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Abstract. Deflation techniques are typically used to shift isolated clusters of small eigenvalues in order
to obtain a tighter distribution and a smaller condition number. Such changes induce a positive effect in the
convergence behavior of Krylov subspace methods, which are among the most popular iterative solvers for
large sparse linear systems. We develop a deflation strategy for symmetric saddle point matrices by taking
advantage of their underlying block structure. The vectors used for deflation come from an elliptic singular
value decomposition relying on the generalized Golub-Kahan bidiagonalization process. The block targeted by
deflation is the off-diagonal one since it features a problematic singular value distribution for certain applications.
One example is the Stokes flow in elongated channels, where the off-diagonal block has several small, isolated
singular values, depending on the length of the channel. Applying deflation to specific parts of the saddle point
system is important when using solvers such as CRAIG, which operates on individual blocks rather than the
whole system. The theory is developed by extending the existing framework for deflating square matrices before
applying a Krylov subspace method like MINRES. Numerical experiments confirm the merits of our strategy
and lead to interesting questions about using approximate vectors for deflation.
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1. Introduction. Advanced simulation tasks often require the numerical solution of partial
differential equations (PDE) with fine resolution such that the discretization leads to very large,
sparse linear systems. For many practical applications, the computational cost of the linear
solvers is among the critical factors, since it can be dominating and a bottleneck in the overall
cost of the simulation and thus its speed. While direct methods with their generality and high
accuracy often represent the first choice, they may not be efficient or their application may even
become unfeasible due to their high computational complexity. As alternative, iterative solvers
that successively improve an initial guess of the solution vector can be used. These solvers can be
significantly cheaper, also as the iteration can be stopped at any time, when only a moderately
precise solution is needed. However, they rarely work well in a black-box manner and have to
be tailored to the given matrix properties that may be hard to identify.

One widely used class of iterative solvers are Krylov subspace methods. In the case of
algorithms designed for symmetric problems, their speed of convergence is linked to the con-
ditioning or, more precisely, the spectral properties of the system matrix [39, 7]. To obtain
fast convergence, it is desirable to have clustered eigenvalues that are bounded away from zero.
When this is not the case, the method converges slowly or can even stagnate [30]. The general
strategy is then to help the iterative solver by manipulating the linear system, for example by
preconditioning. Preconditioning aims to improve the spectral properties of the matrix, such
that the linear system becomes easier to solve [7]. Depending on how much one wishes to invest,
the preconditioner can be as simple as a diagonal matrix, or as sophisticated as a matrix rep-
resenting the eigenvectors associated with the smallest eigenvalues. An alternative technique to
preconditioning is known as deflation. It is similar, in the sense that it affects the spectrum of
the matrix and makes the system easier to solve, by leading to a better clustering of the eigen-
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values. Unlike preconditioning, it has a more targeted effect, shifting only the outliers such that
they are either zero or closer to the main cluster. The rest of the spectrum is left unchanged.
Note that this is not the only definition associated with the idea of deflation. For a concise
but informative chronological overview of the developments related to deflation we refer to [24].
A notable work describing deflation and augmentation methods under the wider umbrella of
recycling is the more recent survey [42], where significant attention is also given to sequences
of (shifted) systems. An example of such a Krylov method with recycling is RMINRES, used
successfully in an application of electrical impedance tomography (see [31]).

In this paper, we focus on iterative solvers for matrices in saddle point form, as they appear,
for example, in the discretization of PDEs in incompressible fluid flow, which is a longstanding
research focus in our group [27, 28, 29, 12]. In particular, we focus on fluid flow in a thin-
elongated channel domain, where the ratio of length and the height is large, as described by the
Stokes equation

−∆u⃗+∇p = f⃗

∇ · u⃗ = 0.

The exact definition, boundary conditions and special properties of our test problem are given in
Section 3. Here, we only want to sketch the behavior and difficulty of the chosen iterative solver
and the aim of our work. When discretizing the above equation by, e.g., finite differences or a
stable class of finite elements, we obtain a linear system with a matrix of 2× 2 block structure

(1.1)

[
W A
AT 0

] [
u
p

]
=

[
g
r

]
,

with W ∈ Rm×m being symmetric and positive definite (SPD) and A ∈ Rm×n, (n < m) having
full column rank. The vectors are u ∈ Rm,p ∈ Rn,g ∈ Rm and r ∈ Rn, with u and p
representing velocity and pressure, respectively. This saddle point system matrix is indefinite
and thus has positive and negative eigenvalues. An overview about solution methods, including
segregated methods that exploit the block structure of the system and monolithic methods that
are applied to the system as a whole, is given in [8]. While it is known that, e.g., monolithic
multigrid methods can achieve excellent performance for special saddle point problems [26],
a block version offers the possibility to re-use existing solvers. In the following work, we are
interested in solving the above linear system by Krylov subspace methods. Since the system
is symmetric, we could apply as a first choice the well-known minimum residual (MINRES)
method monolithically. Its convergence curve is characterized by a plateau, i.e., a stage where
the residual we monitor at each iteration does not decrease significantly over a certain number
of iterations depending on the channel length.

The issue of the plateau has been observed by other authors as well, even for other kinds
of Stokes problems (see [34]). In particular, it has been shown that in practice, preconditioning
based on the pressure mass matrix clusters most eigenvalues, but not the small outliers. The
condition number and solver convergence are visibly improved, but the plateau remains. To
tackle this specific issue, the targeted effect of deflation is especially well suited. Effective
preconditioners for MINRES can be built by combining ideas from deflation, multigrid and
reusing spectral information (see [37]), assuming a setting where the leading block of the matrix
is ill-conditioned.

The same tendency to stagnate (see Figure 2a) appears when we use the CRAIG version of
the generalized Golub-Kahan bidiagonalization process [2], our solver of choice. This segregated
method relies on exploiting the block structure of the indefinite system. In a series of papers
[27, 28, 29], the authors have shown that this solver exhibits fast convergence when applied to
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certain saddle point systems and in particular to the Stokes problem on the unit square and
a rectangular domain. In an attempt to explain however the plateau for the thin-elongated
channel flow problem and thus increasingly slow convergence, we observe that the off-diagonal
block A becomes increasingly ill-conditioned. In particular, the conditioning varies with certain
physical parameters, such as the ratio between the length and width of the channel. A related
analysis shows that this ratio impacts the condition number of the Schur complement [9].

The contribution of this article is the definition of a deflation strategy for the CRAIG
iterative solver, that extends the framework in [17]. It has been shown that the CRAIG solver is
equivalent to the Conjugate Gradient (CG) method on the Schur complement equation (see [35,
Chapter 5]). As such, we draw from the existing knowledge about CG and always consider the
effects of our procedures on the Schur complement, either implicitly or explicitly. As pointed
out above, we can focus on Stokes problems where the condition number itself may not seem
problematic, since this can be improved even with simple preconditioners. Instead, we restrict
our attention to the presence of outliers in the spectrum, to better isolate the impact of deflation.

Following [17], we define the operators necessary for deflation and the subsequent correc-
tion. Through projection, a certain subspace can be removed from the range of the matrix. This
subspace is chosen to be the one that the iterative solver has difficulties operating with. The
resulting deflated system is solved quickly, yielding a part of the solution to the initial problem.
The complete solution is found through a correction, by which we reintroduce the information
initially removed by deflation. The basis for the deflated subspace is typically the set of eigen-
vectors corresponding to the outliers in the spectrum. The basis itself can be different, so long
as the vectors span the required subspace. As such, the projectors can also be built by other
means, such as in [33], where multigrid and domain decomposition approaches are discussed.

Our aim is now to deflate the Schur complement implicitly, without constructing it explicitly.
As such, we will not employ its eigendecomposition, but rather the related elliptic singular value
decomposition of the off-diagonal block (see [2]). Although we define deflation using exact infor-
mation about the decomposition, in practice it is rarely the case that this is available. As such,
we also study the implications of using approximate vectors. For computing this information in
an iterative way, we extend two already existing algorithms. The first is the Augmented Lanc-
zos Bidiagonalization by Baglama and Reichel [4]. Our extension relies primarily on replacing
the original, standard inner-products such that the resulting algorithm realizes the generalized
Golub-Kahan bidiagonalization [2]. Following this change, the output is a set of approximate
elliptic singular triplets. For an augmented (not generalized) Golub-Kahan bidiagonalization in
the context of the LSQR solver where deflation is carried out using harmonic Ritz values, see
[5]. The second algorithm we extend is inspired by eigCG, which was defined by Stathopoulos
and Orginos [43]. Their version solves a linear system with CG and, at the same time, uses the
vectors that the solver builds to compute approximate eigenpairs (also known as Ritz pairs).
With the same objectives, we adapt the CRAIG algorithm of Arioli [2] such that, as it solves a
saddle point system, it also computes approximate elliptic singular triplets.

