

PERFORMANCE ANALYSIS OF RELIABLE MULTICAST PROTOCOLS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CO�KUN ÇEL�K

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Science

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof Dr. �smet Erkmen
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Cüneyt F. Bazlamaçcı
 Supervisor

Examining Committee Members

Prof. Dr. Hasan Güran (METU,EE)

Asst. Prof. Dr. Cüneyt F. Bazlamaçcı (METU,EE)

Prof. Dr. Semih Bilgen (METU,EE)

Dr. Ece Güran (METU,EE)

Dr. Altan Koçyi�it (METU,IS)

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Co�kun ÇEL�K

iv

ABSTRACT

PERFORMANCE ANALYSIS OF RELIABLE MULTICAST

PROTOCOLS

Çelik, Co�kun

M.Sc. Department of Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Cüneyt F. Bazlamaçcı

December 2004, 81 pages

IP multicasting is a method for transmitting the same information to multiple

receivers over IP networks. Reliability issue of multicasting contains the challenges

for detection and recovery of packet losses and ordered delivery of the entire data. In

this work, existing reliable multicast protocols are classified into three main groups,

namely tree based, NACK-only and router assisted, and a representative protocol for

each group is selected to demonstrate the advantages and disadvantages of the

corresponding approaches. The selected protocols are SRM, PGM and RMTP.

Performance characteristics of these protocols are empirically evaluated by using

simulation results. Network Simulator-2 (ns2), a discrete event simulator is used for

the implementation and simulation of the selected protocols. The contributions of

the thesis are twofold, i.e. the extension of the ns library with an open source

implementation of RMTP which did not exist earlier and the evaluation of the

selected protocols by investigating performance metrics like distribution delay and

v

recovery latency with respect to varying multicast group size, network diameter, link

loss rate, etc.

Keywords: IP Multicasting, Reliable Multicast, Network Simulation,

Performance Analysis

vi

ÖZ

GÜVEN�L�R ÇOKLU YAYILIM PROTOKOLLER�N�N

PERFORMANS ANAL�Z�

Çelik, Co�kun

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü

Tez Danı�manı : Yrd. Doç. Dr. Cüneyt F. Bazlamaçcı

Aralık 2004, 81 sayfa

IP çoklu yayılım, aynı bilginin �nternet Protokolü kullanan a�lar üzerinden

bir çok alıcıya gönderilmesi için kullanılan bir yöntemdir. Çoklu yayılımda

güvenilirlik sorunu paket kayıplarının belirlenmesi ve giderilmesini ve tüm verinin

sıralı bir �ekilde aktarılmasını içerir. Bu çalı�mada mevcut çoklu yayılım

protokolleri, a�aç yapılı, negatif bildirimli ve yönlendirici destekli olarak üç ana

grupta sınıflandırılmı�tır ve her grubun avantaj ve dezavantajlarını incelemek için

bir protokol seçilmi�tir. Seçilen protokoller SRM, PGM ve RMTP’dir. Bu

protokollerin performans özellikleri benzetim sonuçları kullanılarak deneysel olarak

de�erlendirilmi�tir. Protokollerin benzetimi için bir kesikli olay benzetim aracı olan

Network Simulator-2 (ns2) kullanılmı�tır. Tezin iki yönlü katkısı bulunmaktadır;

bunlar daha önceden varolmayan bir RMTP açık kaynak kodu ile ns kütüphanesinin

geni�letilmesi ve seçilmi� protokollerin, yayılım zamanı, yenileme gecikmesi gibi

vii

performans metriklerinin de�i�en grup büyüklü�ü, a� geni�li�i, hatlardaki kayıp

oranı vb. göre incelenmesi ve de�erlendirilmesidir.

Anahtar Kelimeler: IP Çoklu Yayılım, Güvenilir Çoklu Yayılım, A�

benzetimi, Performans analizi.

viii

ACKNOWLEGMENTS

The author wishes to express his deepest gratitude to his supervisor Asst.

Prof. Dr. Cüneyt F. Bazlamaçcı for his guidance, advice, criticism, encouragements

and insight throughout the research.

He would like to express his appreciation to the members of Electrical and

Electronics Engineering Department of Gazi University, who provided technical

support and tolerance during this study.

The author would also like to thank his mother Nursen Çelik, his father

Süleyman Çelik and his brother M. Orkun Çelik for their endless support and

patience. And last, he wishes to thank his friends for their encouragement, love, and

support.

ix

TABLE OF CONTENTS

ABSTRACT ...iv

ÖZ ..vi

ACKNOWLEGMENTS .. viii

TABLE OF CONTENTS..ix

LIST OF TABLES..xi

LIST OF FIGURES .. xii

ABBREVIATIONS ..xiv

CHAPTER

1. INTRODUCTION ...1

2. IP MULTICAST BACKGROUND..4

2.1. Definition ..4

2.2 IP Multicast Concepts...5

2.2.1 Multicast Address ...6

2.2.2 Group Management ..7

2.2.3 Multicast Routing ...8

2.3 Challenges of Multicasting ...10

3. RELIABLE MULTICAST PROTOCOLS ...12

3.1 Introduction to Reliable Multicast...12

3.2 Classification of Reliable Multicast Protocols.......................................13

3.3 Literature Survey..17

3.4 Related Work ...22

3.4.1 Reliable Multicast Transport Protocol (RMTP)22

3.4.2 Scalable Reliable Multicast (SRM) ...27

x

3.4.3 Pragmatic General Multicast (PGM) ...29

4. NS-2 IMPLEMENTATION OF RMTP..33

4.1 RMTP Packet Type ..33

4.2 RMTP Agents...35

4.2.1. Sender Agent ...36

4.2.2. Receiver Agents...39

4.2.3. DR Agent...41

4.3 Operation steps of the RMTP Implementation42

5. SIMULATION STUDY...50

5.1 Network and application model ..50

5.2 Evaluation metrics ..54

5.3 Experiment Design ...55

5.4 Simulation Results..57

5.4.1 Distribution Delay...57

5.4.2 Recovery Latency ...61

5.4.3 Protocol Overheads...65

6. CONCLUSION..70

REFERENCES ..74

APPENDICES

A. NUMERICAL RESULTS OF SIMULATIONS ..78

xi

LIST OF TABLES

Table 2.1 Most common reserved multicast addresses..7

Table 3.1 Packet types of RMTP..23

Table 3.2 Connection parameters of RMTP..25

Table 4.1 RMTP subtypes and headers...35

Table 5.1 Test cases ...56

Table A.1 Simulation results for “Distribution Delay” ...78

Table A.2 Simulation results for “Recovery Latency” ..79

Table A.3 Simulation results for “Request Overhead”..80

Table A.4 Simulation results for “Repair Overhead” ..81

xii

LIST OF FIGURES

Figure 2.1 Unicast, broadcast and multicast transmissions..5

Figure 2.2 IP address classes..6

Figure 2.3 Shortest path trees in Multicast Routing ..9

Figure 2.4 Shared tree in Multicast Routing ...10

Figure 2.5 Specialized Multicast Transport (a) Over UDP (b) Over IP11

Figure 3.1 Classification of Reliable Multicast Protocols - 114

Figure 3.2 Classification of Reliable Multicast Protocols - 215

Figure 3.3 Classification of Reliable Multicast Protocols - 316

Figure 3.4 Classification of Reliable Multicast Protocols - 417

Figure 3.5 Local regions in RMTP...23

Figure 3.6 Loss recovery in SRM...29

Figure 3.7 Distribution tree of the PGM with packets involved30

Figure 4.1 Interaction of classes...34

Figure 4.2 Sender window ...38

Figure 4.3 Retransmission map ..38

Figure 4.4 Receiver window ..40

Figure 4.5 Starting the session by a user command...43

Figure 4.6 Start of a receiver agent with first incoming SAP44

Figure 4.7 Starting DATA flow and sending retransmissions46

Figure 4.8 Sending a burst of DATA packets ...47

Figure 4.9 Handling DATA and sending periodic ACKs..48

Figure 5.1 Underlying network topology..52

Figure 5.2 Distribution delay vs. Group size (for small loss rates)59

xiii

Figure 5.3 Distribution delay vs. Group size (for large loss rates)...........................59

Figure 5.4 Distribution delay vs. Network diameter (for small loss rates)...............60

Figure 5.5 Distribution delay vs. Network diameter (for large loss rates)60

Figure 5.6 Distribution delay vs. Loss rate (Group size=30)...................................61

Figure 5.7 Recovery latency vs. Group size (for small loss rates)62

Figure 5.8 Recovery latency vs. Group size (for large loss rates)............................63

Figure 5.9 Recovery latency vs. Network diameter (for small loss rates)63

Figure 5.10 Recovery latency vs. Network diameter (for large loss rates)...............64

Figure 5.11 Recovery latency vs. Loss rate ..64

Figure 5.12 Request overhead vs. Group size (for small loss rates)66

Figure 5.13 Request overhead vs. Group size (for large loss rates)66

Figure 5.14 Request overhead vs. Loss rate..67

Figure 5.15 Repair overhead vs. Group size (for small loss rates)...........................67

Figure 5.16 Repair overhead vs. Group size (for large loss rates)68

Figure 5.17 Repair overhead vs. Loss rate..68

xiv

ABBREVIATIONS

ACK.......................... Positive Acknowledgment

ALC Asynchronous Layered Coding

AP............................. Acknowledgement Processor

ARP Address Resolution Protocol

ARQ.......................... Automatic Repeat Request

BGMP....................... Border Gateway Multicast Protocol

CBR.......................... Constant Bit Rate

CBT Core-Based Tree

DHCP Dynamic Host Configuration Protocol

DR Designated Receiver

DVMRP.................... Distance-Vector Multicast Routing Protocol

FEC........................... Forward Error Correction

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Number Authority

IGMP Internet Group Management Protocol

IP Internet Protocol

LBRM....................... Log-based Receiver-Reliable Multicast

LMS.......................... Lightweight Multicast Service

MDP Multicast Dessemination Protocol

MFTP........................ Multicast File Transfer Protocol

MOSPF Multicast OSPF

MTP.......................... Multicast Transport Protocol

NACK....................... Negative Acknowledgment

NCF NACK Confirmation

NE............................. Network Element

xv

NS-2.......................... Network Simulator - 2

ODATA Original Data

OSPF Open Shortest Path First

PGM Pragmatic General Multicast

PIM-DM Protocol-Independent Multicast – Dense Mode

RAMP....................... Reliable Adaptive Multicast Protocol

RBP Reliable Broadcast Protocol

RDATA Repair Data

RFC Requests For Comments

RMCM...................... Reliable Multicast For Core-Based Multicast Trees

RMP.......................... Reliable Multicast Protocol

RMTP Reliable Multicast Transport Protocol

RTP........................... Real-time Transport Protocol

RTT Round Trip Time

SAP........................... Select AP

SMTP........................ Simple Mail Transfer Protocol

SND_ACK_TOME ... Send ACK To Me

SPM.......................... Source Path Message

SRM Scalable Reliable Multicast

ST Shared Tree

TCP........................... Transmission Control Protocol

TMTP Tree-Based Multicast Transport Protocol

TRACK..................... Tree-Based ACK

TRAM....................... Tree-based Reliable Multicast Protocol

TRM Transport protocol for Reliable Multicast

TTL........................... Time To Live

UDP.......................... User Datagram Protocol

XTP Xpress Transport Protocol

1

CHAPTER 1

INTRODUCTION

IP multicasting is a method for transmitting the same data packets to multiple

receivers. It refers to sending the same information to a group of receivers instead of

a single receiver such as in unicasting or all of the receivers in the network such as

in broadcasting. Distributed database updates, audio and video conferencing,

distance learning, transmitting stock quotes to multiple brokers and network games

are some examples for multicast applications.

IP Multicasting is a network-efficient technique for distributing information

to a large group of receivers. In IP multicasting a sender can transmit a single copy

of each packet without knowing who will receive it. Bandwidth consumption is

minimized since only a single copy of a multicast packet flows over each link and

intermediate routers. Responsibility of group management is on the receivers instead

of the sender, since it is difficult for a sender to maintain the size and membership

state of a growing and frequently changing group. An end-to-end control

mechanism, like TCP in unicast transmissions, is not applicable for IP multicasting.

Because feedbacking of all control information from receivers to a single sender

causes a burst of traffic towards the sender. Therefore a specialized transport layer

protocol must be defined to deal with the challenges of the end-to-end reliability,

congestion, flow control and scalability problems.

Reliability issue of multicasting contains the challenges for detection and

recovery of packet losses and for ordered delivery of the entire data. The basic

definition of Reliable Multicast is delivering all data units to all receivers in a

multicast group. In detail, reliability can be analyzed under three different concepts,

namely total reliability, semireliability and time-bounded reliability. Total reliability

2

guarantees error-free delivery of all data to all receivers. In this kind of applications

all other data packets are useless if at least one packet is lost. Semireliability

supports retransmission of lost packet or some error correction codings but does not

guarantee totally error-free delivery of data. It is used by loss-tolerant real-time

applications. Time-bounded reliability is also used by real-time applications but with

strict jitter requirements. In which retransmission of a lost packet is only performed

for up to a certain time.

In literature, there have been some proposals for the taxonomy of reliable

multicast protocols. In this study we investigate these different classifications and

select one of them for our comparative study. One representative protocol for each

group of selected classification is selected and simulations for different test cases are

applied using these protocols. The selected protocols are SRM, PGM and RMTP.

Implementations for SRM and PGM previously exist in ns-2, our discrete event

simulation tool, but not for RMTP. In the first stage of the work, RMTP is

implemented for ns-2.

In simulation study, some performance metrics are defined for comparing the

representative protocols. These performance metrics are distribution delay, recovery

latency, request overhead on routers or links and repair overhead on routers or links.

