World Scientific

International Journal of Foundations of Computer Science \\’
www.worldscientific.com

Vol. 20, No. 5 (2009) 779-801
© World Scientific Publishing Company

MONOTONIC ABSTRACTION
(ON EFFICIENT
VERIFICATION OF PARAMETERIZED SYSTEMS)

PAROSH AZIZ ABDULLA

Uppsala University, Sweden
parosh@it.uu.se

GIORGIO DELZANNO

Universita di Genova, Italy
giorgio@disi.unige.it

NOOMENE BEN HENDA

Uppsala University, Sweden
Noomene. BenHenda@it.uu.se

AHMED REZINE

LIAFA, Paris 7, France
Ahmed. Rezine@liafa.jussieu. fr

Received 12 December 2008
Accepted 15 May 2009
Communicated by Vesa Halava and Igor Potapov

We introduce the simple and efficient method of monotonic abstraction to prove safety
properties for parameterized systems with linear topologies. A process in the system is
a finite-state automaton, where the transitions are guarded by both local and global
conditions. Processes may communicate via broadcast, rendez-vous and shared variables
over finite domains. The method of monotonic abstraction derives an over-approximation
of the induced transition system that allows the use of a simple class of regular expressions
as a symbolic representation. Compared to traditional regular model checking methods,
the analysis does not require the manipulation of transducers, and hence its simplicity
and efficiency. We have implemented a prototype that works well on several mutual
exclusion algorithms and cache coherence protocols.

1. Introduction

In this paper, we consider analysis of safety properties for parameterized systems.
Several parameterized systems consist of an arbitrary number of finite-state pro-
cesses organized in a linear array. The task is to verify correctness of the system
regardless of the number of processes inside it. Examples of parameterized systems
include mutual exclusion algorithms, bus protocols, telecommunication protocols,
and cache coherence protocols.

779

780 P. A. Abdulla et al.

One important technique that has been used for verification of parameterized
systems is that of regular model checking [24, 6, 10]. In regular model checking, states
are represented by words, sets of states by regular expressions, and transitions by
finite automata operating on pairs of states, so called finite-state transducers. Safety
properties can be checked through reachability analysis, which amounts to apply-
ing the transducer relation iteratively to the set of initial states. The main problem
with transducer-based techniques is that they are very heavy and usually rely on
several layers of computationally expensive automata-theoretic constructions; in
many cases severely limiting their applicability. In this paper, we propose an ap-
proach that uses a simple class of regular expressions as a symbolic representation.
The new approach is then much more lightweight and efficient than general regu-
lar model checking. We describe the application of the approach in the context of
parameterized systems.

In our framework, a process is modeled as a finite-state automaton that oper-
ates on a set of local variables ranging over finite domains. The transitions of the
automaton are conditioned by the local state of the process, values of the local
variables, and by global conditions. A global condition is either universally or exis-
tentially quantified. An example of a universal condition is that all processes to the
left of a given process i should satisfy a property 6. Process i is allowed to perform
the transition only in the case where all processes with indices j < i satisfy 0. In an
existential condition we require that some (rather than all) processes satisfy 6. In
addition, processes may communicate through broadcast, rendez-vous, and shared
variables over finite domains. Finally, processes may dynamically be created and
deleted during the execution of the system.

The main idea of monotonic abstraction is to consider a transition relation that
is an over-approximation of the one induced by the parameterized system. To do
that, we modify the semantics of universal quantifiers by eliminating the processes
that violate the given condition. For instance in the above universally quantified
transition, process i is always allowed to take the transition. However, when per-
forming the transition, we eliminate all processes that have indices j < ¢ and that
violate the condition 8. The approximate transition system obtained in this manner
is monotonic (hence the name for the method) with respect to the subword relation
on configurations (larger configurations are able to simulate smaller ones). In fact, it
turns out that universal quantification is the only operation that does not preserve
monotonicity and hence it is the only source of approximation in the model. Since
the approximate transition relation is monotonic, it can be analyzed using symbolic
backward reachability algorithm based on a generic method introduced in [1]. An
attractive feature of this algorithm is that it operates on sets of configurations that
are upward closed with respect to the subword relation. In particular, reachability
analysis can be performed by computing predecessors of upward closed sets, which
is much simpler and more efficient than applying transducer relations on general
regular languages. Also, as a side effect, the analysis of the approximate model is al-
ways guaranteed to terminate. This follows from the fact that the subword relation

Monotonic Abstraction 781

on configurations is a well quasi-ordering. The whole verification process is fully au-
tomatic since both the approximation and the reachability analysis are carried out
without user intervention. Observe that if the approximate transition system satis-
fies a safety property then we can safely conclude that the original system satisfies
the property, too.

To simplify the presentation, we introduce the class of systems we consider in a
stepwise manner. First, we consider a basic model where we only allow Boolean local
variables together with local and global conditions. We describe how to derive the
approximate transition relation and how to analyze safety properties for the basic
model. Then, we introduce the additional features one by one. This includes using
general finite domains, shared variables, broadcast and rendez-vous communication,
dynamic creation and deletion of processes, and counters. For each new feature, we
describe how to extend the approximate transition relation and the reachability
algorithm in a corresponding manner.

Based on the method, we have implemented a prototype that works well on
several mutual exclusion algorithms and cache coherence protocols taken from the
literature [12, 14, 15, 16, 24, 13, 25, 32, 33]. We describe two examples of such systems,
namely the Java Meta-locking protocol [33] and German’s directory-based cache
coherence protocol [19].

Related work Several recent works have been devoted to develop regular model
checking, e.g., [24,13]; and in particular augmenting regular model checking with
techniques such as widening [10, 35], abstraction [11], and acceleration [6]. All these
works rely on computing the transitive closure of transducers or on iterating them
on regular languages.
A technique of particular interest for parameterized systems is that of counter ab-
straction. The idea is to keep track of the number of processes that satisfy a certain
property. In [20] the technique generates an abstract system that is essentially a
Petri net. Counter abstracted models with broadcast communication are proved to
be well-structured in [18]. In [14, 15] symbolic model checking based on real arith-
metics is used to verify counter abstracted models of cache coherence protocols
enriched with global conditions. The method works without guarantee of termina-
tion. The paper [32] refines the counter abstraction idea by truncating the counters
at the value of 2, and thus obtains a finite-state abstract system. The method may
require manual insertion of auxiliary program variables for programs that exploit
knowledge of process identifiers. In general, counter abstraction is designed for sys-
tems with unstructured or clique architectures. Our method can cope with this kind
of systems, since unstructured architectures can be viewed as a special case of lin-
ear arrays where the ordering of the processes is not relevant. In [23] and [34], the
authors present a tool for the analysis and the verification of linear parameterized
hardware systems using the monadic second-order logic on strings.