One alternative choice for tackling saddle point systems is to treat the matrix as a single
unit and solve the associated system with MINRES [8]. It has been shown that CRAIG needs
two times less iterations to converge than MINRES, when the latter is paired with a particular
block diagonal preconditioner, which makes the two algorithms comparable in terms of cost
per iteration [2]. We perform numerical experiments to test whether this 2:1 ratio still holds if
deflation is applied to both algorithms.

Throughout the paper, we will illustrate theoretical and practical aspects by making use
of two test problems chosen for their simplicity and their specific features. Both represent a
kind of Stokes flow in a long and thin rectangular channel, but with different definitions and
discretizations. One of them is designed by us for the purpose of exposing the algorithmic
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features, while the other is created with the software package Incompressible Flow & Iterative
Solver Software 1 (IFISS).

The paper is structured as follows. In Section 2, we extend the deflation framework presented
in [17] to the case of saddle point systems, operating with the individual blocks of the matrix.
This deflation is achieved using exact spectral information, following an elliptic singular value
decomposition. Next, in Section 3, we introduce our test problems, which we use in the remainder
of the article for exemplification. We consider some theoretical consequences of deflation using
approximate spectral information in Section 4. Sections 5 and 6 are devoted to algorithms
for computing the elliptic singular value decomposition. In Section 7, we numerically compare
deflated MINRES and deflated CRAIG. We also briefly compare deflation and preconditioning
using the pressure mass matrix in Section 8, before closing with the conclusions in Section 9.

2. Deflation definition. In this section, we introduce the steps to be taken when applying
deflation to a saddle point problem, as well as the necessary prerequisites. In addition to the
description of the two main steps of projection and correction, we now provide the formal
setting and definition. The main tool we will need is the elliptic singular value decomposition
(see [2]). For the time being, we assume the case where this decomposition provides us with
exact information, which is subsequently applied via deflation.

Since we require A to have full column rank, the system in Equation (1.1) has a unique
solution. Our solver of choice is CRAIG (given in Appendix A), which relies on the generalized
Golub-Kahan bidiagonalization introduced by Arioli [2]. In particular, we are interested in
accelerating its convergence for a class of problems to be described in Section 3. As noted in
[35, Chapter 5], there is an equivalence between using CRAIG on Equation (1.1) and using CG
on the Schur complement equation

(2.1) ATW−1Ap = ATW−1g − r,

with S = ATW−1A being the Schur complement. According to the literature (see e.g. [3]), CG’s
convergence depends on the eigenvalue distribution of the matrix it operates on, in this case S.
Clustered values are associated with fast convergence, whereas scattered values, particularly the
presence of outliers, lead to slow convergence. Removing these small outliers from the spectrum
via deflation can improve the convergence behavior, as seen in [33]. This represents our core
strategy: we employ deflation to achieve a better eigenvalue clustering for the Schur complement,
which translates to faster CRAIG convergence. The challenge is to do this without building S
explicitly.

One way to achieve this goal is as follows. By performing a Cholesky decomposition of the
(1,1)-block, we have W = LLT , W−1 = L−TL−1 and define

(2.2) Ã = L−1A, y = LTu, f = L−1g.

We can express the Schur complement equation (2.1) as a normal equation

(2.3) ÃT Ãp = ÃT f − r.

There is a connection between the singular value decomposition of Ã and the eigendecom-
position of S: the right singular vectors of Ã are the eigenvectors of S and the singular values
are the square roots of the eigenvalues. Then, we can implicitly deflate S by relying on Ã.

An alternative to using the SVD of Ã follows an equivalence given in [2]. Note that the

author considers a more general definition of Ã as Ã = W− 1
2AN− 1

2 , for a symmetric and
positive definite matrix N ∈ Rn×n.

1http://www.cs.umd.edu/ elman/ifiss3.6/index.html



DEFLATION FOR SYMMETRIC SADDLE POINT SYSTEMS 5

Let the following be a partial elliptic (generalized) SVD of A:

(2.4) AV = WUΣ, ATU = VΣ, UTWU = Ik, VTV = Ik,

with k < n triplets, and Ik being the k × k identity matrix. Additionally, A = WUΣVT only
when k = n. The columns of V ∈ Rn×k are the right elliptic singular vectors, the columns of
U ∈ Rm×k are the left elliptic singular vectors, and the entries of the diagonal matrix Σ ∈ Rk×k

are the elliptic singular values. Note that the left vectors are not orthonormal in the Euclidean
sense, but with respect to an inner product and norm defined by W

⟨ui,uj⟩W = uT
i Wuj = 0, ∀i ̸= j,

∥u∥W =
√
⟨ui,uj⟩W = 1.

The equivalence given in [2] states that the elliptic SVD (ESVD) of A is linked to the SVD
of Ã: the values and the right vectors of both decompositions coincide. For the left vectors
we have U = L−T Ũ, with U being the left elliptic singular vectors of A and Ũ being the left
singular vectors of Ã. Finally, considering this equivalence with that concerning Ã and S, it
follows that we can deflate the Schur complement implicitly, by referring to the ESVD of A.

Given Equation (2.4), a partial ESVD of A with k triplets, we define the approximate
left-inverse of A as

(2.5) M = VΣ−1UT ,

the W−orthogonal projector

(2.6) P = Im −AM,

and the (Euclidean) orthogonal projector

(2.7) Q = In −MA.

Then, we define the deflated system as

(2.8)

[
W AQ

QTAT 0

] [
û
p̂

]
=

[
g

QT r

]
,

whose solution we correct by

(2.9) p = Qp̂+Mg −MWMT r, u = PT û+MT r,

to retrieve the solution of the original problem in Equation (1.1).
Deflation differs from preconditioning in one important way. Since rank(Q) = n−k, apply-

ing Q does not preserve the solution set, i.e. the systems in Equation (2.8) and Equation (1.1)
are not equivalent, making the correction in Equation (2.9) necessary. The correction terms add
information complementary to that found by solving the deflated system.

It is also possible to define a deflated system similar to that in Equation (2.8) by including
the action of P, but it can be shown that the resulting Schur complement is the same as that
of Equation (2.8). With P ∈ Rm×m,Q ∈ Rn×n and m > n, it is preferable to avoid applying P
whenever possible, due to its size.

Theorem 2.1. Applying deflation as in Equation (2.8) and correction as in Equation (2.9)
leads to the solution of the initial saddle point system Equation (1.1).
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Proof. The proof follows by inserting the corrected solution from Equation (2.9) into the
initial saddle point system in Equation (1.1) and making use of the equalities in Equation (2.8),
the definitions in Equations (2.5)–(2.7) and the properties of the projectors

(2.10) PW = WPT ; PA = AQ; QQ = Q.

We conclude this section with a note on alternative choices of information to be used in
defining deflation. The intuitive one is to leverage information about the spectrum via a decom-
position, as we have shown above. Another choice would be using multigrid operators (see [33]).
If we have a left basis U (W-orthogonal) and a right one V orthogonal) which are not sets of
elliptic singular vectors, then we set Σ = UTAV. If we additionally require that AV = WUΣ,
then the resulting M,P and Q will satisfy the conditions in Equation (2.10). As such, following
Theorem 2.1, deflation and correction will find the solution of the initial saddle point system.
The choice of U and V is free, as long as their columns span the intended subspaces, i.e. those
spanned by the elliptic singular vectors corresponding to the values that we intend to deflate.

3. Deflation effects on two test problems. In this section, we introduce the saddle
point test cases in order to motivate our choices regarding deflation. Our focus is on cases
that exhibit slow convergence, such as systems arising from the discretization of incompressible
flow problems in elongated domains. It is known that increasing the ratio between the width
and length of the domain degrades the conditioning of the Schur complement [9]. We will see
that this is due to more small outliers that appear in the spectrum, which also drift away from
the main cluster of values. We explore different kinds of discretization and geometries. We
analyze the spectra associated with these problems and see how deflation leads to faster solver
convergence.

3.1. A simplified model of flow in a 1D channel. The Stokes system in its continuous
form is given by

−∆u⃗+∇p = f⃗(3.1)

∇ · u⃗ = 0.(3.2)

The first problem is motivated by Stokes flow, but is deliberately constructed to highlight the
phenomenon of stagnation in a Krylov method via a simple model system. To this end, we
consider transport in a long and thin channel, as illustrated in Figure 1. The discrete system
results from the classical Marker-and-Cell (MAC) finite difference scheme [25]. Here the flow
enters a channel from the left and leaves at the right. The channel is modeled by a collection of
n cells in the horizontal direction, but only two cells vertically. As illustrated in Figure 1, only
the horizontal velocities vti and vbi , i = 0, 1, . . . , n are used. They represent the velocities at the
mid-edge position of the top and bottom cells, respectively.

