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The first hardness result for a robotic mover’s problem was presented by Reif
[9]. He showed that the generalized mover’s problem of moving n linked polyhedra
through a set of 3D obstacles is PSPACE-hard. His proof used a reduction of the
computation of any reversible Turing Machine on an input string to an instance of
the mover’s problem. Hopcroft et al. [7] improved on this result by proving that
the mover’s problem for 2D linkages is PSPACE-hard. Later the generalized mover’s
problem was proved to be in PSPACE by Canny [2]. Using a path coding technique,
Canny and Reif [3] also proved that computing the shortest path for a point robot
moving amidst polyhedral obstacles is NP-hard. Asano et al. [1] introduced the
problem of computing the d1-optimal motion for a 2D rod (defined by a directed line
segment) amidst polygonal obstacles and showed that this problem is NP-hard.

There are also many hardness results on various extensions of the basic robotic
mover’s problem, such as moving obstacles, multi-robot, etc. For example, in [8]
Hopcroft et al. proved that motion planning for multiple independent rectangular
boxes sliding inside a rectangular box is PSPACE-hard. A similar problem of moving
multiple discs inside a polygon in a 2D space, however, could only be proved to be
strongly NP-hard [14]. Reif and Sharir [10] introduced the 3D mover’s problem in the
presence of moving obstacles and showed that this problem is PSPACE-hard even in
a case where the object to be moved is a disc with bounded velocity. By extending
the path coding technique of [3], Reif and Wang [12] proved that the two dimensional
curvature-constrained shortest-path problem is NP-hard. Later, Reif and Sun [11]
showed that the time-optimum path planning problem for a point robot in a 3D
space composed of polyhedral regions with flows is PSPACE-hard.

Most robotic mover’s problems assume that the obstacles are the only objects
in robot’s workspace besides the robot itself. One exception is the movable object
problem, which is to ask whether a robot can move certain objects amidst obstacles
in a space to reach a target configuration. That is, there are two types of objects
in the space: obstacles that can not be moved and penetrated (or even touched) by
the robot, and objects whose placements can be changed by the robot. The goal
of the robot is to either rearrange the movable objects in the space to a desired
configuration or reach a target configuration of itself, or both. The first result on the
movable object problem was given by Wilfong [15], who studied this problem for the
case of a polygonal robot moving in translation amidst polygonal movable objects in
a bounded polygonal space. He proved that, if the final configurations of the objects
are not specified as part of the goal of the motion planning problem, this problem is
NP-hard; otherwise, it is PSPACE-hard. He also gave one algorithm for each of the
two cases where only one movable object is present.

In Wilfong’s model, a robot can only grasp an object from a finite number of
positions. This problem is considered to be more difficult when this number is infinite.
Chen and Hwang [4] gave a heuristic algorithm to solve one model of this problem
where the total weight of objects moved by a robot is to be minimized. Dacre-
Wright et al. [5] extended Wilfong’s work by providing an O(n3 log n) algorithm for
the infinite grasping position case where the final configurations of the objects are
specified as part of the goal.

1.1.2. Mechanical Computing Machines. In 1822, Charles Babbage de-
signed and constructed the Difference Engine. This machine was specially designed
for the evaluation of polynomials. Later in 1833, Babbage proposed (but did not
fully construct) a new device, Analytical Engine, which was conceived to solve gen-
eral arithmetic problems. It resembled the modern digital computer in the following
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ways:

Input Device Just like any modern computer, the Analytical Engine was designed
to have an input mechanism, such as punch cards.

Memory The Analytical Engine was supposed to store the data encoded by me-
chanical positions, e.g., distinct digits were stored via rotational positions of distinct
mechanical dials.

Arithmetic Unit The machine was able to manipulate the data and, in particular,
to execute the arithmetic operations. This was done by a part called the “mill” using
various gearing mechanisms.

Control Unit The machine was also envisioned by Babbage to have a mechanism
that could control the sequence of operations to carry out the computations.

About half a century after Babbage’s death, Dr. Vannevar Bush resumed the work
of building a mechanical computing device. In 1925 he, along with some associates,
made a mechanical calculator powered by electric motor. His machine was an analog
one, in the sense that arithmetic operations were carried out by mechanical means
and in terms of physical measurements.

In 1939, Howard Aiken, in collaboration with four I.B.M. engineers, built a general
purpose computing machine, the so called Automatic Sequence Controlled Calculator,
Mark I. Just like Babbage’s Analytical Engine, Mark I performed computation by
manipulating mechanical devices. The key difference between Mark I and the previous
mechanical computers such as Analytical Engine and Bush’s machine is that, while
the Analytical Engine and Bush’s computer were purely mechanical, the operations
of mechanical parts of Mark I were controlled electrically.

As electronic devices were not available in 1800’s, Babbage had to exploit a purely
mechanical system to build a computer. Subsequent electro-mechanical computers
could exploit electronics for control, and of course so do the modern computers. Today,
Babbage’s concept of a purely mechanical computer would at first seem to be out of
date, as computers built by much faster electronic technology prevail in every corner
of the world. However, the emergence of nanotechnology provides new motivation on
studies of mechanical computers.

1.2. Our Results.

1.2.1. Frictional Mechanical System and Frictional Mover’s Problem.
All the robotic mover’s problems mentioned above assume that there is no friction
between objects, and most of the models only allow collision-free movements so that
different objects cannot even contact with each other. The only work that addressed
on motion planning in the presence of friction is by Sellen [13]. He proved that
dynamic motion planning problem with forbidden movements (in particular, sliding)
is undecidable by showing that the actions of a TM can be realized by logical and
arithmetic operations, which can be implemented by mechanical means. However, in
his model, the motions of the objects corresponding to the computations of the TM
can not be generated deterministically. Therefore, this model can not be used for
constructing a mechanical computer.

We define a frictional mechanical system to be a collection of rigid objects in 3D
space whose surfaces are composed of linear or quadratic surface patches specified by
rational coefficients. All objects are non-penetrable, i.e., the only allowed intersection
is via surface contact. Each surface patch of each object is also specified as either
frictional or sliding (non-frictional). If two objects with frictional surfaces contact
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with each other, it is assumed that there is no sliding1 between them. If at least one
of the two contacting surfaces is designated to be a sliding surface, there will be no
friction between them so that they can slide freely. Furthermore, some objects in the
space are specified to move monotonically. In particular, there may be some discs in
the system that can only rotate in one direction (clockwise or counterclockwise). We
say that the objects can be moved legally if all the above constraints are satisfied.

We define the resource bound, denoted by R, to be the number of distinct objects
in the frictional mechanical system. As each object can be specified by a constant
number of surface patches, each of which can be specified by a constant number
of rational coefficients, the total number of binary bits used to encode an object is
bounded by a constant. Hence, the total number of bits in the binary representation
of the frictional mechanical system is O(R).

The frictional mover’s problem is to determine whether these objects in the fric-
tional mechanical system can be moved legally from a specified initial configuration
to a specified final configuration. This problem can be regarded as a generalization
of the movable object problem. Compared to the previous works, our model is in 3D
space and the surfaces of the objects in the space can be non-linear. Further, in ad-
dition to moving an object by grasping or pushing (directly or indirectly), a robot in
our model can move objects by using the friction between it and surrounding objects.
More specifically, a power disc in the frictional mechanical system can be deemed
as a rather “dumb” robot; it is restricted to rotate in a specified direction without
translation. And the problem is to ask whether this robot can rearrange the objects
in the system to a target configuration by its rotation.

We prove that the frictional mover’s problem is undecidable by reducing the accep-
tance problem for Turing Machine2 (TM), ATM

3, to the frictional mover’s problem.
Given a universal TM 4 M , we construct a frictional mechanical system to simulate
this machine. This frictional mechanical system will have the property that the ob-
jects in this system can be moved from an initial configuration, which encodes an
input string ω of M , to a configuration corresponding to the accepting state of M if
and only if M accepts ω. Therefore, as the acceptance problem for Turing Machine
is undecidable, so is the frictional mover’s problem. This implies that there is no
realistic machine that can solve this problem.

An interesting property of this frictional mechanical system is that, if M ac-
cepts ω, there will be a unique simple path (i.e., one that does not repeat the same
configuration) from the initial configuration to the final configuration.

