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THE EHRLICH–ABERTH METHOD FOR THE NONSYMMETRIC
TRIDIAGONAL EIGENVALUE PROBLEM∗

DARIO A. BINI† , LUCA GEMIGNANI† , AND FRANÇOISE TISSEUR‡

Abstract. An algorithm based on the Ehrlich–Aberth iteration is presented for the computation
of the zeros of p(λ) = det(T−λI), where T is a real irreducible nonsymmetric tridiagonal matrix. The
algorithm requires the evaluation of p(λ)/p′(λ) = −1/trace(T − λI)−1, which is done by exploiting
the QR factorization of T − λI and the semiseparable structure of (T − λI)−1. The choice of initial
approximations relies on a divide-and-conquer strategy, and some results motivating this strategy
are given. Guaranteed a posteriori error bounds based on a running error analysis are proved. A
Fortran 95 module implementing the algorithm is provided and numerical experiments that confirm
the effectiveness and the robustness of the approach are presented. In particular, comparisons with
the LAPACK subroutine dhseqr show that our algorithm is faster for large dimensions.
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1. Introduction. Real nonsymmetric tridiagonal eigenvalue problems arise as
intermediate steps in a variety of eigenvalue problems. For example, the nonsymmet-
ric eigenvalue problem can be reduced in a finite number of steps to nonsymmetric
tridiagonal form [13], [18]. In the sparse case, the nonsymmetric Lanczos algorithm
produces a nonsymmetric tridiagonal matrix. Other motivation for this work comes
from the symmetric quadratic eigenvalue problem

(λ2M + λC + K)x = 0,

with M,C, and K real symmetric matrices, which is frequently encountered in struc-
tural mechanics [40]. The standard way of dealing with this problem in practice is to
reformulate it as a generalized eigenvalue problem (GEP) Ax = λBx of twice the di-
mension, a process called linearization. Symmetry in the problem can be maintained
with an appropriate choice of linearization [40], such as, for example,

A =

[
0 K
K C

]
, B =

[
K 0
0 −M

]
, x =

[
u
λu

]
.

The resulting A and B are symmetric but not definite, and in general the pair (A,B)
is indefinite. When the pair (A,B) is of small to medium size, it can be reduced to a
symmetric tridiagonal-diagonal pair (S,D) using one of the procedures described by
Tisseur [39]. This is the most compact form that can be obtained in a finite number
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of steps. For large and sparse matrices the pseudo-Lanczos algorithm of Parlett and
Chen [31] applied to A − λB yields a projected problem S − λD with S symmetric
tridiagonal and D diagonal. In both cases, the eigenvalues of the symmetric pair (S,D)
are the same as the eigenvalues of the nonsymmetric tridiagonal matrix T = D−1S.

Our aim is to derive a robust algorithm that computes all the eigenvalues of a real
n×n nonsymmetric tridiagonal matrix T in O(n2) operations. The QR algorithm [20]
does not preserve tridiagonal structure: the matrix T is considered as a Hessenberg
matrix and the upper part of T is filled in along the iterations. Therefore the QR
algorithm requires some extra storage and the eigenvalues are computed in O(n3)
operations. Two alternatives are the LR algorithm [38] for nonsymmetric tridiagonal
matrices and the HR algorithm [7], [8]. Both algorithms preserve the tridiagonal form
of T but may be unstable since they use nonorthogonal transformations. Attempts to
solve the nonsymmetric tridiagonal eigenvalue by generalizing Cuppen’s divide-and-
conquer algorithm have been unsuccessful because of a lack of good root finders and
because deflation is not as advantageous as it is in the symmetric case [2], [27].

In this paper we propose a root finder for the characteristic polynomial of T based
on the Ehrlich–Aberth method [1], [15]. This method approximates simultaneously all
the zeros of a polynomial p(z): given a vector z(0) ∈ C

n of initial approximations to
the zeros of p(z), the Ehrlich–Aberth iteration generates a sequence z(j) ∈ C

n which
locally converges to the n-tuple of the roots of p(z), according to the equation

z
(k+1)
j = z

(k)
j −

p(z
(k)
j

)

p′(z
(k)
j

)

1 − p(z
(k)
j

)

p′(z
(k)
j

)

∑n
k=1,k �=j

1

z
(k)
j

−z
(k)

k

, j = 1:n.(1.1)

The convergence is superlinear (cubic or even higher if the implementation is in the
Gauss–Seidel style) for simple roots and linear for multiple roots. In practice, the
Ehrlich–Aberth iteration has good global convergence properties, though no theo-
retical results seem to be known about global convergence. In principle, we cannot
exclude the possibility that the Ehrlich–Aberth simultaneous iteration fails to con-
verge or fails to approximate certain roots. However, in practice this has never been
encountered (see [5], [6]).

Other techniques for simultaneous iterations such as Laguerre, Durand–Kerner,
Euler-like, and Halley-like methods [17], [34], [35], [36], [37] could be used as well.
However, our computational experience in polynomial root-finding indicates that com-
pared with these iterations, the Ehrlich–Aberth method has the advantages of requir-
ing a small number of iterations for convergence and having a small cost per iteration.
Note that the quasi-Laguerre iteration in [14] relies on the eigenvalues to be real.

The main requirements when using the Ehrlich–Aberth method for computing
the roots of p(z) are

1. a fast, robust, and stable computation of the Newton correction p(z)/p′(z);
2. a criterion for choosing the initial approximations to the zeros, z(0), so that

the number of iterations needed for convergence is not too large.
For the first issue, Bini [4] shows that Horner’s rule is an effective tool when p(z)
is expressed in terms of its coefficients. In this case the cost of each simultaneous
iteration is O(n2) operations. Moreover, Horner’s rule is backward stable and its
computation provides a cheap criterion to test whether the given approximation is
in the root-neighborhood (pseudospectrum) of the polynomial [4]. This makes the
Ehrlich–Aberth method an effective tool for approximating polynomial roots [6], and
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it is now part of the MPSolve package (Multiprecision Polynomial Solver) [5].
In our context, where p(λ) = det(T − λI) is not available explicitly, we need

a tool having the same features as Horner’s rule, that is, a tool that allows us to
compute in a fast, stable, and robust way the Newton correction p(λ)/p′(λ). This
issue is discussed in section 2, where we use the QR factorization of T − λI and the
semiseparable structure of (T − λI)−1 to compute the Newton correction by means
of the equation

p(λ)

p′(λ)
= − 1

trace(T − λI)−1
.

The algorithm that we obtain in this way fulfills the desired requirements of robustness
and stability; in particular, it does not suffer unduly from underflow or overflow.

For the second issue, concerning the choice of initial approximations, we rely
on the specific features of our eigenvalue problem. More precisely, we apply a divide-
and-conquer strategy where the initial approximations are obtained by computing the
eigenvalues of two suitable tridiagonal matrices of sizes m = �n/2� and n−m. Even
though there are no theoretical results guaranteeing convergence under this choice,
we provide in section 3 some theoretical results that motivate this strategy.

