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Abstract. We obtain the generic complete eigenstructures of complex Hermitian n× n matrix
pencils with rank at most r (with r ≤ n). To do this, we prove that the set of such pencils is the union
of a finite number of bundle closures, where each bundle is the set of complex Hermitian n×n pencils
with the same complete eigenstructure (up to the specific values of the finite eigenvalues). We also
obtain the explicit number of such bundles and their codimension. The cases r = n, corresponding
to general Hermitian pencils, and r < n exhibit surprising differences, since for r < n the generic
complete eigenstructures can contain only real eigenvalues, while for r = n they can contain real and
non-real eigenvalues. Moreover, we will see that the sign characteristic of the real eigenvalues plays
a relevant role for determining the generic eigenstructures of Hermitian pencils.
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1. Introduction. The complete eigenstructure of a matrix pencil (or just a “pen-
cil”, for short) is an intrinsic information of the pencil that is relevant in many of the
applied problems where matrix pencils (or, more in general, matrix polynomials and
rational matrices) arise (see, for instance, [11, 12, 13, 32, 40, 41] and the references
therein). More precisely, the complete eigenstructure of a pencil is the set of invariants
of the pencil under strict equivalence, and it is encoded in the Kronecker canonical
form (see [24, Ch. XII] or [27, §3] for a more recent reference). In many applications
where matrix pencils arise (either by themselves or by means of linearizations of ma-
trix polynomials and rational matrices) the coefficient matrices have some particular
symmetries, which lead to structured matrix pencils. These include (skew-)symmetric,
(skew-)Hermitian, (anti-)palindromic, or alternating matrix pencils (see, for instance,
[21, 31, 32]).

The problem addressed in the present work is an instance of the general problem
of determining the most likely complete eigenstructure of matrix pencils within some
particular set, S. We use the word generic for the most likely complete eigenstructure,
to mean that all pencils within the set S are in the closure of the set of pencils having
the generic eigenstructure. In other words, in every neighborhood of any particular
pencil in S there is at least one pencil having the generic eigenstructure. The generic
complete eigenstructure of general n × n pencils consist, as it is well-known, of n
different simple eigenvalues. However, when some restrictions are imposed to the
pencils, so that we restrict ourselves to pencils in some particular set S, then it is not,
in general, so easy to identify the generic complete eigenstructure (for instance, it is
not trivial to obtain the generic complete eigenstructure of general m×n pencils when
m 6= n, see below). As a consequence, the problem of describing the generic complete
eigenstructure of matrix pencils within a particular set has attracted the attention of
researchers for several decades. The research on this problem has allowed to describe
the generic eigenstructure for the following sets of matrix pencils:

∗Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911
Leganés, Spain. fteran@math.uc3m.es
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• Singular n× n (namely, square) pencils [42].
• Rectangular pencils of a fixed size [14] (though the credit of the result, as

mentioned in [14, p. 85], goes back to, at least, [39]).
• General m × n pencils with rank at most r (smaller than min{m,n}) [6]

(revisited in [9]).
• Palindromic and alternating n× n pencils with rank at most r (smaller than
n) [4].

• Complex symmetric n× n pencils with rank at most r (smaller than n) [5].
• Complex skew-symmetric n × n pencils with rank at most 2r (smaller than
n) [16].

If we remove the restriction for the pencils being of bounded rank, then the generic
complete eigenstructure of structured n × n pencils is also known for the following
structures (though, up to our knowledge, some of them are not explicitly provided in
the literature):

• Complex symmetric n×n pencils: it is the same as for general (non-structured)
matrix pencils, namely n different eigenvalues. A way to see this is the
following. Consider the set of n × n symmetric pencils as a manifold de-
pending on n(n + 1) complex variables, encoded in a vector X (these vari-
ables come from the upper triangular part, including the main diagonal, of
the leading and the trailing coefficient matrices of the pencil). Assume that
f(X,λ) = detP(X,λ) =

∑n
i=0 pi(X)λi is the determinant of a general n× n

symmetric pencil, P(X,λ). Then, the subset of singular symmetric pencils
is a proper algebraic set of Cn(n+1), defined by the polynomial equations
p0(X) = · · · = pn(X) = 0. Second, the subset of pencils with a multiple
eigenvalue is also an algebraic set, namely Res(f(X,λ), f ′(X,λ)) = 0, where
f ′(X,λ) is the derivative of f(X,λ) with respect to the variable λ, and Res
denotes the resultant (which is a polynomial in X) [30, Ch. I, §3]. Therefore,
the set of n × n symmetric pencils with n different eigenvalues is the com-
plementary of the union of two algebraic sets. Since it is also nonempty (for
instance, diag(λ− 1, λ− 2, . . . , λ−n) is such a pencil), we conclude that it is
a generic set.

• Complex skew-symmetric n × n pencils: we have been unable to find an ex-
plicit expression for the generic complete eigenstructures for this structure.
However, it can be deduced from the canonical form under congruence of
skew-symmetric pencils in [38] and the developments in [16]. More precisely,
it depends on whether n is even or odd. If n is even, then the generic canonical
form consists of n/2 skew-symmetric Jordan blocks associated with different
eigenvalues of multiplicity 2, whereas if n is odd we add to the previous struc-
ture a 0 diagonal block. In other words, the generic complete eigenstructure
consists of n/2 distinct eigenvalues of multiplicity exactly 2 (if n is even),
together with one left and one right minimal indices equal to 0 (when n is
odd).

• >-palindromic pencils: the generic complete eigenstructure is also different
depending on whether n is even or odd [8, Th. 6]. More precisely, it consists
of n/2 pairs of different simple complex values of the form (µ, 1/µ) (if n is
even), together with a simple eigenvalue −1 (when n is odd). For >-anti-
palindromic pencils the eigenvalue −1 is replaced by 1. For ∗-palindromic
pencils the generic complete eigenstructure can be found in [7, Th. 5.4] and
it consists of n/2 pairs of different simple complex values of the form (µ, 1/µ)
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with |µ| > 1 (if n is even), together with a simple eigenvalue which is an
unspecified complex number of modulus 1 (when n is odd).

• >-alternating pencils: in this case, the generic complete eigenstructure (that
can be obtained from the one of >-palindromic pencils by means of a Cayley
transformation, see [4]) consists of n/2 pairs of different simple complex values
of the form (µ,−µ), if n is even, together with a simple eigenvalue ∞ (for
>-even pencils) or 0 (for >-odd pencils), when n is odd. For ∗-alternating
pencils, the pairs (µ,−µ) are replaced by (µ,−µ).

In the present work, we describe the generic complete eigenstructure of Hermitian
n × n matrix pencils with rank at most r, for any 0 ≤ r ≤ n. When r = n, what
we obtain is the generic complete eigenstructure of general n × n Hermitian pencils
(without restrictions), and for this reason this case is addressed separately. We will
prove (in Theorems 4.1 and 5.1) that the number of generic complete eigenstructures
in the set of n×n Hermitian pencils with rank at most r is equal to

(⌊
r
2

⌋
+ 1
) ⌊

r+3
2

⌋
.

However, there are relevant differences between the case r = n and r < n, namely:

• When r = n, all generic eigenstructures correspond to regular pencils hav-
ing n simple eigenvalues. Some of these eigenvalues are real, and the other
ones are pairs of non-real complex conjugate numbers. Only in one of these
eigenstructures (namely, when all eigenvalues are real) there are no non-real
eigenvalues.

• When r < n, however, none of the generic eigenstructures have non-real
eigenvalues.

In both cases, each of the generic eigenstructures differs from the others in the number
of real eigenvalues, and in the sign characteristics of these eigenvalues. This empha-
sizes the relevance of the sign characteristic for Hermitian pencils, which is a quantity
that does not arise in the other structures mentioned above.

It is worth to emphasize also that the number of generic complete eigenstructures
of n×n Hermitian pencils with rank at most r is always greater than 1, so there is no
a unique generic eigenstructure. In fact, there are many when r is large. This should
not be surprising when r < n since it happens also for general square singular pencils
[14] and for singular symmetric pencils [5]. However, it may seem surprising in the
case of general n × n Hermitian pencils (namely, when r = n). We will see that the
lack of uniqueness when r = n is a consequence of the different forms to distribute
the eigenvalues between real and non-real ones and also of the different possible sign
characteristics of the real eigenvalues.

The rest of the paper is organized as follows: in Section 2 we introduce the no-
tation and some basic notions that are used throughout the manuscript. Section 3
presents some technical results that are needed to prove the main results of the paper.
The main results are introduced in Sections 4 and 5. More precisely, Theorem 4.1
describes the generic complete eigenstructures of Hermitian n×n matrix pencils, and
in Theorem 5.1 we provide the generic complete eigenstructures of Hermitian n × n
matrix pencils with rank at most r, with r < n. The codimension of these generic
complete eigenstructures are computed in Section 6, whereas in Section 7 we provide
some numerical experiments to show that all the generic complete eigenstructures of
general Hermitian pencils arise in numerical computations, and that non-real eigen-
values do not typically appear in singular Hermitian pencils. Finally, in Section 8 we
present a summary of the contributions of the manuscript.

2. Basic definitions and notation. By R and C we denote the fields of real
and complex numbers, respectively. We also follow the standard notation re(µ) and

3



im(µ) for, respectively, the real and imaginary parts of the complex number µ, and i
for the imaginary unit (namely, i =

√
−1).

A matrix pencil is of the form P(λ) = A + λB, with A,B ∈ Cm×n, and λ being
a scalar variable (matrix pencils can also be seen as pairs of m× n complex matrices
(A,B), see, for instance, [27]). We use calligraphic letters, as above, to denote matrix
pencils. Sometimes, and for the sake of brevity, we will remove the variable λ and just
write P. The pencil P(λ) is called regular if m = n and detP(λ) is not identically
zero (as a polynomial in λ) and it is called singular otherwise. For a matrix pencil
P(λ) as above, we set P(λ)∗ = (A+λB)∗ = A∗+λB∗, where ∗ denotes the conjugate
transpose. It is important to note that the complex conjugation does not affect the
variable λ.

In this paper, we are interested in complex Hermitian matrix pencils, namely
those with A∗ = A and B∗ = B. An important part of this work focuses on Hermitian
matrix pencils with bounded rank, where the rank of the pencil P, denoted rankP,
is the size of the largest non-identically zero minor of P (namely, the rank of P when
viewed as a matrix with entries in the field of rational functions in λ). The set of
complex Hermitian n × n pencils is denoted by PENCILHn×n, and PENCILHn×n(r)
denotes the set of complex Hermitian n× n pencils with rank at most r.

The signature of a Hermitian constant matrix A ∈ Cn×n is the tuple (σ+, σ−, σ0),
where σ+ is the number of positive eigenvalues, σ− is the number of negative eigen-
values, and σ0 is the multiplicity of the 0 eigenvalue of A.

Two n× n pencils H1(λ) and H2(λ) are ∗-congruent if there exists a nonsingular
matrix Q ∈ Cn×n such that H1(λ) = Q∗H2(λ)Q. Note that, if H1 and H2 are ∗-
congruent, then H1 is Hermitian if and only if H2 is Hermitian. Since in the rest of
this paper we only use the relation of “∗-congruence”, we will often refer to it simply
as “congruence”.

The closure of a subset of n×n complex matrix pencils S, denoted by S, is consid-
ered in the Euclidean topology of the space C2n2 ' Cn×n ×Cn×n, which is identified
with the set of n×n matrix pencils, when considered as pairs of n×n matrices. Also,
open sets and open neighborhoods, as well as the notion of convergence, are consid-
ered in this topology. Through the identification above, PENCILHn×n(r) becomes a

subset of C2n2

and we can consider in PENCILHn×n(r) the subspace topology induced

by the Euclidean topology of C2n2

.
The direct sum of the pencils P1, . . . ,Pk is a block diagonal pencil whose diagonal

blocks are P1, . . . ,Pk, in this order. We will denote it by either diag(P1, . . . ,Pk) or⊕k
i=1 Pi.