Test cases are generated by varying the number of multicast group members in the

network, the network diameter (i.e. average end-to-end delay of the whole network)

and the average loss rate of the links.

The organization of the thesis is as follows;

Chapter 2 gives a brief background for IP Multicasting. In this chapter,

definition of multicasting is given and the main concepts like multicast addresses,

group management and multicast routing is presented. Then, some challenging

issues of IP Multicast are defined briefly.

Chapter 3 focuses on the reliability issue of IP Multicasting. It gives different

definitions for reliability and analyses the methods used for error detection and

recovery. Different classifications proposed until now are presented by figures and

explained briefly. The representative protocols selected for simulation study are

defined in detail. A detailed literature survey is also presented in this chapter.

3

In Chapter 4, Ns-2 implementation of RMTP is explained. The details of the

protocol agents and the operation steps of the whole protocol are presented in this

chapter.

Chapter 5 contains the comparative study of the thesis. In this chapter, the

selected network and application model, protocol parameters and performance

metrics are explained. The design of the test cases and simulation results are

presented.

Chapter 6 summarizes the thesis and concludes with comments on the

simulation results and on the performance of the protocols and states some future

work directions.

4

CHAPTER 2

IP MULTICAST BACKGROUND

2.1. Definition

In IP-based networks, data can be disseminated in three district ways, namely

unicasting, broadcasting and multicasting. Unicast transmission is the basic one-to-

one communication i.e. a single application communicates across a network or

internetwork with another application. Many of the widely used Internet applications

like HTTP, SMTP, FTP or Telnet use unicast transmission. Broadcasting is one-to-

all communication where the data is sent from a single sender to all other nodes

within the network. Therefore for wide area network applications broadcasting does

not make much sense. More localized level applications such as ARP (Address

Resolution Protocol) uses broadcast communication [1].

Multicasting stands somewhere between unicasting and broadcasting. It

refers to sending the same information to a group of receivers instead of a single

receiver such as in unicasting or all of the receivers in the network such as in

broadcasting. Multicast communication is called one-to-many or many-to-many in

case of more than one sender is supported by the protocol. Updating distributed

databases, audio and video conferencing, distance learning, transmitting stock

quotes to multiple brokers and network games are some examples for multicast

applications [2] [3].

In multicasting, senders send each data packet once and at most one copy of

the packets flows through the physical links under normal conditions. For example,

assume that a sender, S, wants to send a message to receivers R1 and R2, as shown in

Figure 2.1. In case of unicast transmission, S should transmit the same data twice

5

and the bandwidth usage between the sender and the intermediate node is doubled.

In broadcasting, other receivers like R3 will get the packets although it is not

relevant with the message sent, causing unnecessary bandwidth consumption. But in

multicasting, only a single copy of the message is transmitted from the sender and it

is copied at the intermediate node to be sent to the multicast group. A multicast

group can range in size from a few nodes to several thousands. In the example given

in Figure 2.1, the multicast group consists of nodes R1 and R2.

Figure 2.1 Unicast, broadcast and multicast transmissions

2.2 IP Multicast Concepts

In order for a host to participate in a multicast session, there are three main

features. These are the “multicast group address” specifying that session, the “group

membership protocol” for informing the nearest multicast capable router that the

host wants to join or leave the multicast session and the “multicast routing protocol”

to build a multicast delivery tree in which the sender is the root node and the group

members are the leaf nodes of the tree.

6

2.2.1 Multicast Address

Multicast addresses specify an arbitrary group of hosts that have joined the

group and that want to receive the packets sent to this group. Internet Protocol (IP)

supports multicast transmissions using Class D IP addresses. Unlike the other types

of IP addresses (Class A, B and C), an IP multicast address does not have Network

ID and Host ID parts. As shown in Figure 2.2, a Class D IP address contains “1110”

at higher-order four bits and the remaining 28 bits are used to identify the multicast

group. Therefore 228 multicast addresses in the range 224.0.0.0 to 239.255.255.255

can be generated at the same time each identifying a different multicast session. But

some of these addresses have been reserved for specific usages by Internet Assigned

Numbers Authority (IANA). The range of addresses from 224.0.0.0 to 224.0.0.255

is reserved to be used by network protocols on a local network segment. Packets

with these addresses should never be forwarded by a router; they remain local on a

subnet. For example 224.0.0.1 is used to send a message to all hosts on the subnet

and 224.0.0.2 is assigned to the group of all routers on the subnet. The address

224.0.0.0 is guaranteed not to be assigned to any group [4]. Some of most common

reserved multicast addresses are given in Table 2.1.

Figure 2.2 IP address classes

7

Table 2.1 Most common reserved multicast addresses

Address Function
224.0.0.1 Broadcast to all systems on the subnet

224.0.0.2 Broadcast to all routers on the subnet

224.0.0.5 Reserved for use by OSPF routers

224.0.0.6 Reserved for use by OSPF designated routers

224.0.0.12 Reserved for use by DHCP servers

2.2.2 Group Management

A host must inform the nearest multicast-capable router that it wants to join a

group. The Internet Group Management Protocol (IGMP), a standard described by

RFC 1112, is responsible for managing multicast group membership on a local basis

[5]. It can be thought as a multicast protocol that is run between hosts and the local

router on a LAN. The local router uses IGMP to discover multicast group members

on the LAN. If at least one member of a multicast group is discovered on an attached

LAN segment, the router then forwards packets, sent for that group, to the LAN.

IGMP has two fundamental message types:

1. Query messages are used to discover which devices belong to a particular

multicast group.

2. Report messages are used by hosts in response to queries to inform the

querying device that it is a group member.

The operation of IGMP goes like this; when a host wants to join a multicast

group, it sends a report message containing the multicast address of the group to

address 224.0.0.2, which is the all routers reserved address. After receiving this

report message a multicast capable router starts to forward the packets sent for that

group to that LAN. During the multicast session, router sends periodic query

messages to check at least one host who is still a group member exists in the LAN.

These query messages are sent to 224.0.0.1, all host reserved address, and each

group member responds with a report message. Before responding, members start a

8

random back-off timer in order to suppress each other’s reports for the same query,

because at least one report message is enough to inform the router that there are one

or more group members in the LAN. Routers do not have to know the number of

group members. In the first version of IGMP, hosts leave the groups silently i.e. no

special messages generated for leaving the group. Routers notice a difference only

when the last member leaves the group, since no report message would be received

responding a query message. In IGMP version 2, group members send a leave report

before leaving the group. Then router issues a query message immediately to check

if there is any other group member, rather than waiting for the next query time. If

there is no group member in a LAN segment, router stops forwarding the packets for

that group address.

2.2.3 Multicast Routing

In unicasting, routing is often treated as the shortest-path problem i.e. when

two nodes want to communicate, the shortest path connecting these nodes is

selected. But in multicasting, a multicast group wants to communicate each other.

Now, instead of the shortest path, the minimum-weight tree spanning all of the

nodes in the multicast group must be detected.

Multicast routing problem can be defined as follows [6]:

An internetwork can be modeled as a graph, consisting of a set of nodes

(vertices) and a set of links (edges). Let G = (V, E) be an undirected graph, where V

is the set of nodes and E the set of links. Since graph G is undirected, it models a

network which has symmetric links. Let M be the multicast group including the

sources. Therefore M is a subset of set V (M⊆ V). Then the problem of multicast

routing in communication networks is equivalent to finding a tree T in graph G such

that T spans all vertices in the multicast group M. Such a tree is called multicast

distribution tree.

In Section 2.1, it is mentioned that a multicast application may require one-

to-many or many-to-many transmission i.e. there is only one sender per group or

each group member can be both sender and receiver. Construction of the multicast

9

distribution tree differs with respect to these types of transmission. For one-to-many

transmissions, a source-specific multicast tree can be used. A source-specific tree is

built from each active sender to its group [7]. As seen in Figure 2.3, a source-

specific tree consists of the shortest path links between the sender and each group

member. Since this type of trees are constructed for specific sources, in Figure 2.3

there are two different multicast trees for senders S1 and S2. Therefore the

complexity of source-specific tree protocols is O(S*G), where S is the number of

sender and G is the number of groups. Distance Vector Multicast Routing Protocol

(DVMRP) [8] and Multicast Extension for Open Shortest Path First (MOSPF) [9]

are two examples for protocols using source-specific multicast tree approach.

Figure 2.3 Shortest path trees in Multicast Routing

In case of many-to-many transmissions, a group-shared multicast tree must

be used. Figure 2.4 illustrates a group-shared tree for the same topology and the

multicast group given in Figure 2.3. In this type of multicast trees, a center node is

selected and it serves as the root of the tree. It is responsible for expanding the tree

when a new sender or member joins the multicast group, and for collecting traffic

from all sources and multicasting it to all receivers [7]. Group-shared tree protocols

has complexity O(G), where G is the number of groups. Some examples for the

10

application of group-shared trees are Core Based Tree (CBT) [10] and Border

Gateway Multicast Protocol (BGMP) [11].

Figure 2.4 Shared tree in Multicast Routing

2.3 Challenges of Multicasting

IP Multicasting is an efficient technique for distributing information to a

group of receivers [12]. In IP multicasting a sender can transmit a single copy of

each packet without knowing who will receive it. Bandwidth consumption is

minimized since only a single copy of a multicast packet flows over each link and

intermediate router. Furthermore, responsibility of group management (joining and

leaving a multicast group) is on the receivers instead of the sender, since it is

difficult for a sender to maintain the size and membership state of a growing and

frequently changing group.

An end-to-end control mechanism, like TCP in unicast transmissions, is not

applicable for IP multicasting. Because feedbacking of all control information from

receivers to a single sender causes a burst of traffic towards the sender. Therefore a

specialized transport layer protocol must be defined to deal with the challenges of

the end-to-end reliability, congestion, flow control and scalability problems. This

11

specialized transport protocol can operate over UDP (Figure 2.5.a) or be located as a

transport layer protocol and operate directly with IP [13]. (Figure 2.5.b)

(a) (b)

Figure 2.5 Specialized Multicast Transport (a) Over UDP (b) Over IP

These specialized transport protocols are implemented for meeting different

requirements of applications. Some applications like multicast file transfer require a

strict reliability, while some others may tolerate a small loss of data but need low

latency, like video conferences. Some protocols deal with flow and congestion

control by using multirate data transmission for heterogeneous receivers in a

multicast group. Consequently, a single multicast protocol is not likely to meet the

needs of all Internet applications [14]. Therefore different protocols have been

implemented for different requirements. In Chapter 3, the ones related with

reliability are analyzed in detail.

12

CHAPTER 3

RELIABLE MULTICAST PROTOCOLS

3.1 Introduction to Reliable Multicast

The basic definition of Multicast Reliability is stated as delivering all data

units to all receivers in a multicast group. But this concept can be further classified

into three subgroups, namely total reliability, semi-reliability and time-bounded

reliability. Total reliability guarantees error-free delivery of all data to all receivers.

File transfer applications are an example for applications requiring total reliability

[15]. In this kind of applications all other data packets are useless if at least one

packet is lost. Semi-reliability supports retransmission of lost packet or some error

correction codings but does not guarantee totally error-free delivery of data. It is

used by loss-tolerant real-time applications [2]. Time-bounded reliability is also used

by real-time applications but with strict jitter requirements. It states that

retransmission of a lost packet is only performed for up to a certain time [16]. In this

study we will focus on total reliability.

For achieving reliable data transfer, two major tasks are required i.e. error

detection and error recovery. Different transport layer solutions can be proposed for

these tasks. These are Automatic Repeat Request (ARQ), Forward Error Correction

(FEC) and sometimes combination of these two i.e. hybrid solutions.

The basic idea of the ARQ approach is to retransmit a packet only if it is lost

by at least one receiver. Depending on whether error detection is done by the sender

or the receivers, reliable multicast protocols could use positive (ACK) or negative

(NACK) acknowledgements. When using ACKs, the sender retransmits messages

until ACKs from all receivers are received. This approach does not scale well

13

because ACKs sent by each receiver for each received packet may lead to serious

network congestion (ACK implosion). In addition, the sender has to keep the state of

the multicast group. Using NACKs shifts the error detection load from the sender to

the receivers. Receivers transmit NACK packets only when a packet loss is detected.

In order to reduce the implosion problem, different NACK suppression mechanisms

could be applied, since the sender only needs to know that at least one receiver is

missing data.

FEC mechanism consists in sending redundant packets together with original

data packets. For every k original data packets, h=n-k parity packets are constructed.

All k data packets can be reconstructed if any k packets out of n are correctly

received. The FEC-based approach reduces the end-to-end latency compared to the

ARQ, since receivers do not have to wait for the retransmission of lost packets. But

this is at the cost of bandwidth since redundant packets are sent.

In addition to ARQ and FEC there are two hybrid methods combining FEC

with ARQ, namely the layered approach and the integrated approach [17]. The

layered approach considers FEC as an independent layer below the ARQ-based

protocol. The advantage of such a solution is that FEC is transparent to the ARQ

protocols and transparently improves ARQ performances. Besides, if an application

does not require total reliability, the ARQ protocol may be skipped in order to only

use the FEC layer. In the integrated approach, original data packets are transmitted

with or without parity packets. A receiver will request more parity packets when it

detects packet losses. In this method, FEC and ARQ operate in the same layer, as

part of the same protocol.

3.2 Classification of Reliable Multicast Protocols

There are various reliable multicast protocol classifications in the literature.

Some of them group protocols according to the application requirement, while some

others use the way that the protocol recovers packet losses or whether it uses router

assistance. In this section, different classification methods are investigated briefly

14

and a figure showing the location of well known protocols for each classification is

given.