The boundary conditions are set to represent an inflow on the left end. Specifically, we
impose an inflow only through the upper half of the boundary, vt0 = 1, vb0 = 0. Similarly, outflow
is enforced on the right channel end, but only through the lower cell vtn = 0, vbn = 1. This setup
is chosen to avoid trivial solutions. The velocity values corresponding to these Dirichlet type
boundary conditions can be eliminated and will then appear in the right hand side vector of
the reduced linear system. The discrete equations represent a simplified form of momentum
conservation taking the form

(3.3)
−vti−1 + 4vti − vti+1 − vbi = 0

−vbi−1 + 4vbi − vbi+1 − vti = 0

}
, for i = 1, . . . , n− 1

Note that this setup assumes implicitly that the top and bottom walls are characterized by a
no-slip boundary condition. Consequently, the resulting velocity block W of the saddle point
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Fig. 1: 1D model of an elongated channel, with inflow only through the upper-left cell (vt0) and
outflow only through the lower-right cell (vbn).

system in Equation (1.1) becomes strictly diagonally dominant and well-conditioned. Using the
theorem of Gerschgorin, it is easy to see that its eigenvalues are bounded below by 1, and its
condition number is better than 7, independent of the number of equations n.

Next, the lower block row ([AT 0] in Equation (1.1)) enforces mass conservation for each
pair of vertical cells, by requiring

(3.4) vti − vti−1 + vbi − vbi−1 = 0, for i = 1, . . . , n

The resulting system is as in Equation (1.1). Given this construction, A would be rank-deficient,
reflecting the fact that the pressure is determined only up to a constant. To remedy this in the
discrete system, we additionally replace the first constraint (on i = 1) by a convex combination
between itself and the last constraint and the latter is dropped from the system. Once we
include the treatment of the boundary conditions and constraints as described above, and we
take a row-wise ordering of the unknowns, the entries of the system from Equation (1.1) are

(3.5) W =



4 −1 −1
−1 4 −1 −1

−1 4 . . . −1
. . .

. . .
. . .

−1 4 −1
−1 −1 4 −1

−1 −1 4 . . .

. . .
. . .

. . .


, A =



0.5 −1
1 −1

1 . . .

−0.5 . . .

0.5 −1
1 −1

1 . . .

−0.5 . . .


,

(3.6) u =



vt1
...

vtn−1

vb1
...

vbn−1


, p =

 p1
...

pn−1

 , g =



vt0 = 1
...

vtn = 0

vb0 = 0
...

vbn = 1


, r =

1...
0

 .

In the limit n → ∞, the channel grows to infinite length, while its width stays constant,
or, alternatively, it can be interpreted as staying at constant length but its width shrinking to
zero. Thus, the linear system is not a discretization of a differential equation on a fixed domain.
However, such a change of the domain geometry has an impact on the inf-sup condition or
equivalently, on the smallest eigenvalue of the Schur complement (see [9]), leading it to approach
zero.
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(a) CRAIG convergence curves. Y-Axis: Energy
norm of the relative error (Velocity field).
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(b) Distribution of elliptic singular values.

Fig. 2: Corresponding spectra and CRAIG convergence curves for four 1D channels of lengths
128 , 256 , 512 and 1024 .

Note also that the solution of this particular saddle point system becomes trivial with a
change of variables, involving the sum and difference of each vertical pair of velocity variables,
as a simple analogue to the stream-function-vorticity formulation of the Stokes problem (see
[23]).

Here we do not transform the variables accordingly, but use the original definition of the
variables to exhibit and illustrate a typical CRAIG convergence pattern. When used to solve
the initial system from Equation (1.1), a stagnation in error reduction occurs. This convergence
plateau lasts for a number of iterations roughly equal to a quarter of the channel’s length, as
shown in Figure 2a. Only when the end of the plateau is reached, fast convergence occurs to
then reach the solution quickly. As such, simply by modifying the length of the channel, we can
adapt the difficulty of the problem.

3.1.1. Applying deflation on the 1D channel problem. Since the CRAIG algorithm
is equivalent to that of the Conjugate Gradient (CG) applied to the Schur complement equation,
we can learn more about CRAIG’s convergence behavior by analogy with CG. We know from
[21] that CG’s convergence rate depends on the condition number of the system matrix. For us,
this means studying the eigenvalue distribution of the Schur complement or A’s elliptic singular
values, as defined in Section 2.

In Figure 2b, we illustrate the elliptic spectra of a 1D channel problem as described above,
where the channel length varies between 128 and 1024. The largest values are well clustered
and away from the origin, but the smallest stray from this cluster. These outliers get more
numerous and closer to zero as the channel length increases. In the following considerations,
we focus on the case where this length is 512. If the smallest ten values were deflated, then the
effective condition number, which uses only the nonzero values, would be smaller and CRAIG
would converge in fewer steps. We consider this strategy analogously to the known behavior of
CG [33].

A more detailed look into the problem comes from analyzing the elliptic singular vectors
as well, answering the question ”Which values and vectors do we really need to deflate?”. It
has been shown in [40] that, at each iteration, CRAIG seeks to minimize the error norm of the
primal variable u in Equation (1.1), which also holds for the generalized version we use (see
[2]). We consider the initial error ẽ1, i.e. the difference between the true solution and the first
iterate computed by CRAIG. By expressing this initial error as a linear combination of the left
elliptic singular vectors U of A,

(3.7) Uz = ẽ1,
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(b) Only entries with magnitudes above 10−7.

Fig. 3: Entries of the z vector (see Equation (3.7)), showing how much each left elliptic singu-
lar vector contributes to the initial error.1D channel problem (length=512). Vectors listed in
descending order of the corresponding elliptic singular values.

we can see which of them contribute to this error and how many of them have a large coefficient in
z. These vectors are then good candidates for deflation, since removing them from the problem
reduces the error significantly. Deflating vectors which have small (near zero) coefficients in
z represents an unnecessary expense, as we argue and illustrate below. See [30] for a similar
analysis, but regarding the eigencomponents of the initial error for CG.

We return to our 1D channel problem, apply the ideas described above and plot the entries
of z in Figure 3. Note that in the following examples, we take a descending ordering of the
elliptic singular values and of their vectors. As such, the first entries correspond to the most
dominant vectors, i.e. those associated with the largest elliptic singular values. The rightmost
entries correspond to the vectors associated with the smallest elliptic singular values.

Figure 3a shows that only odd-numbered left elliptic singular vectors are part of the error,
while the coefficients of even-numbered ones are close to machine-zero. A black-box eigensolver
typically delivers vectors corresponding to consecutive values. As such, if we tried to deflate a
group of k vectors from this problem, only every second of them would actually be necessary.

In Figure 3b, we only look at the meaningful entries of z, those above a threshold of 10−7.
It is clear that the highest entries are to the right, which implies that the vectors contributing
the most to the error belong to the smallest elliptic singular values. If we choose to deflate
these vectors and their corresponding elliptic singular values, CRAIG is certain to converge
faster. While it is common in the literature to focus on deflating the vectors associated with
the smallest values, we stress that it is important to first analyze whether these vectors have a
significant contribution to the error. That is, one could express the initial error or residual as
in Equation (3.7), and check whether the corresponding entries in z are the largest, as we have
seen was the case for the problem considered above (see Figure 3b). If the error components
mentioned above are not the largest, the plateau will appear at a later moment, after an initial
stage of faster convergence. For such problems, deflation may not be necessary, if we only need
solutions of limited accuracy, to which we can converge before the onset of the plateau stage.

We conclude this subsection with a convergence plot (Figure 4) showing how deflation helps
in the case of this 1D channel test case. We compare deflating the smallest 10, 50 and 100
values and take the undeflated problem as reference. Unsurprisingly, deflating more values leads
to faster convergence. While it is unrealistic to deflate so many of them, the performance is
predictable once we look at the spectrum in Figure 2b and see how the remaining values are
distributed. We note that even deflating ten values can be very helpful, especially if we only
need a solution of moderate precision.
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Fig. 4: Convergence curves of the CRAIG algorithm for the 1D channel problem after having
deflated a number of elliptic singular values of A. Y-Axis: Energy norm of the relative error
(Velocity field).

3.2. IFISS channel problem. This test case is generated using the Incompressible Flow
& Iterative Solver Software 2 (IFISS) package. The particular scenario that we construct is once
again that of a long and thin channel domain Ω = [−1, L] × [−1, 1], with L > 1, potentially
L≫ 1. This time, however, we employ the Finite Elements discretization Q2-Q1.

The steady Stokes problem here is the Poiseuille flow, with the following boundary con-
ditions: a Dirichlet condition on the inflow (left boundary, Γin = {−1} × [−1, 1] ), a charac-
teristic boundary with zero velocity above and below, also known as no-slip condition (Γc =
[−1, L]× {−1} ∪ [−1, L]× {1}), while the outflow (right, Γout = {L} × [−1, 1]) is described by
the Neumann condition

∂ux
∂x

− p = 0,

∂uy
∂x

= 0.

For this particular problem definition, we have the analytical solution

(3.8)


ux = 1− y2,

uy = 0,

p = −2x+ constant.