Following [5, p. 909], let Ld(λ) := λGd + Fd, where

Fd :=

0 1
. . .

. . .

0 1


d×(d+1)

and Gd :=

1 0
. . .

. . .

1 0


d×(d+1)

,

and define the Hermitian (actually, real symmetric) pencil

Md(λ) :=

[
0 Ld(λ)>

Ld(λ) 0

]
(2d+1)×(2d+1)

.

The pencilM0 is a 1×1 null matrix, and it is a degenerate case ofMd obtained after
joining L0 and L>0 , namely a null column and a null row, respectively.

We are also going to use the following pencils:
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• Symmetric Jordan-like blocks associated with a finite eigenvalue:

JHk (µ) :=


1 λ− µ

. .
.

. .
.

1 λ− µ
λ− µ


k×k

(µ ∈ C).

• Hermitian Jordan-like blocks associated with the infinite eigenvalue:

JHk (∞) :=


λ 1

. .
.

. .
.

λ 1
1


k×k

.

• Hermitian Jordan-like blocks associated with a pair of complex conjugate
eigenvalues:

JHk (µ, µ) =

[
0 JHk (µ)

JHk (µ) 0

]
2k×2k

.

Note that

JH1 (µ) = J1(µ) = λ− µ, for µ ∈ C, and
JH1 (∞) = J1(∞) = 1.

The last two blocks are standard Jordan 1× 1 blocks, and for this reason we will just
write J1(µ) and J1(∞), respectively, omitting the superscript H. Note also that the
Jordan-like block JHk (µ) is Hermitian if and only if µ ∈ R.

We also warn the reader that JHk (µ, µ) has size 2k × 2k, instead of k × k.
The following result, which provides a canonical form for Hermitian pencils under

∗-congruence, can be found in [27, Th. 6.1], but here we present it as in [10, Th. 1].
Theorem 2.1. (Hermitian Kronecker canonical form). Every n × n Hermitian

matrix pencil, H(λ), is ∗-congruent to a direct sum of blocks of the form
(i) blocks σJHk (a), with a ∈ R and σ ∈ {+1,−1};

(ii) blocks σJHk (∞), with σ ∈ {+1,−1};
(iii) blocks JHk (µ, µ), with µ ∈ C having positive imaginary part;
(iv) blocks Mk(λ).

The parameters a, k, σ, and µ may be distinct in different blocks. These parameters,
as well as the number of blocks of each type, are uniquely determined by H, and they
are the invariants of H under ∗-congruence. Furthermore, the direct sum is unique up
to permutation of blocks. We will refer to this direct sum as the Hermitian Kronecker
canonical form of H, and we denote it by HKCF(H).

The values a associated with the blocks in part (i) of Theorem 2.1 are the real
eigenvalues of H, whereas the values µ, µ associated with blocks in part (iii) are the
pairs of (non-real) complex conjugate eigenvalues of H. Both the real and the complex
conjugate eigenvalues conform the set of finite eigenvalues of H. Moreover, if at least
one block like the ones in part (ii) appears in HKCF(H), then H has an infinite
eigenvalue. The list of signs σ appearing in the blocks σJHk (a) and σJHk (∞), given in
a certain order, is known as the sign characteristic of the pencil H [27]. We emphasize
that the sign characteristic of Hermitian matrix pencils and polynomials has been
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defined in several equivalent ways in the literature (see, for instance, [28, 29, 34]).
Each blockMk in part (iv) is associated with a couple of left and right minimal indices
equal to k [24]. The set of eigenvalues together with the number, sign characteristics,
and sizes of the blocks associated to them in the HKCF(H) in Theorem 2.1, and the
number and sizes of the blocks Mk(λ) associated to the minimal indices, constitute
the complete eigenstructure of H.

Note that H is regular if and only if HCKF(H) does not contain blocks Mk.

The Hermitian orbit of the n× n Hermitian pencil H, denoted by OH(H), is the
set of matrix pencils which are ∗-congruent with H, namely

OH(H) := {Q∗H(λ)Q : Q ∈ Cn×n is invertible}.

Note that all pencils in OH(H) are Hermitian.

The Hermitian bundle of H, denoted by BH(H), is the set of all Hermitian pencils
having the same HKCF asH except maybe for the specific values of their distinct finite
eigenvalues. Thus, all the pencils in BH(H) have the same number of distinct finite
eigenvalues and, moreover, there exists an ordering of such distinct finite eigenvalues
for which each eigenvalue has the same number and sizes of associated Hermitian
canonical blocks (with the same signs associated with the blocks of real eigenvalues).

Remark 2.2. In our definition of Hermitian bundle we allow the finite eigen-
values to vary from one pencil to another in the same bundle. However, the blocks
(with their signs) of the infinite eigenvalue are equal for all pencils in the bundle, in
contrast with the standard approach for nonstructured pencils [22, 23]. The reason
for introducing this restriction on the infinite eigenvalue is related to the sign char-
acteristic and to the fact that we expect the Hermitian bundles to have the following
property: if H1 ∈ BH(H2) then BH(H1) ⊆ BH(H2). This property is necessary for
considering the set PENCILHn×n a stratified manifold whose strata are the bundles,
since the closure of a strata must be the finite union of itself with strata of smaller
dimensions. This, however, does not hold if we allow finite eigenvalues to become the
infinite one in a bundle or vice versa. Let us illustrate this situation in the simple
case of PENCILH1×1 = {a + λb : a, b ∈ R}. The possible canonical forms of these
1 × 1 Hermitian pencils are +J1(α) = λ − α,−J1(α) = −(λ − α), with α ∈ R and
finite, +J1(∞) = 1,−J1(∞) = −1, and M0 = 0 (the only singular 1 × 1 pencil). If
we include λ−α = +J1(α) for all finite α ∈ R and 1 = +J1(∞) in the same bundle,
as might seem natural taking into account the definition of bundles for unstructured
pencils, then +J1(∞) = 1 ∈ BH(−J1(β)), where β ∈ R is finite, since −( λm − 1) con-

verges to 1 as the natural number m tends to infinity, and −( λm − 1) ∈ BH(−J1(β)).

However, +J1(α) = λ − α 6∈ BH(−J1(β)) for any α. This means that the previous

desired property of bundles does not hold, since BH(−J1(β)) would not include the
whole bundle to which λ− α = +J1(α) and 1 = +J1(∞) belong. Note that the prob-
lem remains if 1 = +J1(∞) is included in the same bundle as −(λ − β) = −J1(β)
for all finite β ∈ R, since taking the sequence { λm + 1} ⊂ BH(+J1(α)), that tends to

1 as well, we see that 1 = +J1(∞) ∈ BH(+J1(α)), but −(λ − β) 6∈ BH(+J1(α)) for
any β. For these reasons, we only allow the finite eigenvalues to vary in the pencils of
a given bundle. Using the ideas above, it is possible to construct higher dimensional
examples with similar difficulties.

Next, we introduce a notation that allows us to express some arguments concisely
and we state without proof a few very simple properties of Hermitian bundles that
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are often used. If H ∈ PENCILHn×n and H1,H2 ∈ BH(H), then we will write

HKCF(H1) ' HKCF(H2)

to mean that the HKCFs of H1 and H2 are the same up to the values of their distinct
finite eigenvalues.

Lemma 2.3. Let H1,H2 ∈ PENCILHn×n and Q ∈ Cn×n be nonsingular. Then
(a) H1 ∈ BH(H2) if and only if BH(H1) = BH(H2),
(b) H1 ∈ BH(H2) if and only if HKCF(H1) ' HKCF(H2),
(c) H1 ∈ BH(H2) if and only if Q∗H1Q ∈ BH(H2),

(d) H1 ∈ BH(H2) if and only if Q∗H1Q ∈ BH(H2).

3. Some technical results. In this section, we present some results that are
needed to prove the main theorems of the paper (in Sections 4 and 5). We first provide
a block anti-triangular decomposition of Hermitian matrix pencils. This result can
be proven in the same way as the analogous result for symmetric matrix pencils [5,
Theorem 2] but using the factorization W ∗ = U∗R (equivalently, W = R∗U), where
U∗ is unitary and R is upper-triangular, see e.g., [26, p. 89, Theorem 2.1.14].

Theorem 3.1. (Block anti-triangular form of Hermitian pencils). Let H(λ) be a
Hermitian pencil. Then, there is a unitary matrix U such that

(3.1) H(λ) = U∗

 A(λ) B(λ) Hright(λ)
B(λ)∗ Hreg(λ) 0
Hright(λ)∗ 0 0

U,
where:

(i) A(λ) is a Hermitian pencil.
(ii) Hreg(λ) is a regular Hermitian pencil whose elementary divisors are exactly

those of H(λ).
(iii) Hright(λ) is a pencil whose complete eigenstructure consists only of the right

minimal indices of H(λ).
As a consequence, Hright(λ)∗ is a pencil whose complete eigenstructure consists only
of the left minimal indices of H(λ).

In the proofs of the main Theorems 4.1 and 5.1 we make use of the following
results.

Lemma 3.2. Let A1, . . . ,As and H1, . . . ,Hs be Hermitian pencils of different
sizes such that, for i, j = 1, . . . , s,

(a) the sizes of Ai and Hi are equal, Ai ∈ BH (Hi), and
(b) Hi and Hj have no finite eigenvalues in common for i 6= j.

Then A1⊕ · · ·⊕As ∈ BH (H1 ⊕ · · · ⊕ Hs). If, in addition, Ai and Aj have no finite
eigenvalues in common for i 6= j, then A1 ⊕ · · · ⊕ As ∈ BH (H1 ⊕ · · · ⊕ Hs).

Proof. Case 1. Let us assume first that Ai and Aj have no finite eigenvalues in
common for i 6= j. Then

HKCF(A1 ⊕ · · · ⊕ As) = HKCF(A1)⊕ · · · ⊕HKCF(As)
' HKCF(H1)⊕ · · · ⊕HKCF(Hs) = HKCF(H1 ⊕ · · · ⊕ Hs),

and Lemma 2.3-(b) implies A1 ⊕ · · · ⊕ As ∈ BH (H1 ⊕ · · · ⊕ Hs).
Case 2. Next, assume that Ai and Aj have finite eigenvalues in common for some

i 6= j. Let {λ1, . . . , λt} := {λ ∈ C : λ is a finite eigenvalue of Ai and of Aj for i 6= j},
7



where if λ is an eigenvalue of exactly ` pencils Ai (with ` > 1) then it is re-
peated ` times in the previous set. Since there are infinitely many different se-
quences of real numbers {an}n∈N with all their terms distinct whose limit is zero

(as m tends to infinity), we can choose t of these sequences {c(m)
1 }, . . . , {c(m)

t } and
replace in HKCF(A1), . . . ,HKCF(As) the common finite eigenvalues λ1, λ2, . . . , λt by

λ1+c
(m)
1 , . . . , λt+c

(m)
t to get sequences {HKCF(A(m)

1 )}, . . . , {HKCF(A(m)
s )} of pencils

in HKCFs such that, for all m ∈ N,

(p1) HKCF(A(m)
i ) ' HKCF(Ai) ∈ BH (Hi) for i = 1 . . . , s,

(p2) HKCF(A(m)
i ) and HKCF(A(m)

j ) have no finite eigenvalues in common for
i 6= j, and

(p3) limm→∞HKCF(A(m)
i ) = HKCF(Ai), for i = 1, . . . , s.

