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Abstract. A simple second order accurate and fully Eulerian numerical method is presented for
the simulation of multifluid compressible flows, governed by the stiffened gas equation of state, in
hydrodynamic regime. Our numerical method relies on a second order Godunov-type scheme, with
approximate Riemann solver for the resolution of conservation equations, and a set of nonconservative
equations. It is valid for all mesh points and allows the resolution of interfaces. This method works
for an arbitrary number of interfaces, for breakup and coalescence. It allows very high density ratios
(up to 1000). It is able to compute very strong shock waves (pressure ratio up to 105). Contrary
to all existing schemes (which consider the interface as a discontinuity) the method considers the
interface as a numerical diffusion zone as contact discontinuities are computed in compressible single
phase flows, but the variables describing the mixture zone are computed consistently with the density,
momentum and energy. Several test problems are presented in one, two, and three dimensions. This
method allows, for example, the computation of the interaction of a shock wave propagating in a
liquid with a gas cylinder, as well as Richtmeyer–Meshkov instabilities, or hypervelocity impact,
with realistic initial conditions. We illustrate our method with the Rusanov flux. However, the same
principle can be applied to a more general class of schemes.
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1. Introduction. The direct numerical simulation of compressible multiphase
flows is an important research topic with various key applications, ranging from the
dynamics of bubbles in nuclear flows to hypervelocity impact or shock wave interaction
with densities and material discontinuities: Richtmeyer–Meshkov instabilities, bubble
deformation and collapse, gas mixing for combustion, etc. The main applications are
in fluid mechanics, material science, astrophysics, and nuclear science.

Here we consider multifluid flows with an hydrodynamic behavior only. Dissipa-
tive effects are neglected but they should be included in the model without major
difficulties. Under this assumption, the fundamental equations are the Euler equa-
tions.

The resolution of the Euler equations in single phase flows is now achieved with
reasonable accuracy by many numerical methods. Over the last two decades, the
resolution of such flows has become a routine matter with Godunov [10] and high
order schemes [35, 30]. Although this is true for single phase flows, the resolution
of similar flows involving fluid interfaces between two gases or two fluids of different
physical nature is much more difficult. Interface problems with two gases occur in
many combustion applications and are not solved correctly with classical numerical
methods [1, 20, 33]. The difficulty lies in the differences between the equation of state
parameters for each fluid. This difficulty appears more dramatically with interfaces
separating gases and liquid or gases and solid.

Under very high pressures, liquids and solids become compressible. The hydro-
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dynamic part of the stress tensor becomes predominant compared with its deviatoric
part. The Euler equations become a valid model for such flows. Under high pressures,
liquid and solids behave like gases.

It is possible to describe these materials under high pressure with reasonable accu-
racy by using the stiffened gas equation of state [17, 11]. Its algebraic form is similar to
the ideal gas equation of state (EOS). Each phase of flows involving various materials
may be described by an EOS of this type. Only the coefficients of the EOS will vary
discontinuously from one medium to another across the interface. This discontinuous
variation of these coefficients is at the heart of the difficulty for pressure evaluation
at the interface. Any classical fluid dynamics method produces an artificial diffusion
of density and internal energy at the interfaces. Since the density ratio between each
fluid may be very large, typically of the order of 103 for problems we consider here,
the numerical values of the density inside the diffusion zone make pressure evaluation
by the gas or the liquid EOS very difficult. In general, such Eulerian methods fail at
the second time step. This is why specific algorithms have been developed over the
last 40 years—to eliminate numerical diffusion at the interfaces. A short review of
these methods will be given in the next section.

These methods are all complicated. Some of them are simple conceptually but are
difficult to code. We propose here a new method which considers the problem from a
different point of view. Numerical diffusion is tolerated in this method and the same
algorithm is used at each mesh point—liquid, solid, or gas—and at all interfaces. Its
programming is very simple compared with others methods. Its execution time on a
computer is not longer than for a single fluid flow calculation. The essential limitation
is related to the EOS. Currently, the method applies only to the stiffened gas EOS.

The basic idea of the method is due to Abgrall [2], who considers two gases having
a different ratio of specific heats, separated by an interface, to be flowing in a one-
dimensional (1D) shock tube. This method is generalized to the stiffened gas EOS
and hence to multifluid problems, then to multidimensional problems.

As shown in the last section of the paper, this method is suitable for various
problems, such as two-phase shock tube, Richtmeyer–Meshkov instabilities, shock-
bubble interaction, and hypervelocity impact.

2. A review of existing methods. The literature provides references to several
families of methods suitable for interface problems and compressible flows. Each
of these methods considers different ways of eliminating numerical diffusion at the
interfaces.

2.1. Lagrangian methods. The most classical and natural way to compute
flows with interfaces is to use Lagrangian methods: in this framework the mesh moves
with the flow. The interfaces are characterized by specific positions in the flow and
move with the local velocity. If the method does not use artificial viscosity, the in-
terface will remain sharp. In general it is necessary to use some artificial viscosity
in the shock waves, and the interfaces smear during time when shock waves interact
with them. Specific algorithms based on “master and slave” surfaces for nodes at the
interface restore a sharp profile. However, since large displacements are current in
hydrodynamic flows, the mesh suffers of large distortions. These distortions induce
errors on the solution and it is necessary to rezone the mesh periodically. Moreover,
fluid dynamics applications deal frequently with fluid inflows and outflows. In the con-
text of Lagrangian methods this implies addition and elimination of meshes, yielding
an extra complexity. The mesh management produces inaccuracies and difficulties in
the coding. An excellent review of these methods is given in Benson [3].
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2.2. Front tracking methods. Front tracking methods use a classical Eulerian
solver for points away from the interface and a specific scheme for the points around
the interface. Some examples of the capabilities of such methods may be found in
Young, Glimm, and Boston [38]. Each point of the interface is propagated at each
time step in a spatially operator-split fashion, using a local coordinate system aligned
with the interface. The tangential split steps are based on finite differences in a plane
tangent to the interface. The normal propagation step is based on a Riemann solver,
which is an exact solution of the local 1D conservation law with a discontinuity. A
nonlocal correction to this purely local resolution of the dynamics of the discontinuity
at the interface is provided by a finite difference computation based on the method
of characteristics. See [9] for further details. Harten and Hyman [15] have proposed a
conservative front tracking scheme, relying on a self-adjusting grid procedure around
the interface. This scheme is very efficient in one dimension but difficult to extend in
two dimensions. A conservative two-dimensional (2D) scheme is proposed in Leveque
and Shyue [23] and a nonconservative one is proposed in Mao [24]. This last one relies
on variable extrapolations through the interface. The basic idea of this scheme is sim-
ple, but its 2D coding is difficult, like for the others methods. Another conceptually
simple method was proposed by Cocchi and Saurel [4]. Starting from a sharp interface
(as initial data, for example), an Eulerian scheme will produce a nonphysical numeri-
cal diffusion on the two points only around the interface during a single time step. An
exact Riemann solver consists of an exact solution of the Euler equation at a given lo-
cation. The two points suffering from numerical diffusion may be corrected using the
states given by the exact Riemann solver. The variables at other Eulerian nodes are
not affected by numerical diffusion. A linear interpolation between the Riemann solu-
tion and the Eulerian solution, on the same side of the interface, is sufficient to restore
a sharp discontinuity. The 1D variant of this method is very simple and efficient [5].
Its extension has been realized in two dimensions [4], but the method becomes rather
complex. This is the main drawback of these methods. Indeed, these schemes are in
general very efficient and accurate, but even when the fundamental idea of the scheme
is simple, its coding is difficult. These schemes involve dynamic distribution of mark-
ers along the interface, the localization of neighboring marker points in the Eulerian
mesh, and the managing of interface geometrical singularities like triple points. Each
of these steps render these methods very difficult to extend in three dimensions and
to problems involving interface breakup or coalescence. Despite these drawbacks, the
accuracy of such methods is generally very good, and considerable efforts have been
produced by specialized research teams to extend these methods in three dimensions
and for breakup and coalescence interface problems (Glimm et al. [9]).

