arXiv:2207.05989v1 [math.AP] 13 Jul 2022

LARGE-TIME BEHAVIOR OF COMPOSITE WAVES OF VISCOUS SHOCKS
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FOR THE BAROTROPIC NAVIER-STOKES EQUATIONS

SUNGHO HAN, MOON-JIN KANG, AND JEONGHO KIM

ABSTRACT. We study the large-time behavior of the 1D barotropic Navier-Stokes flow perturbed
from Riemann data generating a composition of two shock waves with small amplitudes. We prove
that the perturbed Navier-Stokes flow converges, uniformly in space, towards a composition of two
viscous shock waves as time goes to infinity, up to dynamical shifts. Especially, the strengths of the
two waves can be chosen independently. This is the first result for the convergence to a composite

wave of two viscous shocks with independently small amplitudes.
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1. INTRODUCTION

We consider the one-dimensional barotropic compressible Navier-Stokes equations in the La-
grangian mass coordinates:

vy — Uy = 0,

1.1
ut+p(v)m:<,u%) , TeR, t>0 (1.1)
xr

where v = v(t,z) > 0 and v = u(t,z) denote the specific volume and the velocity of the fluid,
respectively. The pressure p = p(v) is given by the y-law p(v) = bv™7, with b > 0 and v > 1 and
1 > 0 denotes the viscosity coefficient of the fluid. For simplicity, we normalize the coefficients as
b=1and p=1.
Consider initial data of the system (LI given by (vo,up), which connects prescribed far-field
constant states:

lim (vo(), uo(2)) = (v, us). (1.2)
z—+00
A heuristic argument (see e.g. [16]) describes that large-time behavior of solutions (v, ) to the

Navier-Stokes equations ([LI]) has a close relationship with the Riemann problem of the associated
Fuler equations:

vy — Uy = 0,

1.
ug+p)=0, zeR, >0, (13)
subject to the Riemann initial data
(v_yu_), x<0,
v(t,x),u(t,x))|i=0 = 1.4
(v(t, ), u(t,)i=o {(%u”, T (1.4

We consider the end states (vy,uy) such that there exists a unique intermediate state (v, )
which is connected with (v_,u_) by 1-shock curve and with (v4,uy) by 2-shock curve. That is,
there exists a unique (v, u;,) such that the following Rankine-Hugoniot condition and Lax entropy
condition hold:

{—m(vm — ) = (ty —u_) = 0 o \/_p(vm> —p(v-)

, U= > Uy, U > Uy

v — plvu
V4 — Um

(1.5)

Then, the Euler equations (I3]) with (L4)-(L3) admit a unique self-similar solution, the so-called
Riemann solution (0,u), represented by the composition (v,a) = (v],u]) + (v3,u3) — (Um, um) of
1-shock wave (v{,u]) and 2-shock wave (v3,u5) defined as (see e.g. [23])

i, uf)(t, z) = (vyu-), @ <ot , (s, ud)(t,x) = (Um, Um), @ < o2t
1, U1 2, U
(Vs Um), > o1, (vy,ug), x> oat.

The viscous counterpart of the Riemann solution (v, @) is given by the composite wave:

@(t,z), a(t, z)) == (51 (& — o1t), @1 (z — Jlt)) n (52(90 — oot), la(z — agt)) ~ (Umyum),  (1.6)
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which is composed of 1-viscous shock (v, @ )(x—0o1t) and 2-viscous shock (vg, ug)(z—0o2t) satisfying:
for each i =1, 2,

—oi(v;) — (W) =0, ,
—oi(@) +p@) = (2L, w7
(01, t1)(=00) = (v u),  (v1,u1)(+00) = (Vm; tm),
(02, Ug)(=00) = (vm, Um), (U2, Ug)(+00) = (v, uy).
Notice that each viscous shock (v;(z — o;t), u;(xz — o;t)) is a traveling wave solution to (L.

In this paper, we aims to prove that solutions to the Navier-Stokes system (LI)-(L2]) with (L5
converge to the composite wave (0,u) up to shifts, uniformly in = as t — oo.

As previous results on time-asymptotic stability for (ILI)-(L2]) when the end states are connected
by a single shock, Matsumura and Nishihara [I7] first proved the convergence of solutions toward a
single viscous shock with small amplitude, uniformly in z, using the anti-derivative method under
the zero-mass condition. Later on, this zero-mass condition is removed by introducing a constant
shift with diffusion wave by Liu [13], Liu-Zeng [I5] and Szepessy-Xin [25]. On the other hand,
Masica and Zumbrun [21] showed the spectral stability of viscous shock wave under the weaker
condition compared to the zero-mass condition, called a spectral condition. Recently, Wang-Wang
[28] studied on a planar shock wave for the three-dimensional barotropic Navier-Stokes equations,
by utilizing a new method called “a-contraction with shifts”.

For the composition of two shocks as in our setting, Huang-Matsumura [3] showed the convergence
toward a composite wave composed of two viscous shocks for the Navier-Stokes-Fourier system when
the strengths of two viscous shocks are small with the same order. As mentioned in [16], the same
result also could be obtained for the barotropic case (II]), using the parallel argument as in [3] [17].
In this paper, however, we do not assume the same order smallness, that is, our result provides
the uniform convergence toward a composition of two viscous shocks with independently small
amplitudes.

On the other hand, when the initial data (4]) generates rarefaction waves, the time-asymptotic
stability of the rarefaction wave has been proven by Matsumura-Nishihara [I8,[19]. Similar stability
results are also shown for the Navier-Stokes-Fourier system in [14], 22].

However, all the mentioned literature treated either shocks or rarefaction waves, but not the
composition of them. Indeed, the time-asymptotic stability of the composition of shock and rar-
efaction waves is a challenging problem [I7]. This open problem is recently solved by the second
author, Vasseur and Wang [11], using the method of a-contraction with shift for the shock wave,
combining with the energy method for the rarefaction wave.

We will apply the method of a-contraction with shifts to prove the time-asymptotic behavior as
a composition of two viscous shock waves in the following theorem.