In [18], multicast transport protocols are classified according to the

application characteristics, namely General Purpose Protocols, Protocols for

Multipoint Interactive Applications and Protocols for Data Dissemination. General

Purpose Protocols are defined as message-oriented and not designed for a specific

application. Second group of protocols are the ones that support Multipoint

Interactive Applications. These are implemented for many-to-many transmissions

and generally used by real-time applications. Protocols for Data Dissemination are

designed for delivering same data to multiple receivers in a non-real-time manner.

These protocols have a strict reliability requirement compared to other type of

protocols. Figure 3.1 gives the classification according to application characteristics

and lists some example protocols for each group.

Figure 3.1 Classification of Reliable Multicast Protocols - 1

Another way of classification is distinguishing the protocols according to the

organization of retransmissions. In [19] and [20], reliable multicast protocols are

analyzed under four groups; Sender-initiated, Receiver-initiated, Tree-based and

Ring-based reliable multicast protocols. In the sender-initiated protocols, each

15

receiver sends a unicast ACK to the sender for each packet that the receiver obtains

correctly. The sender maintains the state of all receivers to whom it has to send

packets and from whom it has to receive ACKs. Transmissions or retransmissions

are multicast to all receivers. But this mechanism suffers from the ACK-implosion

problem. Therefore receiver-initiated protocols have been proposed. In this

approach, a receiver only sends a negative acknowledgment (NACK) when it detects

an error or a lost packet.

However, still in some cases a burst of NACK packets may cause problems

at sender network. Therefore transmission of control packets must be organized in a

way that ACK/NACK implosion is prevented. In tree-based reliable multicast

protocols, the whole multicast delivery tree is divided into subtrees and all control

packets are transmitted within this subtree. Only one ACK or NACK packet is

transmitted to the upper node by the root node of the subtree. On the other hand, in

Token-Ring based protocols, there is only one token site responsible for collecting

ACK/NACK packets and transmitting towards the sender. The token is periodically

passed to the next node of the ring. In Figure 3.2, some example protocols for each

group are listed.

Figure 3.2 Classification of Reliable Multicast Protocols - 2

16

[21] classifies the protocols in a very similar way to the previous one. But it

defines two main groups as Sender-initiated and Receiver-initiated. Other groups are

located under Receiver-initiated protocols as seen in Figure 3.3. These subgroups are

Cloud-based, Tree-based and Ring-based reliable multicast protocols. Cloud-based

multicast protocols are defined as the protocols that do not require the receivers to

be arranged in a definite structure. These protocols do not maintain the membership

information that accounts for their good scalability. Tree-based and Ring-based

protocols are defined as in previous classification. Figure 3.3 lists some example

protocols for this classification.

Figure 3.3 Classification of Reliable Multicast Protocols - 3

A newer classification adds router-assistance and forward error correction

methods to the taxonomy. In [16] and [22], reliable multicast protocols are divided

into four groups; namely NACK-only protocols, Tree-based ACK (TRACK)

protocols, Router assisted protocols and Open Loop protocols, as given in Figure

3.4. NACK-only protocols attempt to limit traffic by only using NACKs for

requesting packet retransmission. They do not require network infrastructure.

17

TRACK protocols use ACKs. In order to avoid ACK implosion, ACKs are

suppressed in a tree shaped infrastructure.

Router assisted protocols also use negative acknowledgments for packet

recovery. These protocols take advantage of router software to do constrained

negative acknowledgments and retransmissions. Router assisted protocols can also

provide other functionalities like congestion control. Open loop protocols use

sender-based Forward Error Correction (FEC) methods with no feedback from

receivers or the network to ensure good throughput.

Figure 3.4 Classification of Reliable Multicast Protocols - 4

3.3 Literature Survey

[23] defines the criteria for an ideal reliable multicast protocol as reliability,

efficiency and tolerance. Reliability is guaranteeing the file to be delivered entirely

to all receivers. Being efficient means both the total number of packets each client

needs to receive and the amount of time required to process the received packets to

reconstruct the file should be minimal. Being tolerant means that, the protocol

should tolerate a heterogeneous population of receivers, especially a variety of end-

to-end packet loss rates and data rates.

18

For achieving these criteria, many reliable multicast protocols have been

proposed. Most of these protocols suffer from the feedback implosion problem

which occurs when a large amount of receivers send feedback packets to sender

synchronously. To overcome this problem, different approaches have been

proposed. One of these is using hierarchical ACKs. In [24] Reliable Multicast

Transport Protocol (RMTP) organizes the group members into a hierarchical control

tree, which governs feedback propagation and processing. Intermediate nodes in the

control tree, or designated receivers (DRs) are responsible for buffering data

received from the source, processing ACKs from their children, and retransmitting

lost packets. Therefore, DRs provide local recovery. Protocol uses window-based

flow control and defines a maximum transmission rate set at group establishment

time. RMTP allows dynamic group membership: receivers may join and leave a

multicast group any time during a session, and it is guaranteed that they receive the

entire data reliably. This feature comes at the price of having the DRs buffer

transmitted data during the whole session.

[25] proposes another hierarchical ACK protocol, Tree-Based Multicast

Transport Protocol (TMTP). For error and flow control, TMTP organizes group

members into a hierarchy of subnets or domains. Typically, all the group members

in the same subnet belong to a domain and a single domain manager acts as a

representative of the domain. The domain manager is responsible for recovering

from errors and handling local retransmissions if one or more of its children do not

receive some packets. The domain managers are organized in the form of control

tree. The sender serves as the root of the tree and has at most K domain managers as

children. Each domain manager will accept at most K other domain managers as

children, resulting in a tree with maximum degree K. The degree of the tree (K)

limits the processing load on the sender and the internal nodes of the control tree.

Like RMTP, TMTP uses a window-based flow control and the maximum

transmission rate is defined at group creation. It also supports dynamic group

membership.

Another approach for avoiding feedback implosion is NACK-based

protocols. [26] defines the Scalable Reliable Multicast (SRM), where group

members multicast NACKs to request retransmission of a lost packet, which can be

19

answered by any member that has the packet. To avoid generating multiple copies of

retransmitted data, retransmissions are multicast to the group. To further reduce the

multiple copy problem, a member waits a random period of time before sending a

NACK or retransmitting data, and suppresses its own transmission in case it hears it

from another member of the group. According to [27], for a large number of

receivers spanning wide-area networks, NACK suppression alone is not very

efficient. SRM does not specify any congestion control mechanisms.

[28] proposes another NACK-based protocol, Multicast File Transfer

Protocol (MFTP). The protocol consists of two parts; an administrative protocol to

set up and tear down groups and sessions, and a data transfer protocol used to send

the whole file reliably to the multicast group. Using the administrative protocol, the

MFTP sender announces a file transfer session periodically during the

announcement phase. In response to announcements, clients register to the multicast

group to receive the file. MFTP sends data in passes. In the first pass, the sender

sends a block of packets and collects the NACKs for that block from all receivers.

These NACKs are logically OR-ed together to represent the collective need for

repairs for the receiving group. These repairs are sent by the sender in a second pass

to the group. Receivers already have the repair simply ignore the packets. Holes in

the data due to the packet drops are filled as the repairs are received. So the protocol

does not provide packet ordering. Furthermore, since receivers can request

retransmissions only at the end of the passes, MFTP is suitable only for non-real

time applications.

Router support is another method for avoiding feedback implosion. The

protocols that uses router support can be divided into two categories. Protocols in

the first category use router support for only directing the retransmission requests to

a proper replier. Lightweight Multicast Service (LMS) [29] is an example for this

category. In LMS, each router selects one of its downstream links as the replier link.

After detecting a loss, a receiver will send a retransmission request to a nearby

router. On receiving a retransmission request, a router will redirect it to the replier

link if it comes from other downstream links, or forward it to an upstream router if it

comes from the replier link. Thus, only one retransmission request is sent upstream

from a router for a certain lost packet and feedback implosion is reduced. LMS does

20

not function well in case of failure of the repliers directly above or under the link

where the loss occurs or in bidirectional shared routing trees. For these problems,

Search Party [30] and Reliable Multicast for Core-based Multicast (RMCM) [31]

have been proposed.

Second kind of router assisted protocols uses routers for feedback

aggregation or suppression and for local recovery. Pragmatic General Multicast

(PGM) [27] uses PGM-capable network elements (NEs), i.e. routers enhanced to

support PGM, for NACK elimination and suppression. All NACKs are transmitted

to the sender by aggregating them at the intermediate NEs. Therefore the sender is

responsible for replying all retransmissions. The congestion control approach of

PGM uses NACKs for rate adjustment. But in [32], it is shown that this congestion

control approach does not scale well for large multicast groups.

In [33], the authors propose a different method for achieving reliability,

called Semantically Reliable Multicast. The model is based on the concept of

message obsolescence. An obsolete message is defined as the one whose content or

purpose is superceded by another message. This knowledge is used by the protocol

to selectively discard some messages from buffers in the presence of overload

conditions. By allowing obsolete messages to be discarded, the system better

tolerates the occurrence of performance perturbations without demanding additional

resources. In this work, it is seen that applications requiring high throughput exhibit

message obsolescence and semantically reliable multicast protocols result in an

improvement of throughput stability. The implementation and configuration

parameters are also analyzed to see their effects on the performance of semantic

reliability.

In [19], authors compared four different groups of reliable multicast

protocols which are classified according to the method given in Figure 3.2. They

stated that sender-initiated protocols are not scalable because the source must listen

every receiver. Receiver-initiated protocols are far more scalable, unless NACK

avoidance schemes are used to avoid overloading the source with retransmission

requests. However, because of the unbounded-memory requirement, this protocol

class can only be used efficiently with application-layer support, and only for a

limited set of applications. They showed that ACK trees are a good answer to the

21

scalability problem for reliable multicasting. Because tree-based protocols (e.g.

RMTP) distribute the responsibility of retransmission to receivers and they employ

techniques applicable to either sender-initiated or receiver-initiated protocols within

local groups of the ACK tree. Mechanism that can be used with all the receivers of a

session in a receiver-initiated protocol can be adopted in a tree-based protocol, with

the added benefit that the throughput and number of supportable receivers is

completely independent of the size of the receiver set.

[34] presents a comparison of SRM with Bimodal Multicast, which is a

reliable multicast protocol proposed by the authors. According to this study, when a

network has lossy links, even if the loss rate is low, SRM can generate very high

rates of request or repair overhead, due to the requests for retransmissions of data,

sent using multicast and hence seen by significant numbers of processes, and repair

messages, also sent using multicast. They concluded that as the network grows

larger, the absolute rate of packet losses increases. These take the form of duplicate

requests and duplicate repairs. Beside this, a significant percentage of SRM packets

experience long delays, and many applications would thus be forced to buffer very

large amounts of data. For applications in which data freshness is at all important,

this would seem to be a real drawback for the protocol.

In [35], authors compared three reliable multicast protocols, namely SRM,

MFTP, MFTP/EC, by using Network Simulator-2. They showed that, SRM floods

the network with repair packets substantially when loss rates are high, resulting in

even higher loss rates due to additional traffic. According to the simulation results,

every lost packet triggered 2.27 request packets and 2.33 repair packets on average

in low a network traffic condition. In high traffic case, lost packets need an average

of 3.56 request packets and 3.62 repair packets for recovery.

In literature, there are hardly any comparative performance studies for

RMTP. [36] investigates the delay characteristics of some reliable multicast

protocols. According to this study, average delivery delay of RMTP is almost

independent of group size and sending rate of the source. [37] also presents a

comparative delay analysis of tree-based reliable multicast protocols, namely RMTP

and TMTP. It is shown that tree-based ACK (TRACK) protocols provide low delays

and good scalability compared to nonhierarchical approaches. NAK-based protocols

22

achieve the best scalability but TRACK protocols (i.e. RMTP) achieve the lowest

delays.

3.4 Related Work

In this section, the protocols that are selected for our simulation study,

namely RMTP, SRM and PGM are discussed in detail. Design concepts of the

protocols like recovery methods, protocol parameters, and network and application

models that the protocols uses are evaluated.

3.4.1 Reliable Multicast Transport Protocol (RMTP)

The Reliable Multicast Transport Protocol (RMTP) [24] is a one-to-many,

tree based positive acknowledgement protocol which provides sequenced and

lossless file transmission. It uses IP multicast to forward the multicast packets down

on a delivery tree to all group members and provides reliability by using a packet

based selective repeat retransmission scheme. To avoid ACK implosion problem,

the protocol divides the whole multicast into hierarchical local regions and assigns a

Designated Receiver (DR) to each local region. A DR is a special receiver which

assists the sender in processing ACKs and retransmitting data. Periodic ACK

packets are unicasted to the local DR and DRs send the ACK packets to the high

level DR, until the DRs in the highest level of the multicast tree send ACK packets

to the sender.

RMTP sender divides the data to be transmitted into fixed-size data packets,

except the last one. A data packet is identified by packet type DATA and

DATA_EOF identifies the last data packet. All of the packet types used in RMTP

are given in Table 3.1.

23

Figure 3.5 Local regions in RMTP

Table 3.1 Packet types of RMTP

Packet Type Definition

ACK ACK packet

ACK_TXNOW ACK - immediate transmission request

DATA Data packet

DATA_EOF Last data packet

RESET Packet to terminate a connection

RTT_MEASURE Packet to measure round-trip time

RTT_ACK ACK to RTT_MEASURE packet

SND_ACK_TOME Packet for selecting an AP

RMTP achieves scalability by three important design features [24]. First, the

state information maintained at each multicast group member is independent of the

number of members. Therefore, joining or leaving of a group member does not

24

affect the state information of sender or other members. Second, RMTP places the

responsibility of sequenced and lossless delivery on the receivers. So the sender does

not have to deal with status of each receiver. Third, the concept of using a DR of

each local region distributes the responsibility of processing ACKs and performing

retransmissions among the sender and several DRs.

