σ∗, q1 · w ∈ FD if and only if q2 · w ∈ FD. Such an equivalence is denoted by q1 ∼ q2. A DFA is
minimal if there does not exist any equivalent DFA with less states and it is well known that for
any DFA, there exists a unique minimal equivalent one [9]. Such a minimal DFA can be obtained
from D by computing the accessible part of the automaton D/∼= (Σ,QD/∼, [iD], FD/∼, ·) where
for any q ∈ QD, [q] is the ∼-class of the state q and for any a ∈ Σ, [q] · a = [q · a]. In a minimal
DFA, any two distinct states are pairwise non-equivalent.

Any nondeterministic finite automaton B = (Σ,Q, I, F, ·) can be converted into an equivalent
DFA A = (Σ,Q′, q′0, F

′, ·) by a classical algorithm called the subset construction [17]. The set of
states is Q′ = 2Q, the initial state is q′0 = I, and the final states are the subsets of Q containing a
state of F , that is F ′ = {q′ ∈ 2Q | q′ ∩ F 6= ∅} .
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Two other classical constructions are the catenation A ·B and the cartesian product A×B of
two automata A = (Σ,QA, IA, FA, ·A) and B = (Σ,QB, IB, FB, ·B).

The catenation A · B is the automaton (Σ,Q = QA ∪QB, I, F, ·) defined by:

– I =

{
IA ∪ IB if IA ∩ FA 6= ∅,
IA otherwise,

– F =

{
FA ∪ FB if IB ∩ FB 6= ∅,
FB otherwise,

– ∀(q, a) ∈ Q×Σ, q · a =





q ·B a if q ∈ QB,
q ·A a ∪ IB if q ·A a ∩ FA 6= ∅,
q ·A a otherwise.

A cartesian product A × B is an automaton (Σ,Q = QA × QB, IA × IB, F, ·) such that
∀((q1, q2), a) ∈ Q × Σ, (q1, q2) · a = q1 ·A a × q2 ·B a. Specifying F , we recover classical opera-
tions like the intersection (F = FA × FB in this case).

The state complexity of a regular language L denoted by sc(L) is the number of states of its
minimal DFA. Let Ln be the set of languages of state complexity n. The state complexity of a unary
operation ⊗ is the function sc⊗ associating with an integer n the maximum of the state complexities
of (⊗L) for L ∈ Ln. A language L ∈ Ln is a witness (for ⊗) if sc(⊗L) = sc⊗(n). This can be
generalized, and the state complexity of a k-ary operation ⊗ is the k-ary function which associates
with any tuple (n1, . . . , nk) the integer max{sc(⊗(L1, . . . , Lk))|Li ∈ Lni

, ∀i ∈ [1, k]}. Then, a
witness is a tuple (L1, . . . , Lk) ∈ (Ln1 × · · · × Lnk

) such that sc(⊗(L1, . . . , Lk)) = sc⊗(n1, . . . , nk).
An important research area consists in finding witnesses for any (n1, . . . , nk) ∈ Nk and for any
combination of elementary operations. Obviously,

Claim 1 The state complexity of an operation defined as a composition of more elementary ones
is upper-bounded by the composition of the corresponding elementary state complexities.

For example, let us consider the ternary operation ⊗ defined for any three languages L1, L2, L3

by ⊗(L1, L2, L3) = L1 · (L2 ◦ L3) and let h be its state complexity. Let f, g be the respective state
complexities of · and ◦. For any three integers n1, n2, n3, it holds h(n1, n2, n3) ≤ f(n1, g(n2, n3)).
Moreover, following [4], if ◦ = ∩ then h(n1, n2, n3) = f(n1, g(n2, n3)) whereas, h(n1, n2, n3) <
f(n1, g(n2, n3)) when ◦ = ∪.

In [3], Brzozowski defines a family of languages that turns to be universal witnesses for several
operations. The automata denoting these languages are called Brzozowski automata. We need some
background to define these automata. We follow the terminology of [6]. Let Q = {0, . . . , n− 1} be
a set. A transformation of the set Q is a mapping of Q into itself. If t is a transformation and i an
element of Q, we denote by it the image of i under t. A transformation of Q can be represented
by t = [i0, i1, . . . in−1] which means that ik = kt for each 0 ≤ k ≤ n− 1 and ik ∈ Q. A permutation
is a bijective transformation on Q. The identity permutation of Q is denoted by 1Q. A cycle of
length ℓ ≤ n is a permutation c, denoted by (i0, i1, . . . iℓ−1), on a subset I = {i0, . . . , iℓ−1} of Q
where ikc = ik+1 for 0 ≤ k < ℓ − 1 and iℓ−1c = i0. A k-rotation is obtained by composing k
times the same cycle. In other word, we construct a k-rotation rk from the cycle (i0, . . . , iℓ−1) by
setting ijrk = ij+k mod ℓ for 0 ≤ j ≤ ℓ − 1. A grouping of two elements ij , ik ∈ I is a ((k − j)
mod ℓ)-rotation letting ik unchanged and obtained by iterating (k − j) mod ℓ times the cycle
(i0, . . . , ik−1, ik+1, . . . , iℓ−1). Such a grouping sends ij to ik+1 and ik to ik. A transposition t = (i, j)
is a permutation on Q where it = j and jt = i and for every elements k ∈ Q \ {i, j}, kt = k. A

contraction t =

(
i
j

)
is a transformation where it = j and for every elements k ∈ Q \ {i}, kt = k.
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In any complete DFA (Σ,Q, i, F, ·), any word of Σ∗ induces a transformation over Q. Let
a, b, c, d be distinct symbols of Σ. As an example of Brzozowski automata (see Figure 1), let
Wn(a, b, c, d) = (Σ,Qn, 0, {n− 1}, ·) where Qn = {0, 1, . . . , n− 1}, the symbol a acts as the cycle

(0, 1, . . . , n − 1), b acts as the transposition (n − 2, n − 1), c acts as the contraction

(
1
0

)
and d

acts as 1Qn
.

0 1 2 . . . n− 3 n− 2 n− 1

a a a a a a, b

a

b, c, d b, d b, c, d b, c, d c, d c, d

c b

Fig. 1. The automaton Wn(a, b, c, d)

Consider a discrete set of objects S. The most general way to define formal series is to consider
families of complex numbers indexed by elements of S, A = (αo)o∈S , written formally as infinite
sums A ∼

∑
o∈S αoo ∈ C[[S]], in order to endow the space C[[S]] with an algebraic structure

related to a question that we want to study.
The notion of combinatorial classes (see e.g. [5]) is suited for solving enumeration problems.

Let us recall few basic definitions and properties. A combinatorial class is defined by a map α
from a discrete set S (the objects we want to enumerate) to another discrete set T (the objects
describing a certain statistic on S) such that each set Sλ = {o ∈ S | α(o) = λ} is finite for any
λ ∈ T . The series associated to α is σα =

∑
λ∈T #Sλ[λ].

The most classical examples of such a construction are the (univariate) generating series. In
this case, we have T = N, α represents the size of the objects of S and the generating series is
σα =

∑
n∈N#Sn[n]. In order to solve enumeration problems, we have to endow the space of series

with a product. Typically, most of the enumerations deal with one of the three products

• [n] · [m] = [n+m] (ordinary generating functions)
• [n] · [m] =

(
n+m

n

)
[n +m] (exponential generating functions)

• [n] · [m] = [nm] (Dirichlet generating functions)

according to our initial problem. Depending on the product, one chooses to map basic elements
on the different functions:

• [n] ∼ xn (ordinary generating functions)
• [n] ∼ xn

n!
(exponential generating functions)

• [n] ∼ 1
nx (Dirichlet generating functions).