See [13] for a more detailed description of this reference Stokes problem.

3.2.1. Applying deflation on the IFISS channel problem. As in Subsection 3.1,
when solving this problem with CRAIG, we can see in Figure 5a how the convergence curve
starts with a plateau having a length depending on the length of the channel.

The elliptic spectrum in Figure 5b shows how, for different channel lengths, the main cluster
of values is contained within the same interval. Only the smallest values become outliers, getting
more numerous and further away from the main cluster. This latter feature explains why the
problem gets increasingly more difficult to solve, with a longer plateau. The first feature,
concerning the cluster, explains why the convergence curve after the plateau is the same in all
three cases. We focus only on the channel of length 20 and will consider the five smallest values
as candidates for deflation.

We also take a look at the elliptic singular vectors, and how present they are in the initial
error for this particular problem. Their coefficients in the linear combination (Equation (3.7))

2http://www.cs.umd.edu/ elman/ifiss3.6/index.html
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(b) Distribution of elliptic singular values.

Fig. 5: Corresponding spectra and CRAIG convergence curves for three IFISS channels of
lengths 10 , 20 and 50 .
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(b) Only entries with magnitudes above 10−7.

Fig. 6: Entries of the z vector (see Equation (3.7)), showing how much each left elliptic singular
vector contributes to the initial error. IFISS channel problem (length=20). Vectors listed in
descending order of the corresponding elliptic singular values.

are plotted in Figure 6. We can see in Figure 6a that many coefficients are close to machine-zero,
including that corresponding to the vector associated with the fourth smallest elliptic singular
value. In Figure 6b, where we focus only on the entries greater than 10−7, we notice how the
rightmost coefficients are larger than the rest, supporting the idea of deflating the vectors of the
smallest elliptic singular values.

Simply from analyzing the spectrum in Figure 5b and the coefficients in Figure 6b, we can
tell that removing the five smallest values should reduce the condition number significantly,
accelerating CRAIG’s convergence. Deflating more values however, is not expected to bring
much additional improvement, since the rest of the values are already well clustered. We test
these assumptions and deflate first five, then 50 values, plotting CRAIG’s convergence history
in Figure 7. Deflating five values completely removed the plateau. Deflating 50 reduced the
number of iterations more than the case of five, but not by much. This is understandable if we
consider that in Figure 6a, more than half of the values after index 715 are already 0, as if they
had already been deflated. The rest are nonzeros, but are small nonetheless, not contributing
much to the error. Deflation sets them to zero and leads to the additional gains shown in
Figure 7.

4. Deflation using approximate elliptic singular triplets. We have seen how deflation
using exact information about the spectrum of the problem can be beneficial by leading to a
better spectral clustering and reducing the number of iterations necessary for convergence.
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Fig. 7: Convergence curves of the CRAIG algorithm for the IFISS channel problem after having
deflated a number of elliptic singular values. Y-Axis: Energy norm of the relative error (Velocity
field).

Finding such exact information, however, can prove to be prohibitively expensive. It is often
the case that one seeks a solution of moderate accuracy and uses an iterative method with a
fairly high tolerance parameter. It seems unreasonable then to invest so much in finding exact
spectral information, only to accelerate finding an inexact solution to the linear system. Luckily,
we can show that this is not necessary and that satisfactory results can be achieved even with
approximate knowledge of the deflation vectors. We analyze the spectrum of the deflated matrix
to see how it changes when we vary the accuracy of the deflation vectors. Then, we compare
the numerical performance of this approximate deflation with that of its exact counterpart.

In the literature, the effects of using approximate deflation have been studied for particular
definitions of the deflation operator and choice of linear solver. The spectrum of the deflated
matrix and its influence on the convergence behavior of GMRES has been analyzed in [41]. In
[18], the authors examine spectral preconditioners, including deflation and coarse grid correction,
and how the resulting spectrum changes as a function of perturbation. Subdomain deflation
combined with variants of the Incomplete Cholesky decomposition as preconditioner and their
effect on the spectrum are discussed in [45].

In this paper, we are interested in how approximate spectral information affects the theory
presented in Section 2. To understand where the inexactness originates from, let us review the
stages of computing the SVD, assuming exact arithmetic.

To find the SVD of a general matrix, three steps are required: a reduction to bidiagonal
form, an SVD (diagonalization) of the resulting bidiagonal matrix and a multiplication of the
matrices from the two previous steps. One algorithm used for the first step is that of Lanczos
[4]. If we need the singular vectors to be orthogonal in a non-Euclidean way, we need to replace
Lanczos’s algorithm with the generalized Golub-Kahan bidiagonalization [2], which redefines
the inner products by using SPD matrices other than the identity. In particular, we require
W-orthogonal left vectors. With this change, what we find are the elliptic singular triplets [2].

In the following relations, we will use the subscript b to denote matrices coming from the
first stage (the bidiagonalization), and the subscript s for those coming from the second one (the
SVD). The final matrices, used to build the deflation operators P, Q and M have no subscript.

We focus on approximate elliptic singular triplets resulting from a decomposition which
includes a partial generalized Golub-Kahan bidiagonalization. Assume we stop the bidiagonal-
ization after η < n steps. Then, for A ∈ Rm×n, we have Ub ∈ Rm×η, Vb ∈ Rn×η, B ∈ Rη×η,
with

(4.1) AVb = WUbB, ATUb = VbB
T + E , UT

b WUb = Iη, VT
b Vb = Iη.
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We refer to E as the residual term, which vanishes only when η = n (and in exact arithmetic),
leading to A = WUbBVT

b . More importantly, when η = n the spectrum of B is the same as
that of A. However, if η < n, then it is only an approximation which improves as η → n and/or
if the bidiagonalization includes a restarting mechanism. Following [4], we can further describe
this term as

(4.2) E = rηe
T
η ,

where rη is the residual vector used to continue the bidiagonalization: βη+1 = ∥rη∥2, vη+1 =
rη/βη+1 and eη ∈ Rη, eη = {0, ..., 0, 1}T ; i.e., eη is taken to be the last vector of the standard
basis for Rη×η.

As stated before, to get our approximate elliptic singular triplets, we perform the SVD of
B, keep only the k target triplets

(4.3) BVs = UsΣ, VT
s Vs = Ik, UT

s Us = Ik.

Above, target denotes which triplets we aim to deflate: either the first (largest elliptic singular
values) or the last (smallest).

The SVD matrices are then multiplied with those from the partial bidiagonalization

(4.4) U = UbUs, V = VbVs.

The approximate elliptic SVD (ESVD) is then

(4.5) AV = WUΣ, ATU = VΣ+ EUs, VTV = Ik, UTWU = Ik.

As a side note, we remark that it is also possible to have an error term E such that AV =
WUΣ+ E, if we consider a different kind of partial bidiagonalization, or simply other sources
of error. While they are not considered in this present work, such cases represent interesting
directions for further research.

For the residual term in Equation (4.5), we obtain

EUs = βη+1vη+1e
T
η Us.(4.6)

It is known that the last components of the eigenvectors of the Lanczos tridiagonal matrix can be
used to track progress when approximating eigenpairs of a symmetric, positive definite matrix
(see [22, 36]). Given the link with the bidiagonalization, this observation can be used for the
SVD as well, as done in [4], leading to a stopping criterion for the iterative procedure needed to
compute such approximate triplets. The GK bidiagonalization we use here is a generalization,
but as seen above, it is still true that the residual term depends on the last row of Us. With
more restarts and/or a larger subspace generated by the GK bidiagonalization, this residual
term diminishes.

We have seen how a partial bidiagonalization leads to a residual term in the ESVD. We turn
now to the deflated matrix PA, where P = Im −WUUT , to see how it changes when relying
on approximate spectral information.

PA = A−WUUTA = A−WU(ΣVT +UT
s ET )(4.7)

= A−WUΣVT −WUUT
s ET(4.8)

The partial bidiagonalization also affects the term WUΣVT . If the deflation vectors were
exact, we would shift k target values to 0, while leaving the rest as they were. Neither effect
can be counted on in the presence of inexactness, here due to approximating the elliptic singular
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triplets of A from the small bidiagonal matrix B. The spectrum will include k zeros, but not
necessarily from deflating the intended values. Also, the other values may suffer perturbations.
Both effects diminish as the accuracy of the deflation vectors increases. If η = n and we assume
exact arithmetic, we do indeed get the intended triplets. In general, neither condition holds
and we only get an approximation that improves as η → n, or via a restarted algorithm. These
changes to the spectrum then propagate, leading linear solvers to converge differently as we will
explore numerically in Section 5.

5. Computing the elliptic singular triplets. In this section, we describe the algorithms
by which one can find an approximate elliptic SVD (ESVD) and provide numerical illustration
of the points brought up in Section 4 regarding the influence of the eigensolver on the linear
solver with respect to accuracy. The first approach to computing the ESVD (Algorithm 5.1)
uses already existing tools while the second approach (Algorithm 5.2) relies on a reformulation
of the generalized Golub-Kahan bidiagonalization algorithm, not as part of a linear solver, but
as part of an eigensolver.