Then, the result in Case 1 implies

HKCF(A(m)
1 ⊕· · ·⊕A(m)

s ) = HKCF(A(m)
1 )⊕· · ·⊕HKCF(A(m)

s ) ∈ BH (H1 ⊕ · · · ⊕ Hs)

for all m. Then, from (p3) above, HKCF(A1 ⊕ · · · ⊕ As) ∈ BH (H1 ⊕ · · · ⊕ Hs), and
the result follows from Lemma 2.3-(d).

Remark 3.3. We emphasize that, in Lemma 3.2, the closure in the condition
A1 ⊕ · · · ⊕ As ∈ BH (H1 ⊕ · · · ⊕ Hs) cannot be removed. Consider the following
1 × 1 Hermitian pencils: A1 = A2 = λ − 1, H1 = λ + 1, and H2 = λ. Thus,
A1 ∈ BH (H1), A2 ∈ BH (H2), and A1 and A2 have finite eigenvalues in common.
Obviously A1 ⊕ A2 = (λ − 1) ⊕ (λ − 1) /∈ BH (H1 ⊕H2). However, A1 ⊕ A2 =

(λ−1)⊕ (λ−1) ∈ BH (H1 ⊕H2), since, for each m = 1, 2, . . ., (λ− (1−1/m))⊕ (λ−
(1 + 1/m)) ∈ BH (H1 ⊕H2). Observe also that in this example, BH (H1) = BH (H2),
but the hypotheses of Lemma 3.2 require to take different pencils representing this
bundle.

Lemma 3.2 allows us to prove the following lemma, which is the one we will
actually use to prove our main results.

Lemma 3.4. Let H1, . . . ,Hs and H̃1, . . . , H̃s be Hermitian pencils of different
sizes such that, for i, j = 1, . . . , s,

(a) the sizes of Hi and H̃i are equal and BH (Hi) ⊆ BH
(
H̃i
)

, and

(b) H̃i and H̃j have no finite eigenvalues in common for i 6= j.

Then BH (H1 ⊕ · · · ⊕ Hs) ⊆ BH
(
H̃1 ⊕ · · · ⊕ H̃s

)
.

Proof. By definition of closure, we only need to prove BH (H1 ⊕ · · · ⊕ Hs) ⊆
BH

(
H̃1 ⊕ · · · ⊕ H̃s

)
. LetD ∈ BH (H1 ⊕ · · · ⊕ Hs). This implies HKCF(D) ' HKCF(H1⊕

· · · ⊕ Hs) = HKCF(H1) ⊕ · · · ⊕ HKCF(Hs). Therefore, HKCF(D) = HKCF(D1) ⊕
· · · ⊕HKCF(Ds), with HKCF(Di) ' HKCF(Hi), which, according to Lemma 2.3 (b),

implies HKCF(Di) ∈ BH (Hi) ⊆ BH
(
H̃i
)

, for i = 1, . . . s. Thus, there exist sequences

of Hermitian pencils, {D(m)
i } ⊆ BH

(
H̃i
)

, such that limm→∞D(m)
i = HKCF(Di), for

i = 1, . . . s. In addition, from Lemma 3.2,

D(m)
1 ⊕ · · · ⊕ D(m)

s ∈ BH
(
H̃1 ⊕ · · · ⊕ H̃s

)
for all m. Since, limm→∞(D(m)

1 ⊕ · · · ⊕ D(m)
s ) = HKCF(D1) ⊕ · · · ⊕ HKCF(Ds) =

HKCF(D), we get HKCF(D) ∈ BH
(
H̃1 ⊕ · · · ⊕ H̃s

)
, which combined with Lemma
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2.3-(d) implies D ∈ BH
(
H̃1 ⊕ · · · ⊕ H̃s

)
.

Lemma 3.4 will be combined in the proofs of the main results with the next
proposition dealing with the canonical blocks appearing in Theorem 2.1.

Proposition 3.5. Let σ ∈ {+1,−1} and k > 0, d, d1, . . . , dt ≥ 0 be integer
numbers.

(a1) If k is even and a ∈ R, then

BH
(
σJHk (a)

)
⊆ BH

(
diag(JH1 (µ1, µ1), . . . ,JH1 (µ k

2−1
, µ k

2−1
),J1(a1),−J1(a2))

)
,

and

BH
(
σJHk (∞)

)
⊆ BH

(
diag(JH1 (µ1, µ1), . . . ,JH1 (µ k

2−1
, µ k

2−1
), σJ1(a1), σJ1(a2))

)
,

with a1, a2 ∈ R, µ1, . . . , µ k
2−1
∈ C having positive imaginary part, and a1, a2, µ1,

. . . , µ k
2−1

different to each other.

(a2) If k is odd and a ∈ R ∪ {∞}, then

BH
(
σJHk (a)

)
⊆ BH

(
diag(JH1 (µ1, µ1), . . . ,JH1 (µ k−1

2
, µ k−1

2
), σJ1(ã))

)
,

with ã ∈ R, µ1, . . . , µ k−1
2
∈ C having positive imaginary part, and µ1, . . . , µ k−1

2

different to each other.
(b) If µ ∈ C has positive imaginary part, then

BH
(
JHk (µ, µ)

)
⊆ BH

(
diag(JH1 (µ1, µ1), . . . ,JH1 (µk, µk))

)
,

with µ1, . . . , µk ∈ C being different to each other and having positive imagi-
nary part.

(c) If µ ∈ C has positive imaginary part, then BH
(
JHk (µ, µ)⊕Md

)
⊆ OH (Md+k).

(d) OH (diag(Md1 , . . . ,Mdt)) ⊆ OH(diag(Mα+1, . . . ,Mα+1︸ ︷︷ ︸
s

,Mα, . . . ,Mα)︸ ︷︷ ︸
t − s

), with

∑t
i=1 di = tα+ s being the Euclidean division of

∑t
i=1 di by t.

Proof. Part (a1). Assume that k is even and a ∈ R, and note that σJHk (a) is the
limit of the following sequence of Hermitian pencils (as m ∈ N tends to infinity):

σS(ε,m)
(a,k) (λ) := σ


1 λ− a

1 λ− a

. .
.

. .
.

1 λ− a
λ− a ε/m


k×k

,

with ε > 0. By a direct calculation, we get detσS(ε,m)
(a,k) (λ) = (−1)

k
2

(
(λ− a)k − ε

m

)
,

so the eigenvalues of σS(ε,m)
(a,k) (λ) are a+ ( εm )1/k, where ( εm )1/k denote the k different

kth roots of ε
m . Since k is even and ε

m > 0, these consist of 2 real values and k
2 − 1

pairs of complex conjugate non-real distinct numbers. Therefore,

HKCF
(
σS(ε,m)

(a,k)

)
= diag

(
JH1 (µ1, µ1), . . . ,JH1 (µ k

2−1
, µ k

2−1
),±J1(a1),±J1(a2)

)
,
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where µ1, . . . , µ k
2−1

, µ1, . . . , µ k
2−1

are the non-real eigenvalues of σS(ε,m)
(a,k) (λ), a1, a2

are the real eigenvalues, and we take µ1, . . . , µ k
2−1

with positive imaginary part. In

order to fix the signs in (±J1(a1),±J1(a2)), we will use that the matrix leading terms

of σS(ε,m)
(a,k) (λ) and of the pencil in the right-hand side of the previous equality are ∗-

congruent and so have the same signature. Since the leading term of σS(ε,m)
(a,k) is a

symmetric k×k matrix with trace 0 and eigenvalues ±1, its signature is (k/2, k/2, 0).
Now, since the signature of the leading term of each block JH1 (µi, µi) is (1, 1, 0), for
i = 1, . . . , k2 − 1, then the signature of the leading coefficient of the remaining block
diag(±J1(a1),±J1(a2)) must be (1, 1, 0) as well. As a consequence,

σS(ε,m)
(a,k) (λ) ∈ BH

(
diag(JH1 (µ1, µ1), . . . ,JH1 (µ k

2−1
, µ k

2−1
),J1(a1),−J1(a2))

)
,

with a1, a2 ∈ R, and a1, a2, µ1, . . . , µ k
2−1

being different to each other, as wanted.

Since the arguments above are independent of the specific value of a ∈ R, using
Lemma 2.3-(d) we conclude that

BH
(
σJHk (a)

)
⊆ BH

(
diag(JH1 (µ1, µ1), . . . ,JH1 (µ k

2−1
, µ k

2−1
),J1(a1),−J1(a2))

)
,

and the result follows by the definition of closure.
Now, let us prove the claim for σJHk (∞). In this case, we consider the Hermitian

perturbation

(3.2) σS(ε,m)
(∞,k)(λ) := σ


λ 1

. .
.

. .
.

λ 1
1 ε

mλ

 ,
with ε > 0. Note that σS(ε,m)

(∞,k)(λ) tends to σJHk (∞) as m tends to infinity. A

direct calculation gives det(σS(ε,m)
(∞,k)(λ)) = (−1)k/2(1 − ε

mλ
k), so the eigenvalues of

σS(ε,m)
(∞,k)(λ) are the kth roots of m

ε . Since ε > 0, these are k
2 − 1 pairs of complex

conjugate (non-real) numbers and two real numbers. Hence,

HKCF
(
σS(ε,m)

(∞,k)

)
= diag

(
JH1 (µ1, µ1), . . . ,JH1 (µ k

2−1
, µ k

2−1
),±J1(a1),±J1(a2)

)
,

with a1, a2 ∈ R and µ1, . . . , µ k
2−1

having positive imaginary part, and all them being

different to each other. The signs of (±J1(a1),±J1(a2)) are determined again by the

signatures of the leading terms. The leading term of σS(ε,m)
(∞,k) is

T (ε,m) := σ


1 0

. .
.

. .
.

1 0
0 ε

m

 .
The eigenvalues of σT (ε,m) are the following: (k − 2)/2 of them are equal to +1,
(k − 2)/2 are equal to −1, another one is equal to σ, and the last one is equal to
σ ε
m . Since the signature of the leading term of JH1 (µ, µ) is (1, 1, 0), the signature of
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the leading term of diag(±J1(a1),±J1(a2)) must be the one of the leading term of
diag(σJ1(a1), sign(σ ε

m )J1(a2)). Since ε > 0 and all the pencils in BH
(
σJHk (∞)

)
are

congruent to each other, the result follows.
Part (a2). The argument when a ∈ R is similar to the one in part (a1). Thus, we

only sketch the main ideas. In this case, det(σS(ε,m)
(a,k) (λ)) = σk(−1)

k−1
2

(
(λ− a)k + ε

m

)
,

so σS(ε,m)
(a,k) has only one real eigenvalue, and the remaining k− 1 eigenvalues are cou-

ples of complex conjugate non-real distinct numbers, namely σS(ε,m)
(a,k) is ∗-congruent

to diag(JH1 (µ1, µ1), . . . ,JH1 (µ k−1
2
, µ k−1

2
),±J1(ã)), for some µ1, . . . , µ k−1

2
being dif-

ferent to each other and having positive imaginary part, and ã ∈ R. The signa-

ture of the leading coefficient of σS(ε,m)
(a,k) is ((k + 1)/2, (k − 1)/2, 0) if σ = 1 and

((k − 1)/2, (k + 1)/2, 0) if σ = −1. Since, again, the signature of the leading coeffi-
cient of JH1 (µ, µ) is (1, 1, 0), we conclude that the sign of the block J1(a) must be
equal to σ. The fact that the arguments above are again independent of the specific
value of a ∈ R allows us to get the desired inclusion of the bundle closures.