The products on series implement convolution products on sequences:

• Ordinary generating functions: (αn)n∈N ⋆ (βn)n∈N =
(∑

i+j=n αiβj

)
n∈N

(ordinary convolution)

• Exponential generating functions:

(αn)n∈N ⋆ (βn)n∈N =

(
∑

i+j=n

(n
i

)
αiβj

)

n∈N

(1)

(binomial convolution)
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• Exponential generating functions: (αn)n∈N\{0} ⋆ (βn)n∈N\{0} =
(∑

ij=n αiβj

)
n∈N\{0}

(Dirichlet

convolution).

For instance, the binomial transform of a sequence is interpreted in terms of exponential gen-
erating series by the multiplication by exp(x):

exp(x)
∑

n≥0

αn

xn

n!
=
∑

n≥0

(
n∑

i=0

(
n

i

)
αi

)
xn

n!
. (2)

At the other end, we define the characteristic series S of a set S as S = σId, i.e.
∑

o∈S o where
Id(o) = o denotes the identity on S. In the sequel, we will use characteristic series of languages on
an alphabet X; these series belong to the algebra C〈〈X〉〉 which is endowed with the catenation
product extended by distributivity and continuity.

Between these two extremes, many configurations are possible. We consider the case where
T = N(X), the set of the integers sequences with a finite support (i.e. all the elements of the
sequence are zero except a finite number) indexed by the set X (the set of variables). The series
are realized by commutative variables as follows:

• v ∼
∏

x∈X xv[x] (ordinary multivariate generating functions)

• v ∼
∏

x∈X
xv[x]

v[x]!
(exponential multivariate generating functions)

• v ∼
∏

x∈X
1

v[x]x
(Dirichlet multivariate generating functions).

Alternatively, we can replace a vector v ∈ N(X) by a partition of an integer. A partition of n is
a decreasing finite sequence λ = [λ1, . . . , λk] of strictly positive integers verifying λ1+ · · ·+λk = n;
we will denote this by λ ⊢ n. The number of parts of λ, k in this context, is also denoted by #λ.
The product of two partitions [λ1].[λ2] equals the partition obtained by sorting the catenation of
the two partitions in decreasing order. For instance set λ1 = [2, 2, 1] ⊢ 5 and λ2 = [3, 2, 1] ⊢ 6 then
[λ1].[λ2] = [3, 2, 2, 2, 1, 1]. If X = {x1, x2, . . . } is a discrete alphabet the algebra generated by the
elements [λ] is isomorphic to the algebra obtained by endowing N(X) with the product [v][v′] =
[v + v′] (this corresponds to the ordinary multivariate generating functions). The isomorphism
sends explicitly λ to the vector v such that v[xi] is the number of parts in λ equal to i. For instance
[5, 3, 2, 2, 1, 1] ∼ [2, 2, 1, 0, 1, 0, . . .]. So we can replace the statistic described by vectors of N(X) by
statistic described by partitions.

In the paper we will also manipulate set partitions of {1, . . . , n}. In the aim to avoid confusion
we will denote (integer) partitions by the symbols λ, λi, λ

′, λ′
i etc. and the set partitions by the

symbols π, πi, π
′, π′

i etc. If π is a set partition of a set E, we will denote π � E. For any π′ ⊂ π,
we also denote π′ ⊂� E. When E = {1, . . . , n}, we will write π � n for π � E and π′ ⊂� n for any
subset π′ of π.

3 Preliminaries

There exist 16 binary boolean functions that can be expressed only with the operators ∧, ∨ and
∆ acting on variables and their negation (see Table 1). Each function is related to a set operation
based on the classical correspondence (∧,∨,¬, ∆) ←→ (∩,∪, x,⊕). For simplicity, we only use
the second list of symbols to denote both.
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∅ N
∩
P

N
∩
P

N N
∩
P

P N
⊕
P

N
∪
P

N
∩
P

N
⊕
P

P N
∪
P

N N
∪
P

N
∪
P

Σ
∗

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1. The 16 binary boolean functions.

Let us consider three regular languages M,N, P with respective deterministic state complexity
m,n, p ≥ 3. We look at the state complexity of M(N ◦ P ) where ◦ is a boolean operation.

Let A = (Σ,QA = {0, 1, . . . , m − 1}, 0, FA, ·), B = (Σ,QB = {q0, q1, . . . , qn−1}, q0, FB, ·),
C = (Σ,QC = {r0, r1, . . . , rp−1}, r0, FC , ·) be the three minimal DFAs for M , N , P respectively
and consider the DFA D = (Σ,QD = QA × 2QB×QC , iD, FD, ·) defined as follows:

– iD =

{
(0, ∅) if 0 6∈ FA

(0, (q0, r0)) otherwise
– the set of final states FD depends on the operation ◦: a state (i, S) is final if S contains a couple

(q, r) satisfying (q ∈ FB) ◦ (r ∈ FC) and
– for a symbol a ∈ Σ and a state (i, S) in D, the function · is defined by

(i, S) · a =

{
(i · a, S · a) if i · a /∈ FA

(i · a, S · a ∪ {(q0, r0)}) otherwise,
where the dot notation is extended to a set of couples by S · w =

⋃
(q,r)∈S(q · w)× (r · w) and

w · S =
⋃

(q,r)∈S(w · q)× (w · r).

The automaton A being deterministic, the definition of D implies that the accessible part of
the subset automaton of A · (B ◦ C) is the accessible part of D, therefore L(D) = M(N ◦ P ).

For any state (i, S), the set S can be seen as a tableau with n rows and p columns where any
cell (j, k) is marked if and only if the couple of states (qj, rk) is in S (see Figure 2). In the following,
for simplicity, when the dimensions are fixed, we assimilate a tableau with the set of its marked
cells.

Fig. 2. The tableau corresponding to S = {(q3, r2), (q1, r5), (q3, r5)} with n = 6 and p = 7

Since the state complexity of catenation is sc•(m,m′) = (m − 1)2m
′
+ 2m

′−1 and the state
complexity of a binary boolean operation ◦ is upperbounded by sc◦(n, p) = np, from Claim 1, their
composition allows to upperbound the state complexity of M(N ◦ P ) by (m− 1)2np + 2np−1. This
bound is reached when ◦ = ∩ [4]. A study of ◦ = ∪ has been done in the same paper, but the
approach was not exactly the same.

Indeed, they use the fact that the union N ∪ P can be performed without computing any
cartesian product, but by computing the union of the states of the automata B and C. Thus,
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the catenation of A with B ∪ C is an automaton the determinization of which produces states of
the form (j, T, T ′), with j a state of A and T, T ′ two subsets of states of B and C respectively.
We can also notice that if j is final, the sets T and T ′ must contain the initial state of B and
C respectively, and therefore that T is empty if and only if T ′ is empty. Then the bound is
(m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2 (only reached when A has only one final state).

The state complexities of M(N ∩ P ) and of M(N ∪ P ) are known. Then, knowing the state
complexity of M(N ⊕ P ) will lead us to the knowledge of the state complexity of M(N ◦ P ) for
any non degenerative boolean operator. Indeed, as seen in Table 1, there are 16 boolean operations
over two languages N and P and 6 of them are degenerative (∅, Σ∗, N, P,N, P ). All the others can
be expressed using one of the three boolean operators ∩, ∪ and ⊕ and the complement operator
over the single language N or P . As the state complexity of the complement of N (obtained
by interchanging the states finality of B) is the state complexity of N , the state complexity of
M(N⊕P ) will give us the state complexity of M(N ◦P ) for any boolean operator ◦. Indeed, having
a witness for M(N ⊕ P ), M(N ∪ P ) and M(N ∩ P ) will give us a witness for any combination
M(N ◦ P ) as N ◦ P can be expressed through one of the three boolean operations applied to
the complementation of N and/or P . For example suppose that the triple of automata A,B,C
is a witness for the combination M(N ∩ P ). We want to produce a witness for the combination
M(N − P ). First, notice that this combination is M(N ∩ P ). So the triple of automata A,B
and C is a witness for M(N − P ) where C is the automaton C in which states finality has been
interchanged.