The complete algorithm is described in section 4, where we also deal with the
issues of computing eigenvectors and running error bounds. Numerical experiments
in section 5 illustrate the robustness of our algorithm. In particular, our results show
that in most cases our algorithm performs faster than the LAPACK subroutine dhseqr
for n ≥ 800 and the speed-up for n = 1600 ranges from 3 to 70. The implementa-
tion in Fortran 95 is available as a module at www.dm.unipi.it/∼bini/software, file
eigen v1.1.tgz.

2. Computing the Newton correction. Our aim in this section is to derive
a fast, robust, and stable method for computing the Newton correction p(λ)/p′(λ),
where p(λ) = det(T − λI).

The tridiagonal matrix

T =

⎡⎢⎢⎢⎢⎢⎣
α1 γ1 0
β1 α2 γ2

β2
. . .

. . .
. . . αn−1 γn−1

0 βn−1 αn

⎤⎥⎥⎥⎥⎥⎦ ∈ R
n×n(2.1)

is said to be unreduced or irreducible if βjγj �= 0 for j = 1:n − 1. We denote by
Tk the leading principal submatrix of T in rows and columns 1 through k and let
pk = det(Tk − λI).

A natural approach is to compute p(λ) = pn(λ) and its derivative by using the
recurrence

p0(λ) = 1, p1(λ) = α1,
pk(λ) = (αk − λ)pk−1(λ) − βk−1γk−1pk−2(λ), k = 2:n,

(2.2)

obtained by expanding det(Tk − λIk) by its last row. Since this recurrence is known
to suffer from overflow and underflow problems [30], we adopt a different strategy.

Assume that λ is not a zero of p, that is, p(λ) �= 0. Then

p′(λ)

p(λ)
= −

n∑
j=1

1

λj − λ
= −trace

(
(T − λI)−1

)
= −

n∑
j=1

θj ,(2.3)
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where θj is the jth diagonal element of (T − λI)−1.
In what follows, S denotes the shifted tridiagonal matrix

S := T − λI.

If S is unreduced, S−1 can be characterized in terms of four vectors, u, v, y, and z
[26], such that

(S−1)jk =

{
ujvk if j ≤ k,
yjzk if j ≥ k.

(2.4)

Note that ujvj = yjzj . These four vectors can be computed in O(n) operations, and
it is tempting to use them for the computation of Newton’s correction via

p(λ)/p′(λ) = −1/

n∑
j=1

ujvj = −1/

n∑
j=1

yjzj .

However, as illustrated in [25], u, v, y, and z can be extremely badly scaled and their
computation can break down because of overflow and underflow.

In the next two subsections, we describe two robust and efficient approaches for
computing the trace of the inverse of a tridiagonal matrix and discuss our choice.

2.1. Dhillon’s approach. Dhillon [11] proposes an algorithm to compute the
1-norm of the inverse of a tridiagonal matrix S in O(n) operations that is more
reliable than Higham’s algorithm [24] based on the compact representation (2.4). As
a by-product, Dhillon’s approach provides trace(S−1). His algorithm relies on the
computation of the two triangular factorizations

S = L+D+U+, S = U−D−L−,(2.5)

where L+ and L− are unit lower bidiagonal, U+ and U− are unit upper bidiagonal,
while D+ = diag(d+

1 , . . . , d
+
n ) and D− = diag(d−1 , . . . , d

−
n ). If these factorizations

exist, the diagonal entries of S−1 denoted by θj , j = 1:n, can be expressed in terms
of the diagonal factors D+ and D− through the recurrence

θ1 = 1/d−1 , θj+1 = θj
d+
j

d−j+1

, j = 1:n− 1.(2.6)

Note that the triangular factorizations (2.5) may suffer element growth. They can
also break down prematurely if a zero pivot is encountered, that is, if d+

j = 0 or
d−j+1 = 0 for some j. To overcome this latter drawback, Dhillon [11] makes use of

IEEE floating point arithmetic, which permits computations with ±∞. With this
approach, Dhillon’s algorithm always returns an approximation of trace(S−1). It is
worth pointing out that besides the multiplicative formulae (2.6) for computing θj ,
alternative formulae are introduced in [12] having an additive form which may make
them more robust with respect to overflow and underflow.

In our implementation of the Ehrlich–Aberth method the computation of det(S) is
needed at the last stage of the algorithm to provide an error bound for the computed
eigenvalues (see section 4). Dhillon’s algorithm can be modified to deal with the
computation of det(S) by using a block formulation. Its stability properties are related
to those of the (block) LU factorization for tridiagonal matrices.
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2.2. A QR factorization approach. In this section we present an alternative
algorithm for the computation of trace(S−1) in O(n) operations that is based on
the properties of QR factorizations of tridiagonal matrices. Our algorithm keeps the
element growth under control and does not have any difficulty caused by overflow and
underflow, so there is no need to augment the algorithm with tests for dealing with
degenerate cases, as in [11]. In addition, it provides det(S). Its cost is about twice
the cost of the algorithm based on the LU factorization described in section 2.1.

Recall that in our application S is the shifted tridiagonal matrix T −λI, where T
is given by (2.1). Since λ can be complex, S has real subdiagonal and superdiagonal
elements and complex diagonal elements. We denote by Gj the n× n unitary Givens
rotation equal to the identity matrix except in rows and columns j and j + 1, where

Gj([j, j + 1], [j, j + 1]) =

[
φj ψj

− ψj φj

]
, |φj |2 + |ψj |2 = 1.

In the following we choose ψj real; this choice enables us to reduce the arithmetic
complexity of the computation. Let S = QR be the QR factorization of S obtained
by means of Givens rotations, so that

Gn−1 · · ·G2G1S = R and Q∗ = Gn−1 · · ·G2G1.(2.7)

Since S is tridiagonal, R is an upper triangular matrix of the form

R =

⎡⎢⎢⎢⎢⎣
r1 s1 t1 0

. . .
. . .

. . .

rn−2 sn−2 tn−2

rn−1 sn−1

0 rn

⎤⎥⎥⎥⎥⎦ ∈ C
n×n.

If φ1 = α1τ1 and ψ1 = β1τ1 with τ1 = 1/
√
|α1|2 + β2

1 , then

S1 := G1S =

⎡⎢⎢⎢⎢⎣
r1 s1 t1 0 . . .
0 α̃2 γ̃2 0
... β2 α3 γ3

... 0
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎦
with

r1 = φ1α1 + ψ1β1, s1 = φ1γ1 + ψ1α2, t1 = ψ1γ2,

α̃2 = −ψ1γ1 + φ1α2, γ̃2 = φ1γ2.

Recursively applying the same transformation to the (n−1)×(n−1) trailing principal
submatrix of S1 yields the factorization (2.7), where

τj = 1/
√
|α̃j |2 + β2

j , φj = α̃jτj , ψj = βjτj ,

rj = φjα̃j + ψjβj , sj = φj γ̃j + ψjαj+1, tj = ψjγj+1,

α̃j+1 = −ψj γ̃j + φjαj+1, γ̃j+1 = φjγj+1

(2.8)

for j = 1:n− 1, with α̃1 = α1 and γ̃1 = γ1. Note that all the ψj are real, and if S is
unreduced, the ψj are nonzero.
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The following result of [19] concerns the semiseparable structure of Q∗ and is cru-
cial in the computation of the diagonal entries of S−1 in O(n) arithmetic operations.