For σJHk (∞) in (a2) we can use a similar argument as for the case k even. In
this case the eigenvalues of (3.2) are the kth roots of −mε , so there is just one real
root and (k − 1)/2 pairs of complex conjugate (non-real) roots. Therefore,

HKCF
(
σS(ε,m)

(∞,k)

)
= diag

(
JH1 (µ1, µ1), . . . ,JH1 (µ k−1

2
, µ k−1

2
),±J1(ã)

)
,

with ã ∈ R and µ1, . . . , µ k−1
2

being different to each other and having positive imagi-

nary part. Reasoning as for the k even case with the signatures of the leading terms

of σS(ε,m)
(∞,k) and of HKCF

(
σS(ε,m)

(∞,k)

)
, which are equal to each other, we conclude that

the sign of the block ±J1(ã) must be equal to σ.
Part (b). Note that, given an arbitrary parameter ε > 0, the Hermitian pencil

JHk (µ, µ) + T (k,m,ε) :=



1 λ− µ

. .
.

. .
.

1 λ− µ
λ− µ

1 λ− µ

. .
.

. .
.

1 λ− µ
λ− µ



+



ε
m

. .
.

(k−1)ε
m

kε
m

kε
m

(k−1)ε
m

. .
.

ε
m


has eigenvalues µ − ε

m , µ−
ε
m , . . . , µ − k ε

m , µ− k
ε
m , which are all different to each

other, so

JHk (µ, µ) + T (k,m,ε) ∈ BH
(
diag(JH1 (µ1, µ1), . . . ,JH1 (µk, µk)

)
,
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with µ1, . . . , µk being different to each other and having positive imaginary part.
Then limm→∞ JHk (µ, µ) + T (k,m,ε) = JHk (µ, µ), which implies that JHk (µ, µ) ∈
BH

(
diag(JH1 (µ1, µ1), . . . ,JH1 (µk, µk)

)
. Since this is valid for any µ ∈ C with positive

imaginary part, we get that BH(JHk (µ, µ)) ⊆ BH
(
diag(JH1 (µ1, µ1), . . . ,JH1 (µk, µk)

)
,

using Lemma 2.3-(d), which implies the result because of the definition of closure.
Part (c). First note that, if P is the block permutation matrix

P =


Ik 0 0 0
0 0 Ik 0
0 Id+1 0 0
0 0 0 Id

 ,
then

P ∗
(
JHk (µ, µ)⊕Md(λ)

)
P

=

Ik 0 0 0
0 0 Id+1 0
0 Ik 0 0
0 0 0 Id


 0 JH

k (µ) 0 0
JH

k (µ) 0 0 0

0 0 0 Ld(λ)
>

0 0 Ld(λ) 0


Ik 0 0 0
0 0 Ik 0
0 Id+1 0 0
0 0 0 Id



=


0 0 JHk (µ) 0
0 0 0 Ld(λ)>

JHk (µ) 0 0 0
0 Ld(λ) 0 0


=

[
0 JHk (µ)⊕ Ld(λ)>

JHk (µ)⊕ Ld(λ) 0

]
.

Therefore, JHk (µ, µ)⊕Md(λ) is ∗-congruent to
[

0 JH
k (µ)⊕Ld(λ)

>

JH
k (µ)⊕Ld(λ) 0

]
.

By [2, Section 5.1] (or [36, Lemma 5]), there exist two invertible matrices R and
Q and an arbitrarily small (entry-wise for each coefficient) matrix pencil E such that

R
(
JHk (µ)⊕ Ld(λ) + E

)
Q = Ld+k(λ).

Applying the ∗ operator to both sides of the previous equality, we obtain

Q∗
(
JHk (µ)⊕ Ld(λ)> + E∗

)
R∗ = Ld+k(λ)>.

Combining these two identities we obtain[
Q∗ 0
0 R

]([
0 JHk (µ)⊕ Ld(λ)>

JHk (µ)⊕ Ld(λ) 0

]
+

[
0 E∗
E 0

])[
Q 0
0 R∗

]
=

[
0 Ld+k(λ)>

Ld+k(λ) 0

]
.

Since E is arbitrarily small, this implies that
[

0 JH
k (µ)⊕Ld(λ)

>

JH
k (µ)⊕Ld(λ) 0

]
∈ OH(Md+k),

so JHk (µ, µ)⊕Md(λ) ∈ OH(Md+k) as well. Again, the fact that this is valid for any
µ ∈ C with positive imaginary part allows us to get the inclusion of the corresponding
bundle-orbit closures.

Part (d). Note that diag(Md1 , . . . ,Mdt) ∈ OH(diag(Mα+1, . . . ,Mα+1,Mα, . . . ,Mα))
(with the number of blocks in the statement) was already proven in the proof of The-
orem 3 in [5]. This result immediately implies the inclusion of the corresponding orbit
closures.
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The final technical result of this section is Lemma 3.6, which will allow us to
simplify the proofs of our main results (Theorems 4.1 and 5.1).

Lemma 3.6. Let r̃, r, and n be nonnegative integers such that 0 ≤ r̃ < r ≤ n.
Let H̃ ∈ PENCILHn×n be a Hermitian pencil with rank H̃ = r̃. Then, there exists

H ∈ PENCILHn×n with rankH = r such that BH(H̃) ⊆ BH(H).

Proof. Note that the HKCF(H̃) has at least one blockMd. Thus, in the first part

of the proof, we consider the sequence of perturbed blocksM(m)
d :=Md+ 1

mEd, where
m = 1, 2, . . ., and Ed is a (2d+ 1)× (2d+ 1) constant matrix that has 1 in the (1, 1)-

entry and zeroes elsewhere. It is immediate to prove that detM(m)
d = ± 1

m , which

implies thatM(m)
d is regular with all its eigenvalues equal to∞. Moreover the rank of

the leading coefficient ofM(m)
d is 2d, which implies that HKCF(M(m)

d ) = ±JH2d+1(∞).
In order to determine the correct sign σ note that the signatures of the zero degree

coefficients of M(m)
d and σJH2d+1(∞) must be the same. The signature of the zero

degree coefficient of M(m)
d is (d+ 1, d, 0), while the one of the zero degree coefficient

of JH2d+1(∞) is also (d+ 1, d, 0). Thus, the correct sign is σ = +1 and we have proved
that, for all m = 1, 2, . . .,

(3.3) HKCF(M(m)
d ) = HKCF(Md +

1

m
Ed) = JH2d+1(∞).

Next, note that it is enough to find a Hermitian pencil H with rankH = r such
that BH(H̃) ⊆ BH(H) due to the definition of closure. Let Ĥ ∈ BH(H̃). Then

HKCF(Ĥ) =

(
n−r⊕
i=1

Mdi

)
⊕

(
n−r̃⊕

i=n−r+1

Mdi

)
⊕HKCFreg(Ĥ),

where HKCFreg(Ĥ) includes all the blocks of types (i), (ii), and (iii) in Theorem

2.1 of the HKCF of Ĥ. Observe that, for all the pencils in BH(H̃), the parameters

d1, . . . , dn−r̃ are the same and HKCFreg(Ĥ) ' HKCFreg(H̃). Then, let us define the
sequence of pencils

H(m) =

(
n−r⊕
i=1

Mdi

)
⊕

(
n−r̃⊕

i=n−r+1

(
Mdi +

1

m
Edi

))
⊕HKCFreg(Ĥ),

that satisfies limm→∞H(m) = HKCF(Ĥ). Moreover (3.3) implies that, for all m ∈ N,
rankH(m) = r and

(3.4) HKCF(H(m)) =

(
n−r⊕
i=1

Mdi

)
⊕

(
n−r̃⊕

i=n−r+1

JH2di+1(∞)

)
⊕HKCFreg(Ĥ),

which is independent of m. From the right-hand side of (3.4), we define

H :=

(
n−r⊕
i=1

Mdi

)
⊕

(
n−r̃⊕

i=n−r+1

JH2di+1(∞)

)
⊕HKCFreg(H̃),

which is independent of m and of the particular Ĥ in BH(H̃) we are considering.

Observe that rankH = r and that, since HKCFreg(Ĥ) ' HKCFreg(H̃), then H(m) ∈
BH(H) for all m. Since limm→∞H(m) = HKCF(Ĥ), we conclude that HKCF(Ĥ) ∈
BH(H), which combined with Lemma 2.3-(d) implies Ĥ ∈ BH(H), and this proves
the result.
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4. The case of general Hermitian pencils. In Theorem 4.1 we present the
generic eigenstructures of complex Hermitian n × n pencils, and we describe the set
PENCILHn×n as a finite union of closed sets, which are the closures of the bundles
corresponding to these generic eigenstructures. Theorem 4.1 is the first main result
of this paper.

Theorem 4.1. (Generic complete eigenstructures of Hermitian matrix pencils).
Let n ≥ 2, 0 ≤ d ≤ bn2 c, and 0 ≤ c ≤ n − 2d. Let us define the following complex
Hermitian n× n regular matrix pencils:

(4.1)
Rc,d(λ) := diag(JH1 (µ1, µ1), . . . ,JH1 (µd, µd),

J1(a1), . . . ,J1(ac),−J1(ac+1), . . . ,−J1(an−2d)),

where a1, . . . , an−2d ∈ R, µ1, . . . , µd ∈ C \ R have positive imaginary part, ai 6= aj,
and µi 6= µj, for i 6= j. Then:

(i) For every complex Hermitian n× n matrix pencil H(λ) there exist integers c

and d such that BH(H) ⊆ BH(Rc,d).

(ii) BH(Rc′,d′) ∩ BH(Rc,d) = ∅ whenever d 6= d′ or c 6= c′.

(iii) The set PENCILHn×n is equal to
⋃

0 ≤ d ≤ bn
2
c

0 ≤ c ≤ n − 2d

BH(Rc,d).

Proof. Claim (iii) is an immediate consequence of claim (i).
Let us prove (i). As a consequence of Lemma 3.6, with r = n, we only need to

prove it when H is a regular pencil, i.e., when H has rank exactly r. The HKCF of
any Hermitian n× n regular pencil H is a direct sum of blocks of the form JHk (µ, µ)
and σJH` (a), with µ having positive imaginary part and a ∈ R∪{∞}. By combining
claims (a1)–(a2)–(b) in Proposition 3.5 with Lemma 3.4, the closure of the Hermitian
bundle corresponding to H is included in the closure of the Hermitian bundle of a
direct sum of blocks JH1 (µi, µi) and ±J1(ai), where µi has positive imaginary part
and ai ∈ R, as long as we take all the eigenvalues in this last direct sum to be
distinct. This is always allowed by Proposition 3.5 since the parameters appearing in
the bundles in that result are arbitrary (subjected to their defining conditions).

Now, let us prove (ii). We are going to prove it first when d 6= d′. By contradiction,

assume that H(λ) is any pencil in BH(Rc′,d′) but H ∈ BH(Rc,d), with Rc′,d′(λ) as
in the statement. Then, there is a sequence of pencils in BH(Rc,d), say {Hm(λ)},
converging to H(λ). Since Hm ∈ BH(Rc,d), the eigenvalues of Hm are of the form
µ1,m, µ1,m, . . . , µd,m, µd,m, and a1,m, . . . , an−2d,m, with µ1,m, . . . , µd,m having positive
imaginary part, a1,m, . . . , an−2d,m ∈ R, and µi,m 6= µj,m, ai,m 6= aj,m, for i 6= j.

Analogously, the eigenvalues of H are µ′1, µ
′
1, . . . , µ

′
d′ , µ

′
d′ , and a′1, . . . , a

′
n−2d′ ∈ R,

with µ′1, . . . , µ
′
d′ having positive imaginary part, and all these numbers being different

to each other.
Let us assume first that d′ > d. By the continuity of the eigenvalues of regular

pencils (see, for instance, Theorem 2.1 in [37, Ch. 6]), at least one of the sequences
{ai,m} converges to some µ′j . But this is not possible, since ai,m ∈ R and µ′j ∈ C \R.