Other parameterized verification methods are based on reductions to finite-state
models. Among these, the invisible invariants method [8,31] exploits cut-off prop-

782 P. A. Abdulla et al.

erties to check invariants for mutual exclusion protocols like the Bakery algorithm
and German’s protocol. The success of the method depends on the heuristic used
in the generation of the candidate invariant. This method sometimes (e.g. for Ger-
man’s protocol) requires insertion of auxiliary program variables for completing the
proof. In [9] finite-state abstractions for verification of systems specified in WS1S
are computed on-the-fly by using the weakest precondition operator. The method
requires the user to provide a set of predicates on which to compute the abstract
model. Heuristics to discover indezed predicates are proposed in [25] and applied
to German’s protocol as well as to the Bakery algorithm. In contrast to these ap-
proaches, we provide a uniform approximation scheme that is independent of the
analyzed system. Environment abstraction [12] combines predicate abstraction with
the counter abstraction. The technique is applied to the Bakery and Szymanski
algorithms. The model of [12] contains a more restricted form of global conditions
than ours, and also does not include features such as broadcast communication,
rendez-vous communication, and dynamic behavior. Other approaches tailored to
snoopy cache protocols modeled with broadcast communication are presented in
[17,27]. In [16] German’s directory-based protocol is verified via a manual trans-
formation into a snoopy protocol. It is important to remark that frameworks for
finite-state abstractions [12] and those based on cut-off properties [8,31] can be ap-
plied to parameterized systems where each component itself contains counters and
other unbounded data structures.

Finally, in [33] a parameterized version of the Java Meta-locking algorithm is ver-
ified by means of an induction-based proof technique that requires manual strength-
ening of the mutual exclusion invariant. The same example has been verified using
supercompilation in the Refal functional language in [26].

In summary, our method provides a uniform simple abstraction which allows
fully automatic verification of a wide class of systems. We have been able to verify all
benchmarks available to us from the literature. We describe two programs from these
benchmarks, namely the German protocol and the Java Meta-locking algorithm.
The specifications of these case-studies use features (like unbounded counters) that
make their verification particularly challenging. On the negative side, the current
method only allows the verification of safety properties, while most regular model
checking and abstraction-based techniques can also handle liveness properties.

Remarks This paper is an extended version with proofs and detailed descriptions
of case-studies of the extended abstract in [4]. In [3, 5, 2] we have applied monotonic
abstraction to other types of parameterized systems. More precisely, in [3] we have
considered parameterized systems in which individual processes have local variables
ranging over natural numbers; in [5] we have considered parameterized systems in
which global conditions are evaluated non-atomically, finally, in [2] we have consid-
ered parameterized systems in which processes have a tree-like structure. Although
defined on a common concept (monotonic abstraction of the transition system),
the method presented in this paper is defined on a different class of parameterized

Monotonic Abstraction T83

systems than those studied in [3,5,2]. In particular, note that in general a non-
atomic semantics of global conditions as that considered in [5] does not correspond
to a refinement of the atomic semantics we consider in this paper. For instance, for
mutual exclusion problems, when working without atomicity conditions, one has
to consider different models and algorithms than those considered with atomicity
conditions. This is reflected by the fact that the symbolic representations used in [5]
are graphs and not words. Furthermore, for some of the examples we consider in the
present paper (e.g. cache coherence protocols) it is not clear what is the meaning
of a non-atomic evaluations of operations such as broadcast.

Outline In the next Section we give some preliminaries and define a basic model
for parameterized systems. Section 3 describes the induced transition system and
introduces the coverability (safety) problem. In Section 4 we define the over-
approximated transition system on which we run our technique. Section 5 presents
a generic scheme for deciding coverability. In Section 6 we instantiate the scheme
on the approximate transition system. Section 7 explains how we extend the basic
model to cover features such as shared variables, broadcast and binary communi-
cations, and dynamic creation and deletion of processes. In Sections 8 and 9 we
respectively give detailed descriptions of the Java-metalock protocol and of the
German directory-based cache coherence protocol. Finally, in Section 10, we give
conclusions and directions for future work.

2. Preliminaries

In this section, we define a basic model of parameterized systems. This model will be
enriched by additional features such as shared variables and dynamic instantiation
of processes in Section 7.

For a natural number n, let @ denote the set {1,...,n}. We use B to denote
the set {true, false} of Boolean values. For a finite set A, we let B(A) denote the
set of formulas that have members of A as atomic formulas, and that are closed
under the Boolean connectives =, A, V. A quantifier is either universal or existential.
Universal and existential quantifiers are of the forms V.. and 3. respectively, where
~€ {<, >, #}. The comparison operator ~ stands implicitly for Left (<), Right (>),
and Left-Right (#) respectively. A global condition over A is of the form 06 where
O is a quantifier and 8 € B(A). A global condition is said to be universal (resp.
existential) if its quantifier is universal (resp. existential). We use G(A) to denote
the set of global conditions over A.

Parameterized Systems A parameterized system consists of an arbitrary (but
finite) number of identical processes, arranged in a linear array. Each process is a
finite-state automaton that operates on a finite number of Boolean local variables.
The transitions of the automaton are conditioned by the values of the local variables
and by global conditions in which the process checks, for instance, the local states

784 P. A. Abdulla et al.

and variables of all processes to its left or to its right. A transition may change the
value of any local variable inside the process. A parameterized system induces an
infinite family of finite-state systems, namely one for each size of the array. The
aim is to verify correctness of the systems for the whole family (regardless of the
number of processes inside the system).

A parameterized system P is a triple (Q, X,T), where @ is a set of local states,
X is a set of local variables, and T is a set of transition rules. A transition rule t is
of the form

t:[q|grd>stmtfq'] (1)

where q, ¢’ € Q and grd — stmt is a guarded command. Below we give the definition
of a guarded command. A guard is a formula grd € B(X)UG(XUQ). In other words,
the guard grd constraints either the values of local variables inside the process (if
grd € B(X)); or the local states and the values of local variables of other processes (if
grd € G(XUQ)). A statement is a set of assignments of the form z1 = ey;...;2, =
en, where ; € X, ¢; € B, and x; # x; if i # j. A guarded command is of the form
grd — stmt, where grd is a guard and stmt is a statement.

Remark 1. We can extend the definition of the transition rule in (1) so that the
grd is a conjunction of formulas in B(X) U G(X U Q). All the definitions and
algorithms that are later presented in this paper can easily be extended to the more
general form. However, for simplicity of presentation, we only deal with the current
form.

In the rest of the presentation, we assume that ~ ranges over the set {<, >, #}.

3. Transition System

In this section, we first describe the transition system induced by a parameterized
system. Then we introduce the coverability problem.

Transition System A transition system 7 is a pair (D,=>), where D is an
(infinite) set of configurations and = is a binary relation on D. We use == to
denote the reflexive transitive closure of =>. We will consider several transition
systems in this paper.