Theorem 1.1. For a given constant state (vy,uy) € Ry x R, there exist positive constants dy, g
such that the following holds.
For any constant states (v, um) and (v—,u_) satisfying (L3 with

[v+ = Om| + |[vm — v-| < do, (1.8)
let (v;, u;)(x—o5t) be the i-viscous shock wave satisfying (LT). In addition, let (vo, ug) be any initial
data satisfying

> (lvo = vellzzy) + lluo — usllz2@.y) + 10xv0ll L2y + 10zu0ll 2wy < €0,
T
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where Ry := (0,4+00) and R_ := (—00,0). Then, the compressible Navier-Stokes system (LII)-(L2)
with (LH) admits a unique global-in-time solution (v, u) in the following sense: there exist absolutely
continuous shift functions X1(t), Xo(t) such that

v(t,x) — (V1 (z — o1t — X1(t)) + Doz — oot — Xa(t)) — v) € C(0, +00; HY(R)),
u(t,z) — (U (x — o1t — Xo(t)) + Ua(x — oot — Xa(t)) — um) € C(0,+00; HY(R)).
Moreover, we have the large-time behavior:

lim sup |v(t,2) — (01(x — o1t — X1 (1)) + V2(x — oot — Xs(t)) — vm)‘ =0,

t——+o0 z€R

lim sup |u(t,z) — (w1 (z — o1t — X1(t)) + Uz (x — oot — Xo(t)) — um)‘ =0,
t—=400 1cR

where .
t—li?oo |Xi(t)| =0, for i=1,2. (1.9)

Especially, the shifts are well-separated in the following sense:

Xi(t) + o1t < %t <0< %t < Xo(t) +oot, t>0. (1.10)

Remark 1.1. 1. It follows from the Rankine-Hugoniot condition (LX) that the strength of 1-shock
(resp. 2-shock) can be measured by |v— — vy,| (resp. |vy, — vi|). Thus, by the smallness condition
(LR, the strengths of the two shocks can be chosen independently. This removes the same order
assumption, i.e. |[v_ — vy |+ V= — vy | S min(jv_ — vy, Jv— —v|) K 1 that is a crucial assumption
in [3].

2. The property (LA) implies that

fim i) _ 0, for i=1,2.
t——+o00 t
Thus, the shift functions X;(t) grow at most sub-linearly w.r.t. t, by which the shifted composite
wave
(51, ﬂl) ($ — o1t — Xl(t)) + (52, ﬂQ) ($ — o9t — Xg(t)) — (Um, ’LLm)

time-asymptotically keeps the original composite wave.

The remaining part of the paper is organized as follows. In Section 2, we present a main idea
of the proof, and useful estimates for the shock waves. Elementary estimates for the pressure and
relative entropy are also presented. In Section Bl we present the proof of the main theorem under
the a priori estimates. The a priori estimates will be proved in the following two sections. In
Section @ we use the method of a-contraction with shifts to estimate the L2-perturbation. Then,
the remaining estimates will be obtained in Section Bl

2. MAIN IDEAS OF THE PROOF AND USEFUL LEMMAS

In this section, we present a main idea of the proof, and useful estimates for the shock waves
and relative quantities.

2.1. Main ideas and the method of a-contraction with shifts. The main tool to obtain the
desired nonlinear stability is the method of a-contraction with shifts, which was introduced by the
second author and Vasseur in [5] (see also [27]) to study the stability of extremal shocks for the
hyperbolic system of conservation laws such as the Euler system (L3]).

This method has been extended to studying viscous models as follows. For the one-dimensional
barotropic Navier-Stokes system, the contraction property of any large perturbations for a single
viscous shock is proved in [8], and for a composite wave of two shocks in [7]. Those results play a
crucial role to prove the stability of entropy Riemann shocks of the isentropic Euler system in the
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class of inviscid limits from the Navier-Stokes system in [8 [9]. As mentioned in Introduction, this
method was also used in [I1] 28] to show the long-time behavior of the barotropic Navier-Stokes
system for the composition of shock and rarefaction in 1D, and for a single shock in multi-D. As
applications of the method to other viscous hyperbolic systems, we also refer to [4} [6, [10] for viscous
scalar conservation laws, [12] for the stability of a planar contact discontinuity of the 3D full Euler
system in the class of zero dissipation limits, and [I, 2] for the viscous hyperbolic system arising
from a chemotaxis model.

To illustrate a key idea of the method for the viscous system (II]), consider the entropy 7 of the
Euler system (L3]) defined as

02
n(U) == 5 +Q(v), Q)= W7

where U = (v,u). Then, the relative entropy n(U|U) between two states U and U is defined as

u —af?

n(U[D) :=n(U) = n(0) = DyO)(U = T) = ==+ Q(v[o).

where Q(v[v) := Q(v) — Q(v) — Q'(v)(v —v). Since Q(v) is a strictly convex function in v, Q(-|) is
locally quadratic in the sense that for any 0 < a < b, there exists C' > 0 such that

Cop — v]? < Qu1|vg) < Cluy — va?, Yy, v € [a,b).

When U(x — ot) is a single viscous shock, the method is to find a weight function a : R — R4
and a time-dependent shift function X : Ry — R such that the weighted relative entropy with shift
is not increasing in time:

d
dt Jq

First, by a standard computation based on the relative entropy method, the left-hand side can be
decomposed into three parts (as in Lemma for example):

LHS = X'(t)Y (U) + J"4(U) — g8°°4(U),

where JP%(U) and 78°°4(U) consist of the all bad terms and all good terms respectively. To make
the right-hand side non-positive, we might use the typical energy method for parabolic equations.
However, since the barotropic Naiver-Stokes system has the dissipation in one variable only (more
precisely, in the u variable for (II])), the weight function a would be found to provide an additional
good term in terms of the v variable, by which the bad terms could be represented only by the
variables. Indeed, since o is a non-zero constant, constructing a monotone function a satisfying
oa’ > 0, we have a good term

a(r — ot — X())nU(t,z)|U(x — ot — X (t))) dx < 0.

—0 /R d(x—ot— XU 2)|U(x — ot — X(t)))dz.

In fact, the weight function a will be defined by the first component v of the viscous shock such
that a’ localizes the perturbation in space as done by ¥’, and the image of a is a bounded open
interval. Using the above term, we maximize all bad terms in terms of the v variable, from which
the remaining bad terms are related to the u variable only, and localized by a’ or ¥’. To absorb the
remaining bad terms by the diffusion term, we may use the following Poincaré-type inequality.

Lemma 2.1. [8, Lemma 2.9] For any f:[0,1] — R satisfying fol y(1 —)|f|2dy < oo,

/Olf—/olfdy

2

1
a3 [ va=pifta. (21)
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However, to apply Lemma 2.1l we may need the other good term as an average of linear pertur-
bation on wu-variable, which together with the bad terms would give a variance of the perturbation
that could be absorbed by the dissipation as in the Poincaré-type inequality. Here, the desired
good term would be extracted from the shift part X' (¢)Y (U) by a sophisticated construction of the
shift X (¢). This gives the desired contraction estimate.