2.3. Eulerian methods. Eulerian methods are not really Eulerian since they
are in general a combination of Lagrange and projection methods. Also, they use
specific schemes at the interfaces. They are based on the volume of fluid (VOF) idea
[18] and reconstruction methods [39]. These methods are widely used in hydrocodes
and seem to be very efficient. They are based on advection algorithms for interface
reconstruction. Knowing the volume fraction and the velocity field of each fluid at
one time step, they are able to predict the volume fraction and the interface location
at the next time step.

The knowledge of the interface position is sufficient for incompressible flows to
determine the density field. For a compressible flow, the determination of the densities
and internal energy of each fluid in a mixed cell is not obvious at all. Papers in the
literature comment very little on this point. The only paper the authors have found
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is the one by Norman and Winkler [27], which describes a complicated (but efficient)
method for the determination of densities and internal energies. This procedure is
based on a relaxation method for each fluid variable. The densities and internal
energies are iterated and compared with the mixture ones once pressure equilibrium
is reached. In fact, the literature is too poor to evaluate these methods. However,
since the applications are very important, specialized teams have developed such
codes. The results obtained by these schemes seem to agree well with experiments.

More recently, a new type of Eulerian method has been proposed. These methods
are based on a localization of the interface by the level set method [26, 20]. Karni’s
method [20] switches the energy formulation equation from conservative to primitive
variables in order to prevent pressure oscillations at the interface. Comparison with
the technique of Mulder, Osher, and Sethian [26] shows large accuracy improvement
by this switching procedure. Extension of these methods to reactive flows and fluids
governed by the stiffened gas equation is not obvious. The difficulty comes from the
large variations of the EOS parameters at the interface, and in particular from the
corrective pressure π in (3.1). The method we are presenting in the following works
correctly with the stiffened gas equation and can be extended to reactive flows.

2.4. Arbitrary Lagrangian–Eulerian methods. Arbitrary Lagrangian–Eulerian
(ALE) methods are Lagrangian at the interfaces and use moving grid strategies with
Eulerian schemes away from the interfaces. The difficulty lies in managing the mesh
when several interfaces are present in the flow.

To summarize, when there is only a small number of interfaces and low flow ve-
locities, Lagrangian methods are efficient. When the flow velocity increases, mesh
distortion increases, too, and ALE methods are recommended. Front tracking meth-
ods are the most accurate. They are also the most difficult to code, to generalize
to an arbitrary number of interfaces and three-dimensional (3D) problems. Eulerian
methods allow an arbitrary number of interfaces and large fluid velocities but little
information on these methods is available in the open literature.

These considerations have led us to conduct investigations on simpler methods
for flows at high velocities, with an arbitrary number of interfaces and strong shock
waves. The main drawback of our method is that it was restricted, until now, to
materials governed by the stiffened gas EOS.

3. The method. The algorithm follows the basic ideas of Abgrall [2] for the
resolution of the 1D Euler equations with ideal gas EOS for interfaces between two
gases of different ratios of specific heats. In the following we extend this method in
multidimensions for fluids governed by the stiffened gas EOS.

3.1. The stiffened gas EOS. The stiffened gas EOS [11, 17] is written

p = (γ − 1)ρI − γπ,(3.1)

where p denotes the pressure, ρ the density, and I the internal energy. The constants
γ and π are parameters characteristic of the material. This expression is identical to
the ideal gas EOS when γ represents the ratio of specific heats and π is zero. Equation
(3.1) is a reasonable approximation for gases, liquid, and solid under high pressure
conditions.

The parameters γ and π are determined by adjusting the experimental and the-
oretical Hugoniot curves. For a broad class of materials, the experimental Hugoniot
curve can be represented as a linear function:

Us = c0 + sUp,(3.2)
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Fig. 1. Experimental and theoretical Hugoniot curves for granite, water, and copper. The
straight lines are the experimental ones.

where c0 is the sound speed in the material at rest, Us is the shock wave velocity,
Up is the material velocity, and s a dimensionless constant. The Rankine–Hugoniot
relations may be combined with (3.1) (see Cocchi, Saurel, and Loraud [5]):

Us =

[
c20 +

(
γ + 1

4
Up

)2
]1/2

+
γ + 1

4
Up.(3.3)

By choosing an interval of variation of the fluid velocity, one can determine the value
of γ giving the closest agreement between the experimental curve and the model EOS.
Once the coefficient γ is determined, the value of π is obtained from

π =
ρ0c

2
0

γ
− P0,(3.4)

where ρ0 represents the material initial density and P0 the ambient pressure.
Figure 1 represents the theoretical and experimental curves for liquid water (lower

curve), copper (upper curve), and granite. The experimental curves are obtained from
data given in Marsh [25].

The stiffened gas EOS parameter may always be adjusted in order to get a close
agreement with experimental curves (linear curves). The corresponding parameters
are summarized in Table 3.1. The simulations of section 4 are done with this set of
parameters.

3.2. Basic version of the method. To illustrate our method, we choose the
simplest ingredients of a conservative first order Godunov-type scheme in one dimen-
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Table 3.1
Some parameters of the stiffened gas EOS for a model gas, liquid, and solids.

Air Water Copper Granite

Density (kg/m3) 1 998 8924 2627
c0 (m/s) 340 1647 3910 3750

s – 1.921 1.51 1.06
γ 1.4 4.4 4 2.6

π (Pa) 0 6. 108 341 108 142 108

sion. It will be generalized to different schemes, second order accurate, and several
space dimensions in the next section.