First, a parameterized system P = (@, X, T') induces a transition system 7 (P) =
(C,—>) as follows. A configuration is defined by the local states of the processes,
and by the values of the local variables. Formally, a local variable state v is a mapping
from X to B. For a local variable state v, and a formula 6 € B(X), we evaluate v = 6
using the standard interpretation of the Boolean connectives. A process state u is a
pair (g,v) where ¢ € @ and v is a local variable state. Sometimes, abusing notation,
we view a process state (¢,v) as a mapping v : X U Q — B, where u(z) = v(x)
for each x € X, u(q) = true, and u(q’) = false for each ¢’ € Q — {¢q}. The process
state thus agrees with v on the values of local variables, and maps all elements of

Monotonic Abstraction 785

Q, except g, to false. For a formula § € B(X UQ) and a process state u, the relation
u = 0 is then well-defined. This is true in particular if § € B(X) .

A configuration ¢ € C is a sequence uq - - - u, of process states. Intuitively, the
above configuration corresponds to an instance of the system with n processes. Each
pair u; = (g;,v;) gives the local state and the values of local variables of process i.
Notice that if ¢; and ¢y are configurations then their concatenation c; e ¢; is also a
configuration.

Next, we define the transition relation — on the set of configurations as follows.
For a statement stmt and a local variable state v, we use stmit(v) to denote the
local variable state v’ such that v'(z) = v(z) if does not occur in stmt; and
v'(x) = e if x = e occurs in stmt. Let t be a transition rule of the form of (1).
Consider two configurations ¢ = uy - --u, and ¢ = u} ---u),. We write ¢ — ¢ iff
there is an i : 1 < ¢ < n such that u; and v} are of the forms (g, v) and (¢', stmt(v'))
respectively, u; = ug for all j : 1 < j # i < n, and one of the following conditions
holds:

o grd € B(X) and v |= grd, i.e. the local variables of the process in transition
should satisfy grd.
e grd =060 € G(X UQ) such that:

—ecither 0=V, andVj:1<j~i<n.u; =6,
—ord0=3 and3j:1<j~i<n.u; =6.

In other words, if grd is a global condition then the other processes should
satisfy 0 (in a manner that depends on the type of the quantifier).

We use ¢ — ¢’ to denote that ¢ — ¢’ for some t € T.

Safety Properties In order to analyze safety properties, we study the coverability
problem defined below. Given a parameterized system P = (@, X,T), we assume
that, prior to starting the execution of the system, each process is in an (identical)
initial process state winit = (Qinit, Vinit)- In the induced transition system 7 (P) =
(C,—), we use Init to denote the set of initial configurations, i.e., configurations
of the form wipg - - - wini (all processes are in their initial states). Notice that this
set is infinite.

We define an ordering on configurations as follows. Given two configurations,
c=1uy- Uy and ¢ =uf - ul,, we write ¢ < ¢’ to denote the existence of a strictly
monotonic? injection A from 7 to @ such that u; = uﬁl(i) foreachi:1 <7< m.
A set of configurations D C C' is upward closed (with respect to <) if ¢ € D and
¢ = ¢ implies ¢ € D. For sets of configurations D, D’ C C we use D — D’ to
denote that there are ¢ € D and ¢/ € D’ with ¢ — ¢. The coverability problem for
parameterized systems is defined as follows:

&h : T — T strictly monotonic means: ¢ < j = h(i) < h(j) for all 4,5 : 1 <4,j < m.

786 P. A. Abdulla et al.

PAR-COV
Instance
e A parameterized system P = (Q, X, T).
e An upward closed set Cr of configurations.

Question Init = Cp ?

It can be shown, using standard techniques (see e.g. [36,21]), that checking
safety properties (expressed as regular languages) can be translated into instances
of the coverability problem. Therefore, checking safety properties amounts to solving
PAR-COV (i.e., to the reachability of upward closed sets).

4. Approximation

In this section, we introduce an over-approximation of the transition relation of a
parameterized system.

In Section 3, we mentioned that each parameterized system P = (@, X, T) in-
duces a transition system 7 (P) = (C, —). A parameterized system P also induces
an approzimate transition system A(P) = (C,~>), where the set C of configura-
tions is identical to the one in 7 (P). We define ~»= (— U ~»1), where — is the
transition relation defined in Section 3, and ~+1, which reflects the approximation
of universal quantifiers, is defined as follows. Let ¢ be a transition rule of the form
of (1), such that grd = V.0 is a universal global condition. Consider two config-
urations ¢ = uy - u, and ¢ = uj---ul,. We write ¢ L1 ¢ to denote that there
isani:1 <14 < m and a monotonic injection h : @ — T such that the following
conditions hold:

(1) up@y = (¢,v) and uj = (¢, stmt(v)) for some variable state v. This means
that the local variables of process i are updated according to stmit.

(2) Vj : 1 <j#i<m, we have uy(; = uj. In other words the local states
and local variables of the other processes are not changed.

(3) Vj : 1 <j+#h(i) <n, we have j is in the image of h iff either (a) j ~ h(7)
and u; = 0, or (b) j 7 h(i). That is we keep (in addition to the process
taking the transition 4) all the relevant processes who satisfy the formula
0 and all the processes that are not in the range of the quantifier (with
indices j : j % h(4)).

Intuitively, we derive ¢’ from c by deleting all process states that do not satisfy 6.

We use ¢ ~ ¢ to denote that ¢ ~5 ¢ for some t € T. Observe that the resulting
approximate transition relation ~» is monotonic with respect to the ordering <
defined in Section 3 (i.e., larger configurations are able to simulate smaller ones).
We say that we perform a monotonic abstraction of the original transition system.
We define the coverability problem for the approximate system as follows:

Monotonic Abstraction 78T

APRX-PAR-COV
Instance
e A parameterized system P = (Q, X, T).
e An upward closed set Cr of configurations.

Question Init <~ Cp ?

Since —C~», a negative answer to APRX-PAR-COV implies a negative an-
swer to PAR-COV.

5. Generic Backward Scheme

In this section, we recall a generic scheme from [1] for performing symbolic backward
reachability analysis.

Assume a transition system (D,==) with a set Init of initial states. We will
work with a set of constraints defined over D. A constraint ¢ denotes a potentially
infinite set of [¢] configurations (i.e. [¢] C D). For a finite set ® of constraints, we
let [@] = U¢eq> [¢].

We define an entailment relation C on constraints, where ¢1 C ¢ iff [¢2] C [¢1].
For sets @1, P of constraints, abusing notation, we let ®; = ®5 denote that for
each ¢ € Py there is a ¢1 € P with ¢1 C ¢2. Notice that ®; C P, implies that
[®2] C [®1] (although the converse is not true in general).

For a constraint ¢, we let Pre(¢) be a finite set of constraints, such that
[Pre(¢)] = {c| 3 € [¢].c = '}. In other words Pre(¢) characterizes the set
of configurations from which we can reach a configuration in ¢ through the ap-
plication of a single transition rule. For our class of systems, we will show that
such a set always exists and is in fact computable. For a set ® of constraints, we
let Pre(®) = Ugeqg Pre(¢). Below we present a scheme for a symbolic algorithm
which, given a finite set ®r of constraints, checks whether Init = [®F].