However, the composition (L)) of two viscous shocks leads to several problematic issues. Since
the composition of two viscous shocks is not an exact solution to the Navier-Stokes equations, unlike
the case of a single viscous shock, due to the nonlinear terms in the equations, we need to control
some error terms on the nonlinear interactions between two shock waves. Second, as we consider
two shock waves, we should construct two shift functions, say X; and X5, and two weight functions
to control perturbation near each shock wave, based on the above method for a single wave. On top
of that, since all the bad terms are localized by the derivative of each weight or shock, whereas the
diffusion term is not localized, we need to localize the diffusion term by introducing some auxiliary
localization functions. The localization functions will be defined by two shift functions as in ([B11]),
by constructing the two shift functions to be well-separated like ([LI0).

2.2. Viscous shock waves. We review the useful estimates of viscous shocks and their derivatives
that will be used throughout the paper.

Lemma 2.2. [, Lemma 5.1] For a given constant U, = (vs,us) € Ry X R, there exist positive
constants 0y, C, C1 and Cy such that the following holds. Let U_ := (v_,u_), Up, := (v, up,), and
Ui = (vy,uq) € Ry xR be any constants such that U_,U,,, Uy € Bs,(Uy), and |p(v—) — p(vy,)| =:
9 < 6o and |p(vy) — pluvg)| =: 6y < dg. Let U, = (v1,u1) and Uy = (Ug,u2) be the 1- and 2-

shocks connecting from U_ to U,, and from U,, to U, respectively, satisfying v1(0) = v*;'vm and

12(0) = % without loss of generality. Then, the following estimates hold: for each i =1,2,
Vi~ de., CTWN(x — opt) < U(x — oit) < OUL(x — oit), T ER, >0,
C15e=Cdile=oitl < 3 (2 — g4t) — vy, < COe~ile=oitl - (_1)i(x — oyt) <0, (2.2)
— OOl < (g — git) < —CRe” 2%l 2 e R >0,

wn addition,

(¥ (x — out),uf (x — o;t))| < C&|(Vi(x — oit), Wi(x — o5t))]|. (2.3)

Remark 2.1. Throughout the paper, we will use Lemma [2.2 with U, = Uy. Thus, the constants

0o, C, C1 and Cy depend only on Uy.

2.3. Estimate on the relative quantities. As our method is based on the estimate of relative
entropy, we need to control the relative quantities, such as the relative pressure p(v|w) or the
relative internal energy Q(v|w). Recall that the relative quantities are defined as

p(vlw) = p(v) = p(w) —p'(w)(v —w), Qvjw) = Q(v) — Qw) — Q'(w)(v — w).
Considering the Taylor expansion, it is expected that they are almost quadratic quantities at least
locally. The following estimates show the exact estimate on this locally quadratic behavior of the
relative quantities. The proof of the lemma can be found in [§].

Lemma 2.3. Let v > 1 and vy be given constants. Then, there exist constants C, 0, > 0 such that
the following assertions hold:

(1) For any v,w satisfying 0 < w < 2v4 and 0 < v < v,
v —w|* < CQUlw), |v—w*<Cplv|w). (2.4)
(2) For any v,w satisfying v,w > vy /2,
lp(v) — p(w)| < Clv — wl. (2.5)



LARGE-TIME BEHAVIOR OF COMPOSITE WAVES OF VISCOUS SHOCKS FOR THE NS EQUATIONS 7

(3) For any 0 < § < 0, and any (v,w) € R2 satisfying |p(v) —p(w)| < § and |p(w)—p(vy)| < 6,

plol) < (s 408 (o) — plu?,
_1_ 4
Q) = P lpo) — p(w)? - 5w A 0(0) — b))’ (2.6
1 4
Qo) < (% " oa) p(v) — pla) .

3. PrRoOF OF THEOREM [I.1]

In this section, we present a main part of proof for Theorem L]

3.1. Local existence. In order to get the desired result on time-asymptotic stability of H'-
perturbations of a composite wave connecting two different constant states at far-fields, we need
to recall the well-known result on local-in-time existence of solutions to (I.I]) connecting the two
different constant states in H'-norm.

Proposition 3.1. [20, 24] Let v and u be smooth monotone functions such that
v(z) =vy, ulx)=uy, for L£ax>1.
Then, for any constants My, M, Ky, Ro, ki, k1 with
0< My <M, and 0<Eg <Ey<Fo<FRi,
there exists a constant Ty > 0 such that if the initial data (vo,ug) satisfy
lvo — [l g1y + [luo — ull gy < Mo, and kg < wvo(x) <Fo, Vo €R,
then the Navier-Stokes equations (LII) admit a unique solution (v,w) on [0,Tp] satisfying
v—uv e 00, To); H'(R)),
w—u € ([0, Ty); H'(R)) N L2(0, Ty} H2(R)),
together with
v — vl oo (0,100 1 (R)) + 1w — 2l Loo (0,100 1 (R)) < M1,
and
£ <w(t,z) <R, V(tz)e[0,Tp] xR. (3.1)

3.2. Construction of shifts. As desired, we should show that a small H'-perturbation of a com-
posite wave of two viscous shocks is orbitally stable for a large time, more precisely, the perturbation
uniformly converges to the composite wave up to shifts where each shock is shifted by X;(¢):

(1%, 52 1, 2)
3.2
= <’17f(1 (z — o1t) + 052 (& — ogt) — Oy, Ut (& — o1t) + U2 (@ — opt) — um> , (3.2)

where FX¢ denotes a function F shifted by X;, that is, FXi(x) := F(x — X;(t)) for any function F.
This notation will be used throughout the paper.

We here introduce the shift functions explicitly, from which we could obtain a bound of derivative
of shifts (at least locally-in-time) in Lemma[3.]] and obtain the desired a priori estimates in Propo-
sition Those will be used for the continuation argument in Section [3.41 We define a pair of
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shifts (X7, X2) as a solution to the system of ODEs:

. aX1:X2
X = -2 [ /R O Y o (p(w) — (X)) dar /R XX (p(X ) (0 — T Xe) dm},

01

. aX1:X2
Xty = -4 [ /R (R32) (p(0) — p(@1°%2)) di — /R a1 (p(2)), (v — 1K) dx} ,

02

(3.3)
where a*1X2 is the shifted weight function defined in (@), h; := @; — (In¥;),, and M is the specific

5(y+1) (
8’Yp(vm)
However, for well-posedness of the above ODEs in Lemma B.1], we only need the following

assumption for the shifted weight function at this point: a***2 is a C'-function of (z, X1, X») with
finite C'-norm. This is verified by the explicit one defined in (.1]).

The following lemma ensures that (3.3]) has a unique absolutely continuous solution at least for the
lifespan [0, Tp] of solution v satisfying (B.1]).