The basic idea behind our method is that any physical contact discontinuity
should remain a contact discontinuity. More precisely, we demand that in any flow
where the pressure and the velocity are uniform, since these properties are respected
in the exact solution whatever the physical characteristic of the flow, then the pressure
and the velocity will remain uniform whatever the time.

This property may not be true, even for the simplest example of multifluid flow as
shown in [1, 20]. This is a consequence of the following fact: The numerical dissipation
associated with an exact conserved variable may not be consistent with the property
“p and u” uniform.

We ask for the flow solver to respect this physical property. This property is in fact
in contradiction with the strict respect of conservation as it was clearly understood
by Karni [20]. By considering a single supersonic contact discontinuity, it can be seen
that this wrong behavior is not solver dependant but is a general property of any
upwind scheme (see [1, 6]). We have to abandon the strict-conservativity. This may
be done in several ways (Karni [21]) and we want to loosen this property as little as
possible.

The simplest way to achieve this goal is first to enforce mass, momentum, and
energy conservation. The physical description of the flow (for example its composition)
is described by another equation which is discretized in such a way that the contact
discontinuities are respected. In order to achieve this goal as simply as possible, the
basic flow solver needs only to fulfill

if u
(1)
i = u and P

(1)
i = P for any i, then u

(2)
i = u and P

(2)
i = P ,

where superscripts (1) and (2) denote two consecutive time steps.
We illustrate these principles on the examples of the Rusanov flux [31] with the

stiffened gas EOS. In another section, we show how to generalize our methodology to
several space dimension and different numerical fluxes.

3.3. Modification of the Godunov–Rusanov scheme. The equations to
solve in each fluid and at the interface are the Euler equations written in conservative
form:

∂U

∂t
+
∂F

∂x
= 0,(3.5)

where U = (ρ, ρu, ρe)T and F = (ρu, ρu2 + P, u(ρe + P ))T , and ρ, u, and P are,

respectively, density, velocity, and pressure. The total energy is defined by e = I+ u2

2 .
The pressure and the internal energy are related through (3.1), where γ and π depend
on the material.
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The system (3.5) has to be supplemented by two equations which provide evolu-
tion of the phases:

∂γ

∂t
+ u

∂γ

∂x
= 0,

∂π

∂t
+ u

∂π

∂x
= 0.

(3.6)

What we intend to do is to provide a discretization of (3.6) which will ensure a
correct treatment of the pressure.

We consider a mesh of constant spacing ∆x. The solution is evolved with a time
step ∆t. The first order Godunov scheme reads

Un+1
i = Uni −

∆t

∆x

(
Fni+1/2 − Fni−1/2

)
,(3.7)

where the numerical flux is given by [31]

Fi+1/2 = F (Ui, Ui+1) :=
1

2
(Fi + Fi+1 − S(Ui+1 − Ui)) ,(3.8)

where S = max{|ui+1 + ai+1|, |ui+1 − ai+1|, |ui + ai|, |ui − ai|} and a is the speed of

sound a =
√
γ P+π

ρ .

Now we assume that u and P are uniform in the flow. The density ρ γ,π may
not be uniform. More specifically at time tn, we assume ui = u, Pi = P for any i,
whereas γi = γl, πi = πl if i < 0 and γi = γr, πi = πr if i ≥ 0 . We note λ = ∆t

2∆x .
We get

ρn+1
i = ρni − λ[uni (ρni+1 − ρni )− Si+1/2(ρni+1 − ρni ) + Si+1/2(ρni − ρni−1)],

(3.9)

ρn+1
i un+1

i = ρni u
n
i − λ[

(
(ρu2 + P )ni+1 − (ρu2 + P )ni−1

)
+ Si+1/2(ρni+1u

n
i+1 − ρni uni )

+ Si+1/2(ρni u
n
i − ρni−1u

n
i−1)].(3.10)

Combining (3.9) and (3.10), the equality of pressure and velocity at time tn, one gets

un+1
i = u.(3.11)

Now we consider the equation for the total energy:

ρen+1
i = ρeni − λ[(ρeu+ Pu)ni+1 − (ρeu+ Pu)ni − Si+1/2(ρeni+1 − ρeni )

+ Si−1/2(ρeni − ρeni+1)].

Using (3.9), (3.11), and pressure uniformity, we get

ρIn+1
i = ρIni − λ

[
uni (ρIni+1 − ρIni−1)− Si+1/2(ρIni+1 − ρIni ) + Si−1/2(ρIni − ρIni−1)

]
.

With the help of (3.1), with ρI = P+γπ
γ−1 := αP + β with α = 1

γ−1 and β = γπ
γ−1 , we

get

(αP )n+1
i + βn+1

i = (αP )ni − λ[uni P
n
i (αni+1 − αni−1)− Si+1/2P

n
i (αni+1 − αni )

+ Si−1/2P
n
i (αni − αni−1)]

+ βni − λ[uni (βni+1 − βni−1)− Si+1/2(βni+1 − βni ) + Si−1/2(βni − βni−1)].
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Hence, we obtain Pn+1
i = Pni under the condition

χn+1
i = χni − λ

[
uni (χni−1 − χni−1)− Si+1/2(χni+1 − χni ) + Si−1/2(χni − χni−1)

]
,(3.12)

where χ = (α, β).
To summarize, the scheme in the general case is

Un+1
i = Uni − λ(Fni+1/2 − Fni−1/2),

χn+1
i = χni − λ

[
uni (χni−1 − χni−1)− Si+1/2(χni+1 − χni ) + Si−1/2(χni − χni−1)

]
.

(3.13)

The last equation is a numerical discretization of

∂χ

∂t
+ u

∂χ

∂x
= 0,(3.14)

which can be seen to be equivalent to the system (3.6).

3.4. Extension to second order. The extension is realized by following the
Monotonic Upstream Schemes for Conservative Laws (MUSCL)–Hancock method (see
Quirk [28]). The flow variables are characterized by a mean value Uni and a slope δUni .

For the sake of simplicity and efficiency, the slopes are calculated on primitive
variables, W = (ρ, u, P )T , since we are interested essentially on the accuracy of the
scheme at the interface. At the interface, slopes of u and P are zero. The primitive
variables on the cell boundary are given by

Wn
i+1/2,− = Wn

i + 1
2δW

n
i ,

Wn
i−1/2,+ = Wn

i − 1
2δW

n
i .

Various components of primitive vector W are then obtained easily:

ρni+1/2,− = ρni + 1
2δρ

n
i ,

ρni−1/2,+ = ρni − 1
2δρ

n
i ,

uni+1/2,− = uni−1/2,+ = u,

Pni+1/2,− = Pni−1/2,+ = P.