In principle, the ESVD of A differs from a regular SVD only in the requirement that the
left singular vectors should be W-orthogonal, instead of Euclidean. As such, we can ”integrate”
this target space of orthogonality into the problem, and then compute the SVD. According to
the description in Section 2, we have the following Algorithm 5.1.

Algorithm 5.1 Elliptic Singular Value Decomposition 1

Input: L - Cholesky factor of W, lower triangular matrix; A - rectangular matrix.
Output: U - left elliptic singular vectors; Σ - elliptic singular values; V - right elliptic singular.

1: Compute a (partial) SVD of L−1A: get left singular vectors Ũ, singular values Σ and right
singular vectors V.

2: Transform: U = L−T Ũ

This algorithm relies on the ability to factorize W. If that is the case, it enables us to find
the ESVD, and also reuse these factors when we call CRAIG to solve the linear system. If the
Cholesky decomposition cannot be performed, Algorithm 5.3 is a viable alternative.

The second approach of finding a partial, approximate ESVD follows the stages described
in Section 4. It is a nested iteration, where the outer algorithm (Algorithm 5.2) carries out a
partial bidiagonalization (Algorithm 5.3) at every step. As seen in Section 4, the accuracy of the
ESVD depends to a significant extent on the bidiagonalization, i.e. on how well the spectrum of
B approximates that of A. Due to memory limitations, the bidiagonalization is not performed
only once with n steps, but rather several times, with η < n steps, in a restarted fashion. The
key here is that with each restart, the bidiagonalization improves the results of the previous one
via an augmentation mechanism, which allows it to explore a new portion of the search space.

To define our algorithms, we extend the developments presented in [4]. The strategy pre-
sented there is to augment the bidiagonalization search space at each restart with the current
approximation of the k elliptic singular triplets. From the second call on, the bidiagonaliza-
tion generates η − k − 1 triplets, from which information is extracted by a subsequent SVD to
refine the existing k elliptic singular triplets. The presentation in [4] uses the Lanczos bidiag-
onalization, while we need the generalized GK algorithm, in order to have W- orthogonal left
vectors.

We note that, owing to the symmetry of W and I, it is possible for the bidiagonalization to
build sets of vectors that are W- and Euclidean orthogonal using short recurrences. As such,
after each restart, only the first computed vector u needs to be explicitly orthogonalized against
all those in U (Line 9). The subsequent ones then reference only the immediate predecessor,
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Algorithm 5.2 Elliptic Singular Value Decomposition 2

Input: A - rectangular matrix, W - SPD matrix, v - starting vector, η - maximum search
subspace dimension, k - number of desired triplets, target - choose between smallest or
largest triplets, tol - tolerance, max iter - maximum number of iterations.

Output: U - approximate left elliptic singular vectors, Σ - approximate elliptic singular values,
V - approximate elliptic singular right vectors.

1: Call Algorithm 5.3 with a starting vector v, u0 = 0, and passing A,W, and η. Get
Ub,B,Vb and residual r.

2: for i = 1 : max iter do
3: Compute the SVD of B for the k target triplets; store them in Us,Σi and Vs.
4: Ui = UbUs; Vi = VbVs; β = ∥r∥2;
5: û = the last row of Us; µ = max(|û|); σ = the first entry of Σi;
6: if (βµ)/σ < tol OR i = max iter then
7: break
8: end if
9: v = r/β; Vi = [Vi v]; u = Av; d = UT

i u; u = W−1u−Uid; Σi = [Σi d]

α = ∥u∥W; Σi =
[

Σi

αeT
k+1

]
; u = u/α; Ui = [Ui u].

10: Compute residual v = ATu− αv;
11: Reorthogonalization: v = v −ViV

T
i v;

12: β = ∥v∥2; u0 = the last column of Ui;
13: Call Algorithm 5.3 with starting vector v, η−k−1 steps and passing A,W and u0. Op-

tionally, pass Ui and Vi for additional reorthogonalization. Get Ub,B,Vb and residual
r.

14: Extend Ub = [Ui Ub], Vb = [Vi Vb] and B =
[
Σi 0
0 B

]
. Set Bk+1,k+2 = β.

15: end for
16: U = Ui; V = Vi; Σ = Σi;

while staying orthogonal to all the previous ones.
The bidiagonalization is augmented in Line 3. The first time, Algorithm 5.3 is called with

u0 = 0 (Line 1), since there is no information to augment the bidiagonalization with. Subsequent
calls also send the last column of the matrix U (the current approximate left singular vectors),
as u0 which implicitly represents the augmentation. Thanks to the short recurrences mentioned
above, we do not need the entire matrix, and even the last column is only referenced once. This
way, the augmentation in Algorithm 5.3 has only a negligible cost, while ensuring that each call
finds new information used to refine U,Σ and V in the outer iteration (Algorithm 5.2).

The stopping condition in Algorithm 5.2 depends on the term EUs from (4.5), computed
in a simpler way, based on scalars, as in [4]. The quantity βµ → 0 as the iterations progress
and σ is used in order to achieve a relative, problem-specific value, since it approximates the
largest elliptic singular value. This corresponds to what in [46] is referred to as eigenresidual.
Unfortunately, our tests, like those in [43] and [46], show that the eigenresidual’s Euclidean norm
does not decrease monotonically, but rather in an irregular way. This happens predominantly
in the beginning of the iterative process, stabilizing afterwards. Such irregularities would make
us think that the approximations do not improve in quality every iteration, making it difficult
to know when to stop the algorithm if we only need rough approximations. However, the theory
about the convergence of the restarted Lanczos process in [1] shows that the error decreases
monotonically. Our tests, as well as those in [43] and [46] support this finding. The implication is
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Algorithm 5.3 Restarted Augmented Golub-Kahan Bidiagonalization

Input: A - rectangular matrix; W - SPD matrix; v - right starting vector; u0 - left starting
vector; η - number of steps.
Optional, for additional reorthogonalization: U - approximate left elliptic singular vectors;
V - approximate right elliptic singular vectors.

Output: Ub - left vectors (W-orthogonal); B - upper bidiagonal matrix; Vb - right vectors
(orthogonal); r - residual vector

1: β1 = ∥v∥2; v1 = v/β1; V1 = v1; u = W−1Av1;
2: if u0 ̸= 0 then
3: W-orthogonalization: u = u− β1u0;
4: end if
5: if U is given then
6: W-reorthogonalization: u = u−UUTWu;
7: end if
8: α1 = ∥u∥W; B1 = α1; u1 = u/α1; U1 = u1;
9: for j = 1 : η do

10: v = ATuj − αjvj ;
11: Reorthogonalization: v = v −VjV

T
j v;

12: if V is given then
13: Reorthogonalization: v = v −VVTv;
14: end if
15: if j < η then
16: βj+1 = ∥v∥2; vj+1 = v/βj+1; Vj+1 = [Vj vj+1];
17: Bj+1 = [Bj βj+1ej ] u = W−1Avj+1 − βj+1uj ;
18: W-reorthogonalization: u = u−UjU

T
j Wu;

19: if U is given then
20: W-reorthogonalization: u = u−UUTWu;
21: end if
22: αj+1 = ∥u∥W ; uj+1 = u/αj+1; Uj+1 = [Uj uj+1]; Bj+1 =

[
Bj+1

αj+1e
T
j+1

]
;

23: end if
24: end for
25: r = v; Vb = Vj ; Ub = Uj ; B = Bj ;

that the eigenresidual’s Euclidean norm may not be the best stopping criterion for Algorithm 5.2
and that it may not accurately reflect the quality of the approximations.

The reorthogonalization steps in Algorithm 5.3 and Algorithm 5.2 could be necessary in
practice, as a result of finite-precision computations. In Algorithm 5.3, we can reorthogonalize
with respect to local vectors (Uj and Vj) computed during that call and/or those computed
previously, representing the current approximations for the elliptic singular vectors (U and V).
How this is carried out exactly is a problem dependent choice, but the authors of [4] and [6]
provide useful suggestions regarding partial or full reorthogonalization. We can choose to work
with Uj and/or Vj or a subset of their columns, in order to fine-tune the relationship between
them. An important observation is that, when targeting the smallest values, the computations
are more sensitive to round-off errors, so full reorthogonalization is the safest choice, in order
to maximize the accuracy of the results. For simplicity, we used the Gram-Schmidt procedure,
but more robust choices are also possible. As we will see in the numerical tests, deflation does
not need exact information in order to be effective. Thus, if we compute our deflation vectors
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Table 1: Errors of the approximated elliptic singular triplets and perturbations of the spectrum
after deflation with triplets from Algorithm 5.2.