3
constant chosen as M := -7 (vm))2, which will be used in the proof of Proposition

Lemma 3.1. For any c1,cy > 0, there exists a constant C' > 0 such that the following is true. For
any T > 0, and any function v € L>*((0,T) x R) verifying

c <o(t,z) < ca, V(t,z) € [0,T] x R, (3.4)
the system [B.3]) has a unique absolutely continuous solution (X1, X2) on [0,T]. Moreover,
IX1(t)| + | Xa(t)| < Ct, VE<T. (3.5)

Proof. Let F(t, X1, X2) denote the right-hand side of the system (B3)).
Using (3.4) and the facts that the C'-norm of a*X+X2 w.r.t. (v, X7, X») is finite, and

hillc2 < o0, [[Bille < oo, [(ha)ellr < Ciy [(@)allzr < 6,

we have

sup |F(t, X1, X2)]
X1,X2€R

2
1 " - ~ -
< Claller ) g(\l(p(w)llmo + lp(v)llzee + [[Vill Lo + ||U||L°°>(H(hi)m||L1 + 1(Wi)z ) < C,
i=1 "

(3.6)
where the constant C' is independent of ¢t. Likewise, we have

sup |vX1,X2F(th1,X2)| <C.
X1,X2€R
Therefore, ([83]) has a unique absolutely continuous solution by a simple adaptation of Cauchy-
Lipschitz theorem (for example, by [I, Lemma A.1] and [7, Lemma C.1]).
Since | X1 ()| + | X2(t)| < C by ([B.4), we have ([B.0). O

3.3. Main proposition for a priori estimates. Based on the previous setting, we present the
main proposition for a priori estimate.

Proposition 3.2. For a given constant Uy := (vy,uy) € Ry X R, there exist positive constants
09, Co, and 1 such that the following holds:
For any constant states Uy, := (U, Up) € S2(v4,us) and Uy := (v_,u_) € S1(vm,um) satisfying

Ip(v_) — p(vm)| =: 61 < 6o and |p(vy) —plvy)| =: 02 < g, let (0X0X2, uX1:X2) denote the composite
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wave of two shifted shocks as in [B2), where (X1, X2) solves B3)). Suppose that (v,u) is the
solution to (L)) on [0,T] for some T > 0, and satisfy

v — X2 € 0((0, T); HE(R)),

u— a2 € C([0,T]; H' (R)) N L*(0, T; H*(R)),
and
~X17

|lv—"o

Then, for all t € [0,T],

X2 e ormmy) + lu— XX Lo o 7wy < E1- (3.7)

t 2
sup (flv =02 gy + [l — @2 g gy) + /Z@'\Xﬁds
0 Z':

te[0,T
t (3.8)
+ / (gS(U)+D(U)+D1(U)+D2(U)) ds
0
< Co (Ilvo = 900, ) |11y + lluo = @0, )Ly ) + Codg”™.
In particular,
1 X1(t)] + | X2(8)] < Coll(v — T5%2) (¢, )| 1o R), t<T. (3.9)
Here, the constant Cy is independent of T and
2
=3 [ 1@l -7 da,
i=1 /R
= [ 10:(p(v) — p(T*+*2))* da,
/ (3.10)
/| X17X2 |2 dflf
Dy(U) = / (u— @¥0%2) 2 da,
R
where ¢1, ¢o are cutoff functions defined by
. X1 (t)+o1t
1 if x< 71()2 L
o1(t,x) =40 if x> W, Pa(t,x) =1~ ¢1(t, ).
linearly decreasing 1 to 0 if W <z < W,
(3.11)

Remark 3.1. Since the (shifted) composite wave (0X1X2, 4X1:X2) s not a solution to the Navier-
Stokes equation as in [B28]), we need to control the interaction term of the 1- and 2-waves to get the
desired results of Proposition[Z.2. For that, we localize the perturbation near each wave by using the
above cutoff functions. More specifically, ¢1 (resp. ¢2) localizes the perturbation near the 1-wave
(resp. 2-wave) shifted by X1 (resp. Xo). Notice from [B.22]) that

Xo(t) + oot > %t>0> %tZXl(t)—l—alt, t>0,

and so the functions ¢1 and ¢o are well-separated as time goes.
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3.4. Global-in-time existence for perturbation. We here prove the global existence of solu-
tion by using the continuation argument based on Proposition Bl and Proposition We first
assume that the constants g, C, and 1 are given by Proposition B.2] and consider the end states
(v—,u_) and (vy,uy ) satisfying the conditions in Proposition B2l First of all, the smooth monotone
functions v(z) and u(x) given in Proposition B.] satisfy

Z (le — vilre@y) + llu — U:I:HLZ(]Ri)) + 1020 L2 (r) + 10zl L2 ()
+ (3.12)
< C(|’U+ —’U_| + |U+ — u_|) < 01(51 —1—52).
Then, we estimate the H'-perturbation between the monotone functions v, and the initial com-
posite waves v(0, -), u(0,-) in (L6]) as

<

w(-) =000, )2y + () — (0, )l 111 ()

< flv = 0(0, ) 2wy + 102 (v — (0, )| L2 ®) + lw — u(0, )| 2 r) + 102 (w — (0, )| 2 &)
<D (v —velle@yy + llu — utll2(ry))
i
+ 101 —vmll 2@y + 101 —o-llz2@ ) + V2 — v4llL2@®y) + V2 — vmll2m_) (3.13)

+ 1020 L2y + 10201 L2(m) + 10202l 2 (m)
+ lur — wmll Loy + lur —u—|[ze@_y + Ju2 — ut |l 2@, ) + |02 — umll 2@ )
+ 1|0zull 2wy + 1001 || L2 (m) + |0tz L2 (R)
< Co(V/61 + V/b2),
where we used the shock estimates ([Z2]) and ([BI2]) in the last inequality. Now, for the constant

€1, we choose dy small enough so that the following condition holds for any &1, ds < dg:

=L Coop/*

— C1(01 + 62) — Cz(\/a—i- \/@) > 0.

Co+1
Consider the two positive constants e, and gy defined as
2 Cody”
2 0% €1
ey = 2——— —C. 01 + v/ 02), g = ————.
o1 >(V/ 01 +\/d2) 0= o D)

We now consider any initial data (v, ug) satisfying
> (lvo = vllzey) + lluo — vt z2ey)) + 102v0llz2) + 105t r2w) < <o,
+
which implies that the initial H'-perturbation from the monotone functions v, u is small:
l|lvo — QHH1(R) + |Jup — QHHl(R) <eo+ C1(01 + 02) < &4. (3.14)

In particular, Sobolev embedding implies ||vg — v/ oo ) < Cex, and therefore,
% <wvp(z) <20y, VreR.