In the scheme, we perform a backward reachability analysis, generating a se-
quence &y J &1 J &5 I --- of finite sets of constraints such that &y = &, and
Q11 = ®; U Pre(®;). Since [®o] C [@1] C [®2] C ---, the procedure terminates
when we reach a point j where ®; C ®;,. Notice that the termination condition
implies that [®;] = (Uy<;<; [®i]). Consequently, ®; characterizes the set of all
predecessors of [®]. This means that Init == [®p] iff (Init () [®;]) # 0.

Observe that, in order to implement the scheme (i.e., transform it into an algo-
rithm), we need to be able to (i) compute Pre; (ii) check for entailment between
constraints; and (iii) check for emptiness of Init()[#] for a given constraint ¢. A
constraint system satisfying these three conditions is said to be effective. Moreover,
in [1], it is shown that termination is guaranteed in case the constraint system is well
quasi-ordered (WQO) with respect to C, i.e., for each infinite sequence ¢q, ¢1, P2, . - .
of constraints, there are ¢ < j with ¢; C ¢;.

788 P. A. Abdulla et al.

6. Scheme Instantiation

In this section, we instantiate the scheme of Section 5 to derive an algorithm for
solving APRX-PAR-COV. We do that by introducing an effective and well quasi-
ordered constraint system.

Throughout this section, we assume a parameterized system P = (Q, X, T) and
the induced approximate transition system A(P) = (C,~). We define a constraint
to be a finite sequence 0 - - - 6, where 6; € B(X U Q). Observe that for any con-
straints ¢1 and ¢, their concatenation ¢, e ¢ is also a constraint. For a constraint
¢ = 01---0,, and a configuration ¢ = uy---u,, we write ¢ = ¢ to denote that
there is a strictly monotonic injection h from 7 to 7 such that ;) f= 6; for each
i:1 < i< m. Given a constraint ¢, we let [¢] = {c € C| ¢ = ¢}. Notice that if
¢ =616, and some 0; is unsatisfiable then [¢] is empty. Such a constraint can
therefore be safely discarded in the algorithm.

An aspect of our constraint system is that each constraint characterizes a set of
configurations that is upward closed with respect to <. Conversely (by Higman’s
Lemma [22]), any upward closed set Cr of configurations can be characterized as
[®F] where ®p is a finite set of constraints. In this manner, APRX-PAR-COV is
reduced to checking the reachability of a finite set of constraints.

Below we show effectiveness and well quasi-ordering of our constraint system,
meaning that we obtain an algorithm for solving APRX-PAR-COV.

Computing Predecessors For a constraint ¢', we define Pre(¢’) =
Uier Pred(¢'), ie., we compute the set of predecessor constraints with respect to
each transition rule ¢ € T'. In the following, assume ¢ to be a transition rule of the
form (1). To compute Pre,(¢'), we define first the function [¢t] on X U Q as follows:
for each x € X, [t](z) = stmt(zx) if z occurs in stmt and [t](z) = x otherwise. For
each ¢ € Q, [t](¢") = true if ¢" = ¢, and false otherwise. For 6 € B(X U Q), we
use [t] to denote the formula obtained from 6 by substituting all occurrences of
elements in # by their corresponding [t]-images. Now, we define an operator ® on
natural numbers. We use this operator to capture the effect of existential quantifiers
when computing Pre. For natural numbers k,j > 1, we define k® j to be kif k < j
and k + 1if k > j. For example 204 =2 and 704 = 8.

For a constraint ¢ = 6} ---6/, and a rule ¢ of the form (1), we define Pre;(¢’)
to be the set of all constraints ¢ = 6y - - - 8,,, for some m > n, such that one of the
following conditions holds:

e grd € B(X), this corresponds to a transition with a local condition. Two
cases are possible depending on whether the process that took the transition
is represented in the constraint ¢’ or not. If it is represented, i.e., if the
transition is performed by a process represented by a formula 6} in ¢’ for
some i : 1 <4 < n, then we let m = n, §; = 0[t] A grd A g, and 0; = 0]
for each j : 1 < j # ¢ < n. The local state and variables of process i are
changed according to the transition ¢. This is reflected in the definition

Monotonic Abstraction 789

of 6;, which is essentially the weakest precondition of @] with respect to
t. The local states and variables of the other processes are not changed
and hence 0; = 9; for j # i. If the process is not represented, then none
of the processes represented in ¢’ are changed, meaning that the obtained
configuration is also in [¢']. This case does not add any information in
the fixpoint calculation, and we do not need to compute the corresponding
constraints.

grd = V.0, this corresponds to a transition with a universally quantified
condition. Following a similar reasoning to above, we focus on the case
where the process that performed the transition is represented by a formula
0, in ¢, for some i:1<i<mn. Welet m=mn,0; =0.[t] AgrdA q, and for
eachj:1<j#i<n:

;=

. i~
0’ otherwise.

The local state of process i is changed back to ¢ and the statement in ¢ is
performed backwards. The local state and variables of a process j different
from i with j # i are not changed. All the relevant processes (with index
j i j ~ 1) should satisfy the condition 6 since otherwise such processes would
have been eliminated according to the approximate transition relation. In
the definition of ¢, we capture that by taking §; = 9} A 0 for any j in the
range of the quantifier (j ~ 7).

grd = 3.0, this corresponds to a transition with an existentially quantified
condition. Again, we only consider cases where the process that performed
the transition is represented by some formula 6} in ¢’ for some i : 1 <4 < n.
We consider two cases depending on whether the process that satisfies the
formula ¢ is represented or not by some 0’ in ¢:

—m=mn,0; =0;[t] A\grd A q, and there is a j : 1 < j ~ i < n such that
* 05 =05 N0, and
* Oy =0 foreach k:1<k#jAk#i<n
The case is similar to that of universal quantifiers (see the previous
item), except that we require that only one relevant process (rather
than all) satisfies the condition (6; = 6 A6). Observe that the process
j is represented in ¢’.
—m=mn+1, and there is a j : 1 < j < m such that 6; = 0, 0,0; =
Oi[t] A grd A g, and for each k : 1 < k # i < n we have

) 6, A —0 ik~
her 0y, otherwise.

The difference compared to the previous case is that the process that
satisfies the condition # is not part of the representation of ¢’. There-
fore, we add a new process with index j to ¢, and we require that it

790 P. A. Abdulla et al.

satisfies 6. All other processes in the range of the quantifier (with id
k ~ i) do not satisfy the condition and therefore we constrain them
with —6.

Remark 2. Notice that in the second item of the case with an existentially quan-
tified transition, the length of the resulting constraint is larger (by one) than the
length of ¢. This means that the lengths of the constraints that arise during the
analysis are not a priori fived. Nevertheless, termination is still guaranteed by the
well quasi-ordering of the constraints.

Entailment The following Lemma gives a syntactic characterization that allows
computing of the entailment relation.

', we have ¢ T ¢ iff
there exists a strictly monotonic injection h : m — m such that 92(1) = 0; for each
i:1<i<m.

Lemma 3. For constraints ¢ = 61...0,, and ¢ = 0]...6!