(3.15)

This satisfies automatically the contact discontinuity conditions. The mean con-
servative variable vector at time tn+1/2 may be calculated by

Un+1
i = Uni −

λ

2

[
F (Uni+1/2,− − F (Uni−1/2,+)

]
.(3.16)

Use of (3.15) in (3.16) yields the result

ρ
n+1/2
i = ρni − λ

2u
n
i δρ

n
i ,

u
n+1/2
i = uni = u,

χ
n+1/2
i = χni − λ

2 δχ
n
i .

(3.17)

The predictor step of the MUSCL procedure ends with the calculation of the cell
boundary variables at time tn+1/2,

W
n+1/2
i+1/2,± = W

n+1/2
i ∓ 1

2
δWn

i ,(3.18)

and the same for the χ vector.
The predictor step of the MUSCL scheme may be summarized as follows:



SIMPLE METHOD FOR COMPRESSIBLE MULTIFLUID FLOWS 1123

1. Compute the primitive variables and the slopes at time tn.
2. Compute the cell boundary variables with (3.15).
3. Update at time tn+1/2 the conservative variables by (3.16) and the noncon-

servative one by (3.17).
4. Compute the cell boundary variables at time tn+1/2 by (3.18).

The corrector step now is written

Un+1
i = Uni − λ

[
F (U

n+1/2
i+1/2,−, U

n+1/2
i+1/2,+)− F (U

n+1/2
i−1/2,−, U

n+1/2
i−1/2,+)

]
.(3.19)

Using the Rusanov flux (3.7) in (3.19) and the same principles as in the preceding
section, one gets the discretization of χ ensuring pressure and velocity equality at the
interface:

χn+1
i = χni − λ

[
u
n+1/2
i

(
χ
n+1/2
i+1/2,− + χ

n+1/2
i+1/2,+ − χn+1/2

i−1/2,− − χn+1/2
i−1/2,+

)
− S

n+1/2
i+1/2

(
χ
n+1/2
i+1/2,+ − χn+1/2

i+1/2,−
)

+ S
n+1/2
i−1/2

(
χ
n+1/2
i−1/2,+ − χn+1/2

i−1/2,−
)]
.

(3.20)

Conservative variables are updated by (3.19) while nonconservative one are updated
by (3.20).

3.5. Extension to other schemes. As we have pointed out before, the nu-
merical schemes are not all suitable for our modification. In order to simplify the
calculation, it is necessary that the following condition be true: If the pressure and
the velocity are uniform on the stencil of the numerical scheme, then the velocity
stays uniform at tn+1. For example, the van Leer [35] fluxes do not satisfy the above
constraint.

The basic idea is to update the conservative variables by the original numerical
scheme and to impose further conditions on the energy equation so that the pressure
will remain uniform. In [2], the Roe scheme has been modified along these lines. In
the next paragraph, we show how to modify the Harten, Lax, and van Leer (HLL)
scheme [16].

3.5.1. Extension with the HLL approximate Riemann solver. The HLL–
Riemann solver assumes an estimate of the right and left wave speed S+ and S− at
a cell boundary. The numerical flux in the HLL approximation is written

FHLL =
S+FL − S−FR + S+S−(UR − UL)

S+ − S− .(3.21)

The subscripts R and L stand for the right and left states and fluxes at the cell
boundary. Various choices are possible for the wave speed estimates; see for example
[34]. Here we use Davis estimates [7]:

S+ = max(0, uL + aL, uR + aR), S− = min(0, uL − aL, uR − aR).

The first order development of the method as given in section 3.1 with the HLL
solver yields the following discretization of the nonconservative equations (3.14):

χn+1
i = χni − λ

[
uni (S+

i+1/2χ
n
i − S−i+1/2χ

n
i+1) + S+

i+1/2S
−
i+1/2(χni+1 − χni )

S+
i+1/2 − S−i+1/2

−
uni (S+

i−1/2χ
n
i − S−i−1/2χ

n
i ) + S+

i−1/2S
−
i−1/2(χni − χni−1)

S+
i−1/2 − S−i−1/2

]
.

(3.22)
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For the extension to second order, relations given in section 3.3 remain valid except
that relation (3.20) must be replaced by

χn+1
i = χni − λ

×
un+1/2

i

(
S+
i+1/2χ

n+1/2
i+1/2,− − S−i+1/2χ

n+1/2
i+1/2,+

)
+ S+

i+1/2S
−
i+1/2

(
χ
n+1/2
i+1/2,+ − χn+1/2

i+1/2,+

)
S+
i+1/2 − S−i+1/2

−
u
n+1/2
i

(
S+
i−1/2χ

n+1/2
i−1/2,− − S−i−1/2χ

n+1/2
i−1/2,+

)
+ S+

i−1/2S
−
i−1/2

(
χ
n+1/2
i−1/2,+ − χn+1/2

i−1/2,−
)

S+
i−1/2 − S−i−1/2

 ,

(3.23)

where λ = ∆t
∆x .

We now show how to modify the Roe scheme [30].

3.5.2. Extension with the Roe approximate Riemann solver. To design
a numerical scheme relying on the Roe fluxes, we follow the same approach as in [2].
We begin by assuming that an averaged Jacobian matrix is available for the following
system of PDEs. It describes the evolution of a fluid made of two components.

∂ρ1Y1

∂t
+
∂ρ1uY1

∂x
= 0,

∂ρ2Y2

∂t
+
∂ρ2uY2

∂x
= 0,

∂ρu

∂t
+
∂(ρu2 + P )

∂x
= 0,

∂E

∂t
+
∂u(E + P )

∂x
= 0.

(3.24)

Here, ρ1 and ρ2 are the densities of each fluid and Y1, Y2 are the respective volume
fraction (Yi = volume occupied by fluid i/total volume). The total energy per unit
volume is given by E = ρe. The mixture pressure is given by P = Y1P1 + Y2P2,
where P1 and P2 are given by the corresponding stiffened gas EOS. Since pressure
equilibrium between the two fluids is assumed, the mixture of state is written

I =
P

γ − 1
+

γπ

γ − 1
,

where

1

γ − 1
=

Y1

γ1 − 1
+

Y2

γ2 − 1
and

γπ

γ − 1
=
Y1γ1π1

γ1 − 1
+
Y2γ2π2

γ2 − 1
.(3.25)

We denote by A the averaged Jacobian matrix and we assume it admits the
following structure:

A =


ūY1 −ūY1 Y1 0

−ūY2 ūY2 Y2 0

−ū2 + P̃ρ1Y1
−ū2 + P̃ρ2Y2

2ū+ P̃m P̃E

ū(−H̄ + P̃ρ1Y1
) ū(−H̄ + P̃ρ2Y2

) H̄ + ūP̃m ū(1 + P̃E)

 .(3.26)
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In (3.26), ū, H̄, Yi are the standard Roe averages of the velocity u, the total

enthalpy per unit volume H, and the volume fractions Yi, respectively, while P̃ρ1Y1 ,