ESVD
iterations

median and max error
(targeted vectors)

median and max relative
error (targeted values)

median and max relative
perturbation (other values)

10 [5E-1, 1] [1, 2] [1E-5, 4E-2]
26 [2E-4, 1E-2] [1E-6, 7E-2] [4E-12, 4E-2]
30 [2E-8, 6E-7] [1E-15, 1E-10] [4E-16, 8E-11]

via Algorithm 5.2, we may skip some or all of the reorthogonalization steps, provided that the
problem is not very ill-conditioned. See [19] for a study comparing the loss of orthogonality
between vectors computed by several variants of the Gram-Schmidt method, as well as [38],
where this behavior is considered for non-Euclidean orthogonality.

Next, we analyze one of the test cases given in Section 3, to see how the spectrum looks
like after deflation with approximate vectors and how this changes the way our linear solver,
CRAIG, converges. We use the problem of the 1D channel to illustrate the following points. We
run Algorithm 5.2 for 10, 26 and 30 iterations and use the resulting triplets (the 10 smallest) for
deflation. The error and perturbation ranges are given in Table 1. Let I be the set of indices
denoting the values we want to deflate and I its complement. We use the superscript ∗ to refer
to exact triplets. Then, the error for the deflated vectors is computed as

∥∥v∗
i −VVTv∗

i

∥∥
2
, i ∈ I,

the relative error for the deflated values is |(σi − σ∗
i )/σ

∗
i |, i ∈ I, and the relative perturbation

of the undeflated values is |(σi − σ∗
i )/σ

∗
i |, i ∈ I.

By construction, the deflated matrix will have a spectrum containing k = 10 zeros. Depend-
ing on the quality of the triplets, these zeros come either from deflating our targeted values or
others. By zooming in on the portion of the spectrum that we wanted to deflate (see Figure 8b),
we get a detailed view. In the least precise case (10 iterations), we have deflated only some
of our targeted values, and since the smallest one is still in place, we cannot expect a smaller
condition number or a faster CRAIG convergence. Additionally, the values include a significant
perturbation (see Table 1). These two effects explain why CRAIG actually needs more itera-
tions in Figure 8a. For the case with 26 iterations, all the targeted values get deflated, but there
are also a few highly perturbed ones among the rest. The corresponding convergence curve in
Figure 8a resembles that of exact deflation, until the perturbed values come into play and lead it
to deviate. If we run Algorithm 5.2 for 30 iterations, the resulting information is precise enough
for our problem. That is to say, there is no difference between exact and approximate deflation,
at least when comparing CRAIG’s convergence curves. As for the case with 26 iterations, all
the targeted values were successfully deflated, but additionally, the perturbation on the rest
approaches machine zero (see Table 1).

How precise should the deflation vectors be? The answer is problem dependent, which
means we should think about the matrix spectrum and the coefficients in Equation (3.7) related
to the initial error. For the 1D channel problem, we have seen in Section 3 that only every
second elliptic singular vector is part of the error. However, the smallest elliptic singular values
occur in pairs with (almost) equal values. Then, Algorithm 5.2 needs some time to correctly
identify the vectors, otherwise it may deliver approximations to those who are not part of our
problem, while perturbing those that are. An alternative would be to adapt the block Lanczos
algorithm (see [20]), which is better suited for problems where the values are not simple. Our
second test case, the IFISS channel, has a spectrum with outliers that are better separated from
the main cluster and from each other (see Figure 5b). There, we have found that approximate
deflation is as effective as the exact one even with less precise vectors.
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Fig. 8: Comparison of deflation effects on the 1D channel problem. We consider the case without
deflation , three cases with inexact deflation using vectors found after a given number of
ESVD iterations (10 , 26 and 30 ) and the case with exact deflation .

6. Approximating elliptic singular triplets from a previous CRAIG solve. Ob-
taining approximate information about the spectrum can be done in several ways. One approach
is that of finding this information prior to solving the linear system. In this case, we can first
use the algorithms given in Section 5 to find the deflation vectors, then proceed to solving the
deflated linear system. Another approach becomes available if one considers the case of solving
several linear systems, where the right-hand side changes, but the matrix stays the same. An
example of this scenario is solving time-dependent problems. It is possible then to start solving
immediately, without deflation, then using the vectors resulting from the iterations to extract
some spectral information which can be subsequently used to deflate the next linear systems,
leading to a faster convergence. Below, we show how this second strategy of finding deflation
vectors can be used in our case, by solving saddle point problems with CRAIG [2].

Our approach is inspired by the use of Ritz values and vectors associated with CG, more pre-
cisely with the Lanczos process with which CG is connected. The Ritz values are the eigenvalues
of the tridiagonal matrix that can be constructed using the scalars computed by CG, and are
approximations of the eigenvalues of the system matrix (see [44, Chapter 5]). The approximate
eigenvectors associated with these approximate eigenvalues are known as Ritz vectors and they
constitute the basis used in the deflation process. For deflation using Ritz vectors, harmonic
Ritz vectors and others in the context of solving with GMRES, we refer to [32, 41, 11].

The particular strategy that we build on was presented in [43] for computing Ritz vectors
from CG runs. The key feature of their algorithm, called eigCG, lies in the quick convergence
of the Ritz vectors to the eigenvectors, without affecting the convergence of the linear solver.
Even if an eigensolver and a linear solver may rely on the same algorithm (in this case, the
Lanczos tridiagonalization), it is used differently in each case, which typically means one has to
choose which objective gets prioritized: either the linear solver or the eigensolver. The authors
of [43] show that their method can achieve both goals quickly. The success of their algorithm
is partly due to the use of two consecutive tridiagonal matrices built from the output of CG.
The mechanism allows them to obtain spectral information at a rate comparable to the more
expensive full and reorthogonalized Lanczos process. The eigenvalue problem is solved relying
on the linear solver, but not influencing it.

We follow the strategy given in [43] for computing Ritz vectors from CG runs and adapt it
such that it fits our CRAIG solver and the underlying bidiagonalization process. The changes
that we have to make stem from the fact that the generalized Golub-Kahan process works with
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two sets of orthogonal vectors (instead of one for CG) and the fact that we are looking for elliptic
singular vectors, rather than eigenvectors. We give our interpretation in Algorithm 6.1.

Algorithm 6.1 Elliptic Singular Value Decomposition 3

Input: A - rectangular matrix; k - number of desired triplets; target - choose between
smallest or largest triplets; Ub,B,Vb from the bidiagonalization; U,Σ,V previous
approximate elliptic singular triplets.

Output: U,Σ,V new approximate elliptic singular triplets.

1: if U,Σ,V are given then
2: v = first column of Vb; r = UTAv; B = [Σ 0

0 B ]; B1:2k,2k+1 = r;
3: Ub = [U Ub]; Vb = [V Vb];
4: end if
5: Compute the SVD of B and keep the k target triplets in Us1,Σs1 and Vs1;
6: Compute the SVD of B1:η−1,1:η−1 and keep the k target triplets in Us2,Σs2 and Vs2;
7: Append a row of zeros to Us2 and Vs2 so that they also have η rows;
8: Concatenate and orthogonalize the left vectors Uso = ortho([Us1 Us2]);
9: Concatenate and orthogonalize the right vectors Vso = ortho([Vs1 Vs2]);

10: H = Uso
TBVso;

11: Compute the SVD of H and store the triplets in Us3,Σs3 and Vs3;
12: U = UbUsoUs3; V = VbVsoVs3; Σ = Σs3;

We describe the CRAIG solver in Appendix A and Algorithm A.1. In particular, we highlight
where Algorithm 6.1 can be integrated in order to obtain approximations to the elliptic singular
triplets from the information computed by the solver. Algorithm 6.1 is to be called repetitively
and proceeds in the following way. The first time, we have B ∈ Rη×η with Ub ∈ Rm×η and
Vb ∈ Rn×η from the bidiagonalization, similar to the first step of Algorithm 5.2. Three SVDs
follow, with their results subscripted by s1, s2 and s3 respectively. Since the SVDs operate on
small matrices, they are not particularly expensive. The first SVD is applied to B, the second to
B1:η−1,1:η−1, and the third to the combined result of the previous two. For this combination to
be possible, Us2 and Vs2 need to be extended and orthogonalized to Us1 and Vs1. Collecting
the results of the three SVDs, we have U,Σ,V, a set of 2k approximate elliptic singular triplets,
which concludes one step of Algorithm 6.1. Subsequent steps refine these 2k triplets from an
additional η−2k provided by the bidiagonalization. Once the CRAIG solver concludes, it returns
the k triplets that we are interested in along with the solution of the saddle point system.

There are a few notable differences between Algorithm 5.2 and Algorithm 6.1. The latter
makes use of the vectors resulting from the GK bidiagonalization (part of the CRAIG solver), but
does not influence it at all, since it does not include an augmentation. The bidiagonalization runs
only once, without restarts, in contrast to the way Algorithm 5.2 uses it. Another point is that
instead of keeping only k approximations using the most recent bidiagonal matrix, Algorithm 6.1
keeps an extra set of k from the previous one. Combining these and refining them with further
η−2k vectors from the bidiagonalization leads to rapid convergence of the spectral information.