The proof will actually construct, for any given TM M , a frictional mechanical
system that simulates M . Every movable object in the system is engaged or linked
directly or indirectly with the power disc so that, when the power disc rotates, it will
make those objects move accordingly. For any input string ω of M , this frictional
mechanical system can be set to an initial configuration encoding ω so that, after
the power disc has rotated a sufficient number of cycles, this system will result in a

1Sliding is a move in a direction tangent to the surfaces at the contact point.
2A Turing Machine is an abstract machine with a finite state control and a tape that can store

an infinite string of symbols. There is a read-write head on the tape that allows the machine to
read or write the symbol at the current position of the head. The machine can write to the current
position and move the head left or right according to the current state and the current symbol in a
specified way.

3The acceptance problem ATM for Turing Machine is to determine, given the description of a
TM M and its input ω, whether M accepts ω.

4A universal TM M will take the description of any TM M ′ and any input string ω of M ′ as an
input and simulate the behavior of M ′ presented with input ω.
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configuration encoding the accepting state (rejecting state) of M , if and only if M
accepts (rejects) ω.

Even though Babbage claimed that the Analytical Machine could be used to
solve any arithmetic problem, it is doubtful whether this machine is as powerful as a
universal computing machine. The difficulty is that Babbage did not have a general
concept of an abstract computing machine, such as a Turing Machine (TM), which
was later introduced by Alan Turing in 1936. To show that a mechanical system
has the computational power of an electronic computer, it is sufficient and necessary
to show that this mechanical system can simulate a universal TM, as proposed by
Turing. Although Babbage designed his Analytical Machine to have a control unit
used to guide the arithmetic operations, it was not explicitly shown by Babbage how
it could simulate a general finite state control, which is the core of a universal TM.
The electro-mechanical computer, Mark I, was designed to be capable of fulfilling any
computing tasks and thus should be as powerful as the modern computers. However, it
used an electronic device as the central controller. To our knowledge, our mechanical
system, as it will be described in later sections, is the first mechanical system that
can perform general-purpose computation without using any electronic devices.

Another limitation of Babbage’s Analytical Engine is its representation of num-
bers. The Analytical Engine was a digital computer. Each digit of a number was
represented by a mechanical device, such as a dial. The accuracy of Babbage’s ma-
chine, in terms of number of decimal places, was determined by the number of dials
used to represent a number. Therefore, no matter how precisely the machine was
built, it would not improve its accuracy. The only way to improve the accuracy of
the machine’s computation (or increase the number of data bits) is to increase the
number of dials used to represent a number. This will change the structure of the
Analytical Engine and make it bigger and more complicated. Our frictional mechan-
ical system, however, is an analog computer, in the sense that a number (in fact, the
entire data of the computation) is represented by the rotational position of a single
disc. The accuracy of our system depends on the accuracy of the measurement and
the precision of the mechanical devices. Therefore, it can be arbitrarily accurate as
we reduce the error in transitional (or rotational) measurement as well as the error in
building mechanical devices.

For our proof of the undecidability of the frictional mover’s problem, we adopt a
simple deterministic model for frictional contacts between objects. Note that there
exists a number of considerably more complex models (for example, see [6]) for fric-
tional contacts between objects where the objects in contact with surfaces may make
non-deterministic motions. However, our simple deterministic model for frictional
contacts will suffice for us to adequately model frictional contacts in the simple cases
we employ in our constructions, and so to prove our undecidability result for move-
ment planning with frictional contacts. Moreover, many of these more complex models
for frictional contacts reduce to our simple deterministic model for frictional contacts
in the simple cases we employ in our constructions.

1.2.2. Frictional Mechanical System with Error. We prove that a frictional
mechanical system can be constructed to simulate a universal TM. Therefore, this sys-
tem can be used for arbitrary finite computation, just like any conventional computer.
However, the underlying assumption is that this frictional mechanical system can be
constructed exactly as it is specified. We are also interested in the computational
power of such a frictional mechanical system in the case inaccuracy is allowed in the
construction of the mechanical devices in the system.



6 J. H. REIF AND Z. SUN

There are many factors that might induce errors in the computations of a frictional
mechanical system, including the precision of manufacture of the parts. For example,
the circumference of a disc may not exactly be manufactured to be a circle. The
radius of a disc may not be manufactured to be exactly as it is specified. When two
discs are very close but still not in contact with each other theoretically, they may
already have surface contact so that the rotation of one disc will move the other one,
even though they are not supposed to do so.

Since there are constant number of mechanical devices in our mechanical system,
we can let ε to be the upper bound for the errors that occur in a single operation. This
is our ε-error model. We prove that, given a space bound S, our frictional mechanic
system in this ε-model can simulate the universal TM M on any input string ω that
can be decided by M in space bound S, provided that ε = O(2−cS) for some constant
c.

We also prove that, given a universal TM M with space bound S, there exists
an ε = Ω(1) such that a frictional mechanical system in ε-error model can simulate
the computation of M presented with any input ω if M decides ω in space bound S.
This result provides decreased required precision of parts at the expense of increased
number of parts, which increases with S.

1.3. Notations. In the following sections, the universal TM with end-marks is
denoted by quintuple M = (Q, Σ, δ, q0, {qσ−2, qσ−1}) as follows:
1 Q = {q0, q1, · · · , qσ−1} is the set of states.
2 Σ = {0, 1, · · · ,m − 1} is the tape alphabet. Here 0 denotes the blank symbol. 1

and 2 are the left and right end-marks respectively.
3 δ : Q× Σ → Q× Σ× {L,R} is the transition function.
4 q0 is the start state.
5 {qσ−2, qσ−1} is the set of halting states. In particular, qσ−2 is the rejecting state

and qσ−1 is the accepting state.
In our following discussion, m and σ are considered as constants.
At anytime during the computation, we use the current working space of the TM

to denote the portion of the tape that the read-write head has visited so far. The
current working space is always bounded by a left end-mark and a right end-mark.
We denote the tape status by a string ω1ω2 · · ·ωk1−1ω̌k1ωk1+1 · · ·ωk2 . Here ω1 and ωk2

are the left and right end-mark respectively, and ω̌k1 denotes that read-write head is
at the k1-th cell of the tape. The read-write head will never replace the left end-mark
by another symbol nor will it go beyond the left end-mark. Whenever the read-write
head replace the right end-mark by another symbol, it will pad a right end-mark to
the right of the symbol.

It is easy to see that, for any TM (without end-marks) M ′ , there is a equivalent
TM with end-marks as described above. Therefore, all universal TMs mentioned in
the following discussion are assumed to have end-marks.

Since discs, in particular, the rotational positions of discs, play a very important
role in our frictional mechanical system, we want to specify several terminologies
which we will be using frequently in the following discussion.

Each disc used in our system has a specified orientation called the initial orien-
tation. Therefore, the rotational position of a disc D can be specified by the angle
the disc has rotated from its initial orientation. For our convenience, we will use
“the angle of D” to denote this angle. Also, we will say that the angle recorded (or
represented) by the rotational position of disc D is θ. Further, if we say “to increase
(decrease) the angle or rotational position of a disc D by an angle of θ,” we mean to
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rotate D counterclockwise (clockwise, respectively) by an angle of θ.
A partial disc is a portion of a disc bounded by two radii and the remaining

portion of the circumference. As we will show later, partial discs are very useful in
our system, too.

1.4. Organization of this Paper. Section 2 presents several basic mechanical
devices widely used in our frictional mechanical system. After that, we provide the
full description of the frictional mechanical system that simulates a universal Turing
Machine. In the last section, the model of the frictional mechanical system with errors
is discussed.

2. Basic Gadgets. We prove the reduction from ATM to the frictional mover’s
problem by constructing a frictional mechanical system for a universal TM M . This
system is composed of discs, partial discs, cylinders, and other geometric objects.
There is a special disc, the power disc, which is specified to only rotate clockwise. The
rotation of this disc will force other objects in the system to move, due to frictional
linkages between them. This frictional mechanical system can “simulate” M in the
sense that, for any input string ω of M , this system can be set to a corresponding
initial configuration so that a distinguished final configuration can be reached if and
only if M accepts ω. Therefore, if one can decide this instance of frictional mover’s
problem, he can also decide the corresponding instance of ATM . As it is well known
that ATM is undecidable, so must be the frictional mover’s problem.