In RMTP, the sender assigns sequence number to all packets starting from 0

and multicast the packets to the whole group. Receivers are responsible for detecting

packet losses by analyzing the sequence numbers of incoming packets. A gap at the

sequence numbers means a loss and the receiver should request the retransmission of

that packet. Receivers send periodic ACK packets to inform their local status to their

local DRs. Each ACK packets contains a sequence number L and a bitmap V.

Sequence number L indicates that the receiver has correctly received all packets

with a sequence number less than L. A 0 in bitmap V means a packet loss and a 1

indicates the successful reception of the packet. Therefore, an ACK packet carries

both positive and negative acknowledgment.

ACKs are periodically unicast to DR. A DR also responds to the request

periodically but it may be either unicast or multicast transmission. Tretx is the

connection parameter which determines the retransmission interval of a DR. During

the Tretx interval, DR collects the ACK packets from its local region. If

retransmission request for a data packet exceeds MCASTthres parameter, then DR

multicasts the repair packets to its local region. Otherwise, it unicasts the packets to

the receivers who demand that transmission. Tretx, MCASTthres and other connection

parameters are given in Table 3.2.

When a connection between the sender and a group of receivers is

established and the receiver has received the first packet of the session, it starts to

generate periodic ACK packets at Tack interval. Tack is a dynamic parameter which is

adjusted based on a round-trip time measurement between the receiver and its

Acknowledgement Processor (AP). AP is a member who processes ACK packets.

So, it may be the sender or a DR.

25

Table 3.2 Connection parameters of RMTP

Parameter Definition

Wr receive window size in packets

Ws send window size in packets

Tdally delay after sending the last packet

Tretx time interval to process retransmission requests

Trtt time interval to measure RTT

Tsap time interval to send SND_ACK_TOME

Tsend time interval to send data packets

Packet Size data packet size in octets

Cache Size sender’s in-memory data cache size

CONGthresh congestion avoidance threshold

MCASTthresh multicast retransmission threshold

In order to terminate the connection, the sender uses a timer. After sending

the last packet, the sender starts a timer and waits for Tdally seconds. If the sender

receives an ACK packet before the timer expires, it resets the timer to its initial

value. Otherwise, it assumes that all receivers have received all packets and

terminates the connection i.e. deletes all the state information about the connection.

In addition to that, a connection can be terminated by a RESET packet in an

unexpected case.

RMTP uses a window-based flow control scheme. Sender has a window of

Ws packets, which indicates the maximum numbers of packets that the sender can

transmit without receiving ACK for them. Each receiver has a receiving window of

Wr packet, where Wr is the buffer size of the receiver. Receivers keep the incoming

packets at the buffer and deliver them to the application in sequence. In a RMTP

session, the sender initiates the data transmissions at interval Tsend. Therefore

sender’s maximum transmission rate measured over a transmission interval can be

adjusted by the connection parameters Tsend, Ws, Packet_Size as follows:

26

send

s

T
SizePacketW

atensmissionRMaximumTra
_×

=

RMTP uses a slow-start congestion avoidance mechanism in order to avoid

sending new packets to a congested network. The sender uses a congestion window

(con_win) to limit the number of packets being sent during transmission period,

Tsend. During Tsend it computes N, the number of ACK packets which contain a

retransmission request. If N exceeds a connection parameter, CONGthres, it sets

cong_win to 1. Since the sender selects the minimum of current window size and

cong_win as the usable send window, setting cong_win to 1 reduces data

transmission to one packet per Tsend. If N is less than CONGthres at the end of a Tsend

interval, the sender increases cong_win by 1, until cong_win reaches Ws.

RMTP receivers send periodic ACK packets with a period of Tack seconds.

Sending ACKs too frequently may cause APs to retransmit the same repair packet

without knowing the first packet was received by the receivers. Therefore Tack is

computed using the round-trip time (RTT) between the receiver and its AP. In order

to measure RTT, the protocol defines two packet types, namely RTT_MEASURE

and RTT_ACK. A receiver sends RTT_MEASURE packets to its AP at a fixed

interval, Trtt. Each RTT_MEASURE packet contains a timestamp indicating the time

it is transmitted. When a AP receives a RTT_MEASURE packet it immediately

changes the packet type to RTT_ACK and sends it back to the receiver. Receiver

computes the RTT using the time it received the RTT_ACK packet and the time

stamp stored in the packet.

Since a DR may fail during a session, RMTP has a mechanism for selecting

the nearest DR as AP by a receiver. For this purpose, the sender and all DRs

multicast a SND_ACK_TOME packet to their subtrees with a period of Tsap

seconds. Each SND_ACK_TOME packet contains an identical time-to-live (TTL)

value. Since each router decrements the TTL value while transmitting the packets,

the SND_ACK_TOME packet within the highest TTL value is the one, which has

been generated by the nearest DR. The receiver selects that DR as its AP and stores

its TTL value. If it receives a SND_ACK_TOME packet with a TTL value greater

27

than the stored one, it changes its AP and stores the new TTL value. Initially sender

is the AP for all receivers. But since the receivers store a TTL value of 0 at the

beginning of the session, they can select the nearest DR as AP immediately after the

connection established.

In [24], authors present the results of the experiment which was performed

on the Internet by a prototype implementation of the protocol. The test setup

contains 18 multicast receivers located at five geographic areas, namely five

different campus networks. In each experiment, a 1 Mb file was multicast to the

receivers, and same experiments were repeated at different times of the day, in order

to observe the response of the protocol against different network traffics. The results

of the experiments indicate that receivers, regardless of their geographic location,

take about the same time to correctly receive the file, which shows that RMTP is

able to adapt to receivers in various network environments. But as a result of this, in

a heterogeneous environment, slow receivers and links with low bandwidth limit

RMTP’s performance [24]. Since there is not enough information about the

propagation delay, bandwidths and traffic characteristics of the experiment

performed, we could not simulate the same test cases for comparing the results of a

real experiment and our protocol implementation. Instead of this, we generated a

new test setup and measured the performance of the protocol on this setup, whose

details will be presented in Section 5.1.

3.4.2 Scalable Reliable Multicast (SRM)

Scalable Reliable Multicast [26] is a NACK-based reliable multicast protocol

designed for a Many-to-Many application, using IP Multicast mechanism for packet

transmission. SRM employs a “decentralized error recovery”; that means, a node

that detects a packet loss, via a gap in the packet sequence, multicasts a NACK for

that packet, and any node that has the data packet can multicast a repair packet for

that loss. In other words, the repair process has been distributed among all group

members.

28

In SRM, when a new packet is generated, it is multicast to the group.

Actually all data packets defined in SRM, namely the original data, request packets

and repair packets are multicast to the whole group. Since a repair request is

multicast to the whole group, more than one receivers who have the desired packet

can reply simultaneously. In order to prevent such duplicate retransmissions, SRM

has two mechanisms:

i. Use a delay of some random interval before transmitting a

request/repair packet (back-off),

ii. Suppress transmission of a request/repair packet if someone else has

already sent the same packet (suppression).

The timers that receivers use before transmission are adjusted based on the

distance between the sender and the source. To measure these distances, group

members send low-rate, periodic session messages. By using these messages, a

group member can learn the group membership, measure the delay among group

members and detect the sequence number of the last packet sent in the session.

Session messages are designed to take only 5% of the traffic in the session. [26]

Receivers decide a packet loss by detecting a gap in the sequence numbers of

the incoming packets. Therefore the sequence number of the last packet is necessary

for detecting the drop of the last packet. Session messages contain a Source-ID and a

timestamp. The timestamps are used to estimate the distance between group

members.

Loss Recovery: A receiver who has a missing data waits for a random time

before sending repair request, in order to detect whether another member sent a

request for the same data. If a request for the same loss reaches during the back-off

time it cancels the repair request. If there is no repair request or retransmission when

the back-off timer expires, the member multicast a repair request to the whole group.

The random back-off timer is set to a value which is a function of the member’s

estimated distance to the source of the original packet. It is chosen from the uniform

distribution on

[C1dS,A , (C1+C2)dS,A]

29

seconds where dS,A is member A’s estimated distance to the original source,

S, of the missing data. The numbers C1 and C2 are parameters for the request

algorithm.

When a group member receives a request for a packet that it has already

received, it starts a back-off timer in order to prevent duplicated retransmissions. If

no retransmission reaches during this period, it multicast the repair packet to the

whole group. Repair timer is set to a value from the uniform distribution on

[D1dA,B , (D1+D2)dA,B]

seconds, where dA,B is host B’s estimate of one-way delay to host A, and the

numbers D1 and D2 are parameters of the repair algorithm. Figure 3.6 illustrates the

loss recovery in SRM.

Figure 3.6 Loss recovery in SRM

3.4.3 Pragmatic General Multicast (PGM)

Pragmatic General Multicast (PGM) [27], [38] is a reliable multicast

transport protocol for applications that require multicast data delivery from a single

source to multiple receivers. PGM runs over a best effort datagram service, such as

IP multicast. It obtains scalability via hierarchy, forward error correction, NACK

elimination and NACK suppression. Hierarchy is supplied by using PGM-capable

network elements (NE) i.e. the routers enhanced to support PGM in addition to IP

multicast.

30

A “session" of the PGM protocol (a given data transfer from a source to a

group of receivers) builds a tree: the source is the root of the tree, the receivers are

the leaves, and the other network elements are intermediary nodes. This tree may

change during the session by the dynamic join/leave of receivers. PGM has five

different types of data packets;

ODATA: Original Data packets,

RDATA: Repair packets,

NACK: Negative Acknowledgements, generated by receivers in case of a

packet loss,

NCF: NACK Confirmation packets, sent by a network element or source

when a NACK received,

SPM: Source Path Message, control messages sent in order to maintain the

routing information and state of the source of a session.

Figure 3.7 shows a distribution tree and the direction followed by the five

basic packet types of the protocol.

Figure 3.7 Distribution tree of the PGM with packets involved

(S = source, NE = network element, R = receiver)

In the normal data transfer, a source multicasts sequenced data packets

(ODATA) along the distribution tree to the receivers by using IP multicast. When a

receiver detects missing data packets from the expected sequence, it unicasts

periodic negative acknowledgments (NACKs) containing the sequence number of

31

missing data to the last network element of the path. Network elements forward

NACKs hop-by-hop to the source using the reverse path, and confirm each hop by

multicasting a NACK confirmation (NCF) in response to the child from which the

NACK was received. Receivers and network elements stop sending NACK at the

reception of a corresponding NCF or RDATA. Finally, the source itself receives and

confirms the NACK by multicasting an NCF to the group. Then the source generates

repairs (RDATA) in response to the NACK.

To avoid NACK implosion, PGM specifies procedures for NACK

elimination within network elements in order to propagate just one copy of a given

NACK along the reverse path of the distribution tree. The protocol also has a NACK

suppression mechanism; receivers wait for a random time before delivering NACKs.

If a RDATA or another NACK which has the same content is received during this

period, the receiver cancels its own NACK.

PGM uses periodic SPMs (Source Path Messages) to improve the data

transfer operations. SPMs have two functions. First, they carry routing information

used to maintain up-to-date PGM neighbor information and a fixed distribution tree.

Second, they complement the role of data packets when there is no more data to

send by holding the state of the sender window. In this way, the receiver may detect

data losses and send further NACKs.

PGM has three basic components, each having different functions. These

components are source, receiver and network element.

Source functions: The source executes five functions; multicast of ODATA

packets, multicast of SPMs, multicast of NCFs in response to any NACKs received,

multicast of RDATA packets, and maintain (update and advance) of the transmit

window. The transmit window plays an important role in the PGM operations. Any

information produced by the application using PGM (upper level in the network

layers) is put in the transmit window and split in several ODATA packets, numbered

circularly from 0 to 232 - 1. This data is maintained in the window TXW_SECS time

units for further repairs and sent with a maximum transmit rate of TXW_MAX_RTE

(bytes/seconds). The left edge of this window, TXW_TRAIL, is defined as the

sequence number of the oldest packet available for repairs. The right edge,

TXW_LEAD, is defined as the sequence number of the most recent data packet the

32

source has transmitted. To provide information about the sender window,

TXW_TRAIL edge is sent with O/RDATA and SPM packets and the TXW_LEAD

edge is included only in SPMs. If TXW TRAIL = TXW LEAD + 1, the window is

considered empty. The edge TXW_LEAD is advanced when data is produced by the

application.

Two types of SPMs are sent by the source: ambient SPMs are sent to

maintain routing information; heartbeat SPMs are transmitted in absence of data at a

decaying rate, in order to assist detection of lost data before the advance of the

transmit window.

Receiver functions: The receiver executes four functions; receive ODATA

and RDATA within the transmit window and eliminate duplicates, unicast NACKs

repeatedly until it receives a matching NCF if it detects a loss, suppress NACKs

sending after the reception of the NCF, maintain a local receive window.

The receive window is determined entirely by the packets from the source,

since it evolves according to the information received from the source (data packets

and SPMs). For each session, the receiver maintains the buffer and the two edges of

the window: RXW_TRAIL is the sequence number of the oldest data packet

available for repair from the source (known from data and SPMs) and RXW_LEAD

is the greatest sequence number of any received data packet within the transmit

window.

Network element functions: Network element forwards ODATA without

intervention. They play an important role in routing, NACK reliability, and avoiding

NACK implosion. They forward only the first copy of a NACK (Constrained NACK

Forwarding) and discard NACKs for which they have repair data (NACK

Elimination). They also forward RDATA only to the child which signaled by a

NACK the loss of the corresponding data (Constrained RDATA Forwarding).