In Figure 9 and Figure 10, we plot the convergence history for the two test cases described in
Section 3 in the following three scenarios: no deflation, deflation using approximate vectors and
deflation using exact vectors. The approximations were obtained using Algorithm 6.1 based on
vectors coming from a previous linear solve of the same system. We can see how, in both cases,
approximate vectors are just as effective as their exact counterparts in the process of deflation.

In Table 2 we give the errors for the approximate elliptic singular values and vectors. If we
denote the exact vectors by v∗

i and the approximate ones by V, the quantities we report are
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Fig. 9: Convergence curves of the CRAIG algorithm for the deflated 1D channel problem. Y-
Axis: Energy norm of the relative error (Velocity field).
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Fig. 10: Convergence curves of the CRAIG algorithm for the deflated IFISS channel problem.Y-
Axis: Energy norm of the relative error (Velocity field).

∥∥v∗
i −VVTv∗

i

∥∥
2
, with |(σi − σ∗

i )/σ
∗
i | being the relative error for the values. We can see how

recycling information from a linear solve can lead to fairly precise approximations. However,
it may be the case that this level of accuracy cannot be reached after just one solve. This is
especially true when attempting to identify many vectors. For this scenario, the authors of [43]
present an algorithm to refine the set using information from several linear solves.

7. Comparison with deflated MINRES. A popular choice for solving saddle point
problems is the MINRES algorithm, applied monolithically and paired with an appropriately
defined deflation to reduce convergence plateaus. In this section, we are interested in comparing
the number of iterations performed by the linear solver following deflation, considering the two
approaches: monolithic and segregated, with their respective solver MINRES and CRAIG.

In [2], an important link between the generalized CRAIG algorithm and MINRES has been
drawn. If the system in Equation (1.1) is first preconditioned by a block-diagonal matrix withW
and I and then solved using MINRES, the required number of iterations will be double compared
to that of generalized CRAIG. This is based on existing results regarding unpreconditioned
MINRES and the CRAIG algorithm without the generalization, such as those in [14] (Theorem
6.9.9). The same theorem highlights a situation where MINRES only reduces the residual every
two iterations, by producing the same iterate twice in a row. This phenomenon occurs when
the spectrum of the matrix is symmetric. The preconditioned saddle point matrix is[

L−1 0
0 I

] [
W A
AT 0

] [
L−T 0
0 I

]
=

[
I Ã

ÃT 0

]
,
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Table 2: Relative errors for the smallest five approximate elliptic singular vectors and values
(ordered descendingly) obtained from Algorithm 6.1.

triplet index 5th 4th 3rd 2nd 1st
1D Channel problem

vectors 5.18E-06 3.52E-07 7.56E-08 3.23E-08 1.17E-08
values 3.78E-11 4.07E-13 4.19E-14 1.48E-15 1.29E-13

IFISS Channel problem
vectors 4.56E-02 5.95E-05 7.02E-09 5.64E-08 1.02E-05
values 1.52E-04 5.37E-10 4.12E-15 5.94E-15 1.23E-13

where we use a Cholesky decomposition of the (1,1)-block W = LLT , W−1 = L−TL−1 and
define Ã = L−1A as in Section 2. We can describe its spectrum by adapting Result 1 from [40]
to our context: 

1, m-n times,

1
2 +

√
σ2
i +

1
4 , n times,

1
2 −

√
σ2
i +

1
4 , n times,

where σi are the n elliptic singular values of A (singular values of Ã). If we ignore the cluster of
values equal to one, which do not impact the convergence of MINRES, the rest of the spectrum is
symmetric around the value 0.5. This symmetry then leads to redundant iterations in MINRES
and GMRES as well, as proven theoretically in [15]. The authors do note that in numerical
experiments, the two consecutive iterates may not necessarily be identical, but are very close
nonetheless.

We can observe this effect in our context as well, when comparing generalized CRAIG and
preconditioned MINRES. In Figure 11, we show the convergence curves of the two algorithms
when solving the 1D channel problem described in Section 3. Notice how every second MINRES
iteration does not visibly contribute to the reduction of the error. With the exception of this
feature, the two algorithms converge in the same way, featuring the same two phases of slow
initial convergence (plateau) and subsequent superlinear convergence.

We proceed to test whether this 1:2 iteration ratio is preserved when applying deflation.
When using MINRES, we consider the saddle point matrix as a whole and deflate it using the
procedure described in [17], relying on the eigenpairs. When using CRAIG, we make use of the
elliptic singular triplets and apply deflation following Section 2. Both approaches eliminate the
same number of values from the spectrum of their respective problem. The convergence history
of both algorithms is given in Figure 11, for the 1D channel test case. We also compare the
two scenarios on the IFISS channel problem presented in Section 3, with the results plotted
in Figure 12. As we can see, the same relationship between the two algorithms holds, both
with and without deflation. It should be noted that the respective curves are not identical
(aside from the 1:2 scale) partly because the two algorithms under consideration have different
minimization goals. For MINRES, this is the residual norm of the preconditioned saddle point
system, whereas CRAIG minimizes the energy norm of the error for the primal variable u.

7.1. Augmented CRAIG. Above, we have compared the two algorithms only with re-
spect to the number of iterations. If we are interested in memory use or time, we can consider
augmented MINRES [34] and augmented CRAIG, the latter being described below.

Augmentation can be seen as an efficient implementation of deflation. First, given the
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Fig. 11: Convergence curves of the CRAIG algorithm (Left) and preconditioned MINRES
(Right) for the 1D channel problem. Undeflated in , exact deflation in .
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Fig. 12: Convergence curves of the CRAIG algorithm (Left) and preconditioned MINRES
(Right) for the IFISS channel problem. Undeflated in , exact deflation in .

definition of the operators M, P and Q in Equations (2.5)–(2.7), they will most likely be dense
matrices if explicitly computed and stored. Then, the deflated matrix, whether computed as
PA or AQ, will also be dense. However, in many applications, the matrices that result from
the discretization are (very) large and sparse. Losing sparsity by a naive deflation might make
the system difficult or impossible to solve due to excessive requirements concerning memory and
time.

We have defined deflation to be paired with the CRAIG solver [2], which only uses the
matrix A as part of matrix-vector products Ax, for some vector x. To avoid the difficulties
mentioned above, these products should be reformulated to include the effect of deflation in an
implicit manner. Applying the definition of the deflation operators we get Ax−AVΣ−1UTAx,
which has the advantage of manipulating matrices that are either sparse or small (with only
k columns). Suitable alternatives in the same style can be defined to replace the operations
in Equation (2.9), avoiding explicit use of P,Q, and M. This strategy corresponds to an
augmented CRAIG solver, similar to the augmented MINRES described in [34], where the basis
for deflation is passed to the solver and applied whenever needed. Here, we note that MINRES
operates monolithically, with a basis Y ∈ R(m+n)×k applied repeatedly, whereas augmented
CRAIG uses either U ∈ Rm×k or V ∈ Rn×k. Thus, adding augmentation to CRAIG is less
expensive than to MINRES. Although CRAIG needs matrix-vector products with both A and
AT , it is sufficient to reformulate only that with A. It can be shown using the properties
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from Equation (2.10) that the Schur complement S = ATW−1A is correctly deflated even
with this ”one-sided” augmentation, which leads CRAIG to converge quickly to the solution
of Equation (2.8). For a more detailed comparison of augmentation and deflation, we refer to
[10, 16].

Remark 1. Further savings compared to augmented MINRES are possible if we have exact
elliptic singular triplets. Then, it is true that VVT = MA, which we use to define a simpler
and quicker matrix-vector product: Ax − AVVTx, circumventing matrices of order m. This
simplification can still be applied if we have approximate instead of exact triplets, provided we
are only interested in a solution of moderate accuracy, as is the case in certain applications.
One such example is solving linear systems as part of a nonlinear solver, as shown in [11],
where the linear solver needs to reduce the residual norm only by 10−1. Using the simpler
Q := In − VVT in the deflation and correction stages we described in Section 2 introduces a
perturbation proportional to the accuracy of the elliptic singular vectors. This then limits the
accuracy of the solution we seek for the initial saddle point system. Such a behavior is similar
to a different setting, where we approximate the action of W−1 in the CRAIG solver by using
an iterative solver instead [12].

8. Deflation and preconditioning. We have seen how targeted, local changes in the
spectrum can be induced by means of deflation. Preconditioning, on the other hand, typically
aims to change the spectrum as a whole, clustering the values away from zero. For saddle point
problems, the following block diagonal preconditioner is considered ideal

P =

[
W 0
0 S

]
.