Friction is very important in this system as it only provides method of moving
other objects in the system but also preserves the state of the system and thus the
state of the Turing Machine the system simulates. It also guarantees the system
properly transfers from one state to another.

Before giving the construction of the frictional mechanical system, we first intro-
duce in this section several “gadgets” that perform the basic functionalities and thus
are used widely in our system.

There are seven kinds of basic gadgets:

Converting device A converting device is used to convert between rotational dis-
placement and transitional displacement.

Sequencer A sequencer is composed of a group of discs and partial discs that share
the same axis and rotate with same angular speed at any time. These discs (and
partial discs) are engaged with some surrounding discs in the frictional mechanical
system so that when rotating, they will make the surrounding discs rotate with them
and in turn move other objects in the system. The sequencer is a key component in
the frictional mechanical system as it provides a mechanism for moving all the objects
in the system in a specified way.

Transitional Movement Sequence Controller A transitional event sequencer
controller allows the sequencer to periodically move an object in the system by a
constant distance and then move it back.

Rotational Movement Sequence Controller A rotational event sequencer con-
troller allows the sequencer to periodically rotate a disc by a constant angle.

Resettable Rotational Disc A resettable rotational disc has two states: the free
rotation state when it can be rotated by engaging with another disc; and the reset
state when it will return to a specified initial orientation no matter how much it
is rotated in the free rotation period. Virtually all devices need to use resettable
rotational discs.
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Fig. 2.1. Converting Device

Non-linear Mapping Controller A non-linear mapping device is used to implement
a non-linear mapping between rotations. This is a very crucial component in the
construction of the simulation of a finite state control.
Selection Controller A selection controller helps the sequencer to initiate one among
several event sequences depending on the rotational (or transitional) position of an
object in the system. This is yet another key component in the construction of the
simulation of a finite state control.

In the following subsections, we will give detailed description for each of the basic
gadgets.

2.1. Converting Device. The most basic device is one that can convert a ro-
tational displacement to a transitional displacement, or vice versa. This can be done
by the device described in Figure 2.1.

As it can be seen from the figure, one end A of an arm of length a is attached to
a fixed position on the rim of the disc D. The other end B of this arm is restricted to
move along a line l passing the center of the disc. The rotation of the disc D, θ, and the
distance d between the center of the disc and B satisfy d = r cos θ +

√
a2 − r2 sin2 θ.

Here r is the radius of D.
Therefore, if θ varies between π/4 and 3π/4, d will vary between

√
a2 − r2/2 −

r/
√

2 and
√

a2 − r2/2+ r/
√

2. Further, d is a monotone function of θ. Therefore, the
rotational displacement of disc D can be converted to the transitional displacement
of B and vice versa.

2.2. Sequencer. All the objects in the system are moved, directly or indirectly,
by a mechanism called sequencer, which is composed of a group of discs and partial
discs. These discs and partial discs share the same axis and rotate with same the
angular speed at anytime. Each disc or partial disc is engaged with one or more
surrounding discs. Therefore, when the sequencer is rotating, it will make these
surrounding discs rotate. Also, the rotation of these surrounding discs will then move
other objects in the system.

In Figure 2.2, there are three discs and two partial discs in the sequencer. Each of
the discs of the sequencer will make its surrounding disc rotate with it, possibly at a
different angular speed. Each of the partial discs, however, will move the surrounding
disc for a certain period, and then lose contact with it.

Each cycle of the sequencer finishes one step of computation of the universal TM
it simulates. As the rotation of the sequencer determines the starting and finishing
of any movement sequence of any other object linked with it, we may use an interval
[θ1, θ2] to denote the time period during which the sequencer rotates from angle θ1 to
angle θ2 in each cycle rather than using the actual time.
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Fig. 2.3. Transitional Movement Sequence Controller

2.3. Transitional Movement Sequence Controller. It will be useful if the
sequencer can move an object to a specified position during time period [θ1, θ2] of
each rotational cycle, and move it away from that position otherwise. This can be
done by the controller shown in Figure 2.3.

There is a circular gap on the surface of the disc which is on the sequencer. The
curve of this gap is defined by r = r(θ) in a polar coordinate with origin at the center
of the disc. A vertical bar is restricted in the circular gap. Also, it is restricted to
move on a line passing the center of the disc. r(θ) has the property that

r(θ) = r0 for θ ∈ [θ1, θ2],
r(θ) > r0 for θ 6∈ [θ1, θ2].

Here r0 is a constant. Therefore, when the controller is rotating in one direction,
the bar will move back and forth along the line. More specifically, in time interval
[θ1, θ2], the vertical bar is at the position of (r0, 0) (in polar coordinate). In other
time, it is at some position (r′, 0) where r′ > r0.

For our convenience, in the following discussion, we may say “the sequencer moves
an object to a certain position during a certain time period in each rotational cycle”
implicitly assuming that we have constructed a transitional movement sequence con-
troller, as described here, that fulfills this task.

Transitional movement sequence controllers will be used frequently in our fric-
tional system. All the rotational discs, except those on the sequencer, need to be
clamped down whenever they are not rotated, directly or indirectly, by the sequencer
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Fig. 2.4. Rotational Movement Sequence Controller

so that their orientations will be maintained. This can be done by moving a blocking
bar (a bar with a frictional surface) to a position where it has surface contact with
the disc in the clamping period of each cycle.

2.4. Rotational Movement Sequence Controller. A rotational movement
sequence controller is a partial disc in the sequencer used to rotate another disc,
called target disc, in a specified time interval during each cycle. With a transitional
movement sequence controller, a blocking bar can be moved to clamp the target disc
when the partial disc loses contact with the target disc. When the partial disc rotates
to such an orientation that its rim contacts the rim of the target disc, this bar is
moved away from the target disc so that this disc can be rotated by the partial disc.

Therefore, the disc will stay stationary during the clamping period, and rotate
with the partial disc otherwise. The length of the rotating period is determined by
the angle of the partial disc. And the total angle the target disc rotates during the
rotating period is determined by the length of the arc of the partial disc as well as
the radius of the target disc. Therefore, by setting these parameters appropriately,
we can let the target disc to rotate a certain angle, say, π in each cycle.

Again, for our convenience, in the following discussion, we will say “the sequencer
rotates a disc by a specified angle during a certain time period” implicitly assuming
that we have constructed a rotational movement sequence controller, as described in
this subsection, to do it.

2.5. Resettable Rotational Disc. With a rotational movement sequence con-
troller, the sequencer can rotate a disc by a constant angle during each cycle. Fre-
quently it is necessary to rotate a target disc by a certain angle θ recorded by a source
disc and then reset it by rotating it by θ in the reverse direction, no matter what θ
is. This kind of disc is called resettable rotational disc. As shown in the figure, two
discs are linked by a two-segment arm. Each of these two discs has a radius of 1.
The distance between the centers of the two discs is d, and the total length of the
two-segment arm is d too.

The upper disc is the target disc. The lower disc connects to a rotational move-
ment sequence controller, so that at the time when we want to reset the target disc,
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Fig. 2.5. Resettable Rotational Disc

the lower disc will rotate by an angle of π. Because the length of the two-segment is
exactly the same as the distance between the centers of two discs, the upper disc will
be forced to rotate to such an orientation that the point where the arm is attached to
is at the lowest position. When it is the time to release the target disc and allow it
to be rotated freely by another disc it engages with, the lower disc rotates by another
π so that it restores to its initial orientation.

Therefore, each resettable rotational disc can be regarded as a register. It can
hold a value that is represented by its current angle θ.

Using resettable rotational discs, we can construct a mechanical device that will
increase the angle of a disc by the angle recorded by another disc. Suppose we have
two resettable rotational discs. Disc D1 is set at θ1 and D2 is set at θ2. We want to
increase the angle of D2 by θ1 while having the angle of D1 remain unchanged. A
third disc D3 is needed here and it is set at its initial orientation. The radii of D1,
D2 and D3 are the same.

First both D2 and D3 are engaged with D1 and then D1 is reset to its initial
orientation. D2 (and D3) will be rotated counterclockwise by an angle of θ1. This
will set D2 to angle θ1 + θ2 and D3 to angle θ1. Then, D2 is disengaged from D1.
The next step is to reset D3 to its initial orientation. As D3 is still engaged with D1,
D1 will be rotated counterclockwise by an angle of θ1. Therefore, the orientations of
D1 and D3 will be set just the same as when they were before, while the angle of D2

is increased by θ1, which is the angle recorded by D1.
Observe that we can amplify or reduce θ1 by a constant factor C before adding it

to D2. This can be done by setting r1 = r3 = Cr2, where r1, r2 and r3 are the radii
of the three discs respectively.