Proof. (=) Assume there is no such injection. We derive a configuration ¢ such
that ¢ € [¢'] and ¢ & [#]. To do that, we define the function g on 7 as follows:
g(1) =1, g(i +1) = g(i) if 0; # 04¢;), and g(i + 1) = g(i) + 1 if 6] = O,(;). Observe
that, since the above mentioned injection does not exist, we have either g(n) < m,
or g(n) =m and 6/, % 0,,. We choose ¢ = uj - - - u,,, where u; is defined as follows:
(i) if 0] # 04y let u; be any process state such that u; = =0y A 0;; and (ii) if
0; = 04y let u; be any process state such that u; = 0;.
(<) Assume there exists a strictly monotonic injection h : M — 7 such that
;1(1') = @; foreach i : 1 < i < m. Let ¢ = uy...u, be a configuration in [¢'].
It follows that there exists a strictly monotonic injection A’ : @ — P such that
upr(y = 0; for each i : 1 < i < n. By assumption, for each j : 1 < j < m, we have
HZ(J') = 0;. Therefore, for each j : 1 < j < m, upopj) = 0;. It is straightforward
to check that h' o h is a strictly monotonic injection from m to p. It follows that

c € [9]. O

Intersection with Initial States For a constraint ¢ = 6;...0,, we have
(Init N [#]) = 0 iff wipn ¥ 6; for some i: 1 < i < n.

Termination Termination follows from the following lemma.

Lemma 4. The constraint system is well quasi-ordered (WQO) with respect to C.

Proof. (4, =) is obviously a WQO for any finite set A and any quasi-order < on
A. Let A* be the set of words over A, and <* be the subword relation. Higman’s
Lemma [22] states that (A*, <*) is also a WQO. Take A to be the quotient sets
of B(X U Q) under the equivalence relation. Let < be the implication relation on
formulas in B(X U Q). By lemma 3, the relation C coincides with <*. We conclude
that the constraint system is a WQO. |

Monotonic Abstraction T91

7. Extensions

In this section, we add a number of features to the model of Section 2. For each
additional feature, we show how to modify the constraint system of Section 6 in a
corresponding manner.

Shared Variables We assume the presence of a finite set S of Boolean shared
variables that can be read and written by all processes in the system. A guard may
constraint the values of both the shared and the local variables, and a statement
may assign values to the shared variables (together with the local variables). It is
straightforward to extend the definitions of the induced transition system and the
symbolic algorithm to deal with shared variables.

Variables over Finite Domains Instead of Boolean variables, we can use vari-
ables that range over arbitrary finite domains. Below we describe an example of
such an extension. Let Y be a finite set of variables that range over {0,1,...,k},
for some natural number k. Let N(A) be the set of formulas of the form =z ~ y
where ~€ {<,<,=,#,>,>} and x,y € Y U{0,1,...,k}. A guard is a formula
grd € B(X UN(Y))UG(X UQ UN(Y)). In other words, the guard grd may also
constraint the values of the variables in Y. Similarly, a statement may assign values
in {0,1,...,k} to variables in Y. A local variable state is a mapping from X UY to
BU{0,1,...,k} respecting the types of the variables. The definitions of configura-
tions, the transition relation, and constraints are extended in the obvious manner.
Well quasi-ordering of the constraint system follows in a similar manner to Section 6,
using the fact that variables in Y range over finite domains.

Broadcast A broadcast transition is initiated by some process, called the initiator,
and corresponds to an arbitrary number of processes changing states simultaneously.
A broadcast rule is a sequence of transition rules of the following form
[qg {grdo > stmt0| q(')] [ql |g7"d1 > stmt1| q'l]* [qm {grdm > stmtm| q;n]*
(4)
where grd; € B(X) for each i : 0 <4 < m. Below, we use t; to refer to the i*" rule in
the above sequence. We assume the broadcast rule to be deterministic in the sense
that either grd; A grd; is not satisfiable or ¢; # g; for each 4,5 : 1 <i % j <m. The
initiator is represented by the leftmost transition rule ¢g. This transition rule has
the same interpretation as in Section 2. That is, in order for the broadcast transition
to take place, the initiator should be in local state qo and its local variables should
satisfy the guard grd,. After the completion of the broadcast, the initiator has
changed state to g, and updated its local variables according to stmty. Together
with the initiator, an arbitrary number of processes, called the receptors, change
state simultaneously. The receptors are modeled by the transition rules ¢y, ..., ¢,
(each rule being marked by a * to emphasize that an arbitrary number of receptors
may execute that rule). More precisely, if the local state of a process is ¢; and

792 P. A. Abdulla et al.

its local variables satisfy grd;, then the process changes its local state to ¢} and
updates its local variables according to stmt;. Notice that since the broadcast rule
is deterministic, a receptor satisfies the precondition of at most one of the transition
rules. Processes that do not satisfy the precondition of any of the transition rules
remain passive during the broadcast. We define a transition relation — p to reflect
broadcast transitions. The definition of — p can be derived in a straightforward
manner from the above informal description. We extend the transition relation —
defined in Section 3, by taking its union with — p. In a similar manner, we extend
the approximate transition relation ~» (defined in Section 4) by taking its union
with — p. This means that the introduction of broadcast transitions are interpreted
exactly, and thus they do not add any additional approximation to ~» .

We use the same constraint system as the one defined for systems without broad-
cast; consequently checking entailment, checking intersection with initial states, and
proving termination are identical to Section 6. Below we show how to compute Pre.
Consider a constraint ¢’ = 6] - - - 0/, and a broadcast rule b of the above form. We de-
fine Prey(¢’) to contain both following sets of constraints (corresponding to whether
the initiator is represented or not by a formula in ¢'):

e The initiator is represented by a formula €} in ¢’ for some i : 1 < i < n.
We include in Prey(¢’) all constraints of the form 6 - -- 6, such that the
following properties are satisfied:

— 0; = Olto] A grdy A qo. This represents the predecessor state of the
initiator.
— For each j: 1 < j # i < n, one of the following properties is satisfied:
* 0 = 9; A =((g1 Agrdy) V(g2 A grdy) V-V (¢gm A grd,,)). This
represents a passive process (a process other than the initiator
may be passive if it does not satisfy the preconditions of any of
the rules).
* 0; = 9; [tr] A grd;, A q, for some k : 1 < k < m. This represents a
receptor.

e The initiator is not represented in ¢’. We include in Pre,(¢) all constraints
of the form 6y - - - 0,1 such that thereisi: 1 < i <n+1 and the following
properties are satisfied:

— 0; = grdy N qo. This represents the predecessor state of the initiator.

— For each j : 1 < j < n, one of the following properties is satisfied:

* Oj0i = 05 A=((q1 Agrdy) V(ga Agrdy) V-V (gm A grd,,)).
* Ojoi = 05[te] A grdy, A gy, for some k: 1 <k <m.