The state complexity of M(N ∪ P ) can be reinterpreted as follows in the automaton D. Let
(i, S) and (i, S ′) be two distinct states such that the couples (qx, rx′) and (qy, ry′) are in S ′ and
S = S ′ ∪ {(qx, ry′)}. Then the two states (i, S) and (i, S ′) are equivalent. Indeed, to separate these
states, one has to find a word w such that (1) S ′ · w is equal to a set of couples which members
are both non-final and (2) (qx, ry′) · w leads to a couple of states at least one of the two is final.
The fact that qx · w or ry′ · w is final is contradicting (1). So (i, S) and (i, S ′) are equivalent.

Such equivalent states have tableaux with specific patterns. Indeed, the tableaux for S and S ′

contain the pattern of Figure 3(a) and Figure 3(b) respectively. None of them can be distinguish
from the pattern of Figure 3(c). So the number of equivalent states is the number of undistin-
guishable tableaux which are represented by the patterns of Figure 3. The number of tableaux not
containing patterns of Figure 3(a) or Figure 3(b) is (2n − 1)(2p − 1) + 1.

Fig. 3. Three undistinguishable tableaux (a), (b), (c), for the union operator

Indeed, one has to choose among n rows and p columns (at least one of each) and mark every
cell at the intersection of the chosen rows and columns ((2n−1)(2p−1)) plus one configuration with
no cell marked. We also have to count the same tableaux but with the cell (0, 0) marked (2n−12p−1

tableaux). These observations lead to the state complexity (m−1)((2n−1)(2p−1)+1)+2n−12p−1 =
(m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2 of M(N ∪ P ).
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As there exist languages M , N and P such that there are no undistinguishable tableaux for
M(N∩P ), the state complexity coincides with the bound. The study of undistinguishable tableaux
for M(N ⊕ P ) is done in the next section.

4 An upper bound for the state complexity of M(N ⊕ P )

In this section, we proceed as in the previous one by considering the same automata A, B, C and
D, setting ◦ = ⊕. Notice that a state (i, S) of D is final if and only if S contains a couple (qx, ry)
such that either qx ∈ FB or ry ∈ FC but not both.

As for the union (see the previous section), some particular states are necessarily equivalent.
Let (i, S) and (i, S ′) be two distinct states such that the couples (qx, rx′), (qx, ry′) and (qy, ry′) are
in S ′ and S = S ′ ∪ {(qy, rx′)}. Then the two states (i, S) and (i, S ′) are equivalent. Indeed, if a
word w separates (i, S) and (i, S ′), then w sends qy in FB or rx′ in FC but not both, sending (i, S)
to a final state of D. This cannot be achieved without sending (i, S ′) to a final state of D, thus
contradicting the separation by w. This is formally proved in the next lemma.

Lemma 1. Let E={qx, qy}×{rx′, ry′}. Let (q, r) ∈ E and w ∈ Σ∗ with (q ·w ∈ FB)⊕ (r ·w ∈ FC)
Then there exists (q′, r′) ∈ E such that

(q′, r′) 6= (q, r) ∧ (q′ · w ∈ FB)⊕ (r′ · w ∈ FC) (3)

Proof. Without loss of generality, let us set (q, r) = (qx, rx′). We consider only the case where
qx · w ∈ FB and rx′ · w /∈ FC ; the other case can be proved similarly. The couple

(q′, r′) =





(qy, rx′) if qy · w ∈ FB

(qy, ry′) if qy · w /∈ FB ∧ ry′ · w ∈ FC

(qx, ry′) otherwise
satisfies (3).

Such equivalent states imply undistinguishable tableaux as described below. Four distinct
marked cells s1, s2, s3 and s4 define a rectangle if there exist four integers x, x′, y and y′ such that
{s1, s2, s3, s4} = {qx, qy}× {rx′, ry′}. Three distinct marked cells s1, s2 and s3 form a right triangle
if there exists an unmarked cells s4 such that s1, s2, s3 and s4 form a rectangle (See Figure 4 and
Figure 5). A tableau S is saturated if it does not contain any right triangle. For each tableau S,
we define Sat(S) as the smallest saturated tableau containing S. We can notice that Sat(S) is the
intersection of all saturated tableaux containing S. Its existence is ensured since the tableau with
each cell marked is saturated. Its unicity is due to the fact that the intersection of two saturated
tableau containing S is still a saturated tableau containing S.

Fig. 4. A rectangle. Fig. 5. A right triangle.
Alternatively, we can define saturated tableaux as the final step of a confluent rewriting process.

We denote by S → S ′ if S ′ is obtained from S by marking one cell which completes a right triangle
in S into a rectangle in S ′. The reflexive and transitive closure

∗
→ of→ is a confluent partial order
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whose maximal elements are the saturated tableaux. It follows that a property is preserved by
the transformation

∗
→ if and only if it is preserved by the transformation →. We illustrate this

principle with two lemmas which will be used below.

Lemma 2. Let S be a tableau where a cell (j, k) is marked. If a tableau S ′ contains no marked
cell on row j (equivalently on column k) then Sat(S) 6= Sat(S ′).

Proof. First remark that if T → T ′ then T contains no marked cell on row j (resp. column k) if
and only if T ′ contains no marked cell on row j (resp. column k). Indeed, T differs from T ′ in only
one marked cell which completes a right triangle in T into a rectangle in T ′. So, this cell belongs
to a row and a column in T which both contain a marked cell.

We deduce that if T
∗
→ T ′ then T contains no marked cell on row j (resp. column k) if and

only if T ′ contains no marked cell on row j (resp. column k).
Let S and S ′ be two tableaux such that a cell (j, k) is marked in S and tableau S ′ contains no

marked cell on row j (resp. on column k). Since S ′ ∗
→ Sat(S ′), Sat(S ′) contains no marked cell on

row j (resp. column k). Obviously, this is not the case for Sat(S) where the cell (j, k) is marked.

Lemma 3. For any state (i, S) of D, (i, S) ∈ FD if and only if (i, Sat(S)) ∈ FD.

Proof. We define the set FS of the tableaux which have a marked final cell, that is a cell belonging
to a final row (a final row corresponds to a final state of QB) or to a final column (a final column
corresponds to a final state of QC) but not to both. The statement is equivalent to S ∈ FS if and
only if Sat(S) ∈ FS. Let S and S ′ be two n× p tableaux. It suffices to prove that if S → S ′ then
S ′ ∈ FS implies S ∈ FS. One has to discuss on the position (j, k) of the unique cell which is marked
in S ′ and unmarked in S.

1. If this cell is not final, then all the final cells in S are unchanged in S ′. Hence, S ∈ FS since
S ′ ∈ FS.

2. If this cell is final, on a final row, then there exists j′ 6= j and k′ 6= k such that (j′, k), (j, k′)
and (j′, k′) are the positions of marked cells in S and S ′. If the cells on (j′, k) and (j, k′) are
not final then the row j′ is not final and the column k′ is final. Hence the cell on (j′, k′) is final.

3. If this cell is final on a final column, this case is treated symmetrically to the previous one.

As a direct consequence of Lemma 1, we have:

Lemma 4. Let i be a state of QA and let S and S ′ be two tableaux such that S → S ′. Then the
two states (i, S) and (i, S ′) of D are equivalent.