Theorem 2.1. Let S ∈ C
n×n be tridiagonal and unreduced and let S = QR be

its QR factorization computed according to (2.8). Define

D = diag(1,−ψ1, ψ1ψ2, . . . , (−1)n−1ψ1ψ2 · · ·ψn−1),

u = D−1[1, φ1, φ2, . . . , φn−1]
T ,

v = D[φ1, φ2, φ3, . . . , φn−1, 1]T .

(2.9)

Then

Q∗ =

⎡⎢⎢⎢⎢⎢⎣
v1u1 ψ1 0
v2u1 v2u2 ψ2

...
...

. . .
. . .

... vn−1un−1 ψn−1

vnu1 vnu2 · · · vnun−1 vnun

⎤⎥⎥⎥⎥⎥⎦ .

For simplicity, we assume that S is nonsingular so that R−1 exists. Let w be the
solution of the system Rw = v, where v is defined in (2.9). Then, using the structure
of Q∗ in Theorem 2.1 and the fact that R is triangular, the jth diagonal elements of
S−1, θj , is given by

θj = e∗jS
−1ej = e∗jR

−1Q∗ej = uje
∗
jR

−1v = uje
∗
jw = ujwj ,

and hence

trace(S−1) =

n∑
j=1

ujwj .

Observe that the computation of u and v by means of (2.9) generates underflow and
overflow problems: since the diagonal entries of D are products of the ψj with |ψj | ≤ 1,
then for large n, D may have diagonal entries that underflow to zero and inverting
D would generate overflow. A way of avoiding this drawback is to scale the system
Rw = v with the diagonal matrix D of Theorem 2.1. This yields R̂ŵ = v̂, where

R̂ = D−1RD, ŵ = D−1w, v̂ = D−1v = [φ1, . . . , φn−1, 1]T .(2.10)

With this scaling, no accumulation of products of ψj is needed. The entries of the

matrix R̂ are given by

r̂j = rj , ŝj = −ψjsj , t̂j = ψjψj+1tj(2.11)

and their computation does not generate overflow since |ψj | ≤ 1. Underflow in the
computation of ŝj and t̂j is not a problem since their inverses are not needed in the

solution of R̂ŵ = v̂. The only terms that must be inverted in the computation of ŵ
are the diagonal elements of R̂.

We now show that if overflow is encountered in the evaluation of ŵ, then R and
therefore S = T − λI are numerically singular. In that case we have detected an
eigenvalue. First observe that since R is upper triangular and R̂−1 = D−1R−1D, the
elements of R̂−1 are obtained by multiplying the corresponding elements of R−1 by
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suitable products of ψj . Since |ψj | ≤ 1 for any j, we deduce that |R̂−1| ≤ |R−1|,
where the inequality holds componentwise and |R| denotes the matrix with elements
|rjk|. In this way we find that

‖R̂−1‖∞ ≤ ‖R−1‖∞.(2.12)

Second, since ‖v̂‖∞ = 1, we have ‖ŵ‖∞ ≤ ‖R̂−1‖∞‖v̂‖∞ = ‖R̂−1‖∞, which comple-
mented with (2.12) yields ‖ŵ‖∞ ≤ ‖R−1‖∞. Therefore, overflow in ŵ implies overflow
in R−1; that is, T − λI is numerically singular.

Let

û = [1, φ1, φ2, . . . , φn−1]
T .(2.13)

Note that because |φj |2 + |ψj |2 = 1, the components of û are all bounded by 1 in
modulus. Since w = Dŵ and u = D−1û, we find that ujwj = ûjŵj , j = 1:n, so that

trace(S−1) =

n∑
j=1

ûjŵj(2.14)

and

det(S) =

n∏
j=1

rj .(2.15)

The relative error due to cancellation in computing (2.14) is bounded by a multiple
of the unit roundoff times

|û|T |ŵ|/|ûT ŵ| := ζ,(2.16)

where |û| and |ŵ| denote the vectors whose components are the moduli of û and ŵ.
By performing an asymptotic analysis of the order of |ζ| when λ → μ, where μ is a
simple eigenvalue of T with right and left eigenvectors x and y, respectively, we find
that

(T − λI)−1 = (μ− λ)−1yxT + O(1),(2.17)

with xT y �= 0. Therefore, since the diagonal elements of S−1 = (T − λI)−1 are
ûjŵj , j = 1:n, one has ûjŵj = (μ − λ)−1xjyj + O(1). This implies that |û|T |ŵ| =
|μ− λ|−1|y|T |x| + O(1) and ûT ŵ = (μ− λ)−1yTx + O(1) so that

|û|T |ŵ|/|ûT ŵ| = |y|T |x|/|yTx| + O(|μ− λ|).(2.18)

Recall that for ε in a neighborhood of 0, the matrix T + εF has the eigenvalue
μ + ε yTFx/(yTx) + O(ε2) (see, for instance, [20]).

Moreover, if F = diag(fi) with |fi| = 1 such that yifixi is real nonnegative, then
εyTFx/(yTx) = ε|y|T |x|/(yTx); that is, the ratio |y|T |x|/|yTx| is the condition num-
ber of the eigenvalue μ with respect to a particular diagonal perturbation. Therefore,
if the values ûi and ŵi are computed in a numerically stable way, then the accuracy
of the computed value of

∑n
j=1 ûjŵj is consistent with the conditioning of the eigen-

value. We can perform a similar asymptotic analysis when the multiplicity ν of μ is
greater than 1, since (T − λI)−1 = (μ− λ)−νxyT +O((μ− λ)−ν+1). However, in this
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case the condition xT y �= 0 is not generally satisfied. Concerning the accuracy of the
computation of the diagonal elements of R, we refer the reader to section 4.1.

The analysis based on (2.18) is a “first order” analysis and keeps its validity only
from the asymptotic point of view as λ → μ. Indeed, for a finite value of λ this
analysis may lose its validity if, say, |xT y| is much smaller than |μ − λ| so that the
O(|μ − λ|) term in (2.18) is no longer negligible. On the other hand, this analysis is
useful for designing a heuristic stopping criterion.