It is ideal in the sense that depending on the solver used, when applied as P−1 to a system like
the one in Equation (1.1), three or fewer iterations will be sufficient to converge to the exact
solution. Since S−1 is difficult to obtain, an approximation is used instead, trying to balance the
cost of building and applying it against the improvement in convergence speed that it brings.
The preconditioning strategy used in the remainder of this section, but also other choices for
saddle point problems are described in [8, Section 10].

For Stokes flow problems, the pressure mass matrix Qp is commonly employed to achieve
such an approximation, exploiting the spectral equivalence it has to the Schur complement (see
[13, Chapter 3]). It is formally defined as

Qp = [qij ], qij =

∫
Ω

ψiψj , i, j = 1, ..., n,

where Ω is the domain, {ψ}ni=1 are basis functions for the finite-dimensional space Mn ∈ M,
with M being the Hilbert space for the pressure. To further reduce the cost of applying the
preconditioner, it is simplified to a diagonal matrix, for example by lumping, i.e. placing each
row-sum on the diagonal.

We proceed to apply this kind of preconditioning to our IFISS channel problem and compare
its behavior with that of deflation. As Figure 13a illustrates, CRAIG converges faster in the
presence of this preconditioner, but the initial plateau phase is mostly unaffected. Deflation of
the five smallest elliptic singular values removes the plateau, enabling a faster convergence to
solutions of moderate accuracy (error norm > 10−7). However, this deflation does not improve
the second stage of the convergence process, which is important if we aim for a very accurate
solution. The complementary action of the preconditioner and deflation motivates the third
scenario, in which both are applied, leading to the best result. A similar combined approach
was employed in [34] for a different type of Stokes problem solved with MINRES.
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Fig. 13: Corresponding CRAIG convergence curves and Schur complement spectra for the IFISS
channel of length 20. We consider the original case , the deflated case (five smallest elliptic
singular values) , the preconditioned case (lumped pressure mass matrix) , and the case
with both deflation and preconditioning .

To understand the effect of the pressure mass matrix preconditioner, we plot in Figure 13b
the elliptic spectra for the four cases illustrated in Figure 13a. The most visible effect is how
almost 600 of the largest values cluster around 1, while a second cluster forms around 0.7.
However, the small outliers are not brought closer to the rest of the values, which is reflected in
the persistence of the plateau visible in Figure 13a.

Stokes problems on elongated domains represent a special case, where the spectrum of the
Schur complement changes also as a function of the anisotropy. More precisely, the smallest
elliptic singular value is bounded (see [9])

1

2
√
15
l−1 ≤ σn ≤ π

2
√
3
l−1,

where l > 1 is the ratio between the sides of the channel. As this ratio increases, the smallest
elliptic singular value approaches zero. Additionally, as seen in Figure 5b, more and more small
outliers appear. Deflation can then be used to manage the outliers’ effect, while the pressure
mass matrix as a preconditioner clusters the other elliptic singular values.

9. Conclusions. In this paper, we have defined a particular kind of deflation to be used
with CRAIG, a segregated linear solver for symmetric saddle point problems. The motivation for
this development was to accelerate convergence for problems with a spectrum which contains
outliers, leading to stagnation periods in the convergence process. As an example of such a
problem, we have considered two kinds of Stokes flow in thin, elongated channels. Our definition
of deflation uses bases from an elliptic singular value decomposition of the off-diagonal block
A as an alternative to explicitly deflating the Schur complement, which could pose numerical
difficulties. With this deflation mechanism, stagnation periods can be shortened or removed,
even if we only have bases with inexact spectral information. We have extended two iterative
algorithms, such that their output is a partial approximate elliptic singular value decomposition
which can be employed in deflation. Following a comparison with MINRES, we have seen that
our deflation for a segregated solver performs just as well as that for a monolithic one, removing
the plateau in convergence. The ability to exploit block structure and the lack of redundant
iterations in CRAIG highlights the advantage and need of having a segregated deflation strategy.
Additionally, the augmentation procedure we have described for CRAIG operates with smaller
matrices than MINRES, leading to faster iterations. As future work, a promising avenue is that
of using multigrid transfer operators instead of the ESVD as a way to obtain bases for deflation.
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Appendix A. The CRAIG algorithm.
The CRAIG algorithm iteratively solves the saddle point system in Equation (1.1) in the

following way. It computes the generalized Golub-Kahan bidiagonalization

(A.1) AVi = WUiBi, UT
i WUi = Ii, ATUi = ViB

T
i + βi+1qi+1e

T
i , VT

i Vi = Ii,

with the bidiagonal matrix

(A.2) Bi =


α1 β2 0 . . . 0
0 α2 β3 . . . 0
...

...
...

...
...

0 . . . 0 αi−1 βi
0 . . . 0 0 αi

 .

Using Ui and Vi it transforms Equation (1.1) into

(A.3)

[
Ii Bi

BT
i 0

] [
zi
yi

]
=

[
0

VT
i b

]
,

with the solution

(A.4) zi = β1B
−T
i e1; yi = −B−1

i zi,

where e1 is the first column of the identity matrix Ii ∈ Ri×i. The approximate solution of the
initial problem is then given by

(A.5) u(i) = Uizi; p(i) = Viyi.

Note: u(i) is the i-th approximate solution, while ui is the i-th left vector.
It is also possible to define updates for u(i) and p(i) in a recursive manner. To this end,

we will need only ζi (the last entry of zi) and an auxiliary vector d for p(i) (see [2] for details).
The advantage of a recursive approach is that each update needs only the latest pair of left and
right vectors.

In Algorithm A.1, we give a description of the CRAIG solver, and how it can interact with
Algorithm 6.1. An efficient implementation has been given in [2], making use of the simple
structure of B and short term recurrences. The author also presents error bounds useful for
monitoring convergence.

An important point is that the use of short term recurrences implies there is no need
to store the left and right vectors in order to compute the approximate solutions. However,
for our purposes in this work they are necessary in order to extract information about the
elliptic singular triplets from them using Algorithm 6.1. After a group of η left and right
bidiagonalization vectors have been processed, they can be discarded. Additionally, while the
iterative linear solver can deliver satisfactory approximate solutions even if the bidiagonalization
vectors gradually lose orthogonality, the same may not necessarily hold in our extended context.
This leads to the potential need for reorthogonalization, with similar remarks as in Section 5.

We present in Algorithm A.1 how the original Craig solver is extended to make use of
Algorithm 6.1. We mark the additional statements needed for Algorithm 6.1 with special line
numbers, and the associated inputs and outputs with a •.
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Algorithm A.1 CRAIG algorithm

Input: A ∈ Rm×n, (n < m); W ∈ Rm×m, SPD; g ∈ Rm; r ∈ Rn; maxiter ∈ R;
• k ∈ R - number of elliptic singular triplets;
• η ∈ R - maximum search subspace dimension;
• target - choose between smallest or largest triplets;

Output: u ∈ Rm; p ∈ Rn;
• U ∈ Rm×k - approximate left elliptic singular vectors;
• Σ ∈ Rk×k - approximate elliptic singular values;
• V ∈ Rn×k - approximate right elliptic singular vectors;

1: u(0) = W−1g; b = r−ATu(0); β1 = ∥b∥2 ; v1 = b/β1;
2: w = W−1Av1; α1 = ∥w∥W ; u1 = w/α1; ζ1 = β1/α1; d1 = v1/α1;
3: u(1) = u(0) + ζ1u1; p(1) = −ζ1d1; i = 2;

3.1: B1 = α1; V1 = v1; U1 = u1;
4: while not converged AND i < maxiter do
5: v = ATui−1 − αi−1vi−1;

5.1: Reorthogonalization: v = v −ViV
T
i v;

6: βi = ∥v∥2 ; vi = v/βi;
7: w = W−1 (Avi − βiWui−1) ;

7.1: W-reorthogonalization: w = w −UiU
T
i Ww;

8: αi = ∥w∥W ; ui = w/αi;

8.1: Vi = [Vi−1 vi]; Ui = [Ui−1 ui]; Bi = [Bi−1 βiei−1]; Bi =
[

Bi

αie
T
i

]
;

8.2: if mod(i, η) = 0 then
8.3: Bη = lower right η × η submatrix of Bi;
8.4: if i = η then
8.5: Call Algorithm 6.1 with A, k,Ub = Ui,B = Bη,Vb = Vi. Get 2k approximate

triplets in U,Σ,V.
8.6: η = η − 2k;
8.7: else
8.8: Call Algorithm 6.1 with A, k,Ub = Ui,B = Bη,Vb = Vi and the current U,Σ,V.

Get 2k updated approximate triplets in U,Σ,V.
8.9: end if
8.10: Clear Vi and Ui.
8.11: end if

9: ζi = − βi

αi
ζi−1; di = (vi − βidi−1)/αi;

10: u(i) = u(i−1) + ζiui; p(i) = p(i−1) − ζidi;
11: i = i+ 1;
12: end while
13: u = u(i); p = p(i);

13.1: Choose the k target triplets from U,Σ and V.
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