Binary Communication In binary communication two processes perform a
rendez-vous changing states simultaneously. A rendez-vous rule consists of two tran-
sition rules of the from

(a1 |g7‘d1 > stmt1| a1] [|g7‘d2 > stmt2| g | (5)

Monotonic Abstraction 793

where grd,, grd, € B(X). Binary communication can be treated in a similar manner
to broadcast transitions (here there is exactly one receptor). The model definition
and the symbolic algorithm can be extended in a corresponding way.

Dynamic Creation and Deletion We allow dynamic creation and deletion of
processes. A process creation rule is of the form

[|grd > -] d] (6)

where ¢’ € Q and grd € B(X). The rule creates a new process whose local state is
¢' and whose local variables satisfy grd. The newly created processes may be placed
anywhere inside the array of processes.

We define a transition relation — p to reflect process creation transitions as
follows. For configurations ¢ and ¢/, and a process creation rule d of the form of (6),
we define ¢ —%5p ¢ to denote that ¢ is of the form ¢} @ u’ e ¢, where ¢ = ¢} o c,
u = (¢',v") and v’ = grd. We use the same constraint system as the one defined
for systems without process creation and deletion. We show how to compute Pre.
Consider a constraint ¢’ and a creation rule d of the form of (6). We define Preg(¢’)
to be the set of all constraints ¢ such that ¢’ (resp. ¢) is of the form ¢} e ¢’ e ¢,
(resp. ¢ e %) and O'[t] A grd is satisfiable. Notice that 6'[¢t] does not change the
values of the local variables in 6’.

A process deletion rule is of the form

[q!grd>-|~] (7)

where ¢ € @ and grd € B(X). The rule deletes a single process whose local state is
q provided that the guard grd is satisfied. The definitions of the transition system
and the symbolic algorithm can be extended in a similar manner to the case with
process creation rules.

Counters Using deletion, creation, and universal conditions we can simulate coun-
ters, i.e., global unbounded variables that range over the natural numbers. For each
counter ¢, we use a special local state ¢., such that the value of ¢ is encoded by the
number of occurrences of ¢. in the configuration. Increment and decrement oper-
ations can be simulated using creation and deletion of processes in local state ¢..
Zero-testing can be simulated through universal conditions. More precisely, ¢ = 0
is equivalent to the condition that there is no process in state g.. This gives a
model that is as powerful as Petri nets with inhibitor arcs (or equivalently counter
machines) [29, 30]. Observe that the approximation introduced by the universal con-
dition means that we replace zero-testing (in the original model) by resetting the
counter value to zero (in the approximate model). Thus, we are essentially approx-
imating the counter machine by the corresponding lossy counter machine (see [28]
for a description of lossy counter machines). In fact, we can equivalently add coun-
ters as a separate feature (without simulation through universal conditions), and
approximate zero-testing by resetting as described above.

794 P. A. Abdulla et al.

8. The Java Meta-locking Algorithm

The concurrent object-oriented programming language Java provides synchroniza-
tion operations for the access to every object. Synchronized methods and synchro-
nized statements are examples of such operations. In order to ensure fairness and
efficiency, every object maintains some synchronization data, e.g., a FIFO queue
of the threads requesting the object. The Java meta-locking algorithm [7] is the
protocol that controls the access to the synchronization data of every object.

The Meta-locking protocol is a distributed algorithm observed by every object
and thread. The algorithm ensures mutually exclusive access to the synchronization
data of every object. The pattern followed by a synchronized method invoked by a
thread is as follows:

e The thread gets the object meta-lock if no other thread is accessing the
synchronization data (fast path), otherwise it waits for a hand-off

e The thread manipulates the synchronization data.

e The threads releases the meta-lock if no other thread is waiting (fast path),
otherwise it hands off the meta-lock to a waiting thread.

In this paper we consider the parameterized model of the meta-locking algorithm
defined in [33]. Our model is described in Table 1 in appendix. The model is defined
for a single object in which synchronization data have been abstracted away. The
model consists of the parallel composition of an object, a hand-off process, and an
arbitrary number of threads.

Each thread has five possible states: idle, owner (i.e., possesses the meta-lock),
handin (i.e., competes to acquire the meta-lock), handout (i.e., gets ready to hands
off the meta-lock), and waiting (i.e., waits for acknowledgment to acquire the meta-
lock). The object has one control variable busy and a data variable ¢ (for count).

e The Boolean variable busy is true when there exists a thread that possesses
the meta-lock, false otherwise.

e The variable ¢ ranges over the natural numbers and keeps track of the num-
ber of threads waiting to acquire the meta-lock on the object. This variable
is an abstraction of the FIFO queue contained in the object synchronization
data.

The hand-off process models the races between acquiring and releasing threads
via four possible states hg, h1, hs and hs. This model can be specified in a direct
way in our input language. The object is modeled via a global Boolean variable busy
and a global unbounded variable ¢ ranging over naturals. The hand-off process is
modeled via a global variables h_of f ranging over the interval [0..3].

The transitions are described below.

t1: If a thread in state idle requires the meta-lock and the object is not busy, then
the thread becomes owner and the busy flag is set to true.

Monotonic Abstraction 795

to: If the object is busy, then the variable c¢ is incremented and the thread moves
to state handin (the thread races to acquire the meta-lock).

t3: If a thread in state owner releases the meta-lock and no other threads are
waiting, then it moves to state idle and the busy flag is set to false.

ty: If some thread is waiting for the meta-lock, the releasing thread moves to state
handout and c is decremented by one.

ts: If a thread is in state handin and the hand-off process is in state hg, then the
thread moves to the state waiting in which it waits for an acknowledgment
to acquire the meta-lock. The hand-off process moves to h; waiting to
synchronize with a releasing thread.

tg: If a thread is in state handout and the hand-off process is in state hg, then the
thread releases the meta-lock and moves to the state idle. The hand-off
process moves to hs waiting to synchronize with an acquiring thread.

t7: A similar transition occurs in state hi; the hand-off process moves to state hg
ready to send an acknowledgment to an acquiring thread.

tg: A transition similar to t5 occurs if the hand-off process is in state ho. In this
case it moves to state h3 and it gets ready to send an acknowledgment to
an acquiring thread.

to: In state hg the hand-off process sends an acknowledgment to a waiting thread.
The thread then acquires the meta-lock.

Notice that during the hand-off phase the object busy flag remains set to true.

The violation of the mutual exclusion property corresponds to configurations
with more than one owner thread, more than one handout thread, or with the
simultaneous presence of owner and handout threads. We automatically proved
that none of these three situations can occur. We used for that a prototype running
on a Pentium 1.6 Ghz. At most, the analysis required 22 iterations, took 3.2 seconds,
used less than five megabytes of memory and generated 376 constraints.

Observe that our approach permitted automatic verification despite the fact that
this example has two infinite dimensions: the value of the ¢ variable and the number
of thread instances. In [33] the authors needed to manually strengthen the mutual
exclusion invariant in order to apply their verification method based on induction
proof techniques to the same infinite-state model.