Now, assume that d > d′. By the continuity of the eigenvalues again, there is
at least one sequence {µi,m} converging to some a′j . Since a′j ∈ R, this implies that
im(µi,m) converges to 0, and this in turn implies that µi,m converges to a′j as well.
Therefore, the limit of {Hm} (namely, a pencil with HKCF equal to Rc′,d′) has a′j as
an eigenvalue with algebraic multiplicity at least 2. This is in contradiction with the
fact that the real eigenvalues of Rc′,d′ are different to each other.
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It remains to prove the statement when d = d′ but c 6= c′. Note that the signature
of the leading coefficient of J1(µ, µ) (namely, [ 0 1

1 0 ]) is (1, 1, 0). Therefore, the signature
of the leading coefficient of Rc′,d is (c′+d, n−c′−d, 0), which is equal to the signature
of the leading coefficient of H(λ) since the signature is invariant under ∗-congruence.
On the other hand, using again that the signature is invariant under ∗-congruence,
the signature of the leading coefficient of Hm is the same as the signature of the
leading coefficient of Rc,d, namely (c+d, n−c−d, 0). Then, c′ 6= c implies that either
c+ d < c′ + d or n− c− d < n− c′ − d, which contradicts Theorem 4.3 in [27].

The following result is an immediate consequence of Theorem 4.1.
Corollary 4.2. The number of different generic eigenstructures in PENCILHn×n

is equal to
(⌊n

2

⌋
+ 1
)⌊n+ 3

2

⌋
.

Proof. The number of different pairs (c, d) in Theorem 4.1 is

bn/2c∑
d=0

(n− 2d+ 1) = (n+ 1)
(
bn2 c+ 1

)
− bn2 c

(
bn2 c+ 1

)
=

(
bn2 c+ 1

) (
n+ 1− bn2 c

)
=
(
bn2 c+ 1

)
bn+3

2 c.

Note that the number of generic eigenstructures in PENCILHn×n, according to
Corollary 4.2, is larger than 1, for all n ∈ N. This is a consequence of the differ-
ent forms to distribute in regular Hermitian pencils the eigenvalues between real and
non-real ones and also of the different possible sign characteristics of the real eigen-
values. The fact that there are more than one (in fact, many for large n) generic
eigenstructures of regular Hermitian pencils is in stark contrast with the number of
generic eigenstructures of regular unstructured pencils and of regular complex sym-
metric pencils, which have only one generic eigenstructure corresponding to all the
eigenvalues being different and simple.

5. The case of Hermitian pencils with bounded rank. In Theorem 5.1,
which is the second main result of this paper, we prove that PENCILHn×n(r) is the
union of a finite number of closures of Hermitian bundles, and we explicitly pro-
vide the HKCF of each of these bundles. As a consequence, these HKCFs are the
generic canonical forms of complex Hermitian n×n matrix pencils with rank at most
r. In other words, they provide the generic complete eigenstructures of these pen-
cils. Surprisingly, none of these eigenstructures contain non-real eigenvalues, unlike
what happens with the generic regular complete eigenstructures for general Hermitian
pencils provided in Theorem 4.1.

Theorem 5.1. (Generic complete eigenstructures of Hermitian matrix pencils
with bounded rank). Let n and r be integers such that n ≥ 2 and 1 ≤ r ≤ n− 1. Set
d = 0, 1, . . . , b r2c and let d = (n− r)α+ s be the Euclidean division of d by n− r. Let
us define the following complex Hermitian n× n matrix pencils with rank r:

(5.1) Kc,d(λ) := diag(

s︷ ︸︸ ︷
Mα+1, . . . ,Mα+1,

n−r−s︷ ︸︸ ︷
Mα, . . . ,Mα,

J1(a1), . . . ,J1(ac),−J1(ac+1), . . . ,−J1(ar−2d)),

where a1, . . . , ar−2d ∈ R, ai 6= aj for i 6= j, and c = 0, 1, . . . , r − 2d. Then:
(i) For every complex Hermitian n× n matrix pencil H(λ) with rank at most r,

there exist nonnegative integers c and d, with 0 ≤ d ≤ b r2c and 0 ≤ c ≤ r−2d,

such that BH(H) ⊆ BH(Kc,d).
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(ii) BH(Kc′,d′) ∩ BH(Kc,d) = ∅ whenever d 6= d′ or c 6= c′.

(iii) The set PENCILHn×n(r) is a closed subset of PENCILHn×n, and it is equal to⋃
0 ≤ d ≤ b r

2
c

0 ≤ c ≤ r − 2d

BH(Kc,d).

Proof. The proof has the same structure as the one for Theorem 3 in [5], adapted
to Hermitian pencils instead of symmetric ones. However, we emphasize that some
interesting differences also appear related to the role played by the sign characteristic
and by the blocks JHk (µ, µ) corresponding to pairs of non-real complex conjugate
eigenvalues.

The set PENCILHn×n(r) is a closed subset of PENCILHn×n because it is the in-

tersection of PENCILHn×n with the set of complex n× n matrix pencils with rank at
most r, which is a closed set. Therefore, claim (iii) is an immediate consequence of
(i), so we only need to prove (i) and (ii).

Let us start proving (i). Because of Lemma 3.6, we can restrict ourselves to
Hermitian n× n pencils with rank exactly r. So let H(λ) be a Hermitian pencil with
rankH = r. By Theorem 2.1, we may assume that

HKCF(H) = diag

⊕
t

σtJHkt (bt),
⊕
j

JHkj (λj , λj),
⊕
`

Md`

 ,

with bt ∈ R ∪ {∞} and λj ∈ C with positive imaginary part (the number of blocks
JHkt (bt), JHkj (λj , λj) is not relevant, and the number of blocks Md`(λ) is n − r, by

the rank-nullity Theorem). Then, by (a1), (a2), and (b) in Proposition 3.5, together

with Lemma 3.4 and Lemma 2.3, BH(H) is included in the closure of the Hermitian
bundle of

Ĥ(λ) := diag

(
c⊕
i=1

J1(ai),

r−2d⊕
i=c+1

(−J1(ai)),
⊕
p

JH1 (µp, µp),
⊕
`

Md`(λ)

)
,

for some ai ∈ R and µp having positive imaginary part, and for some 1 ≤ c ≤ r − 2d,
with 0 ≤ d ≤ b r2c. Moreover, since there are infinitely many possible choices for the
distinct eigenvalues in the bundles of the right-hand side of each of the inclusions in
parts (a1), (a2), and (b) in Proposition 3.5, the values ai can be taken to be different
to each other, for i = 1, . . . , r − 2d, and the same happens for the values µp. Since

r ≤ n−1, there is at least one blockMd1(λ) in the previous direct sum defining Ĥ(λ).
Then, by repeatedly applying Proposition 3.5–(c) and Lemma 3.4 (as many times as

the number of JH1 (µp, µp) blocks in Ĥ), the closure of the Hermitian bundle of Ĥ is
included in the closure of the Hermitian bundle of

(5.2) H̃(λ) := diag

(
c⊕
i=1

J1(ai),

r−2d⊕
i=c+1

(−J1(ai)),Md1+q(λ),
⊕
`>1

Md`(λ)

)
,

for some q ≥ 0 (which is equal to the number of all blocks in
⊕

p JH1 (µp, µp)). To get

this inclusion we first split (modulo permutation of direct summands) Ĥ into H1 and
H2, where H2 is the direct sum of Md1 with JH1 (µp, µp) which, for simplicity, is the

last block of this kind in Ĥ, andH1 is the direct sum of the remaining blocks. Then, by
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part (c) in Proposition 3.5 and Lemma 3.4, BH(Ĥ) = BH(H1⊕H2) ⊆ BH(H̃1⊕H̃2),

with H̃1 = H1 and H̃2 =Md1+1, since H̃1 and H̃2 do not have common eigenvalues.

Now, we proceed in the same way with the new pencil H̃1⊕H̃2, and so on until we get
H̃(λ) in (5.2). Applying claim (d) in Proposition 3.5, together with Lemma 3.4 again,

to the Md blocks of H̃(λ), we conclude that the closure of the Hermitian bundle of

H̃ is in turn included in the closure of the Hermitian bundle of

diag

(
c⊕
i=1

J1(ai),

r−2d⊕
i=c+1

(−J1(ai)),
⊕
Mα+1(λ),

⊕
Mα

)
,

for some fixed α, and where the total number of blocksMα andMα+1 in the previous
direct sum is n−r. Taking this into account, if s is the number of blocksMα+1, then
the number of blocks Mα is n− r − s. The value of α can be obtained by adding up
the number of rows (or columns) in the previous pencil and equating to n, namely:

n = r − 2d+ s(2α+ 3) + (n− r − s)(2α+ 1) = n+ 2(α(n− r) + s− d),

which implies d = α(n− r) + s, as claimed.

Summarizing, we have proved that BH(H) ⊆ BH(Kc,d), for some c, d as in the
statement. This proves (i).

Now, let us prove (ii). First, we need to see that if d′ > d, then for any H ∈
BH(Kc′,d′), H /∈ BH(Kc,d), for any c and c′. By Lemma 2.3-(d) and the definition
of bundle, we can take H = Kc′,d′ for certain distinct real numbers a1, . . . , ar−2d′ .
Then, the same argument as the one in the proof of Theorem 3 in [5] is still valid, i.e.,

Kc′,d′ ∈ BH(Kc,d) would be against the majorization of the Weyr sequence of right
minimal indices, see, for instance, [3, Lemma 1.2].

It remains to prove that if d′ < d or d′ = d but c 6= c′, then BH(Kc′,d′) ∩
BH(Kc,d) = ∅ too.

The first part of the rest of the proof is almost the same as the proof of Theorem 3
in [5], replacing > in that proof by ∗. However, there are several relevant differences,
so we include here the proof for completeness and for the sake of reader.

By contradiction, if BH(Kc′,d′) ∩ BH(Kc,d) 6= ∅, then at least one pencil S(λ)
congruent to Kc′,d′(λ) as in (5.1), with ai 6= aj , for i 6= j, and ai ∈ R, must be the
limit of a sequence of pencils in BH(Kc,d). Let {Sm(λ)}m∈N be a sequence of pencils
with Sm(λ) ∈ BH(Kc,d), for all m ∈ N. Then, by Theorem 3.1

(5.3) Sm(λ) = Q∗m

 Am(λ) Bm(λ) S(m)
right(λ)

Bm(λ)∗ S(m)
reg (λ) 0

S(m)
right(λ)∗ 0 0

Qm,
with Qm ∈ Cn×n being a unitary matrix, for all m ∈ N, and

• S(m)
right(λ) has size d × (n − r + d), and complete eigenstructure consisting of

the right minimal indices of Kc,d(λ),

• S(m)
right(λ)∗ has size (n − r + d) × d, and complete eigenstructure consisting of

the left minimal indices of Kc,d(λ),
• S(m)

reg (λ) is a regular (Hermitian) pencil of size (r− 2d)× (r− 2d), with r− 2d
distinct real eigenvalues and c of them having positive sign characteristic.
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Now, let us assume that Sm(λ) converges to some pencil S(λ) ∈ BH(Kc′,d′). Since
the set of unitary n×n matrices is a compact subset of the metric space (Cn×n, ‖·‖2),
the sequence {Qm}m∈N has a convergent subsequence, say {Qmj

}j∈N, whose limit is
a unitary matrix (see, for instance, [26, Lemma 2.1.8]). Set

Hm(λ) :=

 Am(λ) Bm(λ) S(m)
right(λ)

Bm(λ)∗ S(m)
reg (λ) 0

S(m)
right(λ)∗ 0 0


for the matrix in the middle of the right-hand side in (5.3). Then the sequence
{Hmj

}j∈N is convergent as well, since Hmj
(λ) = Qmj

Smj
(λ)Q∗mj

, and both {Qmj
}j∈N

(and, as a consequence, {Qmj
}j∈N and {Q∗mj

}j∈N) and {Smj
}j∈N are convergent,

because any subsequence of Sm converges to its limit. Moreover, by continuity of the
zero blocks in the block-structure, {Hmj}j∈N converges to a matrix pencil of the form

(5.4) H(λ) =

 A(λ) B(λ) C(λ)
B(λ)∗ R(λ) 0
C(λ)∗ 0 0

 ,
with

• C(λ) being of size d× (n− r + d),
• C(λ)∗ being of size (n− r + d)× d, and
• R(λ) being of size (r − 2d)× (r − 2d).