Since 0 < e, < 5, we use Proposition 3.1 to guarantee the local existence of the unique solution
(v,u) on [0, Tp] satistying

€1
lo = vl Lo 0. 70: 1)) + e = 2l oo 0,101 ) < 5 (3.15)

and "
?_ <wv(t,z) <3vy, V(t,z)€[0,Tp] x R.
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We now use a similar argument as in ([B.I3) to obtain
~X1,X ~X1,X
o =02 | gy + llw — w72 | gy

<Y (e = vellpoe) + lu — vt 2y)
+
o7

75 5

17" = vmlle@yy + 1077 = v-ll 2@y + |

+ |02l 2 () + 1|0 U{QHLQ(R + [|0z 0. Uz L2 )

—villr2@,) + | — UmllL2®_)

e
T — w2,y + 118 — usllz@ ) + 11057 — uill e, ) + 1852 — wmll 2@ )

+ 100l 2y + 10557 | L2y + 1100705 2 | L2 ey
< OV (1 + VX1(1) + CV/E2(1 + /X2 (1)),

where we used

/ B2 (2 — ot — X1 (8)) — vy ? da
0
00 0
:/ |01 (z — o1t) — vy |? dx—l—/ |01 (2 — o1t) — V| da
0

—X1(t)
< Co(1+[Xa1 (1)),
and a similar estimates for v5. Then, using Lemma B}, we have
@) + lw— @ gy < CVoo(1+ V).

Therefore, taking 0 < Ty < Tp small enough such that C'v/6o(1 + +/T1) < &, we obtain

lo — X122 |0

~ - €1

o = T2 oo 0 735111 (RY) + = T2 oo 0,111 ) < 5 (3.16)
We now combine ([B.I5) and ([B.I6) to obtain the following H!-perturbation estimate

[o = X% | oo 0,111 ) + 1w = T2 poo o,y @) < E1- (3.17)

In particular, since the shifts X;(¢) are absolutely continuous, we have

~X1,X2

v—0 Ju—a X2 e ([0, Th); HY(R)).

In order to extend the solution globally-in-time, we consider the maximal time 7T} defined as

T, = Sup{t >0

8[811}3(Ilv—T)X“X2IIH1 Ry + llv — T2 1 ) <61}
i

Suppose T, < +00. Then, by the continuation argument,

sup (o — T4 gy + Ju — X% | gy) = €1 (3.18)

54 %

However, by BI3]) and (3I4),

— Cos

~ ~ 2
lvo = 2(0, )l g1 () + llwo — (0, )| g1 () < Tl
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which together with Proposition B.2] implies that

sup (|jv— 7

s

2 gy + lu =2 g gy)

1/4
- Co+1
€1

€1 1/4 1/4
< (5 - o) + o = 5

+ oot

This contradicts to ([B.I8]) and therefore, we conclude that Ty, = +oo. Then, it again follows from
Proposition that

t 2
sup (Hv - 5X1’X2HH1(R) + Hu - ﬂXl’XQHIfl(R)) + / Z5i|XZ.|2 ds
0 =1

t>0
oo (3.19)
+\// (gS(U)+D(U)+D1(U)+D2(U)) ds
0
- ~ 1/4
< Co (llvo — 000, )l 1wy + lluo — (0, )| g1 (wy) + Cody’
and
X1 ()] + [ X ()] < Coll(v = T2 (t, ) | oy, >0 (3.20)
Especially, since the right-hand side of (319]) is small enough, we find that

< v(t,x) < 3vy, Y(t,z) € [0,00) x R. (3.21)

3

3.5. Time-asymptotic behavior. Based on the global estimates (3.19)-([B.21]), we will show the
time-asymptotic behavior in Theorem [Tl The proof mainly follows the typical argument, but we
will crucially use the following two lemmas based on the wave separation by shifts, since the energy
functional G° is localized by the cutoff functions ¢;.

First, the estimate (3.19) with the Sobolev embedding implies

o = 5% oo ey < Cleo +05%).
Thus, ([B:20) and the smallness of g and gy imply
Xi() S -, Xo(t) = -Ft >0,

or equivalently,
Xi(t) + o1t < %t, Xo(t) + oot > %t, t>0, (3.22)

which proves (ILI0)). Thus, the waves 5?1 and 5?2 are well-separated, and so are 5‘1)(1 and ¢o. Using
this property, we have the following lemmas on the wave separation.

Lemma 3.2. Assume [322). Given vy > 0, there exist positive constants dy,C such that for any
91,02 € (0,0p), the following estimates hold. For each i = 1,2,

|(@)Xi|[7%1X2 — 5| < 086109 exp (—C'min{dy, da}t), >0, =z €R,

/ (@)X |70 X2 — 5| da < C6169 exp (—C'min{éy, da}t), t >0,
R

/ |(01) 2 ]|(D2) 2| dor < C'8169 exp (—C min{dy, dp}t), t > 0.
R
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Lemma 3.3. Assume [B.22). Let ¢; be the functions defined in BI1)). Given vy > 0, there exist
positive constants 6y, C such that for any 61,02 € (0,00), the following estimates hold.

62/(01)2!| < O exp(—Cart),  ¢1/(02);?| < COexp(~Cdat), t>0, z€R,

/ |(01)2 " [¢2 dx < O3y exp(—Cidyt), / |(B2)22|¢1 dz < Cyexp(—Cidat), t > 0.
R R

The proofs of the above lemmas are straightforward from the ones of [7, Lemma 7.3] and [7,
Lemma 7.4] respectively. However, we present the proofs of the above lemmas in the appendices
for readers’ convenience.

To get the desired result, we follow the classical method as in [I1]. But, we here present its
details for readers. Consider a function g defined by

9(t) = (v = T2 o | Zary + 1w — T ¥2)a |2
We will prove that ¢ € W1(R, ), which then implies
Jim g(t) = 0,
which together with the interpolation inequlaity and (B19]) yields
tli)l}}o(HU — 0| poo gy + [Ju = T2 oo my) = 0. (3.23)

Moreover, ([3.20) and ([3:23]) imply that
. - < ~X1,X5 o . .
, hIJ::l | X;(t)] < Coll(v — JB)lpeewy =0, i=1,2

Those give the desired result. Hence, it remains to show that g € Wh1(R, ).
Since

(p(v) = p(E*¥))a = P (0) (v = X220 + (0 + 52 (0 (v) — /(@)
the uniform bound B:21]) yields
(v = 8%1%2), | < Ol(p(v) — (T 2))a| + C (J(@)2 ]+ [(B2)22]) [0 — 7¥1 2. (3.24)
Using (B3.24]) with ¢ + ¢2 = 1 (defined as in (B.I1])), and then Lemma B3 and ([B.19]), we have

/0 (B dt < C / ( / 1) |1 (0 — 50X 2 da + /R |(52)22 [ gav — 70X2) 2
4 / (@)X a0 — T2 2 da 4 / (@) [ (v — 7052 2 d

/\a p(v¥12)) y2dx+/\ ﬂXl’X2)x\2dx> dt

<c / (G5(U) + D(U) + Dy(U)) dt
0

+CH”_5X1’X2HLO<>(0,00;L2(R))/0 /R(Wl)fl!%Jr’(52)§2\¢1)d$dt7

< Q.