As a consequence, any state (i, S) in D is equivalent to the state (i, Sat(S)). It follows

Lemma 5. For all (i, S) ∈ QD we have (i, Sat(S)) ∈ [(i, S)].

Let αn,p be the number of saturated tableaux with n lines and p rows. Furthermore, if i is final
in A, then S contains (q0, r0) and consequently so does Sat(S). Let α′

n,p be the number of such
tableaux where the cell (q0, r0) is marked. Consequently

Theorem 1. sc(M · (N ⊕ P )) ≤ (m− 1)αn,p + α′
n,p

Proof. By definition, sc(M · (N ⊕ P )) is the number of states of the minimal AFD recognizing
M · (N ⊕P ), that is the number of states of the accessible part of D/∼. Trivially, this automaton
has less states than D/∼. From Lemma 5, D/∼ has less than (m− 1)αn,p + α′

n,p states.

The next section is devoted to explicit the numbers αn,p and α′
n,p.
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5 Counting saturated tableaux

According to previous sections, the notion of undistinguishability induces an equivalence relation.
Each equivalence class of tableaux contains a unique saturated tableau.

We first recall some facts about the classical example of the set partitions (Section 5.1). The
three next sections are devoted to the enumeration of the saturated tableaux. We proceed as
follows: We first give an algebraic interpretation of the saturated tableaux in terms of free monoids
(Section 5.2). Hence, in Section 5.3, we investigate some properties involving the characteristic
series of saturated tableaux and we deduce, in Section 5.4, the desired enumeration.

5.1 Bell polynomials

Enumeration of saturated tableaux is closely related to set partitions. Well known results about
combinatorial objects and their generating series (Bell polynomials) are recalled here. Readers
wishing to deepen their knowledge on set partitions should refer to [14,16].

Complete multivariate Bell polynomials An(a1, . . . , an, . . .), named in honor of Eric Temple Bell
by Riordan [18], are multivariate polynomials defined by their exponential generating series:

∑

n≥0

An(a1, . . . , an, . . .)
tn

n!
= exp

(
∑

m≥1

am
tm

m!

)
, (4)

equivalently An(a1, . . . , an, . . .) =
dn

dtn
exp

(
∑

m≥1

am
tm

m!

)∣∣∣∣∣
t=0

.

Bell polynomials are themselves multivariate ordinary generating functions of set partitions.
Indeed, if π = {π1, . . . , πk} is a set partition of {1, . . . , n} with #π1 ≥ · · · ≥ #πk, we denote by
λπ = [#π1, . . . ,#πk] the (integer) partition associated to π. We have

An(a1, . . . , an, . . .) =
∑

π�n

a#π1 . . . a#πk
=
∑

λ⊢n

Sλaλ1 · · · aλk

where Sλ denotes the number of set partitions π such that λπ = λ.

Example 1. For instance, we have A4(a1, a2, a3, a4) = a41 + 6a2a
2
1 + 3a22 + 4a3a1 + a4, since the

partitions of {1, · · · , 4} are

λπ set partitions
[1, 1, 1, 1] {{1}, {2}, {3}, {4}}
[2, 1, 1] {{1, 2}, {3}, {4}}, {{1, 3}, {2}, {4}},

{{1, 4}, {2}, {4}}, {{2, 3}, {1}, {4}},
{{2, 4}, {1}, {3}}, {{3, 4}, {1}, {2}}

[2, 2] {{1, 2}, {3, 4}}, {{1, 4}, {2, 3}},
{{1, 3}, {2, 4}}

[3, 1] {{1, 2, 3}, {4}}, {{1, 2, 4}, {3}},
{{1, 3, 4}, {2}}, {{2, 3, 4}, {1}}

[4] {{1, 2, 3, 4}}

When each ai is an integer, one interprets it as the number of ways one can color a part of
cardinal i (or equivalently, each ai represents the weight of each part of cardinal i). If each ai
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equals 1 then the complete Bell polynomial An(a1, . . . , an, . . .) specializes to the Bell number Bn

which counts the number of set partitions of {1, . . . , n} i.e. An(1, . . . , 1, . . .) = Bn. Hence, the
(exponential) generating series of Bell numbers is

∑
n≥0Bn

tn

n!
= exp(exp(t) − 1) and the first

Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, . . . (see sequence A000110 in [20]).
From the previous remark, the number of set partitions of {1, . . . , n} with no part of size 1 equals
An(0, 1, . . . , 1, . . .) and the associated generating function is

∑

n≥0

An(0, 1, . . . , 1, . . .)
tn

n!
= exp(exp(t)− 1− t). (5)

The first values of An(0, 1, . . . , 1) are 1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253, . . . (see se-
quence A000296 in [20]). Noticing that exp(t)

∑
n≥0An(0, 1, . . . , 1, . . .)

tn

n!
=
∑

n≥0Bn
tn

n!
, we deduce

(see (2)) that the Bell numbers sequence is the binomial transform of the sequence (An(0, 1, . . . , 1))n∈N
i.e.

Bn =
n∑

i=0

(
n

i

)
Ai(0, 1, . . . , 1, . . .). (6)

When each part have the same weight x, the exponential generating function of Bn(x) =
An(x, . . . , x) is ∑

n≥0

Bn(x)
tn

n!
= exp(x(exp(t)− 1)). (7)

Notice that each Bn(x) is a degree n polynomial in x also called Bell polynomial in literature.
Its expansion gives

Bn(x) =

n∑

k=1

Sn,kx
k, (8)

where Sn,k is a Stirling number of second kind counting the number of ways of partitioning the
set {1, . . . , n} into k blocks (see sequence A008277 in [20]). We recover the Bell numbers setting
x = 1, that is Bn = Bn(1). The numbers rn = Bn(−1) are the Rao Uppuluri-Carpenter numbers
[21] whose first terms are 1,−1, 0, 1, 1,−2,−9,−9, 50, 267, 413,−2180,−17731,−50533, . . . (see se-
quence A000587 in [20]). From (7) the generating function of the rn’s is

∑

n≥0

rn
tn

n!
= exp(1− exp(t)). (9)

Equality (8) gives rn =
∑n

k=1(−1)
kSn,k and provides the combinatorial interpretation of the

Rao Uppuluri-Carpenter numbers: rn is the number of set partitions of {1, . . . , n} with an even
number of parts minus the number of such partitions with an odd number of parts.

5.2 Monoids of tableaux

We consider the set Tn of n rows tableaux. It contains a special tableau ǫn with no column and we
endow it with a product · such that T · T ′ is the tableau obtained by gluying T ′ to the right of T .
Notice that T · ǫn = ǫn · T = T . So, since the product is clearly associative, the set Tn is a monoid
and more precisely

Lemma 6. Let Cn = {cS | S ⊂ {1, . . . , n}} be an alphabet indexed by the subset of {1, . . . , n}.
The monoid Tn is isomorphic to C∗

n.
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Proof. Let T ∈ Tn be a tableau with m columns. For any 1 ≤ j ≤ m we define Sj(T ) as the
set of indices i such that the ith cell of the column j is marked. Straightforwardly the map
T → cS1(T ) · · · cSp(T ) is an isomorphism of monoid.

Example 2. Consider the following tableau and its associated word:

c{1,4}c{3}c∅c{1}c{3,4}

Consider the subset Tn of C∗
n consisting of all the words representing saturated tableaux with

n rows.
For each S ⊂� n, we define the monoïd MS = ({c∅} ∪ {cs|s ∈ S})∗. The following result char-

acterizes the saturated tableaux.

Lemma 7. A word belongs to Tn if and only if it belongs to a monoid MS for some S.