Here we will have a digression to address the necessity of using discs with frictional
linkages. If gears instead of discs were used, it might be possible that teeth of the
gears could not match after they resume contact with each other, since the two gears
might rotate by a different angle after they are disengaged.

2.6. A Non-linear Mapping Device. Engaging a source disc and a target
disc will allow us to perform linear mapping from the angle of rotation of the source
disc to the angle of rotation of the target disc. By “linear mapping,” we mean that if
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Fig. 2.6. Non-linear Mapping Device

the source disc rotates by an angle of θ, the target disc will rotate by an angle of C ·θ,
where C is the radius ratio between the two discs. However, sometime it is necessary
to perform non-linear (or even non-monotone) mapping on the rotations of discs. In
particular, a device with the following property is needed:

Property 1. A non-linear mapping device has two discs, an input disc and
an output disc, each of which can rotate by any angle θ ∈ [0, π/2] from its initial
orientation. Given θ1, θ2, · · · , θn, α1, α2, · · · , αn, 0 ≤ θ1 < θ2 < · · · < θn ≤ π/2,
0 ≤ αi ≤ π/2, if the rotation of the input disc is θi, the rotation of the output disc
should be αi. Further, if α1 < α2 < · · · < αn, the mapping should be monotone. That
is, for any θ, θi < θ < θi+1, if the rotation of the input disc is θ, the rotation of the
output disc, α, should be in the range of (αi, αi+1).

Non-linear mapping can be implemented by the device described in Figure 2.6.
It consists of four parts, a central (regular) disc D centered at point O, a horizontal
bar, and two irregular discs D1 and D2 centered at O1 and O2 respectively. In each
operation D1 and D2 will rotate clockwise by an angle of θi for some i, 1 ≤ i ≤ n.
The motion of D1 and D2 will cause D, through the horizontal bar connecting them,
to rotate by an angle of αi from its initial orientation.

The horizontal bar, which lies on line O1O2 between D1 and D2, is restricted to
move horizontally only. Each end of the horizontal bar touches, but is not attached
to, the rim (circumference) of one of the two irregular discs. The bar is connected to
D through a joint A between the bar and a spoke (a radiating bar from the center of
a disc to its circumference) of D. The joint has the property that it can move along
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the spoke but will remain stationary with respect to the bar. Therefore, when D1 and
D2 rotate, they will in turn push the bar back and forth horizontally, which in turn
will move the spoke and thus make D rotate accordingly.

During each operation, D1 and D2 need to “complement” each other in the sense
that they keep constant contact with the horizontal bar. Nor can the two irregular disc
“squeeze” the bar, as we assume that all objects are rigid and cannot be compressed.
Therefore, we want to design the shapes of D1 and D2 in such a way that, when D1

and D2 rotate clockwise with the same angular speed, the distance between D1 and
D2 on line O1O2 is a constant. This implies that r1(θ) + r2(θ + π) is a constant for
any θ ∈ [0, π/2], where for each j = 1, 2 rj(θ) is the distance between Oj and the
intersection point of the rim of Dj and the ray with angle θ that starts from Oj .

Initially, D is set at the orientation such that the angle between the spoke of
D and the x-axis is π/4, as shown in Figure 2.6.a. We choose the vertical distance
between O and the horizontal bar to be R/

√
2, where R is the radius of D. Therefore,

the range of the angle between the spoke and the x-axis is [π/4, 3π/4]. Let h1 be the
horizontal distance between O and O1, and let d1 be the length of the part of the
horizontal bar between its left end and the joint A with the spoke. To achieve the
desired property, it is sufficient that the following equality holds:

r1(θi) + d1 − h1

R/
√

2
= tan(π/4− αi), for i = 1, 2, · · · , n(2.1)

This can be done by choosing r1(θi) to be h1 − d1 + R tan(π/4 − αi)/
√

2 , for all
i, 1 ≤ i ≤ n. Also, the initial orientation of D implies that α = 0 if θ = 0. Therefore,
we have r1(0) = h1 − d1 + R/

√
2. For our convenience, we let θ0 = 0 and α0 = 0.

To ensure that the mapping is monotone in interval [θi, θi+1], for any θ ∈ (θi, θi+1),
we specify

r1(θ) =
(θ − θi) · r1(θi+1) + (θi+1 − θ) · r1(θi)

θi+1 − θi
.(2.2)

Note that r1(θ) is a linear function of θ inside interval (θi, θi+1). If α1 < α2 < · · ·αn,
the non-linear mapping will be monotone in interval [0, θn].

In the above we have shown how to decide r1(θ) for any θ ∈ [0, θn]. For any
θ ∈ (θn, 2π), we let

r1(θ) =
(θ − θn) · r1(0) + (2π − θ) · r1(θn)

2π − θn
.

This completes the specification of D1. For D2, we only need to let r2(θ) = |O1O2| −
d− r1(θ− π), so that r1(θ) + r2(θ + π) is a constant for any θ ∈ [0, 2π). Here d is the
length of the horizontal bar.

As shown in Figure 2.7.a, the boundary of each irregular disc Dj described
above is piecewise smooth, with derivative r′j(θ) defined everywhere except for θ =
θ0, θ1, · · · , θn. At these values function rj(θ) has a “left derivative” r′j(θ

−) and a “right
derivative” r′j(θ

+), which in most cases are different. The difference between r′j(θ
−)

and r′j(θ
+) would not hinder the proper functioning of the device.

The only concern is that there should not be a “dimple” on the boundary, where
r′j(θ

+) = +∞ for some θ ∈ [0, 2π). In this case, the irregular disc would not be able to
push the horizontal bar away from it, and, even worse, the bar would actually prohibit
the irregular disc from further rotating, as shown in Figure 2.7.b. This would lead to a
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Fig. 2.7. Irregular Discs

complete stop of the computation of the frictional mechanical system. However, since
inside each interval [θi, θi+1], the curve rj(θ) is a linear function of θ (see Equation
2.2), r′j(θ

+) cannot be +∞ as long as each rj(θi) is chosen to be a finite number.
Therefore, we have ruled out this potential difficulty.

Observe that even though the above mapping device can only implement a map-
ping from [0, π/2] to [0, π/2], with a linear mapping device that can amplify or reduce
angle, for any non-linear mapping, we can construct a device to simulate it.

2.7. Selection Controller. Another useful device is the so-called selection con-
troller, which will rotate one of several cylinders depending on the transitional dis-
placement of a bar from its initial position or, equivalently, the rotational displacement
of a disc from its initial orientation. Therefore, different position of the bar will incur
different movement of the objects in the space.

Suppose there are n cylinders, called choice cylinders, from which one is chosen to
be rotated depending on the transitional displacement of a sliding bar. Let l denote
the transitional displacement of the sliding bar. We assume that 0 < l < 1. Further,
if 2i/(2n−1) < l < (2i+1)/(2n−1) for some i, 0 ≤ i ≤ n−1, the selection controller
will select the i-th choice cylinder to rotate. This can be implemented by the device
in the Figure 2.8.

To the left there is a long cylinder S engaged with a rotational movement sequence
controller so that S is rotated by an angle of 2π during a certain period of each
cycle and remains static in other time. To the right there is a pile of n identical
cylinders, D0, D1, · · · , Dn−1. These cylinders share the same axis but each can rotate
independently. The height of each cylinder is 1/(2n − 1) and the distance between
two contiguous cylinders is also 1/(2n− 1). The radii of D0, D1, · · · , Dn−1 and D are
all r. The distance between D’s axis and Dis’ axis is 2r + 2R.

The sliding bar is attached to what we call a selective engager shown in the middle
of Figure 2.8. The selective engager consists of a disc D′ with radius R and 2n − 2
blocking bars, each of which has length R. n− 1 of these blocking bars are above D′

and the others are below D′. The vertical distance between any two contiguous bars
is 2/(2n− 1), and so are the distance between D′ and the bar immediately above D′

as well as the distance between D′ and the bar immediately below D′.
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Fig. 2.8. Selection Controller

In each cycle, initially the selective engager is placed in such a position that D′

is at the same height as the lower face of D1. Also, the selective engager does not
contact either D or any of Dis. After the sliding bar moves vertically by a distance
of l, 2i/(2n − 1) < l < (2i + 1)/(2n − 1) for some i, the selective engager will move
upwards by a distance of l accordingly so that it will be at the same height as Di.