Therefore, the sequence {Smj}j∈N converges to Q∗H(λ)Q, where Q := lim
j→∞

Qmj

is unitary. Since {Sm}m∈N is convergent, any subsequence must converge to its limit,
so lim

m→∞
Sm = S = Q∗H(λ)Q. In the rest of the proof, it is important to bear in mind

that S(λ) (resp. S(λ0) for any particular λ0 ∈ C) has rank at most r, and has rank
exactly r if and only if rank C(λ) = rank C(λ)∗ = d (resp. rank C(λ0) = rank C(λ0)∗ =
d) and rankR(λ) = r − 2d (resp. rankR(λ0) = r − 2d). This follows easily from the
block structure of H(λ) and the fact that rank C(λ) ≤ d and rank C(λ)∗ ≤ d.

Let us first assume that d′ < d and limm→∞ Sm = S ∈ BH(Kc′,d′). Then,

S ∈ BH(Kc′,d′), with d′ < d, and(5.5)

S has exactly r − 2d′ (real) simple eigenvalues.(5.6)

Note that conditions (5.5)–(5.6) mean that S is congruent to Kc′,d′ , for some real
eigenvalues a1, . . . , ar−2d′ in (5.1), different from each other. Moreover, (5.5) implies
that

(5.7) rankS = r,

which is equivalent to rank C(λ) = rank C(λ)∗ = d and rankR(λ) = r−2d. Then, R in
(5.4) is a regular pencil with r−2d eigenvalues (counting multiplicities). Let us denote
these eigenvalues by ã1, . . . , ãr−2d (in principle some of them might be infinite). By
(5.5), the pencil S has more than r − 2d eigenvalues, which are all real and distinct.
If rank C(λ0) = rank C(λ0)∗ = d for all λ0 ∈ R, then rankS(µ) = rankS = r for all
µ ∈ R such that µ 6= ãi (i = 1, . . . , r − 2d), which means that S has at most r − 2d
real eigenvalues, which is a contradiction. Therefore, there must be some λ0 ∈ R such
that rank C(λ0) = rank C(λ0)∗ < d. In particular, such λ0 is an eigenvalue of S, since
the number of linearly independent rows of S(λ0) is less than r. Now, we are going
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to see that, in this case, λ0 is an eigenvalue of S with algebraic multiplicity at least
2, which is in contradiction with (5.6) as well. For this, we will prove that all r × r
non-identically zero minors of H have (λ − λ0)2 as a factor. In order for an r × r
submatrix of H to have non-identically zero determinant, it must contain fewer than
d + 1 columns among the last n − r + d columns of H (namely, those corresponding
to C), and fewer than d+ 1 rows among the last n− r + d rows of H (namely, those
corresponding to C∗). This is because any set of d+1 columns among the last n−r+d
columns of H is linearly dependent, and the same for the last n − r + d rows. As a
consequence, any r × r non-identically zero minor, M(λ), of H is of the form:

M(λ) := det

 A(λ) B(λ) C1(λ)
B(λ)∗ R(λ) 0
C2(λ)∗ 0 0

 ,
where C1 (respectively, C∗2 ) is a submatrix of C (resp., C∗) with size d× d. Therefore,
M(λ) = ±detR · det C1 · det C∗2 . Since rank C1(λ0) < d and rank C2(λ0)∗ < d, the
binomial (λ − λ0) = (λ − λ0) is a factor of both det C1 and det C∗2 , so (λ − λ0)2 is
a factor of M(λ). Note that λ0 ∈ R is key in this conclusion, in order to guarantee
(λ− λ0) = (λ− λ0).

Therefore, the gcd of all r × r non-identically zero minors of H is a multiple of
(λ− λ0)2. This implies (see, for instance, [24, p. 141]) that the algebraic multiplicity
of λ0 as an eigenvalue of H, and so of S, is at least 2.

Now, assume that d′ = d but c′ 6= c. Then, limm→∞ Sm = S ∈ BH(Kc′,d), which
implies that S(λ) is congruent to Kc′,d(λ) as in (5.1), for some real distinct eigenvalues
a1, . . . , ar−2d. Thus, if we express S(λ) = λX + Y and Kc′,d(λ) = λXc′,d + Yc′,d,
with X,Y,Xc′,d and Yc′,d being constant Hermitian matrices, then X and Xc′,d are
∗-congruent and both have the same signature. This signature is

(5.8) signature(X) = (c′ +m+, r − 2d− c′ +m−,m0),

where (m+,m−,m0) is the signature of the blocks diag(

s︷ ︸︸ ︷
Mα+1, . . . ,Mα+1,

n−r−s︷ ︸︸ ︷
Mα, . . . ,Mα)

in Kc′,d(λ). On the other hand, if we express Sm(λ) = λXm + Ym ∈ BH(Kc,d) and
Kc,d(λ) = λXc,d + Yc,d, with Xm, Ym, Xc,d and Yc,d being constant Hermitian ma-
trices, then Xm and Xc,d are ∗-congruent and both have the same signature. This
signature is

(5.9) signature(Xm) = (c+m+, r − 2d− c+m−,m0).

Thus, c′ 6= c implies that c+m+ < c′ +m+ or r − 2d− c+m− < r − 2d− c′ +m−,
which together with limm→∞Xm = X, (5.8), and (5.9) contradict Theorem 4.3 in
[27].

It is interesting to compare Theorem 5.1 with Theorem 3 in [5], which gives the
generic complete eigenstructures of symmetric n × n pencils with bounded rank. In
particular, the generic singular symmetric pencils contain complex eigenvalues, that
may be non-real. However, this is not the case of generic Hermitian pencils, that
can only contain real eigenvalues. Moreover, the number of generic eigenstructures
for Hermitian pencils, provided in Theorem 5.1, is larger than the one for symmetric
pencils, and this is due to the presence of the sign characteristic. The following result,
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which is an immediate consequence of Theorem 5.1, provides the number of different
generic complete eigenstructures in the Hermitian case.

Corollary 5.2. The number of different generic bundles provided in Theorem

5.1 is equal to
(⌊r

2

⌋
+ 1
)⌊r + 3

2

⌋
.

Proof. The result is a consequence of the following identities:

br/2c∑
d=0

(r − 2d+ 1) = (r + 1)

br/2c∑
d=0

1− 2

br/2c∑
d=0

d = (r + 1)
(⌊r

2

⌋
+ 1
)
−
⌊r

2

⌋(⌊r
2

⌋
+ 1
)

=

⌊
r + 3

2

⌋(⌊r
2

⌋
+ 1
)
.

In particular, when r = n − 1, there are (bn/2c + 1)(b(n − 1)/2c + 1) different
generic bundles. This implies that the set of complex singular Hermitian n×n pencils
is the union of (bn/2c + 1)(b(n − 1)/2c + 1) different bundle closures. This number
is greater than 1, provided that n ≥ 2. This is in contrast with Theorem 4 in [42],
where it is claimed that the set of singular complex Hermitian n × n pencils is an
irreducible closed set. Then, according to this result, the union of all closures of the
generic Hermitian bundles of rank n−1 would be an irreducible closed (in the Zariski
topology) set. Related to this, it is interesting to compare with the case of symmetric
pencils, considered in [5]. It is proved in that reference (Theorem 3) that the set
of symmetric singular pencils is the union of a finite number of bundle closures, a
result which is the counterpart of Theorem 5.1 for symmetric pencils. Moreover, in
Theorem 4 of [5] it is also proved that each of these bundle closures is a closed (in the
Zariski topology) irreducible set. However, the arguments in the proof of that result
are not valid anymore for Hermitian pencils, since the map Φ in that proof, which is
essentially a congruence of matrix pencils, in the case of Hermitian pencils should be
a ∗-congruence instead, which is not a polynomial map.

Remark 5.3 (Skew-Hermitian matrix pencils). A matrix pencil N (λ) = A+λB,
with A,B ∈ Cn×n, is called skew Hermitian when A∗ = −A and B∗ = −B. Notably,
N is skew Hermitian if and only if iN is Hermitian. Therefore the generic complete
eigenstructures of skew-Hermitian matrix pencils can be obtained from Theorems 4.1
and 5.1, multiplying (4.1) and (5.1) by i.

6. Codimension computations. The Hermitian orbit of a Hermitian pencil
H(λ) is a differentiable manifold over R, whose tangent space at the point H is the
following vector subspace of PENCILHn×n (over R)

(6.1) TH(H) := {P ∗H(λ) +H(λ)P : P ∈ Cn×n}.

A way to see that this is the tangent space follows similar arguments to the ones
used in [14, p. 74] for orbits under strict equivalence. More precisely, consider a
small perturbation of H in OH(H), namely (I + δP )∗H(λ)(I + δP ) = H(λ) + δ ·
(P ∗H(λ) +H(λ)P ) + O(δ2), for some “small” real quantity δ and P ∈ Cn×n, and
then take the first-order term of this perturbation (in δ), namely P ∗H(λ) + H(λ)P
(see also [18, p. 1432] for the congruence orbit). Note also that, since H is Hermitian,
then all points in TH(H) belong to PENCILHn×n, so TH(H) is a (real) vector subspace

of PENCILHn×n.
The dimension of TH(H) is the dimension of the Hermitian orbit of H and the

dimension of the normal space to the orbit at the point H is the codimension of
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the Hermitian orbit of H (denoted by codimROH(H)), where the orthogonality is
defined with respect to the Frobenius inner product 〈A+λB,C+λD〉 = trace(AC∗+
BD∗), and trace(X) denotes the trace of the matrix X. We also emphasize that the
normal space to TH(H) is considered in the vector space PENCILHn×n (and not in
PENCILn×n).

In order to get the codimension of OH(H) we need the following result.
Theorem 6.1. The codimension of the Hermitian orbit of an n × n Hermitian

matrix pencil A+ λB is equal to the dimension of the solution space of

X∗A+AX = 0,

X∗B +BX = 0.
(6.2)

Proof. Define the mapping

f : Cn×n → TH(A+ λB), X 7→ X∗(A+ λB) + (A+ λB)X,

where TH(A + λB) is the tangent space of OH(A + λB) at the point A + λB.
The mapping f is a surjective homomorphism of vector spaces over R. Therefore
dimR Cn×n = dimR T

H(A+λB)+dimR V (A+λB), where V (A+λB) := {X ∈ Cn×n :
X∗(A+ λB) + (A+ λB)X = 0} = {X ∈ Cn×n : X∗A+AX = 0 = X∗B +BX}. At
every point A+ λB there is an isomorphism

PENCILHn×n ' TH(A+ λB)⊕N(A+ λB),

in which N(A + λB) is the normal space to TH(A + λB) at the point A + λB with
respect to the inner product. Therefore,

codimROH(A+ λB) = dimRN(A+ λB) = dimR(PENCILHn×n)− dimR T
H(A+ λB)

= dimR(PENCILHn×n)− dimR Cn×n + dimR V (A,B)

= 2n2 − 2n2 + dimR V (A,B) = dimR V (A,B).

By Theorem 6.1, for obtaining the codimension of OH(A+ λB), when A+ λB is
Hermitian, it is enough to obtain the dimension over R of the solution space of the
system of matrix equations (6.2). Now we focus on computing the latter.