9. German Cache Coherence Protocol

We describe a cache coherence protocol due to S.German [19]. This protocol is a
challenge for parameterized verification [8, 31, 16]. Our model is described in Table
2 in appendix. In this protocol, a central controller denoted by Home, is used to
manage the access of an arbitrary, but finite, number of clients Pi,..., Py to a
cache line. In the parameterized system model, each process models a client. The
actions of Home are represented in each process while its bounded local variables
are modeled as shared variables.

796 P. A. Abdulla et al.

A process, i.e. client in [31], can be in one of the three states : invalid, shared
or exclusive. A client is in state invalid if it does not have access to the cache line.
A client is in state shared if it has been granted the access (by home) possibly with
other clients (also in state shared). Home can also grant the access exclusively to a
client (state exclusive).

Each client communicates with Home via three channels: channel;, channels
and channels. Since the channels are considered to be of length one, each of them
can be represented by a local variable ch; for channel;. In addition to channels,
the central controller manipulates four data structures:

(i) a flag for whether exclusive access has been granted, modeled with a shared

Boolean variable (eGran),

(ii) a pointer to the client that sent the request being served, modeled with a local
Boolean variable (cClt),

(iii) a list of the processes having an access, either shared or exclusive, to the cache
line, modeled with a local Boolean variable sLst for sharer list, and

(iv) a list of processes that have to be invalidated in order to serve the current
request, modeled also with a local Boolean variable i Lst for invalidate list.

Both Home and clients may perform actions. We start with clients. Depending
on the channels content and the local state, a client may perform one of the following
actions.

p1: If in state invalid and channel; is empty, the client sends a request for a
shared access via channel;.

po: If in state invalid while channel; is empty, the client sends a request for
exclusive access via channel;.

ps: If in state shared while channel; is empty, the client sends a request for
exclusive access via channel;.

pa: If channels is empty and the client receives an invalidation message through
channelsy, then the client moves to state invalid, empties channels and sends
an invalidation acknowledgment to the central controller via channels.

ps: If the client receives a grant for shared access via channels, it moves to
state shared and empties channels.

pe: If the client receives a grant for exclusive access via channels, it moves to
state exclusive and empties channels.

Depending on the content of the channels and the values of the shared variables,
Home may perform one of the following actions.

ho: In case channels is empty, the current command is a shared request and the
exclusive access has not been granted, then home sends a grant for a shared
access to the current client via channels, adds the client to the shared list
and becomes idle (cC'm empty).

Monotonic Abstraction 797

h1: In case channely is empty, the current command is an exclusive request
and the sharer list is empty, then Home sends a grant for exclusive access
to the current client via channels, adds the client to the sharer list, sets
the exclusive flag and becomes idle.

ho: If Home is idle and receives a request via channel;, then Home updates
cCm with the received request, empties channely, selects the sender to be
the current client and copies the content of the sharer list to the invalidation
list. The client selection and the list copying are modeled with a broadcast.

hs: If the current command is a shared request (while the exclusive flag is
set), channely is empty, then Home sends an invalidation message to every
process through channels and removes these processes from the invalidation
list.

hy: If the current command is either an exclusive request (while the exclusive
flag is set), channels is empty, then Home sends an invalidation message
to every process through channels and removes these processes from the
invalidation list.

hs: If the current command is a request for either a shared or an exclusive
access and Home receives an invalidation acknowledgment from a client via
channels, in this case Home removes a client from the sharer list, resets
the exclusive flag and empties channels.

To simplify the presentation, we used assignment statement of the form x = '
where z and 2’ are different variables (see hs). In order to model this rigorously, we
need n transitions where n is the size of the domain of z'.

The safety properties we checked are: (i) no two clients are simultaneously
granted an exclusive access, and (ii) no client in state shared coexists with a client
in state exclusive. We used our prototype to automatically prove that none of these
two situations can occur. At most, the analysis required 34 iterations, took 232
seconds, used about 15 megabytes of memory and generated 10492 constraints.

10. Conclusion and Future Work

We have presented a method for verification of parameterized systems where the
components are organized in a linear array. We derive an over-approximation of the
transition relation that allows the use of symbolic reachability analysis defined on
upward closed sets of configurations. Based on the method, we have implemented a
prototype that performs favorably compared to existing tools on several protocols
that implement cache coherence and mutual exclusion.

One direction for future research is to apply the method to other types of topolo-
gies than linear arrays. For instance, in the cache coherence protocols we consider,
the actual ordering on the processes inside the protocol has no relevance. These pro-
tocols fall therefore into a special case of our model where the system can be viewed
as set of processes (without structure) rather than as a linear array. This indicates
that the verification algorithm can be optimized even further for such systems.

798 P. A. Abdulla et al.

Furthermore, since our algorithm relies on a small set of properties of words, which
are shared by other data structures, we believe that our approach can be lifted to
a more general setting. In particular we work on developing similar algorithms for
systems whose behaviors are captured by relations on trees and on general forms of

graphs.

11. Appendix

Table 1: Java Meta-locking Algorithm.

T:

t1:

to :

t3 :

tg:

tg :

tr:

tg :

tg :

Instance
Q3 Qidle> Qowner; Qhandins Ydhandout > Qwaiting

X: {}
S: busy € B,h_of f € [0..3],ce N

[Qidle | —busy > bu5y| Q(nuner]
[qidle ‘ busy > c=c+1 ’ Qhandin]
[QOwner | busy Ac=0 > —busy | Qidle]

[qowner ’busy/\cz 1> c:c—1’ Qhandout]

: [qhandin | hoff =01 hoff=1 | qwaiting]

[Qhandout ’ hoff=00 hoff=2 ‘ Qidle]
[qhandout | h_Off =1b> h_Off =3 | Qidle]
[Qhandin ’ hoff=20> hoff=3 ‘ Qwaiting]

[qwaiting | hoff =301 hoff=0 | QOwner]

Initial State of Shared Vars:
—busy,h_of f =0,c =0
Initial Process State:
Usnst* didle
Final Constraints:

P qownerqonwer, qonwerqhandouts Ihandoutdowner; Qhandoutdhandout

Monotonic Abstraction 799

Table 2: German Protocol.

Instance

Q: Ginvs Gsh» Qexc; dqu s any state in Q.