Then, the selective engager is moved horizontally to the position right between
D and Dis. Since the distance between D’s axis and Dis’ axis is 2r + 2R, D′ will
contact both D and Di. Also, any of D0, D1, · · · , Dn−1 other than Di will contact
one of those blocking bars so that they are forbidden from rotating.

After removing the blocking bars originally clamping the n cylinders, only ni can
rotate freely. Therefore, when D is rotated by an angle of 2π, it will rotate D′ and in
turn rotates Di. Since D and Di have the same radius, Di will be rotated by exactly
2π.

The functionality of this device is just like the switch—case structure in a
C program. In our remaining section, we will say “If the transitional (rotational)
displacement of a bar (disc, respectively) is in the range of (a, b), the sequencer will
do ...” implicitly assuming that we have constructed a particular selection controller
as described here to do this task.

3. Simulation of a Universal Turing Machine. Given the basic gadgets de-
scribed above, we are ready to construct a frictional mechanical system that simulates
a universal TM. Our frictional mechanical system consists of two components, a con-
trol component simulating the finite state control and a tape component simulating
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the read-write tape. All the objects in the system are linked or engaged with a se-
quencer, which controls the behavior of those objects. The sequencer is engaged with
the power disc that is constantly rotating clockwise. Therefore, the sequencer will be
rotating counterclockwise constantly and it will drive all the objects in the system in
a specified way as it rotates.

In the control component, there is a disc Dstate whose rotational position repre-
sents the current state of the universal TM. Similarly, in the tape component, there
are three discs Dcurrent, Dleft and Dright whose rotational positions together repre-
sent the status of the read-write tape. (The status of the tape includes the contents
of the tape as well as the current position of the read-write head.)

The control component will take the current symbol and the current state of
the universal TM, both of which are represented by rotational positions of certain
discs, as input and compute the next state, the next move of the head, and the
symbol replacing the current symbol, all of which are also represented by rotational
positions. The tape component will then modify the rotational positions of Dcurrent,
Dleft and Dright depending on the next move and the replacing symbol provided by
the control component.

The first subsection presents the methods used to encode the current state of the
universal TM and the current status of the read-write tape by rotational positions.
The next two subsections describe the construction of the control component and
the tape component respectively. The last subsection shows how these two compo-
nents work together to simulate a universal TM and subsequently how the two main
theorems of this paper are proved.

3.1. Encoding the Configuration of the Universal Turing Machine. The
configuration of a TM includes the current state, the current tape contents and the
current head location. To be able to simulate a TM, our frictional mechanical system
should be able to record the configuration of the TM by rotational positions of discs
in the system.

The status of the read-write tape of the universal TM can be encoded by the
rotational positions of three discs Dcurrent, Dleft and Dright. If ω1ω2 · · ·ωk1−1ω̌k1

ωk1+1 · · ·ωk2 is the current tape status, the rotation of Dcurrent, βcurrent, the rotation
of Dleft, βleft, and the rotation of Dright, βright, are set as follows:

βcurrent(ω1ω2 · · · ω̌k1 · · ·ωk2) =
2ωk1π

2m + 1
(3.1)

βleft(ω1ω2 · · · ω̌k1 · · ·ωk2) = 2π

(
k1−1∑

i=1

ωk1−i

(2m + 1)i

)
(3.2)

βright(ω1ω2 · · · ω̌k1 · · ·ωk2) = 2π

(
k2−k1∑

i=1

ωi+k1

(2m + 1)i

)
(3.3)

In particular, βleft = 0 if k1 = 1, and βright = 0 if k1 = k2.
Therefore, βcurrent encodes the current symbol, and Dleft (Dright, respectively)

encodes the sub-string to the left (right, respectively) of the current symbol.
It is easy to see that this encoding function has the following properties: (i)

(2i−1)π/(2m+1) < βcurrent < (2i+1)π/(2m+1), if ωk1 = i; (ii) (2i−1)π/(2m+1) <
βleft < (2i + 1)π/(2m + 1), if ωk1−1 = i; and (iii) (2i − 1)π/(2m + 1) < βright <
(2i + 1)π/(2m + 1), if ωk1+1 = i.
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Therefore, linking a selection controller with each of Dcurrent, Dleft and Dright

will allow the frictional mechanical system to decide the current symbol of the tape
and the two symbols next to it, which will be used by the control component and the
tape component.

During the simulation of the universal TM, if the current state of the universal
TM is qi, Dstate will be set at a rotational position of λi = iπ/(2σ). Observe that
every rotational position of Dstate that represents a state is between 0 and π/2. Again,
linking a selection controller with Dstate will allow the frictional mechanical system
to decide the current state of the tape.

3.2. Finite State Control Component. We let δ1 : Q×Σ → Q, δ2 : Q×Σ →
Σ and δ3 : Q × Σ → {L,R} denote the three components of the transition function
δ respectively. More specifically, if the current state is qj and the current symbol is
i, the next state is δ1(qj , i), the symbol to replace the current symbol is δ2(qj , i) and
the next move of the head is δ3(qj , i).

The control component consists of 3m non-linear mapping devices. The first m
of these non-linear mapping devices, M1,0,M1,1, · · ·, M1,m−1, are used to implement
δ1, the next state function. For each i, 0 ≤ i ≤ m − 1, M1,i is designed in such a
way that, if the input disc of M1,i is rotated by an angle of λj = jπ/(2σ) from its
initial orientation, the output disc will be rotated by an angle of λj′ = j′π/(2σ). Here
δ1(qj , i) = qj′ . In other words, if the input disc is rotated by an angle corresponding
to the current state of the universal TM, the output disc will be rotated by an angle
corresponding to the next state of the TM.

Suppose the current state is qj and the current symbol is i. As the current symbol
can be determined by applying a selection controller to Dcurrent, the sequencer will
be able to choose M1,i from M1,0,M1,1, · · · ,M1,m−1 and rotate the input disc of M1,i

by an angle of λj , which is recorded by Dstate. Then, Dstate will be set at the angle
recorded by the output disc of M1,i and the non-linear mapping device M1,i will be
reset to its initial position.

In the remaining 2m non-linear mapping devices, M2,0, M2,1, · · ·, M2,m−1 are
used to implement δ2; and M3,0, M3,1, · · ·, M3,m−1 are used to implement δ3. For
each i, 0 ≤ i ≤ m−1, M2,i has the property that, if the input disc of M2,i is rotated by
an angle of λj = jπ/(2σ) from its initial orientation, the output disc will be rotated
by an angle of 2δ2(qj , i)π/(2m + 1) from its initial orientation. Similarly, for each i,
0 ≤ i ≤ m− 1, M3,i has the property that, if the input disc of M3,i is rotated by an
angle of λj , the output disc will be rotated by an angle of π/4 if δ3(qj , i) = L or π/2
if δ3(qj , i) = R.

Therefore, the next move and the replacing symbol will be represented by rota-
tional positions of certain discs. These rotational positions will be used by the tape
component to update the rotational positions of Dcurrent, Dleft and Dright according
to the transition function δ.