P̃ρ2Y2 , P̃m, and P̃E are approximations of the partial derivatives Pρ1Y1 , Pρ2Y2 , Pm,
and PR (m = ρu). In the appendix, we give the precise expressions of these quantities
as well as a way to get them. What is important is that A admit the following set of
eigenvectors:

r1 =


1
0
ū

ū2

2
− ξ1
κ

 , r2 =


0
1
ū

ū2

2
− ξ2
κ

 , r3 =


Y1

Y2

ū− c̄
H̄ − ūc̄

 , r4 =


Y1

Y2

ū+ c̄
H̄ + ūc̄

 ,

where κ = PE , ξi = PρiYi −K u2

2 , and c is the speed of sound. The vectors r1 and r2

are associated to the eigenvalue u.
Assume that u and P are uniform on the mesh. Take two neighboring cells i and

i+ 1. Since

F (Ui+1)− F (Ui) = u(Ui+1 − Ui) = A(Ui+1 − Ui),

there exists x, y ∈ R2 such that Ui+1 − Ui = xr1 + yr2, and hence

FRoe(Ui+1, Ui) =
1

2
(F (Ui+1) + F (Ui)− |u|(Ui+1 − Ui)) .

Thanks to this, it is clear that all the calculations made before for the Rusanov
fluxes extend to this case. The only modification is that the numerical dissipation is
now ū = u.

We get that ui = u and Pi = P for any i implies that un+1
i = u for any i. In

order to enforce the condition Pn+1
i = P , we need that

χn+1
i = χni − λ

[
uni (χni+1 − χni−1)− |ū|(χni+1 − 2χni + χni−1)

]
,(3.27)

where λ = ∆t
2∆x .

3.5.3. Extension with an exact Riemann solver. We follow the same pro-
cedure. The numerical fluxes are computed from the solution of the Riemann problem
with an exact solver. Such a solver is described, for example, in Cocchi, Saurel, and
Loraud [5] and Toro [34]. At a cell boundary, the exact Riemann solver provides the
solution for ρ∗, u∗, P ∗, e∗, α∗, and β∗ . We note λ = ∆x

∆t and we first examine the
Godunov scheme applied to the mass conservation equation. We get

ρn+1
i = ρni − λ

[
(ρ∗u∗)ni+1/2 − (ρ∗u∗)ni−1/2

]
.

We again assume uni ≡ u = u∗, so

ρn+1
i = ρni − λu

[
(ρ∗)ni+1/2 − (ρ∗)ni−1/2

]
.

Now we develop the Godunov scheme for the momentum conservation equation:

ρun+1
i = ρuni − λ

[
(ρ∗(u∗)2 + P ∗)ni+1/2 − (ρ∗(u∗)2 + P ∗)ni−1/2

]
.
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Combining (3.9) and (3.10), the equality of pressure Pni ≡ P ∗ = P , and velocity at
time tn, we again get un+1

i = uni . Finally, we consider the equation for the total
energy:

ρen+1
i = ρeni − λ

[
(ρ∗e∗u∗ + P ∗u∗)ni+1/2 − (ρ∗e∗u∗ + P ∗u∗)ni−1/2

]
.

Using previous equations and assumptions, we get

ρIn+1
i = ρIni − λu

[
(ρ∗I∗)ni+1/2 − (ρ∗I∗)ni−1/2

]
.

With the help of (3.1), ρI = αP + β; then we get

(αP )n+1
i +βn+1

i =
{

(αP )ni − λuP (α∗ ni+1/2 − α∗ ni−1/2)
}

+
{
βni − λu(β∗ ni+1/2 − β∗ ni−1/2)

}
.

Hence, we obtain Pn+1
i = P under the condition

χn+1
i = χni − λuni (χ∗ ni+1/2 − χ∗ ni−1/2),

where χ = (α, β)T .
To summarize, when the original Godunov scheme is used our scheme is written{

Un+1
i = Uni − λ(F ∗i+1/2 − F ∗i−1/2),

χn+1
i = χni − λuni (χ∗ ni+1/2 − χ∗ ni−1/2).

(3.28)

3.6. Extension to multidimensions. The solution in multidimensions can be
obtained by applying the well-known principles of operator splitting. For example,
the 2D operator can be approximated by a succession of 1D sweeps [32]

Un+1
i =

(
L

∆t
2
x L∆t

y L
∆t
2
x Un

)
i
,(3.29)

where Lx (resp., Ly) represents the 1D operator along x direction (resp., y) as de-
scribed previously. Some precautions must be taken in order to preserve equality of
pressure and velocities during each sweep. Let us examine for example the x-sweep.
The same remarks apply directly to the y-sweep. Equations to solve during the x-
sweep are

∂U

∂t
+
∂F

∂x
= 0(3.30)

with U = (ρ, ρu, ρv, ρe)T and F = (ρu, ρu2 +P, ρuv, u(ρe+P ))T , where e = I+ u2+v2

2 .
We consider the case of the Rusanov scheme, but other examples can be considered

in the same spirit. Let us assume once more that the x-velocity is uniform while the
y-component is not. The pressure is also assumed to be uniform. Following the same
development as in section 3.2, (3.9) and (3.11) remain unchanged. The transverse
momentum equation reads

ρvn+1
i = ρvni − λ

[
uni (ρvni+1 − ρvni−1)− Si+1/2(ρvni+1 − ρvni ) + Si−1/2(ρvni − ρni−1)

]
.
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The total energy equation is

(αP )n+1
i + βn+1

i +

(
ρ
v2

2

)n+1

i

= (αP )ni − λ
[
uni P

n
i (αni+1 − αni−1)− Si+1/2P

n
i (αni+1 − αni )Si−1/2P

n
i (αni − αni−1)

]
+ βni − λ

[
uni (βni+1 − βni−1)− Si+1/2(βni+1 − βni ) + Si−1/2(βni − βni−1)

]
+

(
ρ
v2

2

)n
i

− λ
[
uni

{(
ρ
v2

2

)n
i+1

−
(
ρ
v2

2

)n
i−1

}
− Si+1/2

{(
ρ
v2

2

)n
i+1

−
(
ρ
v2

2

)n
i

}

+ Si−1/2

{(
ρ
v2

2

)n
i

−
(
ρ
v2

2

)n
i−1

}]
.

We see that to have Pn+1
i = Pni we have to impose (3.12) on χ and (denoting

Kt = ρ v
2

2 )

Kn+1
ti = Kn

ti − λ
[
uni (Kn

ti+1
−Kn

ti−1
)− Si+1/2(Kn

ti+1
−Kn

ti) + Si−1/2(Kn
ti −Kn

ti−1
)
]
.

(3.31)

This is not surprising because it can be seen that even in the case of a perfect
gas, when the initial condition corresponds to a slip line aligned with the mesh, the
pressure starts to deviate from the initial value as well as the tangential and normal
component of the velocity. In most cases, this effect is indeed very small. The effect
of this default is not yet well understood.