X: cClt,sLst,iLst € B, chy € {¢,rSh,rExc}, chy € {¢,9Sh, gExc,inval}, chs € {¢,iAck}
S: eGran € B, cCm € {¢,rSh,rExc}

T:
I cCm =rSh, cCm = e,
ho : | Qan —-eGran, > sLst, Qall
L chy = €,cClt cho = gSh
I cCm = rExc, cCm = e,
o chy = €, > sLst,
1+ dall V—sLst, eGran, Qall
L —sLst cho = gEzc
I cCm = chy,
ho - cCm = ¢, > chi =, > iLst = sLst, *
2 ¢ | 4all chi # € iLst = sLst, dall _Qall —cClt qall
L cClt
o+ | qut | cramitot, & et
3 | Gall)) chy = inval qall
L cho = €]
- [cCm = rEzxc, —iLst,
4 _q“” iLst,chy = € cho = inval Qall
he - [cCm # e, > —sLst, —eGran,
o _q(Lll Ch,g — ’LAC:’{? Ch3 =€ dall
p1: [Qinv | chy =e¢> ch = TSh| qinv]

P2t [Ginv |ch1 =€ > chy = rEzc| qiny |

p3: [qsh ’chl =eD> ch :rEmc‘ qsh]

) ho = inval, > ho =€, ‘
p4 . Qall Ch3 — ¢ Ch3 — ZACk QZTL’U

p5 : [qau | che = gSh > chy = €| g,]
P6 : [qau |che = gEBxc > chy = €| geac |

Initial State of Shared Vars:

eGran — ff, cCm — €
Initial Process State:

Uinit: Ginv, (ch1,cha,chs, cClt, sLst,iLst) — (e, ¢, ¢, ff, ff, fT)
Final Constraints:

‘I)F5 Qexclexc, Qshqexc, excqsh

800

P. A. Abdulla et al.

References

(1]

2]

(11]

(12]

P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems
for infinite-state systems. In Proc. LICS ’96, 11" IEEE Int. Symp. on Logic in
Computer Science, pages 313-321, 1996.

P. A. Abdulla, G. Delzanno, F. Haziza, and A. Rezine. Parameterized tree systems.
In Proc. FORTE 08, 28°¢ International Conference on Formal Techniques for Net-
worked and Distributed Systems, volume 5049 of Lecture Notes in Computer Science,
pages 69-83. Springer Verlag, 2008.

P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-
state processes with global conditions. In Proc. 19" Int. Conf. on Computer Aided
Verification, volume 4590 of Lecture Notes in Computer Science, pages 145-157, 2007.
P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model check-
ing without transducers (on efficient verification of parameterized systems). In Proc.
TACAS 07, 13" Int. Conf. on Tools and Algorithms for the Construction and Anal-
ysis of Systems, volume 4424 of Lecture Notes in Computer Science, pages 721-736.
Springer Verlag, 2007.

P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Handling parameterized
systems with non-atomic global conditions. In Proc. VMCAI 08, 9t Int. Conf. on
Verification, Model Checking, and Abstract Interpretation, 2008.

P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model checking made
simple and efficient. In Proc. CONCUR 2002, 131" Int. Conf. on Concurrency Theory,
volume 2421 of Lecture Notes in Computer Science, pages 116-130, 2002.

O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. S. Ramakrishna, and D. White.
An efficient meta-lock for implementing ubiquitous synchronization. In OOPSLA
1999, pages 207-222, 1999.

T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. In Berry, Comon, and Finkel, editors,
Proc. 13" Int. Conf. on Computer Aided Verification, volume 2102 of Lecture Notes
in Computer Science, pages 221-234, 2001.

K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of a cache coher-
ence protocol: Safety and liveness. In Proc. VMCAI 2002, pages 317-330, 2002.

B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In Proc.
15" Int. Conf. on Computer Aided Verification, volume 2725 of Lecture Notes in
Computer Science, pages 223-235, 2003.

A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
CAV0/, Lecture Notes in Computer Science, pages 372-386, Boston, July 2004.
Springer Verlag.

E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized
verification. In Proc. VMCAI 06, 7t Int. Conf. on Verification, Model Checking,
and Abstract Interpretation, volume 3855 of Lecture Notes in Computer Science, pages
126-141, 2006.

D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In G. Berry, H. Comon,
and A. Finkel, editors, Computer Aided Verification, volume 2102 of Lecture Notes
in Computer Science, 2001.

G. Delzanno. Automatic verification of cache coherence protocols. In Emerson and
Sistla, editors, Proc. 127 Int. Conf. on Computer Aided Verification, volume 1855 of
Lecture Notes in Computer Science, pages 53—68. Springer Verlag, 2000.

G. Delzanno. Verification of consistency protocols via infinite-state symbolic model
checking. In Proc. FORTE/PSTV 2000, pages 171-186, 2000.

E. Emerson and V. Kahlon. Exact and efficient verification of parameterized cache
coherence protocols. In CHARME 2003, pages 247-262, 2003.

(28]
29]
(30]

31]

32]

(34]

(35]

Monotonic Abstraction 801

E. Emerson and V. Kahlon. Model checking guarded protocols. In Proc. LICS ’03,
19" IEEE Int. Symp. on Logic in Computer Science, Lecture Notes in Computer
Science, 2003.

J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
Proc. LICS 799, 14" IEEE Int. Symp. on Logic in Computer Science, 1999.

S. German. Personal communication, 2007.

S. M. German and A. P. Sistla. Reasoning about systems with many processes. Jour-
nal of the ACM, 39(3):675-735, 1992.

P. Godefroid and P. Wolper. Using partial orders for the efficient verification of dead-
lock freedom and safety properties. Formal Methods in System Design, 2(2):149-164,
1993.

G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3), 2(7):326-336, 1952.

P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. MOSEL: A flexible toolset
for monadic second-order logic. In Proc. TACAS °97, 3t" Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, volume 1217, pages 183—
202. Lecture Notes in Computer Science, 1997.

Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking
with rich assertional languages. Theoretical Computer Science, 256:93-112, 2001.

S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system
verification. In CAV 2004, pages 135-147, 2004.

A. Lisitsa, A. P. Nemytykh, Reachability analysis in verification via supercompilation,
Int. J. Found. Comput. Sci. 19 (4) (2008) 953-969.

M. Maidl. A unifying model checking approach for safety properties of parameterized
systems. In Berry, Comon, and Finkel, editors, Proc. 13" Int. Conf. on Computer
Aided Verification, volume 2102 of Lecture Notes in Computer Science, pages 324-336,
2001.

R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297:347-354, 2003.

M. L. Minsky, Computation: finite and infinite machines, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

K. Reinhardt, Reachability in petri nets with inhibitor arcs, Electron. Notes Theor.
Comput. Sci. 223 (2008) 239-264.

A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. In Proc. TACAS 701, 7" Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031, pages 82-97, 2001.

A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,infinity)-counter abstraction. In
Proc. 14" Int. Conf. on Computer Aided Verification, volume 2404 of Lecture Notes
in Computer Science, 2002.

A. Roychoudhury and I. Ramakrishnan. Automated inductive verification of param-
eterized protocols. In Proc. 13" Int. Conf. on Computer Aided Verification, volume
2102 of Lecture Notes in Computer Science, pages 25-37, 2001.

C. Topnik, E. Wilhelm, T. Margaria, and B. Steffen. jMosel: A Stand-Alone Tool and
JABC Plugin for M2L(Str). In Model Checking Software: 18th International SPIN
Workshop, volume 3925 of Lecture Notes in Computer Science, pages 293-298, 2006.
T. Touili. Regular Model Checking using Widening Techniques. FElectronic Notes
in Theoretical Computer Science, 50(4), 2001. Proc. Workshop on Verification of
Parametrized Systems (VEPAS’01), Crete, July, 2001.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. LICS ’86, 1°¢ IEEE Int. Symp. on Logic in Computer Science,
pages 332-344, June 1986.