33

CHAPTER 4

NS-2 IMPLEMENTATION OF RMTP

RMTP does not exist as a reliable multicast protocol option in the latest

version of Network Simulator version 2.27, which was released in January 2004.

Therefore, in this study ns simulation code for RMTP has been implemented and

appended to ns version 2.27. This section explains the details of the implementation.

The implementation introduces a new RMTP packet type, and three new

agents namely; sender agent, receiver agent and DR (Designated Receiver) agent.

RMTP packet header and each of the agents are implemented as a C++ class and

operate with some associative classes like timer classes, Tcl linkage classes and

classes defining the sender and receiver windows. The interaction of classes is

illustrated in Figure 4.1.

4.1 RMTP Packet Type

An RMTP packet is inherited from ns2 packet class, so it has all ordinary

packet headers of ns2, like “IP header” or “common header”. Besides, it has an

RMTP header indicating the subtype of the packet. There are six subtypes, which are

defined by the protocol. Some subtypes have an extra header for storing the required

information for the protocol. Table 4.1 gives RMTP packet subtypes and headers of

each.

34

Figure 4.1 Interaction of classes

RMTP_DATA header consists of two fields, one of which indicates the type

of data packet, whether DATA or DATA_EOF, and the other keeps a data ID. All

agents maintain their receiver or sender windows according to these data IDs. If a

data packet is lost and a retransmission request is received for the packet, the AP

(sender or DR) sends a new data packet with the same data ID. Thus the receiver

realizes that it receives a lost packet and updates its receiver window according to

the ID.

35

Table 4.1 RMTP subtypes and headers

RMTP Subtype Direction∗ Headers

DATA � (RMTP header) + (RMTP_DATA header)

RTT � (RMTP header) + (RMTP_RTT header)

ACK � (RMTP header) + (RMTP_ACK header)

RTT_ACK � (RMTP header) + (RMTP_RTT_ACK header)

SND_ACK_TOME � (RMTP header)

(*) Downward arrows indicate transmission from an AP to receiver(s)

Upward arrows indicate transmission from a receiver to an AP

Single lined arrows means unicast transmission

Double lined arrows means multicast transmission

RMTP_RTT and RMTP_RTT_ACK headers have a field for storing a

timestamp. The time that a RTT packet sent is written to this fields and it is used for

calculating the round trip delay between a receiver and its AP.

RMTP _ACK header contains an expected packet field and a bit-map vector.

While sending a ACK packet, a receiver writes its current expected packet value and

a bitmap of its receiver window to these fields.

4.2 RMTP Agents

In ns, agents are defined as data structures that represent endpoints where

packets are constructed or consumed [39]. In our implementation, three agents,

namely the Sender, Receiver and DR agents fulfill the whole requirement of RMTP.

For example, a sender agent creates the data packets and multicast them to the whole

group. When a receiver receives a data packet, it reads the data ID of the packet and

36

updates its receiver window. If it detects a packet drop, it writes a “0” to the related

bit of its bitmap vector and at the first ACK timer expiration, sends it to its AP in an

ACK packet.

Agents are implemented in C++. Tcl linkage classes, written in C++ code are

used to modify the parameters of these agents or starting/stopping some agents

function from Tcl scripts written by users (Figure 4.1). Since RMTP is a timer based

protocol, each agent has a timer class for scheduling agent-specific tasks. A timer

may start by a Tcl command or an incoming packet may trig a timer. For example

the sender timer for sending periodic SAP packets starts when the Tcl command

“start” is executed, while the ACK timer of a receiver starts when the first data

packet receives. Each timer has a timer interval which is bounded by an agent

parameter or dynamically calculated during the simulation.

All agent parameters like timer intervals, packet size or number of packets

can be set to a value through the Tcl scripts by the users. A default value for each

parameter should be defined in the necessary ns2 files.

4.2.1. Sender Agent

An RMTP sender agent works at the sender node of the multicast group. A

sender agent can be created through Tcl by the following code;

 set agent_name [new Agent/RMTP/Sender]

And the parameters for this agent can be initiated in Tcl code. These are;

i. sap_interval_ ; time interval for sending SAP packets (in seconds)

ii. data_interval_ ; time interval for sending DATA packets (in seconds)

iii. num_of_packets_ ; total number of packets sent during a session.

iv. retx_interval_ ; time interval for sending retransmission packets (in

seconds)

v. mult_thres_ ; threshold value for multicast retransmissions

vi. sender_win_size_ ; size of sender window

37

vii. dally_interval_ ; time for waiting before terminating a session (in

seconds)

viii. packet_size_ ; packet size (in bytes)

Parameters “packet_size_” and “num_of_packets_” are defined for

generating a packet traffic without using an additional ns traffic source. All other

parameters are used as defined in protocol.

Two other classes support the RmtpSender class, these are

RmtpSenderTimer class and RmtpSenderWindow class (Figure 4.1). RmtpSender

has four objects of the RmtpSenderTimer class. These are;

i. sap_timer_ ; For sending periodic SAP packets. Starts with Tcl

command “start”

ii. data_timer_ ; For sending burst of data packets at Tsend interval. Starts

with “start-data” command.

iii. retx_timer_ ; Timer for sending retransmissions. Starts with “start-

data” command.

iv. dally_timer_ ; Timer for terminating the session. Starts after sending

last packet.

Sender agent also has an object of RmtpSenderWindow class. This object

keeps three main values of a sender window, namely swin_lb low bound of sender

window (in other words, the minimum packet ID that has not been ACKed yet),

send_next, the ID of the packet that will be send next and avail_win the number of

packets that can be sent, when the data_timer _ expire (Figure 4.2).

A member function of RmtpSenderWindow is called while a new data packet

is being generated by the agent and it returns the send_next value, if avail_win is

greater than 0. Another member function is used for updating the values of window,

i.e. the sender agent collects the incoming ACKs during a Tsend interval and at the

end of interval it calls this function with the minimum of the dropped packets (say n)

that is reported by the receivers. Then the function increases the swin_lb and

avail_win values until swin_lb reaches n.

38

Figure 4.2 Sender window

The sender agent also has a map data structure for keeping the retransmission

requests until the retx_timer expires. As it is illustrated in Figure 4.3, a

retransmission map keeps a list of ns2 addresses for each data packet ID that is

reported as lost by at least one receiver.

Figure 4.3 Retransmission map

For example, in Figure 4.3, all nodes from node-1 to node-k have sent a

retransmission request for Packet-i.

By using these objects, a sender agent performs the following functions:

39

i. Sending periodic SAP packets to the whole multicast group.

ii. Sending RTT_ACK packet immediately after receiving a RTT

packet.

iii. When data_timer_ expires, sending a burst of data packets as long as

SenderWindow class returns a valid packet ID, in other words

avail_win value is greater than zero.

iv. When an ACK packet is received, processing it and adding an entry

to the retransmission map for the packet losses, and updating the

sender window according to incoming ACKs.

v. When retx_timer expires, sending retransmission packet by unicast

or multicast according to the number of receivers that have lost the

packet.

vi. After sending the last packet, starting the dally_timer_ and

terminating the session when the timer expires. If an ACK packet

received while the timer is running, the dally_timer_ is reset to its

initial value.

4.2.2. Receiver Agents

RMTP receiver agents work at the normal (i.e. not DR) receiver nodes. The

Tcl code for creating a receiver agent is

 set agent_name [new Agent/RMTP/Receiver]

and the parameters for the agent are

i. rtt_interval_ ; time interval for sending RTT packets (in seconds)

ii. receiver_win_size_ ; size of receiver window

There is no Tcl command for starting or stopping any function of a receiver

agent. For a receiver a multicast session starts with the first incoming SAP and

finishes when the last packet has been received and the receiver buffer is empty.

40

As sender agent the receiver agent also has two associative classes,

RmtpReceiverTimer and RmtpReceiverWindow. There are two timer objects

defined in a receiver agent. These are;

i. rtt_timer_ ; For sending periodic RTT packets. Starts with the first

incoming SAP packet.

ii. ack_timer_ ; For sending ACK packets. Starts with the first incoming

DATA packets. ACK intervals are calculated dynamically on the delay

between receiver and its AP.

A receiver window is slightly more complicated than a sender window. It

constitutes of an integer expected value (exp_pck) and a vector representing the

receiver buffer. exp_pck is the minimum packet ID that has not been received yet, or

detected as lost. When a packet whose ID is equal to exp_pac received, it is

immediately sent to the application and exp_pck value is increased by “1”. If a

packet with an ID greater than exp_pck is received, it means one or more packets

has been lost. In this case, the packet is kept in the receiver buffer. Receiver window

vector is implemented as a three state vector. Initially all values are set to “-1”,

indicating the related packets have not reached yet. A “1” means the corresponding

packet has arrived but it is being kept in the buffer due to loss of previous packets.

Lost packets are shown by a “0” in the vector. For example, Figure 4.4 illustrates a

receiver window where the receiver is waiting for the packet whose packet ID is 20.

But it receives a packet with ID=23. Thus, it keeps this packet until packets 20, 21

and 22 arrive.

Figure 4.4 Receiver window

41

During a multicast session, a receiver agent performs the following tasks:

i. By using incoming SAP packets, selecting an AP (ACK Processor): The

agent checks the TTL (Time To Live) field of the SAP packets. If it is

greater than its stored TTL value, which means that the owner of that

SAP packet is closer to the receiver, the receiver agent selects that node

(it may be the sender or one of DRs) as its AP and stores the TTL value it

retrieved from the SAP packet for comparing with the next SAP packets.

ii. After the first SAP packet received, the receiver agent starts to send

periodic RTT packets to its AP in order to measure the delay between

itself and the AP. The measured value is used to specify the interval for

sending ACK packets.

iii. When a data packet is received, the agent modifies the receiver window.

If the incoming packet is the expected one, the agent immediately sends

the packet to the application and increases the expected packet value. In

simulation, sending a packet to the application means deallocating the

packet.

iv. When the ACK timer expires, the receiver agent sends a unicast ACK

packet to its AP. An ACK packet contains the current expected packet

value of the agent and a vector representing the receiver buffer.

v. When the receiver agent receives the last packet, it checks the receiver

window. If the window is empty, that means the agent has received all

packets. Then it stops sending periodic RTT and ACK packets.

4.2.3. DR Agent

A DR agent is a combination of a sender agent and a receiver agent with two

trivial differences. The first one is that it has no sending new data function, i.e. it

only sends retransmissions. And the second difference is that, before replying a

42

retransmission request, it checks the receiver window to check whether it has the

packet or not. If it hasn’t received the packet yet, it stores the request for replying at

the next transmission periods.

4.3 Operation steps of the RMTP Implementation

In order to simulate a multicast group which uses RMTP as reliable multicast

protocol, the user should write a Tcl simulation script at first. This script contains

the necessary Tcl codes for creating nodes and the links between them, and

assigning the attributes for these nodes and links. More information for creating

network topologies in Ns-2 can be found in [39]. After generating the whole

topology, the user should create a RMTP sender agent and a group of RMTP

receiver and DR agents, and attach them to the related nodes. The parameters of the

agents can be set in this Tcl code. If not, the simulator uses the default values which

are defined in Ns-2 libraries.

After all, the user should write two commands and the simulation times for

the execution of these commands. The first one is “start” which starts the session by

sending and receiving the control packets of the protocol, like SAP or RTT packets,

and the second one is “start-data”, which starts the data traffic.

In this section the operation of the whole implementation will be explained.

This operation can be divided into the following steps;

1. Sender agent sends the first SAP packet:

When the simulator executes the command “start”, the sender agent starts the

session. It sets the sap_running flag to 1 and sends the first SAP packet to the whole

group. A SAP packet contains no information, it is only used for its TTL value that

is stored in the IP header. After sending the first SAP the agent reschedule the

sap_timer by the sap interval parameter. At each expiration of the sap_timer, a SAP

packet is sent and the timer is rescheduled again. This scheme provides periodic

SAP packets as long as sap_running is equal to 1 (Figure 4.5).

43

Figure 4.5 Starting the session by a user command

2. Receiver receives first SAP and starts periodic RTTs:

When a receiver agent receives a SAP packet, it checks whether the TTL

value of the packet is greater than its stored sap_ value. In constructor, a negative

value is assigned to sap_ . So if the SAP is the first one or it is sent by a closer AP

(ACK Processor), TTL value would be greater than the sap_ , thus the agent selects

the owner of the SAP packet as its new AP. Then the receiver agent checks the

rtt_running flag. If it is 0, that means the SAP packet is the first one. So the agent

sets the flag to 1 and sends the first RTT packet. Then it reschedules the rtt_timer for

sending periodic RTT packets (Figure 4.6). A RTT packet has a timestamp which

indicates the send time of that packet and it is unicasted to the AP of the receiver.

44

Figure 4.6 Start of a receiver agent with first incoming SAP

45

3. Sender agent replies RTTs with RTT_ACK packets:

When the sender agent receives a RTT packet, it immediately generates a

RTT_ACK packet within the timestamp of the incoming RTT. Then the packet is

sent to the owner of RTT by unicast.

When a receiver agent receives a RTT_ACK packet it easily calculates the

round trip delay time between itself and its AP by subtracting the timestamp written

in the packet from the current simulation time.

4. Sender agent starts sending DATA packet:

Only SAP, RTT and RTT_ACK packets are sent until the command

“start_data” is executed by the simulator. When the command is executed, the

sender agent sets the data_running and retx_running flags to 1 in order to start the

periodic data and retransmission packet bursts. As seen in Figure 4.7, after setting

data running flag, sender agent sends the first burst of data packets and reschedules

the data_timer. When the data timer expires, the sender agent updates the sender

window according to the ACKs received during last period, and sends a new burst of

data packets unless the available window value of the sender window is zero. The

SendBurst function sets a data_finished flag if it sends the last packet, DATA_EOF.