Equations (2.8) and (2.10)–(2.14) constitute our algorithm for the computation
of p′(λ)/p(λ) = trace

(
(T − λI)−1

)
= trace(S−1), which we summarize below in pseu-

docode. The function Givens constructs φj and ψj and guards against the risk of
overflow. We refer to Bindel et al. [3] for a detailed explanation on how this function
should be implemented.

function τ = trace−Tinv(β, α, γ)
% Compute τ = trace(S−1), where S = tridiag(β, α, γ) is n× n tridiagonal
% with real off-diagonals and complex diagonal.
a = α1, g = γ1, u1 = 1

% Computes vectors r̂, ŝ, t̂ in (2.11), û in (2.13) and v̂ in (2.10).
for j = 1 : n− 1

(φ, ψ) = Givens (a, βj)
rj = φa + ψβj , sj = −ψ(φg + ψαj+1)

a = −ψg + φαj+1, uj+1 = φ, vj = φ

if j < n− 1, tj = ψ2γj+1, g = φγj+1, end
if j > 1, tj−1 = ψtj−1, end

end
rn = a, vn = 1

% Solve the linear system R̂ŵ = v̂.
wn = vn/rn
wn−1 = (vn−1 − wnsn−1)/rn−1

for j = n− 2 : −1: 1
wj = (vj − wj+1sj − wj+2tj)/rj
if wj = Inf, τ = Inf, return, end

end
τ =

∑n
j=1 ujwj

The function trace−Tinv requires O(n) operations.

3. Choosing initial approximations. The choice of the initial approxima-

tions z
(0)
j , j = 1:n, used to start the Ehrlich–Aberth iteration (1.1) crucially affects

the number of steps needed by the method. For polynomials expressed in terms of
their coefficients, Bini [4] derived a criterion for selecting initial guesses based on a
combination of Rouché’s theorem and the use of the Newton polygon. Here we fol-
low a divide-and-conquer strategy which better exploits the tridiagonal nature of the
problem and seems to perform well in practice. More precisely, the initial approxima-
tions are chosen from the eigenvalues of two suitable tridiagonal submatrices of order
roughly n/2.

Rewrite T as

T = T̃ + uvT ,(3.1)
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where

T̃ =

[
T1 0
0 T2

]
= T1 ⊕ T2, u = em + em+1, v = βmem + γmem+1(3.2)

and

T1 =

⎡⎢⎢⎢⎣
α1 γ1 0

β1 α2
. . .

. . .
. . . γm−1

0 βm−1 αm − βm

⎤⎥⎥⎥⎦ , T2 =

⎡⎢⎢⎢⎣
αm+1 − γm γm+1 0

βm+1 αm+2
. . .

. . .
. . . γn−1

0 βn−1 αn

⎤⎥⎥⎥⎦ .

There are no obvious connections between the eigenvalues of T and those of T̃ , unlike
in the symmetric case, in which the eigenvalues of T interlace those of T̃ . However, in
this section, we show that the eigenvalues of T̃ generally provide good starting points
for the Ehrlich–Aberth iteration for p(λ) = det(T − λI).

First we consider the case where T1 and T2 have a common eigenvalue and then
the case where either T1 or T2 has a multiple eigenvalue. In this regard, we observe
that if a matrix Ã has an eigenvalue λ of geometric multiplicity at least 2, then λ is
an eigenvalue of A = Ã + uvT for any vectors u, v. Indeed, denote by x1 and x2 two
linearly independent eigenvectors of Ã corresponding to λ and set y = ν1x1 + ν2x2;
then it holds that Ay = λy + u(vT y). Therefore, choosing ν1 and ν2 such that
ν1v

Tx1 + ν2v
Tx2 = 0 with ν1 �= 0 or ν2 �= 0 yields Ay = λy, y �= 0. This implies the

following result.
Theorem 3.1. If λ is a common eigenvalue of T1 and T2, or a multiple eigenvalue

of Tj, j = 1 or 2, with geometric multiplicity at least 2, then λ is an eigenvalue of
T = (T1 ⊕ T2) + uvT for any vectors u and v.

Proof. Observe that under these assumptions λ is an eigenvalue of T1 ⊕ T2 with
geometric multiplicity at least 2. Therefore λ is an eigenvalue of T1 ⊕ T2 + uvT for
any vector u, v.

Our next theorem relates the eigenvalues of T1 and T2 with those of T1⊕T2 +uvT

and relies on the following lemma from Henrici [22].
Lemma 3.2. Let p(λ) be a polynomial of degree n in λ, and let z be any complex

number. Then if p′(z) �= 0, the disk of center z and radius n|p(z)/p′(z)| contains at
least one zero of p(λ).

Theorem 3.3. Assume that T1 ∈ R
m×m and T2 ∈ R

(n−m)×(n−m) are both
diagonalizable, that is, there exist X1, X2 nonsingular such that T1 = X1D1X

−1
1 and

T2 = X2D2X
−1
2 , with D1 = diag(d1, d2, . . . , dm) and D2 = diag(dm+1, dm+2, . . . , dn).

Let βm, γm ∈ R and

ηj =

{
βm(eTj X

−1
1 em)(eTmX1ej) if j ≤ m,

γm(eTj−mX−1
2 e1)(e

T
1 X2ej−m) if j > m.

(3.3)

Then, in any disk of center dj and radius

ρj =

⎧⎨⎩ n|ηj |/
∣∣∣1 +

∑n
k=1
k �=j

ηj+ηk

dk−dj

∣∣∣ if dj �= dk for k �= j,

0 if dj = dk for some k �= j,

there exists an eigenvalue of T = (T1 ⊕ T2) + uvT , where u = em + em+1 and v =
βmem + γmem+1.
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Proof. If dj = dk for some k �= j, then the result holds from Theorem 3.1.

Consider the case dj �= dk for k �= j. Let T̃ = T1 ⊕ T2. We have

T − λI = (T̃ − λI)(I + (T̃ − λI)−1uvT ),

and taking determinants on both sides of the equation gives

p(λ) =

n∏
j=1

(dj − λ)(1 + vT (T̃ − λI)−1u).

Using the eigendecomposition of T1 and T2 and the definition of u and v, the expression
for p(λ) simplifies to

p(λ) =
n∏

j=1

(dj − λ) +

n∑
j=1

ηj

n∏
k=1,k �=j

(dk − λ).(3.4)

Thus

p(dj) = ηj

n∏
k=1
k �=j

(dk − dj),

and

p′(λ) = −
n∑

k=1

n∏
h=1
h�=k

(dh − λ) −
n∑

�=1

η�

⎛⎜⎝ n∑
k=1
k �=�

n∏
h=1

h�=�,k

(dh − λ)

⎞⎟⎠
so that

p′(dj) = −
n∏

k=1
k �=j

(dk − dj)

⎛⎜⎝1 +

n∑
k=1
k �=j

ηj + ηk
dk − dj

⎞⎟⎠ .