It is possible to derive a scheme that will genuinely preserve the slip line (aligned
with the mesh). The idea is to consider the system

∂U ′

∂t
+
∂F ′

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
= 0,

(3.32)

where U ′ = (ρ, ρu, ρe′)T and F ′ = (ρu, ρu2 + P, u(ρe′ + P ))T with e′ = e − v2

2 ,
that can be derived from the original Euler equations. Then applying once more
the same principles, we can obtain a discretization which will be consistent with the
preservation of slip lines. The difficulty, as it can easily be seen, is that (3.32) is valid

only in the x-direction. For the y-direction, another value of e′ (namely e′ = e− u2

2 )
has to be considered. The synchronization of the x and y sweeps has to be done, with
the consequence that strict conservation of the energy is lost. Due to the complexity
of the coding, as well as the very weak effect of this subtle modification, we have
considered the scheme based on (3.31) only.

Thus to summarize, for each time step and for each cell boundary, we start from
(ρ, ρu, ρv, ρe, α, β) at time tn. We consider then the case of the x-sweep with a time

step ∆t/2. We compute the tangential kinetic energy Kt at time tn: Kt = (ρnvn)2

2ρn .

We update (ρ, ρu, ρv, ρe)T by the conservative scheme, (α, β) by (3.13), and Kt by

(3.31). We deduce the internal energy by (ρI)n+1 = (ρe)n+1−Kn+1
t − (ρn+1un+1)2

2ρn+1 and

the pressure by αn+1Pn+1 + βn+1 = (ρI)n+1. Then we drop the tangential kinetic
energy Kn+1

t and we start the same procedure on the y-sweep with the time step ∆t,
and so on.
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Fig. 2. Time evolution of the tangential velocity and kinetic energy and equation of state
parameters.

If the tangential kinetic energy is not convected, the numerical errors become
so large for very strong slip lines that the scheme blows up. This can be clearly
seen in Figure 2 where the nonmonotonic behavior of the transversekinetic energy is
responsible for the code blowup: (3.31) guaranties a monotone profile of Kt under the
CFL condition.

4. Results. All the results we present are obtained with the HLL–Riemann
solver and the van Albada, van Leer, and Roberts [36] slope limiter, in the context of
the second order variant of the method. We do not show the results for the Rusanov
fluxes because this numerical flux is more diffuse. We have not used the Roe scheme
because it is not always able to compute accurate solutions on the drastic conditions
of the following test problems. The method using the exact Riemann solver is the
most accurate and will be tested on the first test problem but not on multidimensional
problems because of the computational cost.

In most cases we provide the density evolution. For special applications, even if
the initial densities of the various fluids are very different, during the run the density
of the two fluids may become close. The density contours are no longer characteristic
of the interface location. This is why we have added to the system of equations an
auxiliary equation for the evolution of the color function f . This color function is set
to zero in one fluid initially and to one in the other fluid when we deal with two fluids
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only. This function is used for plots only. This equation may be written as

∂ρf

∂t
+∇ · (ρf~u) = 0(4.1)

and is solved by the conservative scheme. The numerical flux is obtained by upwinding
in the direction indicated by the mass flux. The equation of state variables can also
be used for representation of the interface, but their resolution by the nonconservative
scheme is more dissipative than the conservative resolution of (4.1).

4.1. A two-phase shock tube. The method relies on the assumption of a
uniform velocity and pressure flow in each mesh point. Here we test the capabilities
of the method to work on a Riemann problem where all the variables (including the
pressure) are strongly discontinuous. It consists of a tube filled in its left part by a
liquid at high pressure and on the right by a gas at low pressure. On such a test case,
standard shock capturing methods fail at the second time step (negative argument in
the speed of sound computation). The initial data are

• Liquid: ρl = 1000 kg/m3, Pl = 109 Pa, ul = 0 m/s, vl = 1000 m/s, γl = 4.4,
πl = 6 .108 Pa;
• Gas: ρr = 50 kg/m3, Pr = 105 Pa, ur = 0 m/s, vr = −5000 m/s, γr = 1.4,
πr = 0.

The initial discontinuity is located at x = 0.7m, and the results are represented
at t = 240 µs. The numerical solution is plotted in bold lines and the exact one
in thin lines. Here, the mesh contains 1000 cells uniformly distributed to show mesh
convergence. This is an indication that our method, although not strictly conservative,
is able to compute discontinuities moving at the right speed. Figure 3 represents the
excellent agreement between the two solutions. The upper graphs have been obtained
with the method using the HLL solver, while the lower ones have be obtained with
the scheme based on the exact Riemann solver. The HLL solver is used because of
the stiffness of the problem. A solver which guarantees the positivity of ρ and P is
mandatory, even in a simulation for an ideal gas, on these conditions. Some velocity
oscillations are present on the tail of the rarefaction wave, and density oscillations are
present at the contact discontinuity. The velocity oscillation is more visible when the
HLL solver is used rather than the exact one. The density oscillation at the interface
is present with both solvers. This type of oscillation is present even for single fluid
calculations. Here, they are magnified because of the stiffness of the problem (density
ratio of 20 and pressure ratio of 104).

However, even with very few points (100) a rather good agreement between the
exact and the numerical solutions can be obtained. In Figure 4, the velocity and
pressure profiles are shown at three successive instants. Final curve is obtained after
90 time steps. Each curve is separated by 30 time steps. These results are obtained
with the HLL solver. Similar results are obtained with the exact Riemann solver.
Even if the method has been built for uniform pressure and velocity flows, it works
on the present problem.

These 1D calculations have been obtained by the resolution of the x-split 2D
system (3.30), corresponding to a sweep of the 2D alternate direction method. The
tangential momentum equation has been solved. A discontinuous tangential velocity
condition is assumed initially. A positive sliding velocity of 1000 m/s is set into
the left chamber, and a negative, nonsymmetric sliding velocity of −5000 m/s is set
into the right chamber. Under these conditions, if the tangential kinetic energy is
computed from the tangential velocity component, the method fails rapidly. It is why
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Fig. 3. Comparison of numerical schemes (bold lines) and exact solution (thin lines) for the
liquid-gas shock tube. Upper graphs are obtained with the present second order method and HLL
solver and the lower graphs with the present method and the exact Riemann solver.

Fig. 4. Pressure and velocity unsteady evolutions. Exact solution is shown in bold lines at last
time step.

the tangential kinetic energy must be computed from (3.31). We now look at this
discontinuity evolution in Figure 2. The monotonic evolutions of γ, π, and Kt are
also provided.
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The solutions presented in Figures 4 and 2 are obtained with the HLL scheme.
From the tangential velocity component, it is possible to calculate the tangential
kinetic energy. Corresponding profiles are represented in bold lines in Figure 2. The
thin lines correspond to the resolution of (3.31) and show the monotonic behavior
of the tangential kinetic energy. One can notice that these results present strong
differences. Kinetic energy computed from the tangential velocity component does
not preserve pressure and velocity oscillations. Our method provides the correct
results. It also can be noticed that the present methods provide monotonic behavior
of all EOS parameters.