3.3. Read-Write Tape Component. As mentioned above, the control com-
ponent will generate two rotational positions, one representing the next move and the
other representing the replacing symbol. Let ω1ω2 · · · ω̌k1 · · ·ωk2 be the current tape
status and ω′k1

be the replacing symbol.
For our convenience, we use βcurrent,t to denote the angle of Dcurrent at the

beginning of the t-th rotational cycle (of the sequencer). βleft,t, βright,t and βstate,t

are defined likewise. First suppose the next move of the head is to go rightward.
There are three cases:
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1 k1 = k2, i.e., the head is at the right end-mark:
The status of the tape will be changed to ω1ω2 · · ·ω′k1

ˇωk2+1. Here
ωk2+1 = 2 (indicating the right end-mark) as the head will pad a right
end-mark to the right. Therefore, we have the following recursive
equations:

βcurrent,t+1 = 2
2π

2m + 1
(3.4)

βright,t+1 = 0(3.5)

βleft,t+1 =
βleft,t

2m + 1
+

2πω′k1

2m + 1
(3.6)

2 k1 = 1, i.e., the head is at the left end-mark:
As the universal TM will never overwrite the left end-mark, ω1 will
still be 1 (indicating the left end-mark) and the status of the tape
will be changed to ω1ω̌2ω3 · · ·ωt. Therefore, we have

βcurrent,t+1 =
2πω2

2m + 1
(3.7)

βright,t+1 = (βright,t − 2πω2

2m + 1
) · (2m + 1)(3.8)

βleft,t+1 =
2π

2m + 1
(3.9)

3 1 < k1 < k2:
The status of the tape will be changed to ω1ω2 · · ·ω′k1

ˇωk1+1ωk1+2 · · ·ωk2 .
Thus, correspondingly, the recursive equations are

βcurrent,t+1 =
2πωk1+1

2m + 1
(3.10)

βright,t+1 = (βright,t − 2πωk1+1

2m + 1
) · (2m + 1)(3.11)

βleft,t+1 =
βleft,t

2m + 1
+

2πω′k1

2m + 1
(3.12)

Similarly, if the next move is to go leftward, there are two cases (the read-write
head can not go leftward if it is at the left end-mark):

1 If k1 = k2, i.e., the head is at the right end-mark:

βcurrent,t+1 =
2πωk1−1

2m + 1
(3.13)

βright,t+1 =

{
2·2π

2m+1 if ω′k1
= 2

2πω′k1
2m+1 + 2·2π

(2m+1)2 if ω′k1
6= 2

(3.14)

βleft,t+1 = (βleft,t − 2πωk1−1

2m + 1
)(2m + 1)(3.15)

2 If 1 < k1 < k2:
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βcurrent,t+1 =
2πωk1−1

2m + 1
(3.16)

βright,t+1 =
βright,t

2m + 1
+

2πω′k1

2m + 1
(3.17)

βleft,t+1 = (βleft,t − 2πωk1−1

2m + 1
)(2m + 1)(3.18)

With selection controllers, the system can change the rotational positions of
Dcurrent, Dleft and Dright from βcurrent,t, βleft,t and βright,t to βcurrent,t+1, βleft,t+1

and βright,t+1 respectively according to the recursive equations described above.

3.4. Putting It Together. With mechanical components that can simulate the
transition function and the tape of a universal TM, the frictional mechanical system
that simulates the universal TM is almost immediate. The movements of the objects
in this system are controlled by the rotations of the sequencer. In each cycle of
rotation of the sequencer, the frictional mechanical system will finish the simulation
of one step of the universal TM.

At the beginning of each cycle, the symbol at the current head location is decided
depending on the rotational position of Dcurrent. According to the current symbol
as well as the current state recorded by Dstate, the control component will make a
sequence of moves and then decide (i) the next state, (ii) the symbol replacing the
current symbol and (iii) the next move of the tape head. The tape component will
then make a sequence of moves to change the rotational positions of Dcurrent, Dleft

and Dright according to the symbol replacing the current symbol and the next move.
This finishes the simulation of one step of the computation of the universal TM.

Initially, Dstate is set at the orientation encoding the start state of the TM. The
orientations of Dcurrent, Dleft and Dright also correspond to the initial status of the
read-write tape. The simulation for the computation of the universal TM terminates
when the rotational position of Dstate is found to be corresponding to the accepting
or rejecting state of the universal TM (we call these rotational positions terminating
orientations) at the beginning of a rotational cycle of the sequencer.5

Herewith we have proved the following theorem:
Theorem 3.1. For any universal TM M , a frictional mechanical system can be

constructed which has the property that, for any input string ω of M , the objects to
the system can be set in a corresponding initial configuration so that a specified final
configuration can be reached if and only if M accepts ω.

As M is a universal TM, our frictional mechanical system can be used for general-
purpose computing. Thus, it has the computational power of any conventional elec-
tronic computer.

4. A Frictional Mechanical System with Error. As mentioned in the in-
troduction of this paper, our mechanical frictional system can simulate a universal
TM without any error only if the system can be constructed and work exactly as it
is specified. In the presence of errors, it is not possible to record the current configu-
ration of the universal TM by the rotational positions of Dstate, Dcurrent, Dleft and

5Observe that Dstate might be at a terminating orientation momentarily as it rotates around.
However, if at the beginning of a rotational cycle Dstate stays at a terminating orientation, this
means that the universal TM has reached an accepting or rejecting state.
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Dright exactly as it is. Therefore, the computational power of the frictional mechan-
ical system is restricted as the errors in the rotational positions of these discs may
be accumulated significant enough to induce incorrect result in the simulation of the
universal TM.

We use ε to denote the upper bound for the error in an angle which occurs in a
single mechanical operation. ε is determined by the degree of accuracy in constructing
mechanical devices as well as measuring rotational (and transitional) displacements.

4.1. A Constant Size Frictional Mechanical System in ε-error Model.
We first discuss a frictional mechanical system in this ε-error model; this system has
exactly the same structure as the system in the exact model and therefore it only has
a constant number of parts.

Let β′state,t denote the correct angle of Dstate at the beginning of the t-th rotational
cycle if the frictional mechanical system has no error. Further, let ∆state,t =| β′state,t−
βstate,t |, i.e., ∆state,t is the error in βstate,t. β′current,t, ∆current,t, β′left,t, ∆left,t,
β′right,t and ∆right,t are defined accordingly.

In each rotational cycle, it takes a sequence of angle operations to generate each
of βstate,t+1, βcurrent,t+1, βleft,t+1 and βright,t+1 in the frictional mechanical system.
Each operation involves in adding an angle to (or deducting an angle from) the ro-
tational position of a disc, multiplying an angle by a constant factor, or a non-linear
mapping. It is easy to see that there exists two constants c1 and c2, such that, if the
error in a rotational position is ∆, after any single operation, the error is bounded
by c1∆ + c2ε. Further, as in each cycle the number of operations performed to get
βcurrent,t+1, βright,t+1, βleft,t+1 and βstate,t+1 is bounded by a constant, we can as-
sume that there are two constants C1 and C2 such that: ∆state,t+1 < C1∆state,t+C2ε,
∆current,t+1 < C1∆current,t + C2ε, ∆right,t+1 < C1∆right,t + C2ε and ∆left,t+1 <
C1∆left,t + C2ε.

For simplicity, we assume C1, C2 > 2.
There are only m valid values for β′current,t+1, (i.e., 0, 2π/(2m + 1), · · · , 2(m −

1)π/(2m+1)) and the difference between any two valid values is at least 2π/(2m+1).
Therefore, as long as ∆current,t+1 < π/(2(2m + 1)), a selection controller can be
used to determine β′current,t+1 from βcurrent,t+1. This means that βcurrent,t+1 can
be corrected at the beginning of each cycle, given that ε < d1/m for some constant
d1 > 0.

The same analysis applies to βstate,t+1: if ε < d2/σ for some constant d2 > 0,
βstate,t+1 can be corrected at the beginning of each cycle. Therefore, only the errors
in βleft,t and βright,t may be accumulated to the next cycle. As at each step, βleft,t

and βright,t are only used to distinguish ωk1−1 and ωk1+1, errors in βleft,t and βright,t

will not cause any incorrectness if they are less than π/(2(2m + 1)).
Observe that if the read-write head reaches the left end-mark, the error in βleft,t

will be discarded. This is because when the head moves rightward from the end-mark,
none of βcurrent,t+1, βright,t+1 and βleft,t+1 will depend on βleft,t as shown in (3.7),
(3.8) and (3.9). Similarly, if the read-write head reaches the right end-mark, the error
in βright,t will be discarded too. Therefore, if the head of the universal TM visits the
left and right end-marks periodically during the computation, the errors in βleft and
βright will be corrected periodically.

We define another TM M ′. M ′ will simulate the computation of M . The dif-
ference between M ′ and M is that, each time after M ′ finishes simulating M by a
constant number K of steps of computation, (this constant will be specified later,)
the head of M ′ will make a sweep of the tape. By “sweep,” we mean that it will first
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move leftward until it reaches the left end-mark; then it will move rightward until
it reaches the right end-mark; afterwards, it will move leftward again and return to
the location where it was before the sweep. After it finishes the sweep, M ′ will start
simulating the next K steps of the computation of M . It is easy to see that M ′ has
the property that, at any time, if the current working space is s, the head of M ′ will
reach the left and right end-marks within at most 2S + 2K steps.