Since p′(dj) �= 0, applying Lemma 3.2 completes the proof.
According to Theorem 3.3, a small value for ρj indicates that there is an eigen-

value of T1 ⊕ T2 close to an eigenvalue of T . An important question related to the
effectiveness of using the eigenvalues of T1 and T2 as initial approximations for starting
the Ehrlich–Aberth iteration is whether the number of “large” values for ρj is small
or not. Note that if j ≤ m, then ηj is a multiple of the product of the last components
of the jth right and left eigenvectors of T1 and, if j > m, then ηj is a multiple of
the product of the first components of the (j−m)th left and right eigenvectors of T2.
If T is unreduced, then ηj is nonzero since the eigenvectors of unreduced tridiagonal
matrices cannot have a 0 in the first and last components. We report in Table 3.1
ranges of values for ρj and |ηj | obtained from 1000 randomly generated tridiagonal
matrices T of size n = 100. The table shows that in more than 80% of the cases, |ηj |
and ρj are smaller than 10−4. Note that the denominator |1 +

∑n
k=1,k �=j

ηj+ηk

dk−dj
| in

the definition of ρj does not seem to play an important role. The probability that for
almost all the values of j this denominator is close to zero seems to be small. These
experiments suggest that most eigenvalues of T1⊕T2 should be good initial values for
the Ehrlich–Aberth iteration for p(λ) = det(T − λI).
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Table 3.1

Ranges of values for ρj and |ηj | obtained from 1000 randomly generated tridiagonal matrices
T of size n = 100.

% ≤ 10−16 ≤ 10−12 ≤ 10−8 ≤ 10−4

ρj 48 60 71 82
|ηj | 54 65 77 88

From the results of this section we propose the following divide-and-conquer strat-
egy to compute initial approximations for the Ehrlich–Aberth iterations. The matrix
T is recursively split according to the rank-1 tearing in (3.1)–(3.2) until 2× 2 or 1× 1
subproblems are reached. The Ehrlich–Aberth iteration is then used to glue back the
subproblems using the previously computed eigenvalues as starting guesses for the
iterations.

Remark 3.4. A similar divide-and-conquer strategy can be obtained by choosing,
as initial approximations, the eigenvalues of the leading principal m ×m submatrix
T1 of T and of the trailing principal (n −m) × (n −m) submatrix T2 of T for m =
�n/2�. These matrices are obtained by zeroing the entries in positions (m,m+1) and
(m + 1,m) of T which correspond to applying a rank-2 correction to the matrix T .
An analysis similar to the one performed for the rank-1 tearing can be carried out.
In all the numerical experiments we performed so far no substantial difference in the
performance of the two strategies was observed.

4. The algorithm. In this section we describe an implementation of the Ehrlich–
Aberth iteration where the choice of the initial approximations is performed by means
of a divide-and-conquer strategy. Then we provide running error bounds needed for
the validation of the computed approximations and discuss the computation of the
eigenvectors.

The main algorithm for eigenvalue approximation is described below in pseu-
docode. This implementation follows section 3. A different implementation can be
based on the rank-2 tearing of Remark 3.4, where the initial approximations are the
eigenvalues of the principal submatrices obtained by zeroing the entries in positions
(m,m + 1) and (m + 1,m), where m = �n/2
.

First we report on the recursive part of the algorithm and then the main refine-
ment engine, i.e., the Ehrlich–Aberth iteration.

function z = eigen(β, α, γ)
% Computes the eigenvalues of the n× n tridiagonal matrix T = tridiag(β, α, γ)
% perturb is a small scalar set to the maximum relative perturbation
% of intermediate eigenvalues
if n = 1, z = α1, return, end
if n = 2, set z to the eigenvalues of

[
α1

β1

γ1

α2

]
, return, end

% Recursive stage
i =

√
−1

if n > 2
m = �n/2

α′ = α(1 : m), α′

m = α′
m − βm

z(1:m) = eigen
(
β(1 : m− 1), α′, γ(1 : m− 1)

)
α′′ = α(m + 1 : n), α′′

1 = α′′
1 − γm

z(m + 1 : n) = eigen
(
β(m + 1 : n− 1), α′′, γ(m + 1 : n− 1)

)
Choose random ρ such that perturb/2 < ρ < perturb
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z(1 : m) = (1 + iρ) ∗ z(1 : m)
z(m + 1 : n) = (1 − iρ) ∗ z(m + 1 : n)
% Refine the current approximations
z = Aberth(β, α, γ, z)

end

The role of perturb is to avoid different approximations collapsing to a single value.
In fact, if zj = zk, with j �= k, then the Ehrlich–Aberth iteration cannot be applied.
Moreover, since in practice the Ehrlich–Aberth iteration performs better if the inter-
mediate approximations are in the complex field, we have chosen a pure imaginary
value as perturbation. In our code we set the parameter perturb to 10 times the
machine precision.

The pseudocode for the Ehrlich–Aberth iteration is reported below.

function z = Aberth(β, α, γ, z)
% Refine the n approximations z = (zj), j = 1 : n to the eigenvalues of
% T = tridiag(β, α, γ) by means of the Ehrlich–Aberth iteration.
% maxit is the maximum number of iterations,
% tol is a small quantity used for the convergence criteria.
it = 0
ζ = zeros(n, 1) % ζj = 1 if zj has converged to an eigenvalue and 0 otherwise.
while (

∑n
j=1 ζj < n & it < maxit)

it = it + 1
for j = 1 : n

if ζj = 0
τ = trace−Tinv(β, α− zj , γ)
if τ =Inf

nwtc = 0
else

nwtc = −1/τ
end
if |nwtc| < tol‖T − zjI‖∞, ζj = 1, end
zj = zj − nwtc/(1 − nwtc

∑n
k=1,k �=j

1
zj−zk

)

end
end

end

Observe that at the general itth sweep, the Ehrlich–Aberth correction is applied
only to the approximations zj which have not yet converged. This makes the cost
of each sweep depend on the number of approximated eigenvalues. For this reason,
in order to evaluate the complexity of the algorithm, it is convenient to introduce
the average number of iterations per eigenvalue μ given by the overall number of
Ehrlich–Aberth iterations applied to each eigenvalue divided by n. For example, if
n = 4 and the number of iterations needed for computing λ1, λ2, λ3, λ4 is 5, 10, 14,
21, respectively, then μ = 50/4 = 12.5.

4.1. Running error bound. In this section we derive a running error bound
for the error in the computed eigenvalues λ�, � = 1:n. Our bounds are based on the
following result of Carstensen [9].

Lemma 4.1. Let p(λ) be a monic polynomial of degree n in λ, and let λ1, λ2, . . . , λn

be pairwise distinct complex numbers. Denote by D(λ�, ρ�) the disk of center λ� and
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radius

ρ� =
n|p(λ�)|∣∣∏n

j=1
j �=�

(λ� − λj)
∣∣ .

Then U =
⋃

� D(λ�, ρ�) contains all the zeros of p(λ). Moreover, any connected com-
ponent of U made up of k disks contains k zeros. In particular, any isolated disk
contains a single zero.