This implies g € L'(Ry). To show ¢’ € L'(R,), we will use the following system satisfied by the
shifted composite wave :
Oy = = Y Xa() ()

~X1,X9o

3.25
), = (Bks) - S KN+ By o
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~X1,X2 2 ~ X
By = p(#70:X2), Z ~X R . ()7
2 p(© By = X1,X2 Z =X ’
. v
x i=1 z

Then it follows from (1) and m that

where

2
(v = 50%2), =X @) 5 - (u— a0,

=0,
i=1

v fUXLXQ

ZX1,X )Xi ~X1, X up,  up
(u — 51 ZX T+ (o) — p(* 7)), = (U By By
X

This with integration by parts yields

/ 19/(8)] dt = / 2 / (0 — 55052, (o — 750X, dp + / (u — T, (4 — T2, do
R

R
<2 X17X2 [ZX Uz mm ( a’Xth)mc

dt

+ (u—a¥n¥) dxdt

2
i=1
XX ~X1,X. up a7
V) e | —(p(v) = p(0772))s + v XXz — B2 — B3
<c / ( / (0= TXXY 2 o [ = TR, 2 [ — ) 2 410, (p(0) — P52 2
U sz
N2 T\ X (2 ~\X; 12 Uy Uz
+/R;‘Xl(t)‘ U(vl)mm’ + ’(ul)mm’ ]d‘r—i_/R (’U UXl X2>

Using the same estimates as before, (819]) and Lemma [Z2] we first have

/OO\ ()\dt<C/ (Z\X D2+ G5 (U )+D(U)+D1(U)+D2(U)) it + C
0

i=1
N Uy quXz
R v fUXI X2
xT

For the last three terms above, we get further estimate as follows

Using (32I)) and (324]) with Lemma 22 we get
/00/ Uy IXLXz 2
0 R v 'UX17X2 .

1

N N 1 1 u — aXnXe
qu’XQ):c:c + (qu’XQ)x:c <_ _ > _ ( )-’E

+2

dxdt

2

+ |Bo|* 4 |B3)? | dx | dt

2

+ | Eo|? + |E5|* | dxdt

dxdt

~X1,X
s o 2 (v 1.X2)
~X17X2 X X ~X1,X2 X X1 X X, X 1 1 ’
- (v — oX12), — 72(“ —aXeXey g XXy X Xey <m — ?) dxdt

<C/ /[u—uxl”@) o2+ (@)X + @) ) — 750X 410, (p(v) — p(@152))?

+ [(u — T¥0%2) 2 (0 — ¥ X2) 2 4 | (u — aXIsz)xP} dzdt.
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Using (3.19]) with the same estimates as before, we have
dzdt < C + C/ (G5(U) + D(U) + Dy (U) + Do(U)) dt
0

2
/oo/ <ux quXz)
T mX1,X2
0 R v vl .
o0
+0/ [ M /I X0X2) 12 dat.
0

The last term is estimated by using the interpolation inequality with [BI9]) as

[ =T [ 0= 7505

< 0 [ = T g = 0

X1,X2 dt

MHLZ(R (v —7 HL2(R)

[ = %) gy [ 1 = T ey [0 = 700 o |

o
<C
0

Similarly, using Lemma 3.2 we have

/OO/|E3|2d:ndt:/Oo/R 2::

|
o0 2 ~ 2
el N O A o P

(D1(U) + Do(U)) dt.

dxdt

L@ (e |
1 6;){2 x ~X1 e T
<c/ / (0@ + @R @) 50
2
()22 4+ 1) )R N — 0% 4 | )2 @)+ @) )2 ) deds
<C/ / (@B + @)D PR 50 + (@) + @) - 5|

+ @S !\(52)X2!>2dxdt

< C/ @) %2 =9+ (@) 22 [0 =552+ (@) 1(52) 2212 ) dt < oo,

/ / |E‘2|2 dxdt =

p@ %), | dadt

ch A W@M“w—< DI+ G2 @) |3 dads
< C/Ooo @YY = T 4 [(T2)3 2 |[5¥0Y2 — 55272 di < o0
Hence, ¢’ € L'(R,) which completes the proof.
Therefore, according to Section B4l and Section B.5] it remains to prove Proposition B.2]to obtain
global-in-time well-posedness and the time-asymptotic behavior, as in Theorem[I.Il In the following

two sections, we mainly focus on proving Proposition 3.2, by using the method of a-contraction
with shifts.
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3.6. Notations. In what follows, we use the following notations for simplicity.

1. C denotes a positive O(1)-constant that may change from line to line, but is independent of the
small constants dg, 1,01, 02, A (to be introduced below) and the time 7'

2. We omit the dependence on the pair of shifts (X1, X2) of the composite wave ([B.2]) without
confusion as:

@, 0)(t, ) = (XX 7X0X2) (¢, ).

4. ESTIMATES ON WEIGHTED RELATIVE ENTROPY WITH SHIFTS

We will use the method of a-contraction with shifts to obtain the L°(0,T; L?(R))-bounds of
perturbations in ([B.8)). For simplicity of our analysis, we consider the effective velocity h :=
u— (Inv), as in [II] (see also [8 @]) to transform the Navier-Stokes equations (I.I]) to the system:

vy — hy = (Inw)
hy +p(v)x = 0.

xx )’

(4.1)

Then, it follows from (7)) that the associated viscous shocks v; and hi = ; — (Inv;), satisfy the
following ODEs:

—0i(0:) — (hi)' = (Inv;)",
—0oi(hi)' + (p(vi))" =0, N (4.2)
(:517@1)(_00) - ('U_,U_), (1717}}:1)(—’_00) - (Umnum)7
(627}12)(_00) (Umvum)v (U27h2)(+oo) = (U+,U+).
Let (7, h) denote the shifted composite wave as
@, h)(t, z) = <5f<1 (z — o1t) 4+ 5% (& — oot) — Um,%.le (x —o1t) + ﬁ‘;z (x — o9t) — um) ,
which satisfies
O~ hy = =30, Xi(O)@)X + Ey (4.3)
he + p(0)s = — 37 Xi(hi) X + Ea,

where F; and FEy are the interaction terms defined as

2 2

Byi=—(I0)g + Y (0T )0e,  Eoi=p@)s — > p(@; " )a-
=1 i=1

Remark 4.1. The structure of system ([&I]) would be better for our analysis than using the original
system (1)), since [@I)) is linear in the h-variable, but nonlinear in the v-variable that would be
controlled by the parabolic term (Inv),,. However, this transformation would not be crucial in our
setting for small perturbation, but just for simplicity.