We now examine the behavior of the method on a 1D interaction of a strong rar-
efaction with a gas-liquid interface. This test case is interesting for pointing out that
no density undershoots appear and that the pressure remains positive. We consider
again a shock tube with three zones. The first chamber on the left side of the tube
(0 < x < 0.6 m) is filled with liquid water under atmospheric conditions: ρ = 1000
kg/m3, P = 105 Pa, u = 0 m/s. The second one (0.6 m < x < 0.8 m ) is filled with
air under atmospheric pressure: ρ = 50 kg/m3, P = 105 Pa, u = 0 m/s. The last one
(0.8 m < x < 1 m) is filled with air at low pressure: ρ = 0.1 kg/m3, P = 103 Pa,
u = 0 m/s. This configuration results in a weak shock wave propagating on the right
in the low-density air and a rarefaction wave propagating to the left and interacting
with the gas-liquid interface. Corresponding results are shown in Figure 5.

These computations are made on a mesh of 100 cells. They clearly show that no
density oscillation induce negative pressure.

4.2. Advection of a square gas bubble in uniform liquid flow. We now
consider a very simple 2D test case. It consists of the advection of a square gas bubble
in a liquid. Both phases are at the same pressure and velocity, so only translation of
the gas bubble is observed. The initial data of this test problem are

• Liquid: ρl = 1000 kg/m3, Pl = 105 Pa, ul = 1000 m/s, vl = 1000 m/s,
γl = 4.4, πl = 6 108 Pa;
• Gas: ρg = 10 kg/m3, Pg = 105 Pa, ug = 1000 m/s, vg = 1000 m/s, γg = 1.4,
πg = 0.

The computational domain is a 1-meter square with a 300× 300 mesh, and the initial
square bubble whose initial dimensions are 0.2 m × 0.2 m (60 × 60 mesh points) is
located at the left bottom. Its center is located at x = 0.3 m and y = 0.3 m. This
simulation is performed with a Courant number of 0.8. The results are represented
at the initial time and after 600 time steps. Figure 6 represents density contours.

The numerical diffusion of the interface is clearly shown, but one can notice that
the overall shape is preserved. It is possible to reduce this numerical diffusion by
employing a “three waves” Riemann solver. This is not crucial for the following
applications. The Roe and the exact Riemann solver contain three waves. They
could be used for the present calculations. The velocity and pressure field are not
represented but a cross cut of the corresponding variables at the last instant is shown
on Figure 7. There are no pressure and velocity variations, contrary to what would
be observed with a more classical solver.

4.3. Shock wave interaction with density discontinuities. We first test
the capabilities of the method for the resolution of the interaction of a shock wave
propagating in a liquid and interacting with a gas cylinder. It is a more difficult
problem, both numerically and physically. The computational domain is 2 meters
long and 1 meter high. It contains liquid at rest in atmospheric conditions. The gas
is inside a cylinder whose center is located at x = 0.5 meter and y = 0.5 meter; its
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Fig. 5. Time evolution of the density, velocity, and pressure on the rarefaction tube problem.
Each curve is separated by 0.25 ms.

radius is 0.4 meter. A piston hits the left side at the velocity of 300 m/s yielding a
shock pressure of about 3. 109 Pa. The top and bottom boundaries are solid walls.

The initial data of this test problem are
• Liquid: ρl = 1000 kg/m3, Pl = 105 Pa, ul = 0 m/s, vl = 0 m/s, γl = 4.4,
πl = 6. 108 Pa;
• Gas: ρg = 1 kg/m3, Pg = 105 Pa, ug = 0 m/s, vg = 0 m/s, γg = 1.4, πg = 0.

The Courant number for the simulation is 0.8 and results are plotted every 500 time
steps. The numerical simulation of such a problem has been done in the case of
two gases governed by the ideal gas equation of state by Quirk and Karni [29] and
Greenough and Jacobs [12]. The corresponding experiments were first conducted
by Haas and Sturtevant [14]. The numerical study of a similar problem with water
is given by Grove and Menikoff [13] and Ding and Gracewski [8]. The numerical
method used in these two papers is very different from the one proposed here. Grove
and Menikoff used a front tracking scheme and Ding and Gracewski, a Lagrangian
scheme. The reported results of these two studies were for short duration after the
shock wave interaction. The formation of the vortex pair described in the following
study was not calculated: the distortions were too strong and surface topology was
too complex.

Figure 8 represents the color function contours. Figure 8(a) represents the initial
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Fig. 6. Density contours for the advection of a square bubble.

condition. In Figure 8(b) there is a flattening of the bubble and a weak deformation
of its original circular structure. From here to Figure 8(d), there is a strong defor-
mation of the jet as it is inverted and transformed into a vortex pair. The first jet
is created by the shock wave interaction with the interface along the symmetry axis.
This interaction results in a transmitted weak shock wave in the gas and a refracted
rarefaction wave facing to left. The combination of the two waves set into motion the
interface. The rarefaction wave behaves as a nearly spherical wave. The acceleration
is maximum near the symmetry line. This acceleration sets into motion the liquid on
the left part of the bubble, creating a motion in the direction of this axis. Due to
the symmetry condition, the flow deviates and forms a jet. An excellent description
of this phenomena is given in Grove and Menikoff [13]. The creation of the vortex
pair is explained in Greenough and Jacobs [12]. The vortex pair is a result of the jet
deviation after its interaction with the opposite side of the bubble. In Figures 8(e)
and (f), the flow evolves as a well-defined vortex pair. The corresponding density
fields are represented in Figure 7. Due to the large density range of variation, the
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Fig. 7. Cross cut at x = 0.83 meters for the square bubble advection test problem.

shock wave is not visible. Also, due to the strong compression of the gas inside the
bubble, the contours of density are not representative of the interface position.

We show now the capability of the method for the resolution of the Richtmeyer–
Meshkov instabilities. It is another difficult problem of shock wave interaction with
a density discontinuity. The computational domain is filled with two gases. The
left part is filled with a light gas and the right part with a heavy one. They are
separated by a curved interface. It is a portion of circle with center x = 1 meter and
y = 0.5 meter and 0.6 meter radius. The physical domain is 4 meter long and 1 meter
high. The mesh contains 500 cells along x-direction and 250 cells along y-direction.
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Fig. 8. Color function contours for the shock cylinder interaction problem.

The simulation needs 5000 time steps. The results are represented every 1000 steps.
The Courant number is 0.8. A piston hits the left side at the velocity of 500 m/s.
The top and bottom boundaries are treated as solid walls. Initial data are

• Left: ρl = 1 kg/m3, Pl = 105 Pa, ul = 0 m/s, vl = 0 m/s, γl = 1.4,πl = 0;
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Fig. 6. (Continued).