The set of disks {D(λ�, ρ�), � = 1:n} defined in the above lemma is called a set
of inclusion disks. Note that because of rounding errors in the computation of |p(λ�)|
and

∏n
j=1, j �=�(λ�−λj), the computed ρ� denoted by ρ̂� may be inaccurate. Thus, the

disks D(λ�, ρ̂�) may not provide a set of inclusion disks.
Consider the standard model of floating point arithmetic [25, section 2.2],

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,(4.1)

where u is the unit roundoff. Since λ can be complex, part of the computation is car-
ried out in complex arithmetic. Under the standard model (4.1) (see [25, Lemma 3.5]),

fl(x± y) = (x± y)(1 + δ), |δ| ≤ u,

fl(xy) = xy(1 + δ), |δ| ≤ 2
√

2u,(4.2)

fl(x/y) = (x/y)(1 + δ), |δ| ≤ 4
√

2u,

where we ignore second order terms in u.
Suppose we can compute an upper bound Δp� for the error

∣∣|p̂�| − |p(λ�)|
∣∣, where

|p̂�| = fl(|p(λ�)|). Then from Lemma 4.1 we immediately deduce that the disk
D(λ�, ρ̃�), where

ρ̃� = (1 + 2nu)
n(|p̂�| + Δp�)

π̂�
, π̂� = fl

⎛⎜⎝
∣∣∣∣∣∣∣

n∏
j=1
j �=�

(λ� − λj)

∣∣∣∣∣∣∣
⎞⎟⎠ ,(4.3)

is such that D(λ�, ρ�) ⊂ D�(λ�, ρ̃�), � = 1:n; therefore the set {D(λ�, ρ̃�), � = 1:n} is
a set of inclusion disks.

The main difficulty is in determining Δp�. Recall that |p(λ�)| =
∏n

j=1 |rj |, where
rj is the jth diagonal element of R in the QR factorization of T − λ�I. Let fl(rj) =
rj + δrj . Then

fl

⎛⎝ n∏
j=1

rj

⎞⎠ =

n∏
j=1

(rj + δrj) ·
n−1∏
j=1

(1 + εj), |εj | ≤ 2
√

2u,

and, if we ignore the second order terms in u, we have |p̂�| = |p(λ�)| + δp�, with

|δp�| ≤ |p̂�|

⎛⎝ n∑
j=1

Δrj/|r̂j | + (n− 1)2
√

2u

⎞⎠ =: Δp�.(4.4)

The Δrj are computed along with the r̂j = fl(rj) thanks to a systematic running
error analysis of all the quantities involved in the calculation of rj . For that we make
use of the following lemma.



166 DARIO A. BINI, LUCA GEMIGNANI, AND FRANÇOISE TISSEUR

Lemma 4.2. Let x = yz + αv ∈ C, where α is given data, y = ŷ + δy with |δy| ≤
Δy, z = ẑ+ δz with |δz| ≤ Δz, v = v̂+ δv with |δv| ≤ Δv, and ŷ, ẑ, v̂,Δy,Δz,Δv are
known computed quantities. Then x̂ = fl(x) = x + δx with

|δx| ≤ Δx := |ŷ|Δz + |ẑ|Δy + 2
√

2u|ŷ| |ẑ| + |α|Δv + 2
√

2u|α| |v̂|.

Proof. The proof is a straightforward application of (4.1) and (4.2).

We notice that in the function trace−Tinv (see section 2.2) all the quantities used
to compute ri can be rewritten in the form x = yz + αv. Hence, assuming that the
function Givens returns Δφ and Δψ, we can add the lines

Δrj = |φ|Δa + |a|Δφ + 2
√

2u|a| |φ| + |βj |Δψ + 2
√

2u|βj | |ψ|,
Δa = |ψ|Δg + |g|Δψ + 2

√
2u|ψ| |g| + |αj+1|Δφ + 2

√
2u|αj+1| |φ|,

Δg = |γj+1|Δφ + 2
√

2u|γj+1| |φ|

to the function trace−Tinv after the computation of rj , a, and g, respectively. The
two quantities Δa and Δg are initially set to zero and Δrn = Δa. The error bound
Δp� is then obtained using (4.4).

4.2. Computing the eigenvectors. One of the most convenient methods for
approximating an eigenvector of T once we are given an approximation λ of the
corresponding eigenvalue is the inverse power iteration applied to the matrix T − λI.
A crucial computational issue is to determine a suitable initial guess v(0) for the
eigenvector in order to start the iteration:

(T − λI)w(j+1) = v(j),

v(j+1) = w(j+1)/‖w(j+1)‖,
j = 0, 1, 2, . . . .

This problem has been studied in several recent papers [11], [16], [32]. In particular,
in [16] a strategy is described for the choice of v(0) which relies on the evaluation of
the index k of the entry of maximum modulus in the main diagonal of (T − λI)−1.
Our algorithm for the approximation of the eigenvalues provides, as a by-product,
the diagonal entries of (T − λI)−1. Therefore the value of k is determined at no
cost. Moreover, the QR factorization of the matrix T − λI that is computed by
our algorithm can be used for performing each inverse power iteration without any
significant additional cost.

5. Numerical experiments. We have implemented the algorithm for the ap-
proximation of the eigenvalues of the tridiagonal matrix T in Fortran 95. The code,
organized as a Fortran 95 module, can be downloaded from http://www.dm.unipi.it/
∼bini/eigen v1.1.tgz. The tests were performed on an Athlon 1800 with IEEE double
precision arithmetic, where the code has been compiled with the Lahey/Fujitsu com-
piler (release L6.20a). In what follows, eigen refers to our subroutine implementing
the Ehrlich–Aberth iteration.

We first consider the following test matrices, which we describe in the factored
form

T = D−1tridiag(1, α, 1), D = diag(δ), α, δ ∈ R
n.(5.1)
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Fig. 5.1. Eigenvalues of the test matrices 1–6 for n = 300.
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Fig. 5.2. Eigenvalues of the test matrices 7–10 for n = 300.

Test 1: αk = k(−1)�k/8�, δk = (−1)k/k, k = 1:n.

Test 2: αk = 10 · (−1)�k/8�, δk = k · (−1)�k/9�, k = 1:n.

Test 3: αk = k, δk = n− k + 1, k = 1:n.

Test 4: αk = (−1)k, δk = 20 · (−1)�k/5�, k = 1:n.

Test 5: αk = 105(−1)k · (−1)�k/4�, δk = (−1)�k/3�, k = 1:n.(5.2)

Test 6: αk = 2, δk = 1, k = 1:n.

Test 7: αk =
1

k
+

1

n− k + 1
, δk =

1

k
(−1)�k/9�, k = 1:n.

Test 8: αk = k · (−1)�k/13�+�k/5�, δk = (n− k + 1)2 · (−1)�k/11�, k = 1:n.

Test 9: αk = 1, k = 1:n; δk = 1 if k < n/2, δk = −1 if k ≥ n/2.

Test 10: αk and δk take random values uniformly distributed in [−0.5, 0.5].

The eigenvalues of these test matrices have a variety of distributions, as illustrated in
Figures 5.1 and 5.2 for n = 300. In particular, the eigenvalues in Test 4 are distributed
along curves and, in Test 7, along lines from the origin; in Test 5 the eigenvalues are
distributed in tight clusters with very different moduli.

Let

κ(λ) =
‖x‖2‖y‖2‖T‖2

|λ| |yTx|(5.3)
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Table 5.1

Largest eigenvalue condition number κmax and largest relative error for the eigenvalues of the
test matrices 1–9 computed with dhseqr and eigen (n = 100).