Proof. Let w = cs1 · · · csp be a word of Tn. Then si ∪ sj = ∅ or si = sj for each i 6= j. Indeed,
suppose that k ∈ si ∩ sj and ℓ ∈ si such that ℓ 6= k. Hence, if T denotes the tableau represented
by w then the cells (k, i), (k, j) and (ℓ, i) are marked. Since T is a saturated tableau, the cell (ℓ, j)
is also marked. It follows that Sw = {si|1 ≤ i ≤ p} ⊂� {1, . . . , n} and w ∈MSw

.
Conversely, if w ∈ MS for some S ⊂� {1, . . . , n} then w straightforwardly represents a saturated
tableau.

Equivalently,

Tn =
⋃

S⊂�n

MS . (10)

Notice that this union is not disjoint since MS∩S′ = MS ∩MS′.

5.3 Characteristic series of tableaux

We consider the set M̃S = {w ∈MS|w 6∈MS′ for any S ′ ( S}.

Example 3. For n = 2 we have

• M̃∅ = c∗∅
• M̃{{1}} = M{{1}} \ M̃∅ = M{{1}}c{1}M{{1}}

• M̃{{2}} = M{{2}} \ M̃∅ = M{{2}}c{2}M{{2}}

• M̃{{1,2}} = M{{1,2}} \ M̃∅ = M{{1,2}}c{1,2}M{{1,2}}

• M̃{{1},{2}} = M{{1},{2}} \
(
M̃∅ ∪ M̃{{1}} ∪ M̃{{2}}

)

So we can rewrite (10) as a disjoint union Tn =
⋃

S⊂�n

M̃S. The disjoint union implies that the

following identity on the characteristic series holds:

Tn =
∑

S⊂�n

M̃S . (11)
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Example 4. We have: T2 = M̃∅ + M̃{{1}} + M̃{{2}} + M̃{{1,2}} + M̃{{1},{2}}. In the following table we

summarize the first terms of each M̃S:

M̃∅ = ε+ c∅ + c2∅ + . . .

M̃{{1}} = c{1} + c∅c{1} + c{1}c∅ + c2{1} + . . .

M̃{{2}} = c{2} + c∅c{2} + c{2}c∅ + c2{2} + . . .

M̃{{1,2}} = c{1,2} + c∅c{1,2} + c{1,2}c∅ + c2{1,2} + . . .

M̃{{1},{2}} = c{1}c{2} + c{2}c{1} + c2{1}c{2} + c{1}c{2}c{1} + c{1}c
2
{2} + c{2}c

2
{1} + . . .

(12)

Hence,

T2 = ε+ c∅ + c{1} + c{2} + c{1,2} + c2∅ + c2{1} + c∅c{1} + c2{2} + c∅c{2} + c{2}c∅+

c2{1,2} + c∅c{1,2} + c{1,2}c∅ + c{1}c{2} + c{2}c{1} + . . . .

This corresponds to the formal sum of the following saturated tableaux

ε c∅ c{1} c{2} c{1,2}

c2
∅

c{1}c∅ c∅c{1} c2
{1}

c{2}c∅ c∅c{2} c2
{2}

c∅c{1,2} c{1,2}c∅ c2
{1,2}

c{1}c{2} c{2}c{1}

Notice also that each w ∈MS belongs to one and only one M̃S′ with S ′ ⊂ S. This gives

MS =
∑

S′⊂S

M̃S′ . (13)

Example 5. For S = {{1}, {2}} equality (13) is M{{1},{2}} = M̃∅+M̃{{1}}+M̃{{2}}+M̃{{1},{2}}, and

from (12), we recover:
M{{1},{2}} = ε+c∅+c{1}+c{2}+c2∅+c∅c{1}+c∅c{2}+c{1}c∅+c2{1}+c{1}c{2}+c{2}c∅+c{2}c{1}+c2{2}+· · ·

We define for each E ⊂ {1, . . . , n} the set

TE =
⋃

S⊂�E

MS =
⋃

S⊂�E

M̃S.

As for the set Tn, the last union is disjoint. So we have

TE =
∑

S⊂�E

M̃S. (14)

We have the following equality for the characteristic series:

Proposition 1. ∑

S�n

MS =
∑

E⊆{1,...,n}

An−#E(0, 1, . . . , 1, . . .)TE (15)
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Proof. We define Vn =
∑

S�nMS, support(S) =
⋃

E∈S E for any set of sets S and ##S =

#support(S). When expanding Vn on the M̃S, we obtain:

Vn =
∑

S�n

∑

S′⊂S

M̃S′ =
∑

S′⊂�n

#{S � n | S ′ ⊂ S}M̃S′

Observing that #{S � n | S ′ ⊂ S} equals the number of set partitions of {1, . . . , n}\support(S ′)
we obtain

Vn =
∑

S⊂�n

Bn−##SM̃S. (16)

On the other hand, we define (an)n∈N such that Vn =
∑

E⊂{1,...,n} an−#ETE .

Expanding this equality on the M̃S, we find

Vn =
∑

E⊂{1,...,n}

an−#E

∑

S⊂�E

M̃S =
∑

S⊂�n


 ∑

support(S)⊂E⊂{1,...,n}

an−#E


 M̃S

Observing that
∑

support(S)⊂E⊂{1,...,n}

an−#E =

n−##S∑

i=0

(
n−##S

i

)
an−##S−i , we obtain

Vn =
∑

S⊂�n

(
n−##S∑

i=0

(
n−##S

n− i

)
an−##S−i

)
M̃S. (17)

Comparing the coefficient of M̃S in (16) and (17), we find Bk =
∑k

i=0

(
k

i

)
ai. That is: Bell

numbers are the binomial transform of the ai’s. From (6) we deduce ai = Ai(0, 1, . . . , 1, . . .) and
our statement.

Example 6. For n = 2, on the left hand we have

M{{1},{2}} +M{{1,2}} = 2M̃∅ + M̃{{1}} + M̃{{2}} + M̃{{1},{2}} + M̃{{1,2}}

and on the right hand side we have

A2(0, 1, . . . , 1, . . .)T∅ + A1(0, 1, . . . , 1, . . .)
(
T{1} + T{2}

)
+ A0(0, 1, . . . , 1, . . .)T{1,2} =

T∅ + T{1,2} = 2M̃∅ + M̃{{1}} + M̃{{2}} + M̃{{1},{2}} + M̃{{1,2}}.

5.4 Generating series of saturated tableaux

Let us first enumerate the elements of MS with respect to the number of columns (length of the
word) and the number of marked cells in the asociated tableaux. Noting that the characteristic
series of MS is given by

MS =
∑

w∈MS

w =
1

1− (c∅ +
∑

E∈S cE)
, (18)

we obtain the bivariate generating series sending each letter cE to the monomial xt#E

mS(x, t) =
∑

i,j

κS
i,jx

itj,
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where κS
i,j denotes the number of words w = cE1 . . . cEi

in MS of length i and weight #E1 + · · ·+
#Ei = j. Since the map sending each letter cE to xt#E is a morphism from Q〈〈CS〉〉 to Q[[x, t]],
the right hand side of (18) gives

mS(x, t) =
1

1− (1 + PS(t))x
(19)

where PS(t) =
∑

E∈S t
#E .