As seen in Figure 4.7, simulator calls StopData function in order to terminate the

session.

46

Figure 4.7 Starting DATA flow and sending retransmissions

When SendBurst function is called, it calls the Send member function of the

sender window. This function returns a variable, k, which is going to be used as the

session ID of the next data packet, if not equal to -1. A variable k, which is equals to

-1, means the sender window is closed and no data packet can be sent until next

data_timer expiration. If k is not equal to -1, the sender agent checks if it is last the

packet and sends a DATA or DATA_EOF packet according to the result. As

illustrated in Figure 4.8 if it is a DATA packet, agent calls the send function again

for sending a new packet.

47

Figure 4.8 Sending a burst of DATA packets

5. Receiver agent receives DATA and starts sending ACK packets:

When a receiver agent receives a DATA packet, it checks the ack_running

flag. If it is 0, that means the agent is not sending periodic ACKs currently. So it sets

ack_running flag and schedules the ack_timer. After that, as seen in Figure 4.9, it

calls Received member function of the receiver window. This function makes the

necessary changes on the receiver window. When the ack_timer expires, the receiver

agent sends an ACK packet and reschedules the timer (Figure 4.9).

48

Figure 4.9 Handling DATA and sending periodic ACKs

When the sender agent receives an ACK packet, it adds the necessary entries

to the retransmission map, retx_ , if the ACK packet reports any packet loss.

6. Sender agent sends retransmission as the retx_timer expires:

As it can seen in Figure 4.7, the first DATA packet starts the retransmission

periods. When the retx_timer expires, the agent calls SendRetx function. This

function scans the retx_ map and sends retransmissions by unicast or multicast,

according to the number of receivers that required the corresponding retransmission.

7. Termination of a session:

In our implementation, a session may terminate in two ways. First, the user

may write a “stop” command, to cancel all timers and stop data flows. But this is

unreliable, since there may be some data retransmission packets that have not been

sent yet.

In the second way, the method proposed by RMTP is used; After sending the

last packet sender agent starts a timer, called dally_timer, with Tdally parameter. If an

49

ACK is received while the timer is running, it is reset. When the timer expires the

sender agent stops all running timer, i.e. sap_timer and retx_timer. On the receiver

side, when a receiver receives the last packet, DATA_EOF, it checks its receiver

window. If it is empty, that means it has received all packets, then it stops sending

periodic RTT and ACK packets. Otherwise, it keeps sending periodic packets until it

receives all packets.

50

CHAPTER 5

SIMULATION STUDY

In the comparative part of this study, three selected protocols have been

simulated in Network Simulator-2 under different test cases, for comparing some

characteristics of these protocols. For this purpose, a single large network topology

was created and the experiments designed for measuring different characteristics

were performed on the same topology for each protocol. In order to obtain some

quantitative results related to protocols, different evaluation metrics were defined.

In this section, details of the network topology, definition of the evaluation

metrics, experiment design, results obtained from these experiments and the

comments on these results are presented.

5.1 Network and application model

In network simulations, first step is to create a test topology on which all

experiments will be performed. In literature, there are two different methods that are

used for creating topologies with varying group sizes. The first one is to create the

topology according to the number of multicast group members. In this scheme, all

end nodes are group members. In the second method, an underlying network

topology is created and than the group members are selected randomly from the end

nodes of this network i.e. all nodes do not have to be a member of the multicast

group. This method introduces the advantage of being able to analyze the behavior

of a protocol against both a dense multicast group and a sparse one.

51

In this study, the latter method was used; a large network was created by

using a topology generator tool, Tiers [40]. In Tiers, a network is created in a three

level hierarchy, namely, a WAN, MANs under this WAN and LANs under each

MAN. The tool supports only one WAN and the number of MANs, the number of

LANs per MAN and the number of WAN, MAN and LAN nodes are specified by

the user. In our topology, there are;

• a WAN consisting of 3 WAN nodes,

• 4 MANs, each having 2 MAN nodes,

• and 5 LANs per MAN, each having 5 LAN nodes (end nodes)

The whole topology contains 131 nodes but 100 of these are end nodes, so

the members were selected within these 100 end nodes randomly. The network

topology used throughout the experiments is presented in Figure 5.1.

While generating the topology, Tiers assigns link propagation delays

according to the type of the link, i.e. a link between two LAN nodes (LAN-LAN

link) or a link connecting a LAN to a MAN (MAN-LAN link) etc. (Figure 5.1)

These delays were multiplied with a coefficient in order to obtain test cases with

varying network diameter. Bandwidths of the links were specified as follows;

i. WAN-WAN links; 34368 kbps (E3 carrier)

ii. WAN-MAN links; 8448 kbps (E2 carrier)

iii. MAN-MAN links; 8448 kbps (E2 carrier)

iv. MAN-LAN links; 2048 kbps (E1 carrier)

v. LAN-LAN links; 100 Mbps (Ethernet)

52

Figure 5.1 Underlying network topology

53

In real networks, most of the packet losses are due to the buffer overflows in

routers. In order to simulate these events in a simulation, a background traffic,

representing the normal traffic flow of the network, should be generated under the

multicast traffic. But it is very difficult to generate a proper background traffic and it

brings considerably large processing load to the simulation. Instead of this, in Ns-2,

a user-defined loss rate can be assigned to each link. The simulator arbitrarily drops

some packets passing over the link on an average rate that is defined by the user. In

our simulations, all test cases are repeated under small and large loss rates,

representing light and heavy background traffic, respectively. Furthermore, in order

to observe the operation of a protocol on different network conditions, all evaluation

metrics were measured with respect to varying loss rates.

Ns-2 supports three multicast route computation methods, named as Dense

Mode (DM), Shared tree mode (ST) and Centralized multicast routing [39]. Dense

mode multicast routing simulates the routing protocols DVMRP [8] or PIM-DM

[41]. While creating a routing tree, prune messages are used in case of a node

receives a packet for a group for which it has no downstream receiver. Similarly in

Shared tree mode, prune messages travel between nodes until the routing tree is

completely created. On the other hand, in Centralized multicast routing method, a

centralized computation agent is used to compute the multicast tree and set up the

forwarding states, and prune messages are not simulated [39]. Therefore when a

simulation starts, it looks like all nodes know the routing tree and forward packets

according to it, there are no join or prune messages. Since in this study, we deal with

reliability, which is a transport layer issue, the creation of the routing tree has no

significance. Thus Centralized multicast was used in all experiments.

Simulations were performed on one-to-many basis, i.e. a randomly selected

sender sent a file of a predetermined size to a multicast group, which was also

selected randomly. In SRM and PGM experiments, a CBR (Constant Bit Rate)

traffic source was connected to the sender and it produced a packet traffic at 100

kbps. Since RMTP is window-based and its transmission rate is directly related to its

protocol parameters like Tsend, the RMTP sender agent was implemented in a way

that it generates its own data traffic, without an external traffic source. But in all

54

experiments, 100 packets were generated at sender nodes and transmitted to each

group member, successfully. Each packet contains a data of 1000 bytes.

5.2 Evaluation metrics

Evaluation metrics are measurable parameters about the protocols that

provide quantitative results from simulation executions allowing to comment on

different characteristics. The metrics used in this study have been defined as follows:

Distribution Delay is the average time elapsed since a packet is sent from the

sender until it has been correctly received by the whole group. The last group

member that receives a packet specifies the distribution delay for that packet. If the

packet has been dropped somewhere in the network, then distribution delay involves

the time spent for recovery. From the point of view of the sender, distribution delay

implies the minimum time for which the sender must keep the packet at memory

before securely discarding it. Distribution delay is measured on a per packet basis. It

is measured for each packet and then average of all is calculated.

Recovery Latency is the average time between a packet drop being detected

by a receiver and its repair packet reaching the receiver. In other words, it is the time

for which a receiver should wait in order to receive retransmission for a lost packet.

It is measured for each packet loss during a session and the average is calculated at

the end. If there is a back-off timer, which is required by the protocol as a delay

before sending a retransmission request, it is included in the recovery latency.

Request overhead is the additional load on intermediate nodes (routers)

generated by the protocol. In order to measure this parameter, the number of request

packets processed by each router is counted and the average value is calculated over

all routers who participate in the multicast distribution tree. The results are presented

as the ratio of the average number of request packets to the number of original

packets sent by the sender. Thus, it expresses the number of request packets required

for sending a definite number of packets to a multicast group. In SRM and PGM,

request packets are the NACK packets which are sent in case of a packet loss,

whereas in RMTP, it is the ACK packets sent periodically by each receiver.

55

Repair overhead can be defined as similar to request overhead, except it is

the load generated on each router by repair packets. The repair might be sent by the

sender or another replier, like a DR in RMTP, and it might be unicast to the

requester or multicast to the group.

5.3 Experiment Design

Before starting network simulations, different test cases should be generated,

in order to determine the effects of some variable parameters of the network

topology or the multicast group over the operation of the protocol. In this section the

selected parameters and their range of variation will be presented.

The selected parameters used in this study are the following:

i. Group Size; It is the percentage of the number of group members to

the total number of end nodes on the underlying topology. So that,

group size gives an opinion about the density of the multicast, i.e. a

low group size means a sparse group, and the density of the group

increases as the group size increases.

ii. Group Diameter: In a network, the diameter can be defined as the

distance between the end nodes. So it is directly related to the

propagation delays of the links. In this study, delays were assigned by

Tiers, while creating the topology. All values were multiplied by a

coefficient, in order to obtain varying group diameters.

iii. Loss rate: As mentioned in Section 5.1, in order to simulate the

background traffic on the network, a loss rate was assigned to each

link. For observing the operation of the protocol in different network

conditions, varying loss rates were used.

Table 5.1 gives the test cases generated by changing the parameters

described above. In the first set of experiments, group size was increased from 10%

to 90% while delay coefficient was kept constant at 1. Each case was repeated for a

small and large loss rate, i.e. 1% and 5% respectively.

56

At the second set, group size was kept at 30% and delay coefficient was

changed between 0.5 and 3. Again all experiments were performed twice, for small

and large loss rates.

The last set of experiments were performed by altering the link loss rates for

simulating different network conditions. In this case, group size and group diameter

were kept constant.

Table 5.1 Test cases

 Network Parameters Evaluation Metrics observed

Test Case 1 Group size = VARYING
Network diameter = 1
Loss rate = 1%

Distribution delay,
Recovery latency,
Request overhead,
Repair overhead

Test Case 2 Group size = VARYING
Network diameter = 1
Loss rate = 5%

Distribution delay,
Recovery latency,
Request overhead,
Repair overhead

Test Case 3 Group size = 30%
Network diameter = VARYING
Loss rate = 1%

Distribution delay,
Recovery latency

Test Case 4 Group size = 30%
Network diameter = VARYING
Loss rate = 5%

Distribution delay,
Recovery latency

Test Case 5 Group size = 30%
Network diameter = 1
Loss rate = VARYING

Distribution delay,
Recovery latency,
Request overhead,
Repair overhead

In order to increase the reliability of the simulation results, each experiment

was repeated many times and the average of all was calculated at the end. The seed

of the random generator of the simulator was selected in a way that it drops different

57

packets at each repetition. The number of repetitions for each experiment was

determined according to the confidence interval rule. This rule specifies the

minimum number of repetitions which is required to obtain a simulation result that

is at a predefined closeness to the real value.

In this study, all experiments were repeated until a simulation result, whose

probability of being at ± 10% closeness of the real value is 95%, is obtained. After

each simulation execution, the results were controlled according to confidence

interval rule, and a decision is made on the termination of the corresponding

experiment.

5.4 Simulation Results

In this section, results obtained from the simulations are presented in

graphics showing the variation of the evaluation metrics against the network

parameters. Numerical values of these graphics are given in Appendix A.

5.4.1 Distribution Delay

In Figure 5.2 - 5.6, the results obtained for distribution delay are presented.

As it is seen from Figure 5.2. in case of small loss rate, increasing group size causes

a smooth increase on distribution delay. It is expected, because as the number of

members increases, the number of the members far from the sender will also

increase and the number of packet drops will increase since these packets spread

more on the links. In this case, results are very similar to each other. But in case of

large loss rate, (Figure 5.3) some important changes on the operation of protocols

are observed. First of all, characteristic of RMTP is very similar to small loss case

except a rise which is due to the increase in the number of packet losses and

retransmissions. But when the SRM graph is examined, it is seen that, in spite of

rising group size, distribution delay is decreasing, in other words the protocol

operates faster. This is the first important result, retrieved from the simulation work.

58

Since in SRM, each receiver could reply a retransmission request, it is reasonable

that increasing the group size will decrease the retransmission time which will

consequently decrease distribution delay. So SRM performs better at dense multicast

groups. If we analyze Figure 5.2 and Figure 5.3 together, it is seen that the variation

of SRM distribution delay is opposite, i.e. it is increasing in small loss case while

decreasing in large loss rate. So that it can be said that, SRM operates better when

the loss rate is higher. This is the result of using back-off timers before sending

NACKs and repair packets. In case of high loss rate, the probability of receiving the

same request or repair packet for which a receiver is running a back-off timer is

higher, therefore recovering a loss packet would be faster. This case will be

observed more obviously on recovery latency graphics.

Distribution delay for PGM is raising in both small and large loss rates, but

rate of increase is considerably large at large loss. This is an expected result of using

the original sender for all retransmission request. Since in this scheme, a

retransmission packet travels a longer path between the sender and the requester,

probability of dropping this packet somewhere on the path is much higher. This

situation does not effect the operation at small losses but it is an important drawback

when loss rate is high. As a result, PGM is badly effected from the changes in

network condition.