Clearly, M ′ is equivalent to M in the sense that it decides exactly the same
language as M does. Therefore, to simulate M , it suffices to construct a frictional
mechanical system that can simulate M ′. For any input string ω of M ′, if M ′ decides
ω in space S, the errors in βleft and βright will be accumulated through at most
2S + 2K steps before they are discarded.

Thus, if the errors in βleft and βright accumulated in 2S + 2K steps can be
bounded by π/(2(2m + 1)) (otherwise incorrect values of ωk1−1 and ωk1+1 might be
used), it will not induce any incorrect result in simulating the universal TM M ′ (and
thus in simulating M) on input string ω.

Suppose at the t-th step the read-write head moves rightward from the left end-
mark. As the accumulated error of βleft is discarded at this moment, ∆left,t is
bounded by a constant, say, C3ε. As ∆left,t+1 < C1∆left,t + C2ε, we have

∆left,t+2S+2K < C2S+2K
1 ∆left, t + C2

C2S+2K
1 −1

C1−1 ε

< C2S+2K
1 C3ε + C2C

2S+2K
1 ε.

To bound ∆left by π/(2(2m + 1)), it suffices to let

ε <
1

2(2m + 1)(C3C
2S+2K
1 + C2C

2S+2K
1 )

< d · 2−c(S+K)

for some constants c and d.
If we let K be 1, M ′ will sweep the tape after each step of simulating M . There-

fore, for any input string ω, it will take at most (2S + 1)T steps for M ′ to decide ω
if M decides ω in time T and space S. Since S ≤ T , the total time used by M ′ is
bounded by (2T + 1)T . Hence, we have the following theorem:

Theorem 4.1. For any universal TM M , a frictional mechanical system with er-
ror can be constructed to simulate M . It has the property that, for any space bound S,
if the single-operation error of the system, ε, is bounded by min{d · 2−cS , d1/m, d2/σ}
for some constants c, d, d1 and d2, then given any input string ω that M decides
in space bound S, the frictional mechanical system will reach a distinguished final
configuration from an initial configuration encoding ω if and only if M accepts ω.
Further, the frictional mechanical system will take at most (2T + 1)T cycles to finish
the computation if M decides ω in T steps.

If we let K = S, M ′ will simulate M by S steps between two consecutive sweeps.
Thus, it will take at most three times as much time as M takes to finish the computa-
tion. The disadvantage is that now M ′ (and hence our frictional mechanical system)
depends on S. For different value of S, a different frictional mechanical system needs
to be constructed to simulate M .

With some additional reasonable assumption, we can show that a periodic sweep-
ing is not necessary. Given that ε = O(2−cS), if M can decide an input string ω in
space S, our frictional mechanical system will finish simulating M with the correct
result. Due to the length of the proof, we will include it in the appendix.
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4.2. A Frictional Mechanical System in ε-error Model with ε = Ω(1).
The analysis of the above system implies that 1/ε will have to increase exponentially
as S increases to maintain the correctness of the frictional mechanical system. If in a
frictional mechanical system O(S) discs instead of three discs are used to encode the
contents of the tape, each representing one cell, this frictional mechanical system in
ε-error model can simulate the universal TM M with space bound S where ε = Ω(1).
This is because now each disc has only constant number of valid rotational positions
and selection controllers can be used to distinguish the correct value represented by
the disc. This is better than the previous result in the sense that 1/ε does not increase
as S increases. However, the frictional mechanical system is now dependent on S, as it
needs S discs to encode the tape. In other words, this model of frictional mechanical
systems is a digital computer, just like the Analytical Engine. If we want to increase
the computational power of the frictional mechanical system by using larger space
bound S, we will have to add more discs used to represent the tape.

More specifically, for the k-th cell of the tape, four discs are used to represent
the current state of the cell: Dk,symbol represents the symbol in the current cell;
Dk,head indicates whether the read-write head is located at this cell; D′

k,head indicates
whether the read-write head was located at this cell at the end of last step; and Dk,next

indicates the next move of the head. Also, for each cell, there is a set of non-linear
mapping devices which implement the transition function. We call all the parts used
to represent the k-th cell the k-th cell component and denote it by Ck. In addition,
there is a single disc Dstate which records the current state of the universal TM.

At the beginning of each rotational cycle of the power disc, both Dk,head and
D′

k,head are set at π/4 if the head is located at the k-th cell or 0 if not. Dk,symbol is
set at 2iπ/(2m + 1) if the symbol in the k-th cell is i. And Dstate is set at jπ/(2σ),
indicating that the current state of the TM is qj . Then, if the rotational position of
D′

k,head is π/4, the rotational position of Dk,symbol will be changed to 2i′π/(2m + 1)
where i′ = δ2(qj , i). If the rotational position of D′

k,head is 0, Dk,symbol will be clamped
so that its rotational position will not be changed. Also, the rotational position of
Dk,next is set at 0 if the next move is to go leftward and π/4 if the next move is to
go rightward.

The only thing remaining is to change each Dk,head accordingly. More specifically,
for each k, if the rotational position of Dk,head is π/4, (i.e., the head is at the k-th
cell,) Dk−1,head (or Dk+1,head) will be changed to π/4 if Dk,next is set at 0 (or π/4,
respectively) while Dk,head will be reset to 0; if the rotational position of Dk,head is
0, Dk,head, Dk−1,head and Dk+1,head will be clamped.

The problem is that there will be some conflicts in the movements of different
components. For example, suppose the current head is located at the k1-th cell.
Then, k1-th component will try to change Dk1−1,head in case the next move is to go
leftward. However, the (k1−1)-th component itself will try to clamp Dk1−1,head as the
rotational position of D′

k1−1,head is 0. To resolve this problem, we divide the S head
components into three groups so that Ck belongs to the (k mod 3)-th group. First,
the components in group 0 will be activated to change all the Dk,heads according to
the rules described above. Then, the components in group 1 will be activated. And
last are the components in group 2. By this, no two components that have conflict
movement will be activated at the same time.

After all components have been activated, for each k, Dk,head will represent
whether the read-write head is located at the k-th cell at the beginning of the next
step. Then, the rotational position of Dk,head is copied to D′

k,head so that each com-
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ponent is ready for the simulation of the next computation of the universal TM.
It is easy to see that for a frictional mechanical system constructed as above, ε can

be set to a constant regardless of the space bound S, as each disc only has a constant
number of valid orientations and operations only constant number of operations are
needed to finish one step of simulation.

5. Reduction from ATM to the Frictional Mover’s Problem. We prove the
undecidability of the frictional mover’s problem by a reduction from the ATM problem.
It suffices to show that every input of the ATM problem, which is the description of
a Turing machine M along with an input string ω of M , can be transformed to an
input of the frictional mover’s problem, which is a frictional mechanical system with
initial and goal configurations such that (i) the transformation can be performed by
a specified procedure that terminates in a finite period of time; and (ii) M accepts ω
if and only if the frictional mechanical system can reach the goal configuration from
its initial configuration.

Therefore, it is necessary that all the objects in the resulting frictional mechanical
system and their positions can be described by rational coefficients. For example, for
each disc, its radius as well as the location of its center need to be specified by rational
numbers. Similarly, the length, orientation, and location of a bar need to be specified
by rational numbers.

Recall that a universal frictional mechanical system only involves operations that
add to a value (represented by the rotational position of a certain disc) a rational
number, or multiply the value by a rational number. Therefore, we can easily specify
all the discs (including partial discs), bars, and cylinders in the system by rational
coefficients without changing the functionalities of the various devices constructed by
these parts.

The only exception is the irregular discs used in the non-linear mapping devices.
Each irregular disc has to be specified by some irrational coefficients, as indicated by
Equation 2.1. Here we prove the following lemma:

Lemma 5.1. The possibly irrational coefficients specifying the irregular discs
used in the non-linear mapping devices can be replaced by rational numbers without
inducing any error in simulating the universal TM.