Example 7. Let S = {{1, 4}, {2}, {5}}. We have

M{{1,4},{2},{5}} =
1

1−(c∅+c{1,4}+c{2}+c{5})

= ǫ+ (c∅ + c{1,4} + c{2} + c{5}) + (c∅ + c{1,4} + c{2} + c{5})
2 + · · ·

= ǫ+ c∅ + c{1,4} + c{2} + c{5} + c2∅ + c∅c{1,4}
+c∅c{2} + c∅c{5} + c{1,4}c∅ + c2{1,4} + c{1,4}c{2} + c{1,4}c{5}
+c{2}c∅ + c{2}c{1,4} + c2{2} + c{2}c{5}
+c{5}c∅ + c{5}c{1,4} + c{5}c{2} + c2{5} + · · ·

Furthermore PS(t) = 2t+ t2, so we have

m{{1,4},{2},{5}}(x, t) =
1

1− (1 + 2t+ t2)x
= 1 + (1 + 2t+ t2)x+ (1 + 4t+ 6t2 + 4t3 + t4)x2 + · · ·

For instance, we deduce κ
{{1,4},{2},{5}}
2,2 = 6 corresponding to the 6 words: c∅c{1,4}, c{1,4}c∅, c

2
{2},

c{2}c{5}, c{5}c{2} and c2{5}.

In fact, the series mS(x, t) depends only on the size of the sets of S. Let λ = [λ1, . . . , λk]
be a partition, we define Pλ(t) =

∑k

i=1 t
λi and mλ(t) = 1

1−(1+Pλ(t))x
. If S = {E1, . . . , Ek} with

#E1 ≥ · · · ≥ #Ek, we have

mS(x, t) = mλS
(x, t) (20)

with λS = [#E1, . . . ,#Ek].
Denote by Tabn(x, t) the generating function of the saturated tableaux with n rows

Tabn(x, t) =
∑

m,j

αj;n,px
ptj ,

where αj;n,p denotes the number of saturated tableaux with n rows, p columns and j marked cells.
So, the coefficient of xp in Tabn(x, t) is a polynomial αn,p(t) which is the generating series of the
n× p saturated tableaux counted by the number of marked cells.

The series Tabn(x, t) is the image of Tn by the morphism cE → xt#E . Notice that the image of
TE is also Tab#E(x, t).

Hence Equation (15) becomes

∑

S�n

mS(x, t) =
∑

E⊂{1,...,n}

An−#E(0, 1, . . . , 1)Tab#E(x, t). (21)

The number of set partitions S of {1, . . . , n} such that λS = λ equals n!
λ!

with λ! = (
∏

i(λi!))(
∏

i(multi(λ)!))
where multi(λ) denotes the multiplicities of the part i in λ.
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Example 8. Consider λ = [2, 1, 1, 1]. The number of set partitions of S such that λS = λ equals
5!

(2!1!3)(1!3!)
= 10. The corresponding partitions are:

{{1, 2}, {3}, {4}, {5}} {{1, 3}, {2}, {4}, {5}}
{{1, 4}, {2}, {3}, {5}} {{1, 5}, {2}, {3}, {4}}
{{2, 3}, {1}, {4}, {5}} {{2, 4}, {1}, {3}, {5}}
{{2, 5}, {1}, {3}, {4}} {{3, 4}, {1}, {2}, {5}}
{{3, 5}, {1}, {2}, {4}} {{4, 5}, {1}, {2}, {3}}.

Furthermore, the number of subset of {1, . . . , n} with a fixed size i is equal to
(
n

i

)
. Hence from

(21) we obtain
∑

λ⊢n

n!

λ!
mλ(x, t) =

n∑

i=0

(
n

i

)
Ai(0, 1, . . . , 1)Tabn−i(x, t). (22)

On the right hand of this equality, we recognize the binomial convolution of the sequence (Ai(0, 1, . . . , 1))i
with the sequence (Tabn−i(x, t))i (see Equality (1)). Interpreting (22) in terms of exponential gen-
erating functions we set

m(x, t, z) =

∞∑

n=0

(
∑

λ⊢n

1

λ!
mλ(x, t)

)
zn

and

Tab(x, t, z) =
∞∑

n=0

Tabn(x, t)
zn

n!

Hence, using (5), Equality (22) becomes

m(x, t, z) = exp(exp(z)− z − 1)Tab(x, t, z). (23)

So,

Tab(x, t, z) = m(x, t, z) exp(− exp(z) + z + 1) = −m(x, t, z)
d

dz
exp(1− exp(z)). (24)

We recognize the exponential generating function of the Rao Uppuluri-Carpenter numbers (9). As
the coefficient of xpzn in the left hand-side and the right hand-side of (24) are equal, we obtain

Theorem 2. The generating function of the n × m saturated tableaux counted by numbers of
marked cells is

αn,p(t) = −n!
n∑

i=0

rn−i+1

(n− i)!

∑

λ⊢i

(1 + Pλ(t))
p

λ!
(25)

Example 9. Let the first values of the polynomial αn,p(t):

• α1,p(t) = (1 + t)p,
• α2,p(t) = (1 + 2t)p + (1 + t2)p − 1,
• α3,p(t) = (3t+ 1)p + 3(t+ t2 + 1)p − 3(1 + t)p + (t3 + 1)p − 1,
• α4,p(t) = 2 + (1 + 4t)p + 6(1 + 2t+ t2)p + 3(1 + 2t2)p + 4(1 + t+ t3)p + (1 + t4)p − 4(1 + t)p −
6(1 + 2t)p − 6(1 + t2)p,
• α5,p(t) = 9+10(1+t)p+(5t+1)p+10(3t+t2+1)p−10(3t+1)p+15(t+2t2+1)p−30(t+t2+1)p+
10(2t+ t3+1)p−10(1+2t)p+10(t2+ t3+1)p−10(1+ t2)p−10(t3+1)p+5(t+ t4+1)p+(t5+1)p

For instance, the coefficient of t9 in α4,3 is 4. This corresponds to the tableaux
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We illustrate the fact that αn,p(t) = αp,n(t) by remarking

α3,4(t) = (3t+ 1)4 + 3(t+ t2 + 1)4 − 3(1 + t)4 + (t3 + 1)4 − 1 =
α4,3(t) = 2 + (1 + 4t)3 + 6(1 + 2t+ t2)3 + 3(1 + 2t2)3

+4(1 + t + t3)3 + (1 + t4)3 − 4(1 + t)3 − 6(1 + 2t)3 − 6(1 + t2)3 =
t12 + 4 t9 + 3 t8 + 12 t7 + 36 t6 + 48 t5 + 135 t4 + 148 t3 + 66 t2 + 12 t+ 1

Setting t = 1 in αn,m(t) we obtain the number of n×m saturated tableaux.

Corollary 1. The number of n×m saturated tableaux is

αn,m = αn,m(1) = −n!
n∑

k=0

∑

ω(λ)<=n

#λ=k

rn−ω(λ)+1

λ!(n− ω(λ))!
(k + 1)m, (26)

where ω(λ) = k if λ ⊢ k.

Example 10. Let the first value of αn,m below:

1
1 1
1 4 12
1 8 34 128
1 16 96 466 2100
1 32 274 1688 9226 48032
1 64 792 6154 40356 245554 1444212
1 128 2314 22688 177466 1251128 8380114 54763088

Proposition 2. The number of tableaux having a specific marked cell in a n×m saturated tableau
equals

α′
n,p =

1

np

d

dt
αn,p(t)

∣∣∣∣
t=1

= −(n− 1)!
n∑

i=0

rn−i+1

(n− i)!

∑

λ⊢i

P ′
λ(1)(1 + Pλ(1))

p−1

λ!

Proof. Let α
(i,j)
n,p be the number of n × p triangle free tableaux such that the cell (i, j) is marked.