The goal of this section is to obtain the following control on the relative entropy.
Lemma 4.1. There exists a positive constant C' such that for all t € [0,T],

72 t 2 )
/ﬂ{('h 2h| +Q(v|5)> dx+/0 <25i|xi|2+cl+g5+p> ds

i=1

O X (4.4)
R

2
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where

h_ﬁ_M2d%

g;

i) = [ Ia

2
S i 52 X i v) — (D 2 ,
g>(U) -—;/RI( )z *|¢i(p(v) — p(v))|"d

D(U) = /R 192 (p(v) — p(®))* d-.

4.1. Construction of weight functions. In order to deal with the two shock waves, we first
introduce two weight functions ai,as associated with 1-shock and 2-shock respectively: for each
i =1,2, we define

Ap(vm) — p(vi(x — 04t)))
5i ’

where §; denotes the strength of i-shock. Here, \ is a small constant chosen as §; < A\ < C/§; for
i = 1,2 so that it is large enough compared to the strengths of shocks.
Notice that % <1l—-XA<aq;<1and

aj(x —oit) =1+

A,
(ai)z = —g(p(vi))x, (4.5)
from which we have
A
(@i)e| ~ gl(vz)xL and 50, [[(@i)zllreem) < Adiy  [[(@i)ellLr @) = A (4.6)

2

To handle the shifted composite wave, we consider the following composition of shifted weight
functions as

aX0X2(t 1) = 0 (- oyt) a3 (z—oot) — 1 = a1 (x — o1t — X1 (1)) +ag(z — oot — Xo(t)) — 1. (4.7)
For notational simplicity as before, we will omit the dependence on shifts:
alt,z) == a0 X2 (t, ).
4.2. Estimate on shifts. We here show the estimate ([3.9) on the derivative of shifts. First, take
g1 and Jp small enough such that €1,y € (0,,), where J, is the constant as in Lemma 2.3] so that

we can apply Lemma to the proof of the main theorem.
We use the assumption ([B.7) with the Sobolev inequality and (23] to have

Ip(v) = p(0) o (0,1)xr) < Cllv — 0| oo ((0,7)xR) < Ce1. (4.8)

Then, using @8] with o;(h;)' = p(¥;) from @), it follows from (B3) that for each i,

¢

X;(t)] <
| (t)|—52-

llp(v) = p@)] + [v = [l oo m) /R(T)i)fidx < Cllo=ollpem, t<T. (4.9)
This gives the desired estimate (3.9). As in ([3.22]), the above estimates imply

X1(t) + o1t < %t, Xo(t) + oot > %t, t<T. (4.10)
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4.3. Relative entropy method. First of all, we rewrite the system (4] in the abstract form:

QU + 0, A(U (M U)d, Dn(U ) (4.11)
where
T e < ) (5 )
h —p(v) ) (4.12)
Indeed, by —p/(v)v = yp(v), one has
.- (),

Then, using the nonnegative matrix M (U) and the gradient ([ZIZ) of the entropy n(U) := 2 +Q(v)
of [@I)), where Q(v) =~ wl , e, Q' (v) = —p(v), we have

((lng)m> — 0, (M), Dn (V).

Let Uy(z — o1t) and Us(z — oat) be the viscous 1-shock and 2-shock of the system (ZII). Then,
the system (2] can be cast in the following form: for each i = 1,2,

— 0T + ATz = 8, ( ( i)azpn(ﬁi)). (4.13)

Then, from [3), the shifted composite wave U := (7, h) satisfies

U + A(U), = 0,(M(U)d, Dn(U ZX <E2> (4.14)

For the relative entropy method, we use the relative entropy functional n(U|V') and relative flux
A(U|V) defined as

nUV) =nU) =n(V)—Dn(V)(U - V)
and
AU|V) = A(U) - A(V) — DA(V)(U = V).
We also define the relative entropy flux G(U; V) as
GU;V):=GU) - G(V) = Dn(V)(AU) = A(V)),
where @ is the entropy flux for 7 satisfying ,G(U) = S.3_, dn(U) + 8;Ap(U) for i = 1,2. The

relative quantities for the system (ZII) can be explicitly written as follows:

_ 2
(vt = 1= h' Q).

A(U’ﬁ) = <p(1(1)|5)> )
G(U;U) = (p(v) — p(@))(h — h).

Here, the relative internal energy Q(v|v) and the relative pressure p(v|v) are defined as
Qv]9) = Q(v) — Q@) — Q'(V)(v =), and p(v]d) = p(v) —p(¥) — p'(V)(v — V).
In order to obtain the desired estimate in Lemma [Z1] we need to control the relative entropy
between the solution U to ([{I1]) and the shifted composite wave U. However, as we mentioned, the
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direct estimate of the relative entropy would fail to control it, and therefore, we instead estimate
the following weighted relative entropy:

/Ra(t,a:)n <U(t,a:)‘[7(t,a:)) dzx.

It follows from the choice of the weight function that the global weight a(¢,x) satisfies 1/2 <a <1
by the smallness of A\, which recovers the control of the relative entropy. Following the estimate in
[7, Lemma 5.2] (see also [I1, Lemma 4.3] and [26, Lemma 4]), the time-derivative of the weighted
relative entropy can be computed as follows.

Lemma 4.2. Let a := a2 be the weight function defined in @1) and X1, Xo be any absolutely

continuous function. Let U be a solution to system (A1Il) and U be the shifted composition wave
satisfying (AI4)). Then, we have

2 /]R alt, 2 (U, 2)|T(t2)) de = 3 (X@Yi0) + TW) - 7= (U),

i=1
where
Vi) = = [ @D de + [ a@)X D)0 - 0)da. (415)
and
bad - 7
al ._ a5 (p(v) — p(D — x + o; a(0)Xip(v|D) da
J>U) -—;[/R( i)z ' (p(v) = p(0))(h — h) dz + Z/]R (Vi) 'p(v]v) d
(g 20) — p(0) o) — (B d
[ @)X P 0, ) - @) a
— a; Xi v) — p(v 2M T
[ @)X ) P S a ]
@ p() —p@),
/Raam v))W@p(v) dz
+/Ra Eld:E—/Ra(h—h)Egd:E,
OOd i r+o @)X Q(v|v) dz
7 2[2/ i oo [ (@F Qi as]
e v) — p(?))|? da.
+ [ i) @)
Remark 4.2. We note that the definition of the weight a; implies
ala) = =2 @), = BEEE) @ > 0

from which we observe that J8°°% consists of good terms.