Figure 5.4 and Figure 5.5 give the variation of distribution delay against

network diameter for small and large loss rates, respectively. Operation of SRM and

RMTP are similar in both cases but in high loss rate SRM again responds better than

RMTP. PGM operation is unstable especially at high loss case.

Variation of a protocol against loss rate gives an opinion about the

dependency of that protocol to the changes at network conditions. Figure 5.6 gives

the operation at varying loss rates, or network conditions. For small loss rates, i.e.

under 1%, results are very close to each other, which is supported by Figure 5.2 and

Figure 5.4. But as the loss rate increases, SRM shows better performance than other

two protocols. Furthermore, if the parts of the graphics between 2% and 4% of loss

rates are considered, SRM graphics is almost horizontal. RMTP is also very close to

a horizontal line but PGM distribution delay increases from 2.5 seconds to 3.1

seconds. That means PGM strictly depends on the network condition. Since other

59

protocols use only a local part of the network while retransmitting a lost packet, they

are less sensitive to network conditions than PGM.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 25 50 75 100

Group Size

D
is

tr
ib

ut
io

n
D

el
ay

 (s
ec

)
SRM

PGM

RMTP

Figure 5.2 Distribution delay vs. Group size (for small loss rates)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 25 50 75 100

Group Size

D
is

tr
ib

ut
io

n
D

el
ay

 (s
ec

)

SRM

PGM

RMTP

Figure 5.3 Distribution delay vs. Group size (for large loss rates)

60

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 1 2 3 4

Network Diameter

D
is

tr
ib

ut
io

n
D

el
ay

 (s
ec

)

SRM

PGM

RMTP

Figure 5.4 Distribution delay vs. Network diameter (for small loss rates)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 1 2 3 4

Network Diameter

D
is

tr
ib

ut
io

n
D

el
ay

 (s
ec

)

SRM

PGM

RMTP

Figure 5.5 Distribution delay vs. Network diameter (for large loss rates)

61

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0 1 2 3 4 5 6

Loss Rate (%)

D
is

tr
ib

ut
io

n
D

el
ay

 (s
ec

)

SRM

PGM

RMTP

Figure 5.6 Distribution delay vs. Loss rate (Group size=30)

5.4.2 Recovery Latency

Graphics given in Figure 5.7 – 5.11, illustrate the variation of recovery

latencies against different network parameters. As it is seen in Figure 5.7 and 5.8,

recovery latency for SRM and RMTP decreases as the group size increases. Since

these protocols use local retransmission, not being effected by growing group size is

an expected result. Since RMTP uses multicast retransmission when the demands for

a lost packet exceeds the MCASTThres parameter, increasing group size causes more

multicast retransmission, which consequently decreases the recovery time. But in

both small and large loss rate cases, the characteristics of RMTP graphics are

similar, which means recovery mechanism of the protocol is not affected from the

network condition. The reason for the decrease at the SRM recovery times is also the

local recovery mechanism. But SRM does not have local domains which have strict

borders as in the case of RMTP.

The protocol adjusts random back-off timer values in order to supply the

locality, as described in Section 3.4.2. But the mechanism requires dense multicast

62

groups and high loss rates. As seen in Figure 5.8, SRM is the fastest protocol to

recover a packet loss, when the group density is greater than 20%. If we consider the

variation of PGM recovery latency against group size, it is almost doubled when

network goes from small loss case to large loss case. That also supports the

comment, given in previous subsection, which says increase on distribution delay

arises from the long recovery times.

Figure 5.11 shows the affect of loss rate on recovery latency. Recovery

mechanism of SRM and RMTP operate very stable in high loss rates, namely over

2%. But increasing loss rate raises the recovery time of PGM. That means PGM

recovery mechanism is badly affected by changes in the network condition.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 20 40 60 80 100

Group Size

R
ec

ov
er

y
La

te
nc

y
(s

ec
)

SRM

PGM

RMTP

Figure 5.7 Recovery latency vs. Group size (for small loss rates)

63

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 20 40 60 80 100

Group Size

R
ec

ov
er

y
La

te
nc

y
(s

ec
)

SRM

PGM

RMTP

Figure 5.8 Recovery latency vs. Group size (for large loss rates)

0

0,5

1

1,5

2

2,5

3

0 1 2 3 4

Network Diameter

R
ec

ov
er

y
La

te
nc

y
(s

ec
)

SRM

PGM

RMTP

Figure 5.9 Recovery latency vs. Network diameter (for small loss rates)

64

0

0,5

1

1,5

2

2,5

3

0 1 2 3 4

Network Diameter

R
ec

ov
er

y
La

te
nc

y
(s

ec
)

SRM

PGM

RMTP

Figure 5.10 Recovery latency vs. Network diameter (for large loss rates)

0

0,5

1

1,5

2

2,5

0 1 2 3 4 5 6

Loss Rate (%)

R
ec

ov
er

y
La

te
nc

y
(s

ec
)

SRM

PGM

RMTP

Figure 5.11 Recovery latency vs. Loss rate

65

5.4.3 Protocol Overheads

In Figure 5.12 – 5.17, the variations of the request and repair overheads

generated by each protocol against group size and loss rate are given. Since the link

delays do not effect the number of request or repair packets generated, variation

against network diameter was not observed in these test cases.

In Figure 5.12 and 5.13, RMTP seems to generate more request overhead as

the group size increases. The first reason for that is sending periodic ACKs for

requesting lost packets, instead of sending NACKs only in case of a packet drop.

Therefore request overhead of RMTP is higher than others in small loss rate case,

and the difference gets higher as the group size increases (Figure 5.12). Another

reason is not using a suppression mechanism for request packets like the other

protocols. As a result of this, for increasing group sizes, RMTP request overhead

increases faster than other protocols, especially in high loss case (Figure 5.13).

Since in a dense multicast group, it is likely to get a repair or request packet

for a SRM receiver before its back-off timer expires and consequently its

retransmission request would be discarded, SRM has a small request overhead at

high group sizes, with respect to other protocols (Figure 5.13).

In case of PGM, since a request packet travels the whole network between

the receiver and the sender, error probability for that request gets higher, as the link

loss rates increase. Therefore especially in case of large loss rate (Figure 5.13), PGM

generates more request overhead. For instance, request overhead for a group size of

10 is greater than 1, which means a router processes more request packets than the

original data packets, even for a multicast group with 10 members. On the other

hand, as it is seen in Figure 5.14, two protocols which use local retransmission do

not suffer from increasing loss rate, as much as PGM. Furthermore, the behaviors of

these protocols against loss rate are very similar to each other. Request overhead of

both protocols remain under 1 until loss rate is equal to 4%, while PGM exceeds 1 at

a loss rate of 1.5%.

66

0

0,5

1

1,5

2

2,5

3

0 20 40 60 80 100

Group Size

R
eq

ue
st

 O
ve

rh
ea

d

SRM

PGM

RMTP

Figure 5.12 Request overhead vs. Group size (for small loss rates)

0

0,5

1

1,5

2

2,5

3

0 20 40 60 80 100

Group Size

R
eq

ue
st

 O
ve

rh
ea

d

SRM

PGM

RMTP

Figure 5.13 Request overhead vs. Group size (for large loss rates)

67

0

0,5

1

1,5

2

2,5

3

0 1 2 3 4 5 6

Loss Rate (%)

R
eq

ue
st

 O
ve

rh
ea

d

SRM

PGM

RMTP

Figure 5.14 Request overhead vs. Loss rate

0

0,5

1

1,5

2

2,5

3

3,5

4

0 20 40 60 80 100

Group Size

R
ep

ai
r

O
ve

rh
ea

d

SRM

PGM

RMTP

Figure 5.15 Repair overhead vs. Group size (for small loss rates)

68

0

0,5

1

1,5

2

2,5

3

3,5

4

0 20 40 60 80 100

Group Size

R
ep

ai
r

O
ve

rh
ea

d

SRM

PGM

RMTP

Figure 5.16 Repair overhead vs. Group size (for large loss rates)

0

0,5

1

1,5

2

2,5

3

3,5

0 1 2 3 4 5 6

Loss Rate (%)

R
ep

ai
r

O
ve

rh
ea

d

SRM

PGM

RMTP

Figure 5.17 Repair overhead vs. Loss rate

69

From repair overhead graphics (Figure 5.15 and 5.16), it is seen that SRM

generates a huge repair overhead even in small loss rates. This is a result of globally

multicasting all repair packets. Multicast retransmission provides fast error recovery,

because most of the receivers get retransmissions before expiration of their back-off

timers. That can be recognized from the low request overhead of SRM. But this

scheme costs a very high processing load on the routers. This is the trade-off of

SRM for achieving fast error recovery.

From the figures, it can be said that RMTP and PGM generate an acceptable

repair overhead in both small and large loss cases. In RMTP, sending

retransmissions by unicast and using a local group when multicast transmission is

required by the protocol keep the number of repair packets processed by each router

at a low level. Consequently, the repair overhead is less than half of SRM’s, which

uses global multicast for all retransmissions. PGM also has a low repair overhead by

taking the advantage of using router assistance. Repairs are sent by unicast and

duplicated at routers if necessary, so repair traffic is kept low. But unicast

retransmission causes high recovery times while generating less overhead.

70

CHAPTER 6

CONCLUSION

The overall evaluation of the results of simulation executions presented in

previous chapter, gives some insight about the main issues of the reliable

multicasting. In this section, these results will be summarized under the following

distinctive titles;

Multicast retransmission: Sending retransmission packets by multicast

transmission decreases the recovery time. SRM uses multicasting for all

retransmissions and from simulation results it is seen to have a good recovery

latency performance especially at high loss rates. Similarly, RMTP has a decreasing

recovery latency. (RMTP is likely to send multicast retransmission in large groups.)

In case of multicast retransmission, some receivers get the lost packets

before their back-off timers expire or while waiting for the next request sending

period, decreasing the average recovery latency. This reduction is too obvious in

SRM, such that it decreases the whole distribution delay. But while decreasing the

recovery time, multicast retransmission introduces an extra repair overhead to the

network. Especially SRM, which globally multicast all retransmissions, has a

considerably high repair overhead. Instead of using global multicast, multicasting

repairs to a local subgroup, such as RMTP, could keep the overhead at an acceptable

rate.

Similarly, unicast retransmission cause a high overhead especially at the

sender side of the network, i.e. one of the fundamental issues of reliable

multicasting. PGM proposes to overcome this problem by using router assistance.

This scheme is successful with respect to repair overhead, but since the

71

retransmissions are not performed on a local-basis, recovery time is high. The effect

of local retransmission will be investigated on the next item.

Local Retransmission: The term of local retransmission is used for the

protocols in which not only the original sender but also a specialized receiver or any

receivers who has the required data is able to reply a retransmission request. The

most important advantage of this method is to keep the recovery times at a low level,

as it is seen in SRM and RMTP simulations. A protocol that uses the sender for

replying all retransmission requests, like PGM, would have a high recovery latency.

But using a replier apart from the sender requires some additional protocol

implementation efforts. For example, in SRM, each receiver should have the ability

of sending a previously received packet when it is necessary. The same requirement

is valid for a RMTP designated receiver, and furthermore selecting the locations of

these DRs and running some extra features on them are necessary for a proper

operation. These properties should be organized by a session manager. As a result,

decreasing the recovery time by using local retransmission creates extra loads on

protocol implementation and session management.

Effect of Network Conditions: In Ns-2 simulations, packet drops due to the

network congestion are simulated by loss rates assigned to each link. Therefore

variation of an evaluation metric against the loss rate gives an opinion about the

response of the protocol to changing network conditions.

From simulation executions, it is seen that recovery time of the protocols

using local retransmission, namely SRM and RMTP, is not effected from the

changes in loss rate.

Out of the three protocols investigated in this study, SRM shows the best

performance against variations of loss rate. Since in ideal operation of SRM the

nearest receiver replies a retransmission request, the reply packet travels the

minimum path when compared with other protocols and the effect of network

condition is minimized.

In case of RMTP, each Designated Receiver specifies a local retransmission

area and answers the retransmission request generated within the area. Hence RMTP

also takes the advantages of using local retransmission. But since in this case each

local retransmission area is specified by a Designated Receiver, they are larger than

72

the local retransmission areas of SRM. As a result of this, effect of the network on

RMTP recovery time is greater than it is in the SRM. But it is too little when

compared with a protocol where the sender replies all retransmission requests. In

PGM, for instance, recovery latency increases three times, as the average loss rate

goes from 0.5% to 5%. So using local retransmission and decreasing the size of this

local area decreases the dependency of a protocol on the network conditions.

Effect of Group Density: In this study, all test cases having different number

of group members were created on the same underlying topology. Therefore varying

the number of multicast group members caused a change on the density of multicast

group, allowing to observe the effect of group density to the operation of the

selected protocols. From the results obtained, a protocol that specifies the border of

its local retransmission areas while establishing the session, e.g. RMTP, is

independent of group density. On the other hand, since SRM does not define the

local areas and obtains the locality by trying to answer a retransmission request by

the nearest receiver, in sparse multicast groups the recovery latency was measured at

the highest level and increasing the group size, i.e. the group density, caused a drop

at the latency.

As a summary, using SRM, in a multicast session that requires reliable

transmission, introduces fast error recovery, while creating a high protocol overhead.

On the other hand, PGM is very slow at error recovery and badly affected by the

changes at the network conditions. RMTP stays somewhere between these two

protocols. Its error recovery times are quite low due to local retransmissions. Also,

retransmitting repair packets to a restricted subgroup avoids generating large

protocol overheads to the network. The only drawback of RMTP is the need of

selecting and properly locating the DRs and the extra buffer requirement of these

nodes.

At the end of this study, a combination of RMTP mechanism and the router

support may be proposed, in order to overcome the reliability problem of multicast

transmission in a scalable way. In such a scheme, the protocol may operate with less

number of designated receivers, decreasing the extra buffer requirement and the

difficulties of session management.