Each cell having the same role, we have α
(i,j)
n,p = α

(0,0)
n,p = α′

n,p. Hence

α′
n,p =

1

np

n−1∑

i=0

p−1∑

j=0

α(i,j)
n,p =

1

np

∑

T

M(T )

where the last sum runs over the n × p triangle free tableaux T and M(T ) denotes the number
of marked cells in T . Notice that

∑
TM(T ) is the total number of marked cells in all the n ×

p triangle free tableaux. Acting by t d
dt

multiplies the coefficient of tj in αn,m(t) by j so that
t d
dt
αn,p(t)

∣∣
t=1

= d
dt
αn,p(t)

∣∣
t=1

is the number of marked cells in all the n × p tableaux. We deduce

α′
n,p =

1
np

d
dt
αn,p(t)

∣∣
t=1

.
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Example 11. We list below the values of α′
n,p for n = 1, . . . , 6:

• α′
1,p = 2p−1,

• α′
2,p = 3p−1 + 2p−1,

• α′
3,p = 4p−1 + 3 · 3p−1,

• α′
4,p = 5p−1 + 6 · 4p−1 + 4 · 3p−1 − 3 · 2p−1,

• α′
5,p = −7 · 2

p−1 + 6p−1 + 10 · 5p−1 + 19 · 4p−1 − 7 · 3p−1,
• α′

6,p = −59 · 3
−1+p + 20 · 4p−1 + 55 · 5p−1 + 7p−1 + 15 · 6p−1.

For instance, consider the saturated 2× 2 tableaux:

0 41 1 1 12 2 2 2 2 2

We find α′
2,2 =

1
4
(1 · 0 + 4 · 1 + 6 · 2 + 1 · 4) = 5 = 31 + 21 as expected by the formula.

6 Witness

In this section, we use the Brzozowski automata A = Wm(a, c, b, d), B = Wn(a, b, c, d) and C =
Wp(d, b, c, a) (with m,n, p ≥ 3) mentioned in Section 2, page 4 and recognizing three languages
M , N and P . They are represented in Figure 6 where the red arrows suggest how to connect the
automaton A to the automata B and C to recognize M · (N ⊕ P ).

0 1 2 . . . m− 3 m− 2 m− 1 a, c b, d

a a a a a a, c

a

b, c, d c, d b, c, d b, c, d b, d b, d

b c

q0 q1 q2 . . . qn−3 qn−2 qn−1

a a a a a a, b

a

b, c, d b, d b, c, d
b, c, d c, d c, d

c b

r0 r1 r2 . . . rp−3 rp−2 rp−1

d d d d d d, b

d

a, b, c a, b a, b, c
a, b, c a, c a, c

c b

Fig. 6. The automata A,B and C

It is obvious that A, B and C are minimal since they contain only one final state and, in any
of them, one symbol acts as a cycle over the set of states. To prove (M,N, P ) to be a witness for
the composition of catenation with symmetric difference, we have to prove that the DFA D, built
from A,B and C by following the construction described in Section 3 reaches the bound computed
in Section 4. Some properties of A,B and C are useful. Especially, one can obtain rotations and
groupings on their states reading some particular words.

The following properties are true for Wn(a, b, c, d), but they remain valid for the other automata
by just permuting role of the symbols:

– The word ak induces a k-rotation over QB.
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– The word (ab)(k−2) induces a grouping of qn−k and qn−2 sending these two states to qn−1, qn−2

(with 2 < k ≤ n). The word (ba)(k−1) induces another grouping which sends the states qn−k,
qn−1 to the states q0, qn−1 (with 2 ≤ k ≤ n− 1).

Remark 1. Any word in {a, b, d}∗ acts as a permutation on QB ×QC . Consequently for any word
w ∈ {a, b, d}∗ and any set S ⊂ QB ×QC , |w.S| = |S| = |S.w|.

Proposition 3. Each state of D is accessible.

Proof. By induction over the structure of the states of D. The initial state is (0, ∅) and any state
of the form (i, ∅) with i < m− 1 is reached from it by ai.

Let α ∈ [0, np−1] and consider now any state (i, S) with |S| = α+1. We show its accessibility
by cases, using only words in {a, b, d}∗ acting as permutations according to Remark 1.

1. If i = m − 1 then S = {(q0, r0)} ⊎ S ′ and the state (i, S) is reached by a from (m − 2, a · S ′),
itself accessible by induction hypothesis.

2. If i = 0 then we have three cases to consider:
(a) If S = {(q1, r0)} ⊎ S ′ then (0, S) is reached by a from (m − 1, {(q0, r0)} ⊎ a · S ′) which is

accessible by 1.
(b) If S = {(q1, rk)} ⊎ S ′ then (0, S) is reached by dk from (0, {(q1, r0)} ⊎ dk · S ′) which is

accessible by 2a.
(c) Otherwise, S = {(qj , rk)}⊎S

′. Then the word w = (abb)(j−1) mod n allows to reach (0, S) from
(0, {(q1, rk)} ⊎ w · S ′) which is accessible by 2b.

3. For any 0 < i < m−1, the state (i, S) is reached by ai from (0, ai ·S) which is accessible by 2c.

As a direct consequence,

Theorem 3. Each state of D/∼ is accessible.

So D/∼ is the minimal DFA of M · (N ⊕ P ). Furthermore, we know from Lemma 5 that any
state [(i, S)] of D/∼ contains (i, Sat(S)). In order sc(M · (N ⊕ P )) to reach (m − 1)αn,p + α′

n,p,
it remains to prove the non equivalence of any two distinct saturated states of D, where a state
(i, S) is saturated if S is a saturated tableau.

Theorem 4. Any two distinct saturated states of D are non-equivalent.

Proof. Let s1 = (i1, S1) and s2 = (i2, S2) be two distinct saturated states. There are two cases
to consider: If i1 6= i2, let us suppose i1 > i2 (without loss of generality). Then, using the word
w = ccdp−1am−1−i1 , we send s1 to (i′1, S

′
1) and s2 to (i′2, S

′
2) with (q0, r0) ∈ Sat(S ′

1)\Sat(S
′
2), reducing

this case to the other one, next described. For an explanation, the prefix cc acts as a contraction
which allows, in particular, to exclude r1 of S2 with no move on A. Then the factor dp−1 induces
a rotation on C to exclude r0 of S2, still with no move on A. Last, the suffix am−1−i1 takes i1 to
m− 1, involving the emergence of the couple (q0, r0) in S ′

1, whereas the state r0 remains excluded
of S ′

2. Then, following Lemma 2, Sat(S ′
1) 6= Sat(S ′

2).
Now, we look at the other case. If S1 6= S2, let (qj , rk) ∈ S1\S2 (without loss of generality). A

state (i, S) is final if and only if S holds a final couple of the form (qn−1, rk) with k 6= p − 1 or
(qj , rp−1) with j 6= n−1. We will prove it is possible to build a word sending (qj , rk) on such a final
couple while sending any other couple on a non-final couple. And then we will be able to conclude
following Lemma 3.

First, we define the sets R = {rk′|(qj , rk′) ∈ S2} and T = {qj}∪{qj′|(qj′, rk′) ∈ S2 for some rk′ ∈
R} and we show the following lemma
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Lemma 8. One has T ×R ⊂ S2.

Proof. Let (q, r) ∈ T ×R. If q = qj then the property is obvious. Else (qj , r) ∈ S2 and there exists
r′ ∈ R such that (q, r′) ∈ S2. If r = r′ then again the lemma is straightforward. In the other cases,
one has (qj , r

′) ∈ S2 and since S2 is saturated we also have (q, r) ∈ S2.

Now, we partition the states of B and C using a coloration: we color in green the states of
R ∪ T , in black the other states appearing in S2 plus the state rk and in grey the states not used
in S2 (see Figure 7, for an illustration). In fact, the colors spot states on the automata B and C
and, by reading a word, we move the colors on other states.

qj

rk

Fig. 7. An example of coloration for states of B and C.

So we associate a pair of colors to each couple in S2 and Lemma 8 implies that any couple of
S2 is either green-green or black-black. The couple (qj , rk), only present in S1, is green-black.