Let A+λB = (A1+λB1)⊕(A2+λB2) be a Hermitian matrix pencil. Consider the
system of matrix equations (6.2) associated with A+ λB. Partitioning the unknown
matrix X we rewrite the system (6.2) as follows[

X∗11 X∗21
X∗12 X∗22

] [
A1 0
0 A2

]
+

[
A1 0
0 A2

] [
X11 X12

X21 X22

]
=

[
0 0
0 0

]
,[

X∗11 X∗21
X∗12 X∗22

] [
B1 0
0 B2

]
+

[
B1 0
0 B2

] [
X11 X12

X21 X22

]
=

[
0 0
0 0

]
.

Operating in the left-hand side of the previous identities we obtain

(6.3)

[
X∗11A1 +A1X11 X∗21A2 +A1X12

X∗12A1 +A2X21 X∗22A2 +A2X22

]
=

[
0 0
0 0

]
,[

X∗11B1 +B1X11 X∗21B2 +B1X12

X∗12B1 +B2X21 X∗22B2 +B2X22

]
=

[
0 0
0 0

]
,
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where in each equation the off-diagonal blocks are the conjugate transposed of each
other. In the previous system of equations there are two types of equations, namely:
(a) equations of the form X∗A+AX = 0 and (b) equations of the form Y A+BZ = 0.
The coefficients A and B are the coefficients of the pencils in the diagonal blocks of the
direct sum. Then we define, for the Hermitian matrix pencils Ai+λBi and Aj +λBj ,
the following systems of matrix equations:

syst(Ai + λBi) : X∗Ai +AiX = 0, X∗Bi +BiX = 0;

syst(Ai + λBi, Aj + λBj) : ZAj +AiY = 0, ZBj +BiY = 0.

In the system (6.2), one can assume via a ∗-congruence and a change of variable
that A + λB is given in HKCF. Then, we can decouple the system into a set of
systems like (6.3) (partitioned according to the number of blocks in the HKCF, which
obviously may be larger than 2) where in each system A1 + λB1 and A2 + λB2 are
canonical blocks. To obtain the dimension of the solution space of (6.2) it is thus
enough to sum up the dimensions of the solution spaces of all systems (6.3).

Following Arnold [1, §5.5], and taking into account that the non-real eigenvalues
of Hermitian pencils appear in conjugate pairs, given a Hermitian pencil H(λ), the
codimension of BH(H) over R, denoted by codimR BH(H), is equal to the codimension
of OH(H) minus the number of different eigenvalues of H (see also [18, p. 1441] for
congruence bundles of general pencils). From this definition and the codimension of
OH(Tc,d) we can obtain the codimension of BH(Tc,d), with Tc,d(λ) being the generic
Hermitian pencils in either Theorem 4.1 or 5.1.

6.1. Codimension of generic regular bundles. In this section, we compute
the codimension of the generic bundles in Theorem 4.1.

We start by computing the dimension of the solution space of syst(Ai + λBi) for
Ai + λBi ∈ {σJ1(a),JH1 (µ, µ)}, with a ∈ R and µ ∈ C having positive imaginary
part. First consider σ = 1 and a ∈ R, resulting in

syst(J1(a)) : xa+ ax = 0, x+ x = 0,

whose solution is x = ib, with b ∈ R. The dimension of this solution space is equal to
1. The solution of syst(−J1(a)) (i.e., σ = −1) remains the same.

Consider the system syst(JH1 (µ, µ)):

(6.4)

[
x11 x21
x12 x22

] [
0 1
1 0

]
+

[
0 1
1 0

] [
x11 x12
x21 x22

]
=

[
0 0
0 0

]
,[

x11 x21
x12 x22

] [
0 µ
µ 0

]
+

[
0 µ
µ 0

] [
x11 x12
x21 x22

]
=

[
0 0
0 0

]
.

Multiplying the matrices in the first equation in (6.4) we have[
x21 + x21 x11 + x22
x22 + x11 x12 + x12

]
=

[
0 0
0 0

]
,

whose solution is then replaced into the second equation:[
x11 −ib21
−ib12 −x11

] [
0 µ
µ 0

]
+

[
0 µ
µ 0

] [
x11 ib12
ib21 −x11

]
=

[
0 0
0 0

]
,
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where b12, b21 ∈ R, or, equivalently,[
ib21(µ− µ) x11µ− x11µ
x11µ− x11µ ib12(µ− µ)

]
=

[
0 0
0 0

]
.

Therefore b12 = b21 = 0, x11 ∈ C, and the dimension over R of the solution space of
syst(JH1 (µ, µ)) is 2.

Now we compute the dimension of the solution space of syst(Ai+λBi, Aj +λBj)
for Ai + λBi, Aj + λBj ∈ {σJ1(a),JH1 (µ, µ)}, with a ∈ R, µ ∈ C and imµ > 0.

The system syst(σiJ1(ai), σjJ1(aj)) reads z+y = 0 = ajz+aiy when σi = σj and
z − y = 0 = ajz − aiy when σi = −σj . Since ai 6= aj , in both cases the only solution
is y = z = 0, so the dimension of the solution space of syst(σiJ1(ai), σjJ1(aj)) is 0.

Next type of systems we need to consider is syst(JH1 (µ, µ),JH1 (η, η)), where µ, η
have positive imaginary parts and µ 6= η:[

z11 z12
z21 z22

] [
0 1
1 0

]
+

[
0 1
1 0

] [
y11 y12
y21 y22

]
=

[
0 0
0 0

]
,[

z11 z12
z21 z22

] [
0 µ
µ 0

]
+

[
0 η
η 0

] [
y11 y12
y21 y22

]
=

[
0 0
0 0

]
,

or, equivalently, [
z11 z12
z21 z22

] [
0 µ
µ 0

]
−
[
0 η
η 0

] [
z22 z21
z12 z11

]
=

[
0 0
0 0

]
.

After performing the matrix multiplications we obtain:[
z12(µ− η) z11(µ− η)
z22(µ− η) z21(µ− η)

]
=

[
0 0
0 0

]
.

If re(µ) 6= re(η) then zij = 0. If re(µ) = re(η), taking into account that im(µ), im(η) >
0, and µ 6= η, we have im(µ) 6= ±im(η), which in turn result in zij = 0. Thus, the
dimension of the solution space of syst(JH1 (µ, µ),JH1 (η, η)) is zero.

Finally, we consider the systems syst(JH1 (µ, µ), σJ1(a)), where µ has a positive
imaginary part, σ = ±1, and a ∈ R. For σ = 1, the system is[

z11 z12
] [0 1

1 0

]
+
[
1
] [
y11 y12

]
=
[
0 0

]
,

[
z11 z12

] [0 µ
µ 0

]
+
[
a
] [
y11 y12

]
=
[
0 0

]
,

which is equivalent to a single equation[
z11 z12

] [0 µ
µ 0

]
+
[
a
] [
−z12 −z11

]
=
[
0 0

]
.

Multiplying the matrices we get[
z12µ− az12 z11µ− az11

]
=
[
0 0

]
.

Since im(µ) > 0, we must have zij = 0 and thus yij = 0. For σ = −1, the solution is
exactly the same. Thus, the dimension of the solution space of syst(JH1 (µ, µ), σJ1(a))
is always 0.
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We note that only the dimensions of the solution spaces for syst(JH1 (µ, µ)) and
syst(σJ1(a)) (2 and 1, respectively) contribute to the dimension of the solution
spaces for A + λB being equal to the generic Hermitian canonical form Rc,d. Sum-
ming up all these dimensions of the solution spaces of matrix equations we obtain
codimROH(Rc,d) = n, which implies the following theorem:

Theorem 6.2. The codimension in PENCILHn×n of the Hermitian bundle of
Rc,d(λ) of generic Hermitian pencils in Theorem 4.1 is

codimR BH(Rc,d) = 0.

In contrast with the singular case, considered in Section 6.2 below, codimROH(Rc,d)
and codimR BH(Rc,d) do not depend on the values of c or d.

6.2. Codimension of generic singular bundles with bounded rank. In
this subsection we obtain the codimensions of the generic bundles BH(Kc,d) in The-
orem 5.1. We want to emphasize that, as a consequence of Theorem 6.3, the generic
bundles in Theorem 5.1 have different codimension whenever d 6= d′ (but those for
which d = d′ and c 6= c′ have the same codimension). Thus, the codimension of the
generic bundles does not depend on the sign characteristic.

Theorem 6.3. The codimension in PENCILHn×n of the Hermitian n× n bundle
of generic Hermitian matrix pencils in Theorem 5.1 is

codimR BH(Kc,d) = 2(n− d)(n− r).

Proof. We are first going to compute the codimension of OH(Kc,d). By Theo-
rem 6.1, this codimension is equal to the dimension of the solution space of (6.2), with
Kc,d(λ) = A+λB. By the arguments after the proof of Theorem 6.1, we need to obtain
the dimension of the solution spaces of syst(Ai + λBi) and syst(Ai + λBi, Aj + λBj),
where Ai + λBi and Aj + λBj are the canonical blocks appearing in Kc,d(λ).

We recall that the dimension of the solution space of syst(σJ1(a)) for a ∈ R is
computed in Section 6.1 and is equal to 1.

Now we consider the system syst(Mk):[
X∗11 X∗21
X∗12 X∗22

] [
0 F>k
Fk 0

]
+

[
0 F>k
Fk 0

] [
X11 X12

X21 X22

]
=

[
0 0
0 0

]
,[

X∗11 X∗21
X∗12 X∗22

] [
0 G>k
Gk 0

]
+

[
0 G>k
Gk 0

] [
X11 X12

X21 X22

]
=

[
0 0
0 0

]
,

where X is partitioned conformally with the 2× 2 block structure of Mk. Note that
the conjugation of X is the only difference compared to the case described in [20,
Section 3.2]. Multiplying the matrices we have

(6.5)

[
X∗21Fk + F>k X21 X∗11F

>
k + F>k X22

X∗22Fk + FkX11 X∗12F
>
k + FkX12

]
=

[
0 0
0 0

]
,[

X∗21Gk +G>k X21 X∗11G
>
k +G>k X22

X∗22Gk +GkX11 X∗12G
>
k +GkX12

]
=

[
0 0
0 0

]
.

Since the pairs of blocks at positions (1, 2) and (2, 1) are equal to each other up
to transposition and conjugation, equation (6.5) decomposes into three independent
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subsystems. Let us first consider the subsystem corresponding to the (1, 1)-blocks:

(6.6)
X∗21Fk + F>k X21 = 0,

X∗21Gk +G>k X21 = 0.

In order to satisfy the second equation of (6.6), X21 must have the form

X21 =


ib11 x12 x13 . . . x1k 0
−x12 ib22 x23 . . . x2k 0
−x13 −x23 ib33 . . . x3k 0
...

...
...

. . .
...

...
−x1k −x2k −x3k . . . ibkk 0

 ,

with b11, . . . , bkk ∈ R. Substituting X21 in the first equation of (6.6), we obtain

(6.7)



0 −ib11 −x12 . . . −x1,k−1 −x1k
ib11 x12 + x12 −ib22 − x13 . . . x1k − x2,k−1 −x2k
−x12 ib22 + x13 x23 + x23 . . . x2k − x3,k−1 −x3k
...

...
...

. . .
...

...
−x1,k−1 x1k − x2,k−1 x2k − x3,k−1 . . . xk−1,k + xk−1,k −ibkk
−x1k −x2k −x3k . . . ibkk 0


= 0.

The first row of (6.7) gives b11 = 0 = x12 = · · · = x1k. Replacing this into the
equations obtained from the upper diagonal entries in the second row of (6.7) gives
b22 = 0 = x23 = · · · = x2k. Proceeding recursively in this way, we conclude that
X21 = 0.