73

In this study, all simulations were performed with a single sender, i.e. on a

one-to-many basis. As a future work, the response of the protocols in a many-to-

many multicast session may be studied. The performance of the protocols with

respect to some different evaluation metrics like processing load on sources, load on

receivers or memory requirements of the protocols may be observed. Furthermore,

CBR traffic sources were considered, during our study. The response of the

protocols in case of different traffic types may also be studied.

74

REFERENCES

[1] Sportack, M. A., “IP Addressing Fundamentals”, Cisco Press, Indianapolis,
2003

[2] Li, V.O.K., Zhang, Z., “Internet multicast routing and transport control
protocols”, Proceedings of the IEEE , Volume: 90 , Issue: 3, Pages:360 -
391, March 2002

[3] Tanenbaum, A. S., “Computer Networks”, Prentice Hall, September 2001

[4] Deering, S., “Host Extensions for IP Multicasting”, Network Working
Group RFC 1112, August 1989

[5] Long, C., “IP Network Design”, McGraw-Hill, 2001

[6] Sahasrabuddhe, L.H., Mukherjee, B., “Multicast routing algorithms and
protocols: A tutorial”, Network, IEEE, Volume: 14, Issue: 1, Pages: 90 -
102, Jan.-Feb. 2000

[7] Lin, J., Chang, R., “Comparison of the Internet multicast routing
protocols”, Computer Communications, v 22, n 2, Pages: 144-155, 1999

[8] Waitzman, D., “Distance Vector Multicast Routing Protocol”, Network
Working Group RFC 1075, November 1988

[9] Moy, J., “Multicast Extensions to OSPF”, Network Working Group RFC
1584, March 1994

[10] Ballardie, A., “Core Based Trees (CBT) Multicast Routing Architecture”,
Network Working Group RFC2201, September 1997

[11] Kumar, S. et al., “The MASC/BGMP architecture for interdomain
multicast routing”, Proc. ACM SIGCOMM, Vancouver, BC, Canada,
Pages: 93-104, 1998

[12] Metz, C., “Reliable multicast: when many must absolutely positively
receive it”, Internet Computing, IEEE, Volume: 2, Issue: 4, July-Aug.
1998, Pages: 9 – 13, 1998

75

[13] Miller, C.K., “Reliable multicast protocols: a practical view”, Local
Computer Networks, 1997. Proceedings, 22nd Annual Conference on,
1997

[14] Mankin, A. et al., “IETF Criteria for Evaluating Reliable Multicast
Transport and Application Protocols”, Network Working Group RFC
2357, June 1998

[15] Handley M. et al., “The Reliable Multicast Design Space for Bulk Data
Transfer”, Network Working Group RFC 2887, August 2000

[16] Whetten, B., Taskale, G., “An overview of reliable multicast transport
protocol II”, Network, IEEE, Volume: 14, Issue: 1, Pages: 37 - 47, Jan.-
Feb 2000

[17] Lacher, M.S., Nonnenmacher, J., Biersack, E.W., “Performance
comparison of centralized versus distributed error recovery for reliable
multicast”, Networking, IEEE/ACM Transactions on, Volume: 8, Issue: 2,
Pages: 224 – 238, April 2000

[18] Obraczka, K., “Multicast Transport Protocols: A survey and Taxonomy”,
Communications Magazine, IEEE, Volume: 36, Issue: 1, Jan. 1998

[19] Levine, B.N., Garcia-Luna-Aceves, J.J., “A Comparison of Known Classes
of Reliable Multicast Protocols”, International Conference on Network
Protocols, Pages: 112 – 121, 1996

[20] Maihofer, C., Rothermel, K., Mantei, N., “A throughput analysis of reliable
multicast transport protocols”, Computer Communications and Networks,
2000. Proceedings. Ninth International Conference on, Pages: 250 – 257,
October 2000

[21] Appala, S.V.,Austen, J.R., “An evaluation of reliable multicast protocols”,
Southeastcon '99. Proceedings. IEEE, Pages: 165-168, March 1999

[22] Whetten, B. et al., “Reliable Multicast Transport Building Blocks for One-
to-Many Bulk-Data Transfer”, Network Working Group RFC 3048,
January 2001

[23] Byers J.W., Luby M., Mitzenmacher M., Rege A., “A Digital Fountain
Approach to Reliable Distribution of Bulk Data” Computer
Communication Review 1998

[24] Paul, S., Lin, J., Sabnani, K., Bhattacharyya, S., “A Reliable Multicast
Transport Protocol (RMTP)”, IEEE Journal on Selected Areas in
Communications, Pages: 407 – 421, April 1997

76

[25] Yavatkar, R., Griffioen, J., Sudan, M., "A Reliable Dissemination Protocol
for Interactive Collaborative Applications," Proc. ACM Multimedia '95,
Pages 333 - 344, 1995.

[26] Floyd, S., Jacobson, V., Liu, C.G., McCanne, S., “A reliable multicast
framework for light-weight sessions and application level framing,”
IEEE/ACM Trans. Networking, vol. 5, pp. 784–803, Dec. 1997

[27] Speakman et al., “PGM Reliable Transport Protocol Specification”,
Network Working Group RFC 3208, Dec. 2001

[28] Miller, K., Robertson, K., Tweedly, A., White, M. “StarBurst Multicast
File Transfer Protocol (MFTP) Specification.” Work in progress, Internet
Draft, draft-miller-mftp-spec-03.txt, April 1998.

[29] Papadopoulos, C., Parulkar, G., Varghese, G., “An error control scheme for
large-scale multicast applications,” in Proc. IEEE INFOCOM, San
Francisco, CA, Pages: 1188–1196, Mar.–Apr. 1998

[30] Costello, A. M., McCanne, S., “Search party: Using randomcast for
reliable multicast with local recovery,” in Proc. IEEE INFOCOM, New
York, Pages: 1256–1264, Mar. 1999

[31] Gao Y., Ge, Y., Hou, J.C., “RMCM: Reliable multicast for corebased
multicast trees,” in Proc. IEEE Int. Conf. Network Protocols, Osaka, Japan,
Pages: 83 – 94, Nov. 2000

[32] Bhattacharyya, S., Kurase, J., Towsley, D., “The Loss Path Multiplicity
Problem in Multicast Congestion Control” Proc. IEEE INFOCOM, Pages:
856 – 863, Mar. 1999

[33] Pereira, J., Rodrigues, L., Oliveira, R. “Semantically Reliable Multicast:
Definition, Implementation, and Performance Evaluation” IEEE
Transactions On Computers, Vol. 52, No. 2, Pages:150 – 165, February
2003

[34] Ozkasap, O., Xiao, Z., Birman, K.P., “Scalability of Two Reliable
Multicast Protocols” Technical Report, Department of Computer Science,
Cornell University, New York, May 1999

[35] Hanle, C., Hofmann, M., “Performance comparison of Reliable Multicast
Protocols using the Network Simulator ns-2”, 23rd Annual Conference on
Local Computer Networks, 1998. LCN '98, Pages: 222 – 237, Oct. 1998

[36] Maihöfer, C., Rothermel K., “A Delay Analysis of Reliable Multicast
Protocols”, IEEE International Conference on Multimedia and Expo, 2001.
(ICME 2001), Pages: 92 – 95, Aug. 2001

77

[37] Maihöfer, C., Rothermel K., “A Delay Analysis of Tree-based Reliable
Multicast Protocols” Tenth International Conference on Computer
Communications and Networks, Pages: 274 – 281, Oct. 2001

[38] Gemmell, J., Montgomery, T., Speakman, T., Crowcroft, J., “The PGM
Reliable Multicast Protocols” Network, IEEE, Volume: 17, Issue: 1, Pages:
16 – 22, Jan.-Feb. 2003

[39] University of Southern California Information Sciences Institute, The
Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/, January 2004

[40] Calvert, K.I., Doar, M.B., Zegura, E.W., “Modeling Internet Topology”
Communications Magazine, IEEE, Volume: 35, Issue: 6, Pages: 160 - 163
June 1997

[41] Adams, A., Nicholas, J., Siadak, W., “Protocol independent multicast
dense mode (PIM-DM): Protocol specification” Internet draft, draft-ietf-
pim-dm-new-v2-01.txt, Feb. 2002.

78

APPENDIX A

NUMERICAL RESULTS OF SIMULATIONS

Table A.1 Simulation results for “Distribution Delay”

Distribution Delay Group
Size

Delay
Coefficient

Loss
Rate SRM PGM RMTP

10 1 small 0,82045 0,70509 0,70441
30 “ “ 1,03315 0,89780 0,86520
50 “ “ 1,10590 0,98461 0,92141
70 “ “ 1,22760 1,07942 1,03459
90 “ “ 1,25755 1,29502 1,07993

Graphic
given in
Figure 5.2

10 1 large 1,53669 1,49673 1,44009
30 “ “ 1,48001 2,44977 1,76581
50 “ “ 1,37961 3,11802 1,85279
70 “ “ 1,39116 3,28483 1,92784
90 “ “ 1,42674 3,55178 1,93738

Graphic
given in
Figure 5.3

30 0,5 small 0,59272 0,48140 0,62069
“ 1 “ 0,99297 0,87745 0,86588
“ 2 “ 1,79260 1,16834 1,41102
“ 3 “ 2,36665 1,72434 2,29886

Graphic
given in
Figure 5.4

30 0,5 large 0,94046 2,03533 1,46229
“ 1 “ 1,50261 2,49647 1,76263
“ 2 “ 2,48924 1,84209 2,57191
“ 3 “ 3,18017 2,24347 3,65229

Graphic
given in
Figure 5.5

30 1 0,5 0,82456 0,71000 0,68424
“ “ 1 1,16169 1,29584 1,10392
“ “ 2 1,44703 2,51866 1,78715
“ “ 4 1,53114 3,12533 2,07129
“ “ 5 1,78295 3,96892 2,66876

Graphic
given in
Figure 5.6

79

Table A.2 Simulation results for “Recovery Latency”

Recovery Latency Group
Size

Delay
Coefficient

Loss
Rate SRM PGM RMTP

10 1,51649 0,816508 0,965684
30 “ “ 1,14706 0,870469 0,956497
50 “ “ 1,20004 0,797527 0,872792
70 “ “ 1,19782 0,814778 0,833078
90 “ “ 1,15731 0,926625 0,852444

Graphic
given in
Figure 5.7

10 1 large 1,42039 1,391536 1,141568
30 “ “ 0,909948 1,408138 1,081536
50 “ “ 0,746086 1,570705 0,971228
70 “ “ 0,792955 1,498271 0,953857
90 “ “ 0,801915 1,555407 0,931976

Graphic
given in
Figure 5.8

30 0,5 small 0,782634 0,487545 0,768435
“ 1 “ 1,17024 0,811763 0,963149
“ 2 “ 2,02321 0,628081 1,308198
“ 3 “ 2,56688 0,874446 1,727937

Graphic
given in
Figure 5.9

30 0,5 large 0,559879 1,203091 0,914317
“ 1 “ 0,952462 1,45463 1,033759
“ 2 “ 1,52618 1,245698 1,424841
“ 3 “ 1,80719 1,430183 1,905298

Graphic
given in
Figure 5.10

30 1 0,5 1,27171 0,777217 0,867768
“ “ 1 0,958407 0,979694 0,916683
“ “ 2 0,856448 1,487098 1,062336
“ “ 4 0,885987 1,758938 1,104222
“ “ 5 0,900743 2,255509 1,204661

Graphic
given in
Figure 5.11

80

Table A.3 Simulation results for “Request Overhead”

Request Overhead

Group
Size

Delay
Coefficient Loss Rate SRM PGM RMTP

10 1 small 0,180392 0,251523 0,251702
30 “ “ 0,393386 0,367701 0,471496
50 “ “ 0,517599 0,434705 0,892522
70 “ “ 0,595226 0,572438 1,090108
90 “ “ 0,693548 0,717038 1,328635

Graphic
given in
Figure 5.12

10 1 large 0,627132 1,130749 0,331925
30 “ “ 0,908783 1,60596 0,748384
50 “ “ 1,032028 1,860176 1,257156
70 “ “ 1,085299 2,243812 1,953636
90 “ “ 1,160847 2,664076 2,635015

Graphic
given in
Figure 5.13

30 1 0,5 0,215062 0,200328 0,362257
“ “ 1 0,586667 0,714596 0,624646
“ “ 2 0,885344 1,608855 0,844411
“ “ 4 1,000159 2,105993 0,982862
“ “ 5 1,155397 2,763838 1,159562

Graphic
given in
Figure 5.14

81

Table A.4 Simulation results for “Repair Overhead”

Repair Overhead

Group
Size

Delay
Coefficient Loss Rate SRM PGM RMTP

10 1 small 0,33951 0,182634 0,075245
30 “ “ 1,236614 0,260041 0,172194
50 “ “ 1,541505 0,301783 0,204516
70 “ “ 1,816839 0,388993 0,323118
90 “ “ 2,365887 0,472991 0,40866

Graphic
given in
Figure 5.15

10 1 large 1,159559 0,761444 0,366791
30 “ “ 2,656455 1,020774 0,754343
50 “ “ 3,274148 1,122434 1,03522
70 “ “ 3,390737 1,290704 1,397097
90 “ “ 3,899355 1,466892 1,691789

Graphic
given in
Figure 5.16

30 1 0,5 0,594753 0,144559 0,073372
“ “ 1 1,795556 0,494787 0,279125
“ “ 2 2,694656 1,02468 0,740976
“ “ 4 2,762275 1,260168 0,988889
“ “ 5 3,101164 1,535657 1,436936

Graphic
given in
Figure 5.17