Test matrices 1 2 3 4 5 6 7 8 9

κmax = maxi κ(λi) 3e4 240 4e4 2.2 2e10 4e3 2e3 4e6 213

dhseqr 2e-13 6e-15 5e-15 4e-15 3e-6 3e-13 3e-14 7e-15 1e-14
maxi

|λi−λ̂i|
|λi| eigen 3e-16 2e-16 2e-16 2e-16 1e-10 2e-14 6e-16 5e-16 2e-15

Table 5.2

Condition numbers and relative errors for the three clusters of eigenvalues in Test 5, with n = 20.

maxi |λi − λ̂i|/|λi|
κ(λ) dhseqr eigen

λ ≈ −105 1.2 3e-16 8e-18

λ ≈ 105 2e2 1e-13 1e-14

|λ| ≈ 10−5 1e10 4e-7 1e-16

be the 2-norm condition number of λ with corresponding right eigenvector x and left
eigenvector y. Note that κ(λ) ≥ 1 for symmetric matrices. As shown in Table 5.1 the
test matrices 1–9 have eigenvalue condition numbers varying from small to large.

To validate our code, we report in Table 5.1 the size of the largest relative error

err(λi) = |λi − λ̂i|/|λi|.(5.4)

Here λi is computed in quadruple precision and λ̂i denotes the computed eigenvalue
with either our subroutine eigen or with the LAPACK subroutine dhseqr that im-
plements the QR algorithm for computing the eigenvalues of an upper Hessenberg
matrix. For these test matrices the eigenvalues computed by eigen are, in general,
more accurate than those computed by dhseqr and do not seem to be affected as
much by large eigenvalue condition numbers. Also, eigen tends to compute eigen-
values with small moduli more accurately than dhseqr. This is better illustrated in
Table 5.2 for the matrix in Test 5 with n = 20. This matrix has three groups of
clustered eigenvalues: two around ±105 and one around 0. Both dhseqr and eigen

compute the eigenvalues around −105 to high accuracy. For the eigenvalues with
small modulus, the LAPACK routine yields relative errors as large as 10−7, whereas
eigen computes eigenvalues with relative errors of the order of the machine precision.

The Clement matrix T = tridiag(β, 0, γ) with βj = γn−j and γj = j, j = 1:n− 1
[10], has eigenvalues plus and minus the numbers n−1, n−3, . . . , 1 for n even and n−1,
n−3, . . . , 0 for n odd. We take n = 50. The condition number κ(λ) in (5.3) is small at
the ends of the spectrum and large in the middle, as illustrated in the left-hand plot
in Figure 5.3. This explains the relative errors in the right-hand plot. On these plots,
the dotted lines mark the machine precision. Note that all the eigenvalues computed
by eigen have a relative error around 10−16 or below, whereas those computed by
dhseqr all have a relative error significantly above 10−16. In this case, our algorithm
computes exactly the real part of the eigenvalues, which are integers. The imaginary
part is approximated with an absolute error which is less than 10−25 for almost all
the eigenvalues. Note that the Clement matrices are essentially symmetric; i.e., they
can be transformed by a similarity to a symmetric form by means of diagonal scalings
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Fig. 5.3. Clement matrix of size n = 50; on the x-abscissa are the n eigenvalues {−49,−47,
. . . ,−1, 1, . . . , 47, 49}.

since βiγi ≥ 0. The eigenvalues of the symmetric matrices obtained in this way can
be determined to high relative accuracy [28].

The Bessel matrices associated with generalized Bessel polynomials [33] are non-
symmetric tridiagonal matrices defined by T(a,b) = tridiag(β, α, γ) with

α1 = − b

a
, β1 =

γ1

a + 1
, γ1 = −β1,

αj = −b
a− 2

(2j + a− 2)(2j + a− 4)
, j = 2:n,

βj = −b
j

(2j + a− 1)(2j + a− 2)
, γj = b

j + a− 2

(2j + a− 2)(2j + a− 3)
, j = 2:n− 1.

The spectrum is given in Figure 5.4 for a = −8.5, b = 2, and n = 18. These matrices
are well known to have ill-conditioned eigenvalues. For this particular example, κ(λ)
ranges from 1010 to 1015. The approximations provided by eigen are more accurate
than those provided by dhseqr by a factor of 10 on average.

We tested Liu’s tridiagonal pseudosymmetric matrices Tn = tridiag(1, αn, γn) for
n = 14 and n = 28 defined by [29]

α14 = [0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 0]T ,

γ14 = [−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1]T

and

α28 = [0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0]T ,

γ28 = [−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1,−1,−1,

1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1]T .

Both matrices have only one zero eigenvalue of multiplicity 14 and 28, respectively.
As shown in Figure 5.5, the accuracy of the approximations delivered by eigen are
as good as those provided by dhseqr.

Summarizing the results concerning the approximation errors, we may say that
in all our tests eigen generally yields errors no larger, and sometimes much smaller,
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Fig. 5.4. Bessel matrix, n = 18, a = −8.5, b = 2. Eigenvalues computed in quadruple precision
(�), and approximations to zero eigenvalues provided by eigen (◦) and by the LAPACK subroutine
dhseqr (∗).
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Fig. 5.5. Liu’s matrices. Approximations to zero eigenvalues provided by eigen (◦) and by the
LAPACK subroutine dhseqr (∗).

than the LAPACK subroutine. The difference of the errors is more evident for the
eigenvalues of small modulus.

To illustrate our running error bounds ρ̃ in (4.3) we consider two matrices:
1. The tridiagonal matrix defined in factored form (5.1) by

αj = 106(−1)j+1

, δj = 1, j ≤ n/2, δj = −1, j > n/2

and for which the eigenvalues are grouped into five clusters.
2. Liu’s matrix T14 modified with α14

6 = 2−5 and α14
14 = 2−20 so that all its

eigenvalues are distinct.
Note that these two matrices are exactly represented in base 2. In Tables 5.3 and 5.4
we report, for each eigenvalue λ, the relative error for its approximation by eigen

and our running error bound ρ̃ (4.3). We also report the structured condition number
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Table 5.3

Bounds ρ̃ on the relative error for the eigenvalues of T : αj = 106(−1)j+1
, δj = 1, j ≤ n/2,

δj = −1, j > n/2, n = 10.

λ
|λ− λ̂|
|λ|

ρ̃ κs(λ) ηs(λ)

-1.0e+6 0 5e-23 0.7 2e-22

-1.0e+6 0 2e-24 0.7 2e-22

-1.7e-6 7e-9 7e-8 5e11 2e-20

-7.4e-7 1e-4 1e-3 1e12 2e-16

2.2e-7 + i5.0e-7 4e-6 4e-5 1e12 5e-18

2.2e-7 - i5.0e-7 4e-10 4e-9 1e12 8e-22

2.0e-6 4e-6 4e-5 4e11 1e-17

1.0e+6 0 1e-16 0.7 3e-16

1.0e+6 0 1e-1 0.7 1e-16

1.0e+6 0 8e-17 0.7 2e-16

Table 5.4

Bounds ρ̃ on the relative error: Liu’s matrix T14, modified with α6 = 2−5 and α14 = 2−20.