In the remaining of the proof, we compute a word sending

1. the couple (qj , rk) on a final couple of the form (qn−1, rk′) with k′ 6= p− 1,
2. all green-green couples on the non-final (qn−1, rp−1) and
3. all black-black couples on non-final couples of the form (qj′, rk′) with j′ 6= n− 1 and k′ 6= p− 1.

Clearly, such a word separates s1 from s2, sending the first one to a final state (because of point
1) and the second one to a non-final state (because of points 2 and 3). For instance, the colors in
Figure 7 become as in Figure 8.

Fig. 8. A configuration distinguishing the states which correspond to the coloration of Figure 7.

To prove the existence of a word satisfying the three points above, we proceed by induction
on the number of green states. For each step we will use the notions of rotation and grouping
described in Section 2 in order to decrease the number of green states. The difficulty lies not only
in decreasing this number, but also in avoiding to increase it inadvertently. Indeed, we have to look
at the effect of a word over three automata simultaneously. So, to convince the reader, we first list
the 6 movements which could increase the number of green states. More precisely, there are only
two ways to increase the number of green states: (1) use a letter c (acting as a contraction) which
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makes green states appear by saturation, independently of the current state of A; (2) use a letter
which moves the current state in A to m− 1.

First, we say that a couple of states (on a same automaton) is uncontractable if one is green
and the other is black. Consider an uncontractable couple over QB (or QC). If we read a word
which sends both states on a same state then new green positions could appear (those connected
with the black position before reading the word). Regarding this problem, two movements must
be avoided:

(mvt1) - Reading c when (q0, q1) is uncontractable.
(mvt2) - Reading c when (r0, r1) is uncontractable.

Next, we say that a couple of states (on two distinct automata) is sensitive if one is green and
the other is not green. Consider a sensitive couple of QB × QC . If we read a word sending it to
(q0, r0) while we, simultaneously, access to the final state of QA, then the new couple appearing
connects a green position with a non green one. Since, from Lemma 8 and by saturation, the green
positions always constitute a biclique, the non green state and all those connected to it become
green. In relation with this problem, four movements must be avoided:

(mvt3) - Reading a when (qn−1, r0) is sensitive and the current state on QA is m− 2.
(mvt4) - Reading b when (q0, r0) is sensitive and the current state on QA is m− 1.
(mvt5) - Reading c when one couple in {q0, q1} × {r0, r1} is sensitive and the current state on QA is

m− 2.
(mvt6) - Reading d when (q0, rp−1) is sensitive and the current state on QA is m− 1.

Now, we start the induction. By definition, the state qj is green. If it is the only one, then two
situations may occur:

i/ If there exists a grey state rk′ ∈ QC then the word dp−1−k′an−1−j does the job, with a first
rotation over QC to convey the grey state on rp−1 and a second one over QB to send the green
state on qn−1. If the reading of the d’s from s2 induces (mvt6)-movements (here, this implies
j = 0), we add the prefix a to the previous word and the suffix an−1−j becomes an−2.

ii/ If there is no grey state in QC then we create one by making a contraction c which ensures r1 to
be immediately grey, and we come back to the previous case. If this contraction from s2 induces
a (mvt1)-movement, we first read an a (if j = 1) or two a’s (if j = 0). Observe that no (mvt3)-
movement can appear since there is only one green state (which cannot be, simultaneously, on
qn−1 and q0 or q1). Similarly, if the contraction from s2 induces a (mvt5)-movement, we read
the prefix aa before the c.

If there are two green states then, necessarily, one is qj and the other belongs to R. We proceed
exactly as for case i/ with the second green state playing the role of the grey state rk′.

Now, suppose there are α + 1 green states with α ≥ 2. First, observe neither T nor R can be
empty. We have two cases to consider.

– If R contains at least two states. Among them, we denote rk′1 and rk′2 with k′
2 > k′

1, those having
the biggest indices. We make a rotation to send rk′2 on rp−1, then a grouping to have both green
positions on r0 and rp−1 and last, a contraction to decrease the number of green states and
solve the problem by induction hypothesis. So, the word w = dp−1−k′2(bd)k

′
2−k′1dc does the job

when i2 ∈ QA \ {m− 2, m− 1} .
If i2 = m− 1, the word w has to be prefixed with an a to avoid (mvt4) or (mvt6)-movements.
If i2 = m − 2, we first read some d’s depending on the color of qn−1. If it is black or grey, we
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read dp−k to send rk on r0, coloring it in black. If it is green, we read dp−k′2 to send rk′2 on r0,
coloring it in green. In both cases, we can now read an a from m− 2 being sure the states qn−1

and r0 are not sensitive, and so avoid (mvt3)-movement. Then, we read a last a to reach the
state 0 before reading w, where k′

1 and k′
2 are adjusted in consequence (they are respectively

replaced by two new indices k′′
2 > k′′

1 , where {k′
1, k

′
2} is sent to {k′′

1 , k
′′
2} when reading the prefix

above).
– If R contains only one state then T contains at least two. We denote them qj′1 and qj′2 with

n− 1 > j′2 > j′1 or j′1 = n− 1 (that is qj′2 is nearest to qn−2 than qj′1 when reading only a’s) and
proceed similarly to the previous case (but not identically). We make a rotation to send qj′2 on
qn−2, then a grouping to have both green positions on qn−2 and qn−1 and last, a contraction to
decrease the green states number and solve the problem by induction hypothesis. So, in most
of the cases, the word w = an−2−j′2(ab)j

′
2−j′1babbabc does the job. The possible problems which

can happen are:
1. a (mvt5)-movement if we read the final c from state m− 2 ;
2. (mvt3)-movements when reading an a from state m− 2 ;
3. (mvt4)-movements when reading a b from state m− 1 ;
4. a (mvt2)-movement when reading the final c.
To solve the first problem, we ensure we are on position 0 onto the first automaton before
reading the suffix babbabc. For this, we have to read sufficiently many ab factors in w. That is,
if we are not on position 0 after reading the prefix an−2−j′2(ab)j

′
2−j′1 then we continue to read

some ab’s: any large enough (for example, larger than m) multiple of n−1 is a good candidate.
Notice that this solution may induce occurrences of problems (2) and (3), which are treated
below.
To solve the second problem, the solution consists, each time we have to read an a in the position
m−2, to read some d’s before the a. This allows to color r0 in green or black accordingly to the
current color of qn−1 to ensure qn−1 and r0 to be not sensitive. This is always possible since we
have at least one black position (coming from rk) and one green position in QC as mentioned
above (R is not empty).
Remark that the reading of some d’s produces no (mvt6)-movement (because we are on state
m− 2 in QA). And the adjonction of the d’s has no incidence regarding to the solution we have
given for the first problem.
Observe that the third problem has disappeared since if we are on state m − 1 when reading
a b, then we just come from m− 2 by reading an a. As previously mentioned, we first ensured
that qn−1 and r0 were not sensitive. But this involve, after reading the a, that q0 and r0 are
now not sensitive, hence avoiding a (mvt4)-movement.
Last, to avoid the fourth problem, we proceed accordingly to the following (exhaustive) cases:
• If r0 and rp−1 are contractable then read d before the final c. This action sends r0 to r1

and rp−1 to r0 with no move on the other automata. This avoid a (mvt2)-movement while
reading the final c.
• If r0 is uncontractable with rp−1, but is contractable with rp−2 then read bdb before the final
c (the last b is necessary when n = 3 which implies q1 = qn−2). This action sends r0 to r1
and rp−2 to r0 with no move on the other automata.
• If r0 is uncontractable with rp−1 and rp−2 (that is, the latter two are contractable) then read
dd before the final c.

Therefore,

Theorem 5. sc(M · (N ⊕ P )) = (m− 1)αn,p + α′
n,p
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