Proof. Let D1 be an irregular disc. It can be specified by the following two sets
of parameters: {θ1, θ2, · · ·, θn}, {r1(θ0), r1(θ1), · · ·, r1(θn)}. (Recall that θ0 = 0.)
The boundary of D1 inside the interval of [θi, θi+1] is described by a linear function
r1(θ) = ((θ−θi)·r1(θi+1)+(θi+1−θ)·r1(θi))/(θi+1−θi), whose coefficients are entirely
determined by θi, θi+1, r1(θi), and r1(θi+1). Recall that, in a universal frictional
mechanical system, non-linear mapping devices are used to implement the transition
function δ, which only takes rational numbers as input. Therefore, θ1, θ2, · · · , θn are
all rational numbers. However, the exact value of each r1(θi), denoted by r1,i, could be
an irrational number as the computation involves irrational number

√
2 as well as the

function tan. We replace each r1,i by a rational number r′1,i such that |r′1,i−r1,i| < ε′,
for some small ε′ > 0.

The non-linear mapping device constructed with these “rationalized” parameters
may cause two types of errors, mechanical errors and logical errors. A mechanical
error occurs when two mechanical parts lose contact with, or crush into, each other
while they are supposed to maintain continuous contact. A logic error occurs when the
error of the resulting angle α causes a false interpretation by the universal frictional
mechanical system.

We first show that mechanical errors can be avoided. We let D2 be the coupling
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irregular disc of D1 in the same non-linear mapping device. We need to show that D2

can also be described by rational numbers while keeping r1(θ) + r2(θ + π) a constant
for all θ ∈ [0, 2π]. For each θi, i = 0, i, 2, · · · , n, the radius of D2 at angle θi + π is
computed by r2(θi + π) = |O1O2| − d − r1(θi). Since now r1(θi) is chosen to be a
rational number r′1,i, and |O1O2| and d are all rational numbers, r2(θi+π) is a rational
number. Therefore, the boundary of D2 can be decomposed into n+1 sub-boundaries,
corresponding to angular intervals [π, π + θ1], [π + θ1, π + θ2], · · ·, [π + θn−1, π + θn],
[θn − π, π], respectively. In each interval, the boundary can be specified by a linear
function r2(θ) of θ, just like the case for D1. Therefore, D2 can be described by
rational numbers. For any θ ∈ (θi, θi+1),

r1(θ) + r2(θ + π) = (θ−θi)·r1(θi+1)+(θi+1−θ)·r1(θi)
θi+1−θi

+ (θ−θi)·r2(θi+1+π)+(θi+1−θ)·r2(θi+π)
θi+1−θi

= (θ−θi)(r1(θi+1)+r2(θi+1+π))+(θi+1−θ)(r1(θi)+r2(θi+π))
θi+1−θi

= |O1O2| − d

This implies that irregular disc D2 as described above still completely “complements”
D1 as defined in Subsection 2.6. Therefore, during each operation D1 and D2 maintain
continuous contact with the horizontal bar but do not compress it, thus causing no
mechanical error.

Next we show that any mechanical error can be corrected. With the “rationalized”
non-linear mapping device, when the input angle is θi, the output angle is not exactly
αi, but a value α′i very close to αi. Since non-linear mapping devices are used to
implement the transition function, each αi is a rational number as it encodes either
a symbol or a state. Further, there exists a constant ε′′ such that |αi − αj | > ε′′ if
αi 6= αj . Here = c · min{ 1

σ , 1
m}, where c = Ω(1). Therefore, there exists another

constant c′ = Ω(1) such that |αi−α′i| < ε′′
3 for all i, if ε′ < c′ ·min{ 1

σ , 1
m} ·R. Hence,

a selection controller is able to find out the correct value of αi from α′i, as α′i is closer
to αi than to any other valid value.

This finishes the proof.
With this lemma, we have:
Theorem 5.2. The frictional mover’s problem is undecidable.

6. Conclusion. In this paper we introduced frictional mechanical systems and
proved that a universal frictional mechanical system can simulate the computation
of a universal Turing Machine. We also gave some results for the case where there
are limited errors for the mechanical parts in the system. Our work implies that the
frictional mover’s problem is undecidable. It is, however, unclear to us what is the
implication of our work to building nano-computers at the macro-molecule level when
the nanotechnology further matures.
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Appendix A. Error Bound for βright and βleft under Additional As-
sumption.

We have proved that by forcing the read-write head to visit the left and right
end-marks periodically, the errors in βleft and βright can be discarded after certain
number of steps so that they will not affect the result of simulating the universal TM.
Here, we will show that, with the following assumption, there is no need for periodic
sweeps of the tape.

Assumption 1. For any operation that will multiply an angle by a constant factor
C, if before the operation the error in the angle is ∆, after the operation, the error
will become C∆ + kε for some constant k.

Under this assumption, an error in an angle θ will be reduced if the operation is
to reduce θ by a constant factor (i.e., C < 1).

Now we will examine how the error in βright is accumulated in each step us-
ing this assumption. we decompose ∆right,t into two components: ∆1

right,t+1 and
∆2

right,t+1. The first component is due to ∆right,t, and the other component is the
error which occurs during the angle operations in this cycle. As in one cycle the
number of operations to generate βright is bounded by a constant number, we can
assume ∆2

right,t+1 ≤ C ′1ε for some constant C ′1. ∆1
right,t+1, however, is determined by

∆right,t as well as the angle operation on βright,t to generate βright,t+1.
If the next move is rightward, according to (3.8) and (3.11), βright,t is multiplied

by a factor of (2m+1) and then added to another angle to get βright,t+1. Therefore, the
error in βright,t is amplified by a factor of (2m+1), i.e., ∆1

right,t+1 = ∆right,t ·(2m+1).
Similarly, if the next move is leftward, we have ∆1

right,t+1 = ∆right,t/(2m + 1), as in
(3.14) and (3.17) βright,t+1 has a component βright,t/(2m + 1).

Therefore, in each cycle, the error in βright which is accumulated in previous
cycles is either amplified by a factor of (2m + 1) or reduced to 1/(2m + 1) depending
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on the move of the head. Hence we have the following recursive function:

∆right,t+1 ≤ f(t)∆right,t + ∆2
right,t+1(A.1)

Here f(t) is defined as follows:

f(t) =
{

2m + 1 if the move of the head in the t-th step is rightward
1

2m+1 if the move of the head in the t-th step is leftward

∆right,1 is the error in βright at the beginning of the computation. This error is
due to the inaccuracy in setting the starting orientation of Dright. We can assume
that ∆right,1 ≤ C ′2ε.

According the recursive equation, we can compute ∆right,t′+1 for any t′:

∆right,t′

≤ f(t′ − 1)∆right,t′−1 + ∆2
right,t′

≤ f(t′ − 1)(f(t′ − 2)∆right,t′−2 + ∆2
right,t′−1) + ∆2

right,t′
...
...

≤ ∆right,1(
∏t′−1

i=1 f(i)) +
∑t′

j=2 ∆2
right,j(

∏t′−1
i=j f(i))

For any input string ω of M , we let S denote the working space M need to use to
decide ω. It is easy to see that, for any t′ and j,

∏t′−1
i=j f(i) ≤ (2m + 1)S as the right

moves could outnumber the left moves at most by S. Therefore, ∆rught,t′ is bounded
by

∆right,1(2m + 1)S +
t′∑

j=2

∆2
right,j(2m + 1)S ≤ C ′2ε(2m + 1)S + 2cSC ′1ε(2m + 1)S

as t′ < 2cS for some constant c.
To bound ∆right by 1/(2(2m + 1)) (so that at each cycle correct value of ωk1+1

could be retrieved from βright), we only need

ε ≤ 1
2(2m + 1)

· 1
(ε(2m + 1)S)(C ′2 + 2cSC ′1)

< d′ · 2−c′′S

for some constants c′′ and d′.
We have thus proved the following theorem:
Theorem A.1. For any universal TM M , a frictional mechanical system with er-

ror can be constructed to simulate M . It has the property that, for any space bound S,
if the single-operation error of the system, ε, is bounded by min(d′ ·2−c′′S , d1/m, d2/σ)
for some constants c′′, d′, d1 and d2, then given any input string ω that M decides
in space bound S, the frictional mechanical system will reach a distinguished final
configuration from an initial configuration encoding ω if and only if M accepts ω.
Further, the frictional mechanical system will take T cycles to finish the computation
if M decides ω in T steps.