λ
|λ− λ̂|
|λ|

ρ̃ κs(λ) ηs(λ)

-7.2e-1 8e-16 5e-12 1e2 2e-15

-6.8e-1 ± i 3.5e-1 2e-15 4e-12 7e1 2e-15

-3.4e-1 ± i 6.9e-1 3e-15 4e-12 6e1 2e-14

-6.1e-3 ± i 7.1e-1 1e-15 5e-12 5e1 1e-14

-5.5e-3 2e-11 1e-8 4e6 1e-16

5.5e-3 9e-11 2e-8 4e6 1e-16

3.6e-1 ± i 6.8e-1 3e-15 4e-12 6e1 9e-15

6.9e-1 ± i 3.6e-1 1e-15 4e-12 6e1 2e-15

7.1e-1 3e-15 6e-12 1e2 4e-16

κs(λ) and the structured backward error ηs(λ) for which we impose the perturbations
to be real tridiagonal [23]. The product κs(λ)ηs(λ) provides a first order bound on the

forward error |λ− λ̂|/|λ|. The results in Tables 5.3 and 5.4 confirm that the running
error bound is a strict upper bound and show that for these two matrices it exceeds
the error by 1 to 3 orders of magnitude. It is important to notice that computing
ρ̃ is inexpensive, requiring just O(n) flops per eigenvalue. On the other hand, the
upper bound κs(λ)ηs(λ) requires the knowledge of the right and left eigenvectors and
is usually expensive to compute when structure in the perturbations is imposed. The
small values for ηs(λ) show that on these examples eigen is structured backward
stable.

Some performance tests have been carried out with n ranging from 200 to 6400 on
a PC with an Athlon 1800 CPU. Table 5.5 reports the CPU time in seconds required
by eigen versus the time required by the LAPACK subroutine dhseqr. These timings
show that in all the cases the growth of the CPU time required by our algorithm is
a quadratic function of n, whereas the cost of dhseqr grows cubically with n. The
threshold value for which our algorithm is faster than the LAPACK subroutine is
about n = 400 for Tests 1, 2, 3, 8, 10, n = 800 for Tests 5, 7, 9, and n = 1600 for
Tests 4 and 6. The speed-up reached for n = 6400 is in the range 6.5–189.9.

For all the test matrices with the exception of Tests 4 and 6 the algorithm con-
verges quickly: the average number of iterations per eigenvalue required in the last
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Table 5.5

CPU time in seconds for eigen (in boldface) versus LAPACK’s dhseqr.

n 200 400 800 1600 3200 6400

Test 1 0.1/0.06 0.4/0.6 1.4/4.8 5.6/76 24/661 103/6209

Test 2 0.1/0.10 0.4/0.8 1.2/7.5 4.5/56 19/315 82/2378

Test 3 0.1/0.07 0.3/0.7 1.1/6.7 4.3/152 18/1510 80/15188

Test 4 0.9/0.07 3.1/0.6 13.2/4.3 54/75.6 249/896 1100/6092

Test 5 0.2/0.10 1.1/0.9 4.9/6.8 21/135 84/1239 360/11088

Test 6 0.8/0.08 2.9/0.6 13.2/5.4 54/93 251/744 1128/7351

Test 7 0.3/0.10 0.9/0.8 3.1/6.7 12.0/124 49/1460 198/9155

Test 8 0.08/0.08 0.3/0.6 0.9/4.0 4.0/49.9 17/382 76/2838

Test 9 0.4/0.11 1.6/0.9 6.1/8.2 27/175 114/1450 543/13250

Test 10 0.2/0.08 0.6/0.7 2.1/6.0 7.7/130 32/975 137/8990

Table 5.6

Average number of iterations per eigenvalue and maximum number of iterations (in parenthe-
ses) of the Ehrlich–Aberth method.

n 200 400 800 1600 3200 6400

Test 1 1.9 (3) 1.9 (26) 1.9 (21) 1.8 (20) 1.8 (21) 1.8 (19)

Test 2 1.9 (5) 1.8 (14) 1.5 (4) 1.5 (3) 1.5 (6) 1.5 (6)

Test 3 1.9 (4) 1.6 (4) 1.5 (4) 1.5 (3) 1.5 (6) 1.5 (6)

Test 4 21.7 (26) 16.8 (26) 19.5 (26) 18.0 (26) 19.0 (50) 18.1 (29)

Test 5 4.8 (17) 7.1 (27) 7.8 (28) 7.4 (25) 5.8 (27) 5.8 (36)

Test 6 22.6 (26) 16.2 (24) 21.5 (27) 18.7 (27) 19.7 (26) 18.9 (25)

Test 7 4.6 (10) 3.9 (10) 3.5 (11) 3.3 (14) 3.2 (17) 2.6 (19)

Test 8 1.4 (3) 1.4 (3) 1.4 (3) 1.4 (3) 1.4 (3) 1.4 (2)

Test 9 5.9 (14) 5.9 (13) 5.8 (15) 5.9 (22) 5.8 (17) 5.7 (21)

Test 10 2.7 (7) 2.4 (7) 2.3 (8) 2.1 (12) 2.1 (9) 2.0 (9)

recursive step is between 1.9 and 5.9 (see Table 5.6). In Test 6, despite the eigenvalues
being real since the matrix is real symmetric, the average number of iterations per
eigenvalue is larger than in the other tests for which the eigenvalues are complex. In
general, the Ehrlich–Aberth iteration does not take any advantage of the reality of the
eigenvalues; moreover the convergence speed is not improved by choosing initial real
approximations, and the best choice remains to select initial approximations along
a suitable circle in the complex plane [21]. The average number of Ehrlich–Aberth
iterations per eigenvalue seems to be almost independent of n and varies according to
the specific problem.

6. Conclusion. We have introduced an algorithm for the computation of the
Newton quotient p(λ)/p′(λ) for p(λ) = det(T −λI), and T a tridiagonal matrix, based
on the QR factorization of T − λI and on the semiseparable structure of (T − λI)−1.
The algorithm, whose arithmetic cost is linear in the size n of the matrix T , is robust.

This algorithm was used for implementing the Ehrlich–Aberth iteration, which
approximates all eigenvalues of T . Besides the straightforward way of choosing the
initial approximations in the unit circle, a more elaborate strategy for the choice of the
initial approximations was proposed. This strategy is based on a divide-and-conquer
technique, which, even though heuristic, is motivated by some inclusion results that
we have proved in section 3.2. Running error bounds for the errors in the computed
eigenvalues were also provided.
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The numerical experiments, performed with a large set of test matrices, confirmed
the effectiveness of the algorithm. Comparisons with the LAPACK subroutine dhseqr
showed that for moderately large values of n our algorithm is faster. In particular, the
Ehrlich–Aberth iteration has a cost which is O(n2), whereas the LAPACK subroutine
costs O(n3) operations. Moreover, the Ehrlich–Aberth iteration generally yields more
accurate computed eigenvalues than the LAPACK subroutine dhseqr.
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