Now consider the subsystem corresponding to the (2, 2)-blocks:

(6.8)
X∗12F

>
k + FkX12 = 0,

X∗12G
>
k +GkX12 = 0.

In order to satisfy the second equation of (6.8), X∗12 must have the form

X∗12 =


ib11 x12 x13 . . . x1k x1,k+1

−x12 ib22 x23 . . . x2k x2,k+1

−x13 −x23 ib33 . . . x3k x3,k+1

...
...

...
. . .

...
...

−x1k −x2k −x3k . . . ibkk xk,k+1

 ,

with b11, . . . , bkk ∈ R. Replacing it in the first equation of (6.8), we obtain
x12 + x12 x13 − ib22 x14 − x23 . . . x1,k+1 − x2k
x13 + ib22 x23 + x23 x24 − ib33 . . . x2,k+1 − x3k

...
. . .

. . .
. . .

...
x1k − x2,k−1 x2k − x3,k−1 . . . xk−1,k + xk−1,k xk−1,k+1 − ibkk
x1,k+1 − x2k x2,k+1 − x3k . . . xk−1,k+1 + ibkk xk,k+1 + xk,k+1

 = 0.

Equating the diagonal entries of this identity gives xi,i+1 +xi,i+1 = 0, for i = 1, . . . , k,
which implies that xi,i+1 = ibi,i+1, with bi,i+1 ∈ R. Equating the upper diagonal
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H
∑

dim(syst(H))

σJ1(a) r − 2d
Mα (2α+ 2)(n− r − s)
Mα+1 (2α+ 4)s

Table 6.1
Sum of dimensions of the solution spaces of syst(H), for all blocks of each of the forms H in

Kc,d(λ)

entries in turn gives xi,j = xi+1,j−1, for j ≥ i+ 2. Therefore, X∗12 = i[bij ] is a Hankel
matrix (namely, each skew diagonal is constant) and bij ∈ R.

Finally, using similar arguments to the ones in [19, Section 3.2] (replacing > by ∗
in that reference leads to the same solution), the solution of the off-diagonal subsystem

X∗22Fk + FkX11 = 0,

X∗22Gk +GkX11 = 0,

is X11 = αIk+1 and X22 = −αIk, with α ∈ C.

Summing up, the solution of system (6.5) is

X =

[
αIk+1 X12

0k,k+1 −αIk

]
,

where, as we have seen, X∗12 = i[bij ] is a Hankel matrix and bij ∈ R. The number of
independent real parameters of the matrix X above is 2k+ 2, namely 2k coming from
X12 and 2 coming from α ∈ C. Hence the dimension over R of the solution space of
syst(Mk) is 2k + 2.

Now we compute the dimension of the solution space of syst(Ai+λBi, Aj +λBj)
forAi+λBi, Aj+λBj ∈ {σJ1(a),Mk}, with a ∈ R. The system syst(σiJ1(ai), σjJ1(aj))
was handled in Section 6.1 and the dimension of its solution space is equal to 0. The
dimension of the solution of syst(σJ1(a),Mk), and syst(Mmi

,Mmj
) follows directly

from the dimension of the corresponding systems in [20, Corollary 2.2], see also [15,
Corollary 2.1] and [17, Theorem 2.7]. Namely, the dimension of syst(J1(a),Mk) is
equal to 2 (from here, we can conclude that the dimension of the solution space of
syst(−J1(a),Mk) is also equal to 2, using the change of variables Y ′ = −Y ); and
as for syst(Mmi

,Mmj
) the dimension is equal to 2 · (2 max{mi,mj} + εij), where

εij = 2 if mi = mj and εij = 1 otherwise. Note that, for the generic Hermitian pencils
in Theorem 5.1, mi,mj ∈ {α, α+ 1}.

We summarize in Table 6.1 the dimension of the solution space of syst(H) and in
Table 6.2 the dimension of the solution space of the systems syst(H1,H2), withH, H1,
and H2 being all possible pairs of blocks in Kc,d(λ). Each entry of the table contains
the dimension of the solution spaces of all systems obtained from the corresponding
blocks, so it is the product of the dimension obtained with the precedent arguments
for each system multiplied by the number of blocks of each kind in Kc,d(λ). The lower
diagonal entries in Table 6.2 are not considered to avoid repetitions.

Summing up the dimensions of the solution spaces for all the subsystems we
obtain the following codimension of OH(Kc,d):
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H1

H2 σJ1(ai) Mα Mα+1

σJ1(ai) 0 2(r − 2d)(n− r − s) 2(r − 2d)s
Mα – 2(2α+ 2)

(
n−r−s

2

)
2(2α+ 3)(n− r − s)s

Mα+1 – – 2(2α+ 4)
(
s
2

)
Table 6.2

Sum of dimensions of the solution spaces of syst(H1,H2), for all blocks of each of the forms
H1,H2 in Kc,d(λ)

codimROH(Kc,d) = r − 2d+ 2(α+ 2)s+ 2(α+ 1)(n− r − s) + 2(n− r)(r − 2d)

+ 2(n− r − s)(n− r − s− 1)(2α+ 2)/2 + 2s(s− 1)(2α+ 4)/2

+ 2s(n− r − s)(2(α+ 1) + 1)

= r − 2d+ 2(α(n− r) + n− r + s) + 2(n− r)(r − 2d)

+ 2(n− r − s)(n− r − s− 1)(α+ 1) + 2s(s− 1)(α+ 1) + 2s(s− 1)

+ 4s(n− r − s)(α+ 1) + 2s(n− r − s)
= r − 2d+ 2(d+ n− r) + 2(n− r)(r − 2d)

+ 2(α+ 1)((n− r − s)(n− r − 1) + s(n− r − 1)) + 2s(n− r − 1)

= r − 2d+ 2(d+ n− r) + 2(n− r)(r − 2d)

+ 2(α+ 1)(n− r)(n− r − 1) + 2s(n− r − 1)

= r − 2d+ 2(d+ n− r) + 2(n− r)(r − 2d) + 2(d+ n− r)(n− r − 1)

= r − 2d+ 2(n− d)(n− r),

where in the third and fifth identities we have used that α(n − r) + s = d. As a
consequence, the codimensions of the generic bundles are:

codimR BH(Kc,d) = r − 2d+ 2(n− d)(n− r)− r + 2d = 2(n− d)(n− r).

We want to emphasize that the generic bundle with smallest codimension (namely,
with largest dimension) is the one with largest d, namely the one having the smallest
number of eigenvalues (this number is equal to 0 if r is even and to 1 if r is odd).

7. Numerical illustration of the theoretical results. Despite this paper is
of a theoretical nature, we provide a couple of numerical experiments to illustrate
and support the main results (namely, Theorems 4.1 and 5.1). The Matlab code for
these experiments is available on GitHub.1

Example 1. The purpose of this experiment is to show that all the generic
complete eigenstructures of regular Hermitian matrix pencils in Theorem 4.1 arise
numerically when computing the eigenvalues of a simple family of randomly generated
regular Hermitian matrix pencils.

Using [33] we generate the matrix coefficients, i.e., A and B, of a Hermitian
matrix pencil A + λB, and shift these matrix coefficients, by adding to each of the
matrices a diagonal matrix with the same value on the diagonal: A+wjI and B+wjI.
Then we compute the eigenvalues of (A+wjI)+λ(B+wjI) with the Matlab function

1https://github.com/dmand/generic herm experiments.git
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eig(A,B) and we count the number of real eigenvalues in the output. In Figure 1 we
show the outcome after repeating this computation 350 times for 20 × 20 Hermitian
matrix pencils with the shifts wj = (j log j)/100. We see that the number of the
real eigenvalues varies from 0 to 20 (the size of the pencils), and that all possible
numbers (namely, all even numbers between 0 and 20) are attained. However, as j
increases, there is a larger number of real eigenvalues. This is the expected output,
since the diagonal entries of the coefficients matrices are increasing, while the size of
all non-diagonal entries remains the same.

Fig. 7.1. Number of real eigenvalues for 20 × 20 regular random Hermitian matrix pencils
(A+ wjI) + λ(B + wjI), where wj = (j log j)/100, j = 1, . . . , 350.

Example 2. The purpose of this experiment is to show that singular Hermitian
matrix pencils generically do not have pairs of complex conjugate eigenvalues. We
generate Hermitian matrix pencils of a given rank r using the result of [10, Theorem 2]
and compute their eigenvalues using the MultiParEig Toolbox for Matlab [35], see
also [25]. In extensive set of experiments we have never seen a pencil with a pair of
complex conjugate eigenvalues. For example, after running 50000 experiments with
17×17 Hermitian matrix pencils of rank 9, we get 9, 7, 5, 3, or 1 eigenvalues (all real)
and no non-real eigenvalues.

8. Conclusions. We have proved that the set of complex Hermitian n×n matrix
pencils with rank at most r (with r ≤ n) is the union of a finite number of closed
sets, which are the closures of the bundles of certain pencils. These pencils are given
explicitly in Hermitian Kronecker canonical form, namely explicitly displaying their
complete eigenstructure. Hence, these are the generic complete eigenstrustures of
Hermitian n× n matrix pencils with rank at most r, and the corresponding bundles
are the generic bundles. The case when r = n is addressed separately, because it
provides the generic eigenstructures of general n× n Hermitian pencils (without any
rank constraint). In this case, all except one of the generic eigenstructures contain
non-real eigenvalues. However, this is not the case when r < n, where the generic
eigenstructures can only contain real eigenvalues (if any).

We have provided the number of generic bundles, which is larger than 1. Finally,
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we have obtained the (co)dimension of the generic bundles.

Acknowledgements. The work of F. De Terán and F. M. Dopico has been partially
supported by the Agencia Estatal de Investigación of Spain through grant PID2019-
106362GB-I00 MCIN/AEI/ 10.13039/501100011033/ and by the Madrid Government
(Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the
line of Excellence of University Professors (EPUC3M23), and in the context of the V
PRICIT (Regional Programme of Research and Technological Innovation). The work
of A. Dmytryshyn has been supported by the Swedish Research Council (VR) under
grant 2021-05393.

REFERENCES

[1] V. Arnold, On matrices depending on parameters, Russian Math. Surveys, 26 (1971), pp. 29–
43.

[2] D. L. Boley, The algebraic structure of pencils and block Toeplitz matrices, Linear Algebra
Appl., 279 (1998), pp. 255–279.

[3] I. de Hoyos, Points of continuity of the Kronecker canonical form, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 278–300.

[4] F. De Terán, A geometric description of sets of palindromic and alternating matrix pencils
with bounded rank, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1116–1134.

[5] F. De Terán, A. Dmytryshyn, and F. M. Dopico, Generic symmetric matrix pencils with
bounded rank, J. Spectr. Theory, 10 (2020), pp. 905–926.

[6] F. De Terán and F. M. Dopico, A note on generic Kronecker orbits of matrix pencils with
fixed rank, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 491–496.

[7] F. De Terán and F. M. Dopico, The equation XA + AX∗ = 0 and the dimension of *con-
gruence orbits, Electron. J. Linear Algebra, 22 (2011), pp. 448–465.

[8] F. De Terán and F. M. Dopico, The solution of the equation XA + AXT = 0 and its
application to the theory of orbits, Linear Algebra Appl., 434 (2011), pp. 44–67.

[9] F. De Terán, F. M. Dopico, and J. M. Landsberg, An explicit description of the irreducible
components of the set of matrix pencils with bounded normal rank, Linear Algebra Appl.,
520 (2017), pp. 80–103.

[10] F. De Terán, C. Mehl, and V. Mehrmann, Low rank perturbation of regular matrix pencils
with symmetry structures, Found. Comput. Math., 22 (2022), pp. 257–311.
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