• Right: ρr = 50 kg/m3, Pr = 105 Pa, ur = 0 m/s, vr = 0 m/s, γr = 1.6,
πr = 0.

Figure 8 represents the color function contours at six different times, starting from
the initial condition on the top figure. The sequence of events occurring during this
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Fig. 7. Density contours for the shock cylinder interaction problem.

hydrodynamic phenomena is very complicated. For a description of these phenomena,
the reader is referred to, for example, Jourdan and Houas [19].

4.4. 3D impact. We consider here the impact of a copper sphere on a liquid
wall. The copper sphere has the initial velocity u = 2000 m/s and w = −1000 m/s.
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Fig. 7. (Continued).

Its center is located initially at xc = 0.2 m, yc = 0.5 m, and zc = 0.8 m. Its ra-
dius is 0.15 m. It hits the liquid (water) wall at rest, located between x = 0.36 m
and x = 0.6 m. The other part of the computational domain contains air at at-
mospheric conditions. The physical domain is 1 meter long, 1 meter high, and
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Fig. 8. Color function contours on the Richtmeyer–Meshkov instabilities test problem.
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Fig. 9. Initial situation of the 3D impact of a copper sphere on a liquid wall.

0.5 meter wide. The mesh contains 100 cells along x- and z-directions and 50 cells
along y-direction. The simulation is obtained with 400 time steps. The results are
plotted every 80 steps. The Courant number is 0.8. The parameters of each ma-
terial are given in Table 3.1. Figure 9 shows the initial configuration. Figure 10
shows the beginning of the penetration of the copper sphere in the liquid wall. The
copper sphere is weakly deformed and density gradients are visible. A shock wave
is transmitted in the liquid and disturbs its surface. Figures 11 and 12 show the
process continuation. The shock wave continues its propagation in the liquid and
on its surface while the copper projectile is now well deformed and flattened. A
surface discontinuity is created in the wake of the projectile and forms a crater.
This crater increases in size in Figure 13 and the liquid layer begins to break up.
In Figure 14 the breakup continues and the projectile exits the computational do-
main.

These figures show a sequence of events in reasonable agreement with what one
can imagine. It shows that our method works without any difficulty in three dimen-
sions on a three-material test case involving very high velocities and strong shock
waves.

5. Conclusion. An extension of Abgrall’s numerical method [2] has been de-
scribed. It allows the numerical resolution of multifluid compressible flows with inter-
faces. It is a second order conservative TVD scheme combined with a second order
nonconservative scheme. The efficiency of the subsequent method has been demon-
strated on difficult test problems, such as shock bubble interaction, or Richtmeyer
Meshkov instabilities. The method is accurate, robust, and very simple to code.
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Fig. 10. Contours of the density at the beginning of penetration of the copper sphere into water.

Fig. 11. Density contours after 160 time steps.
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Fig. 12. Density contours after 240 time steps.

Fig. 13. Density contours after 320 time steps.
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Fig. 14. Density contours after 400 time steps.

The 3D code is only 650 Fortran instructions. It requires only 40 Mbytes RAM for
the 3D calculations presented herein (500, 000 cells). Computational time is very
reasonable: 3 hours for the shock-bubble interaction, 10 hours for the Richtmeyer–
Meshkov instabilities problem, and 5 hours for the 3D impact problem on a standard
workstation.

The main limitation of the present method and our main perspective is related
to the EOS. We plan to develop the algorithm for a more general EOS. We also
examine the extension of this method for multidimensional problems on non-Cartesian
grids.

Appendix A. Derivation of the Roe matrix. We start with some notation.
If f is any quantity (density, etc.) we denote f̄ and f by

f̄ =

√
ρlfl +

√
ρrfr√

ρl +
√
ρr

, f =

√
ρrfl +

√
ρlfr√

ρl +
√
ρr

and we set ∆f = fl − fr.
It is straightforward (but lengthy) to get Ā thanks to the following remarks (see

[1]):

∆(fg) = f̄∆g + g∆f,(A.1)

ρf = ρf̄ ,(A.2)

∆

(
1

f

)
= − ∆f

flfr
,(A.3)

1

f
=

1

flfr
f.(A.4)
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A systematic exploitation of the previous relations allows

P̃m = κ̄ū, P̃E = κ̄, P̃ρYi = κ̄ū2 + ξ̃i,

where

κ =
1∑
i αiYi

and ξ̃i = κ̃ρiYiρI − π̃ρiYi

with

κ̃ρiYi =
ρȲ2(α2 − α1)

(ρ1Y1α1 + ρ2Y2α2)l(ρ1Y1α1 + ρ2Y2α2)r
and

π̃ρYi =
−ρ(Y 1β1 + Y 2β2) + ρ(Y 1α1 + Y 2α2)β1

(ρ1Y1α1 + ρ2Y2α2)l(ρ1Y1α1 + ρ2Y2α2)r
.

Similar relations are obtained for the partial derivatives related to the second fluid.
The relations (A.1), (A.2) are exploited as follows (for example). The first line of

Ā∆U is

ūȲ2∆(ρY1)− ūȲ1∆(ρY2) + Ȳ1∆(ρu) = ūȲ2

[
Ȳ1∆ρ+ ρ∆Y1

]
−ūȲ1

[
Ȳ2∆ρ+ ρ∆Y2

]
+ Ȳ1∆ρu

= ρūȲ2∆Y1 − ρūȲ1∆Y2 + Ȳ1∆ρu.

Since ∆Y1 + ∆Y2 = ∆(Y1 + Y2) = 0, we have

ρūȲ2∆Y1 − ρūȲ1∆Y2 = ρū(Ȳ1 + Ȳ2)∆Y1 + Ȳ1∆ρu = ρu∆Y1 + Ȳ1∆ρu = ∆ρuY1,

which is nothing more than the variation of ρuY1.
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Rech. Aérospat., 6 (1988), pp. 31–43 (English edition).

[2] R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: A
quasi conservative approach, J. Comput. Phys., 125 (1996), pp. 150–160.

[3] D. J. Benson, Comput. methods in Lagrangian and Eulerian hydrocodes, Comput. Methods
Appl. Mech. Engrg., 99 (1992), pp. 235–394.

[4] J. P. Cocchi and R. Saurel, A Riemann problem based method for the resolution of com-
pressible multimaterial flows, J. Comput. Phys., 137 (1997), pp. 265–298.

[5] J. P. Cocchi, R. Saurel, and J. C. Loraud, Treatment of interface problems with Godunov-
type schemes, Shock Waves, 5 (1996), pp. 347–357.

[6] D. Chargy, R. Abgrall, L. Fezoui, and B. Larrouturou, Conservative numerical schemes
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