4.4. Maximization on h — h. Among the terms in J"24(U), a primary bad term is

/R (a)X (p(v) — (@) (h — T da

where the perturbations for p(v) and h are coupled. In order to exploit the parabolic term on
v-variable and hence use the Poincaré-type inequality, we separate h — h from p(v) — p(v) by using
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the quadratic structure of h — h. Precisely, since

(a:)3 (p(v) = p(®)) (h = ) = Z (@)X b — R

2 (oF) * 20;

we rewrite the terms J"*(U) — J8°°4(U) in the above lemma as
JU) = JEU) = BU) = G(U),

where

BW) =Y [% /R (05 p(v) — p(@)2 dz + o /R o(@) X p(u[F) da

i=1

[P @,
[ @)X P, o) — @) a

_ a )X (p(v) — (T 89617(77) "
[ @ o) - @) w(v)p@)d]
| wt (o0 — @ P =PO) 5

[ avetote) =) B0, ()

+ [ atoto) - p@)Er o~ [ ot~ R B2
2 o
GU) = [5’ /R (ai)y

i=1

L7 pw) @[

o

T /R 10, (p(v) — p(@))P da

vp(v)
Therefore, we will estimate the right-hand side of the following equation:

2

% | an(UID) de = _(X:XYi(U) + BU) - 6(U).
=1

4.5. Decompositions. We first name each term of B(U) and G(U) as follows:

()X ~ 0) —p(@)|*  (a))Xi
oi(ai) h—h—p( ) p( ) ( l)gc ‘p(v)_p(a)P’

dx + o} /R(ai)fiQ(vﬁ) dx]

(4.16)
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where
1 )
BW)=Y 5 [ @) to(e) =@ o
2
= o | a(@)Xip(|v)de,
Bv) =3 /R< YXep(uff) d
2
_ u) X PW) — p(@) . N di
B = =3 [ ()X B 0,00 —p(e)
2
_ a5 (p(v) — p(T 9up(v)
BU) = =32 [ @)X 00) -0 e8
R ey R Ci P
B(0) = — [ adu(pto) = (@) Ao 0.p(5)
S1 ::/Ra(p(v)—p('ﬁ))El dr, S ::—/Ra(h—ﬁ)Eg dx,
and

For each Y; in (£I5]), we first write Y; more explicitly as follows:

_ 12 -~ -
Y;(U) =— /R(ai)fi <M + Q(vﬁ)) dx + /Ra(hi)fi(h — h)dx

- / ap’(T))(T)i)fi(v — ) dz.
R

Since a key idea in our analysis is to apply Poincaré-type inequality of Lemma 21 by extracting
a good term on an average of perturbation p(v) — p(v) from the shift part Z?Zl(XZ-YZ-(U)), we
decompose Y; as follows: for each i,



22 HAN, KANG, AND KIM

where

Yio i= — /Riap/(v;xl)(vl)xl(v —v)dx = —/Ra(p(vf(z))m(v —v)dx,
Vi e /Ra(hz)fi (h— - p(”);ﬁ@)) d.

0

e Xi
Vi im — [ (@)X Qi) do - [ (@ ) — p(@)? da.

R 20_22
Observe that it follows from our construction (B3] on shifts X; that
M

X; = _?(Yil + Yia),
which yields
6
) 5oy
XYi(U) = =371 X" + XZ?)YJ (4.17)
j:

Here, the good term —%|X¢|2 would give an average of linear perturbation on wv-variable as men-
tioned above, while the remaining part would be controlled by the good terms in G(U). To show

it, we combine (A0 and (£I7) to have

4 an(U|U)dz =R, where
dt Jq

2 2 6 5
R::_Z%’XiPJFZ XZZY;j +ZBZ-+81+82—91—92—D.
=3

i=1 =1 i=1
25 3
=—> X+ B+ By~ Gy — 5D (4.18)
— 2M 4
=R
2 Y 2 6 5 1
i o9 .
—ZZM‘X," —l—Z X’ZY” +ZBZ'+81+SQ—Q1—Z’D.
i=1 i=1 7=3 =3
=:Ro

A motivation of the decomposition ([A.I8]) is that the two bad terms 3; and By are the main bad
terms, which should be controlled by using the sharp Poincaré-type inequality of Lemma 21l The

remaining terms in Ry can be controlled in a rather rough way. We first focus on the estimate of
Ri.

4.6. Estimate of the main part Ri. A key idea for estimates of R; is to use the Poincaré-type
inequality (2] in Lemma 2l To apply the Poincaré-type inequality, we need to localize the
perturbation near each wave by using the cutoff functions ¢1, ¢o defined in (BI1]) (see Remark B.T]),
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and then change of variables from whole space R to a bounded interval (0,1) for each wave. For
that, we will consider the following change of variables in space:

1 plom) —por(z — 01t)) _ P(vm) — p(v2(z — 021))
y1:=1- ) Y2 == .
51 52
Indeed, for each i, y; : R — (0,1) is monotone in &; := x — ot, since
dyl 1 ~ \/ dy2 1 ~ \/
- 0, “2—-_— 0

and
lim y; =0, lim y; =1.

&i——o0 &i——o00
In terms of the new variables, we will apply the Poincaré-type inequality to each perturbation w;
localized by ¢; respectively:

wy = ¢1<m+X1<t>><p<v<t,w +X1(1)) = p(B1(e — 1) + Bal — oat — X(t) + X1 (1)) ”’m)) our

wy = do(x + Xo(t)) (p(v(t, x4 Xo(t))) — p(%(m — o1t — X1 (t) + Xo(t)) + va2(z — 02t) — vm)> oyt

In what follows, for simplicity, we use the following notations to denote constants of O(1)-scale:

+1
Om ‘= V —p'(Um), am = i

 2y0mp(vm)’
which are indeed independent of the small constants §; since v4 /2 < v, < v4.
Since the shock strengths 0; are bounded by dy respectively, the following estimates on the O(1)-
constants hold:

01— (=om)| < Cd1, o2 — 0| < Cdy, (4.19)
and
L p@) L p@ !
; Yy
lo2, = [p @)= < C8iy || — 22| <8, | - BE < Cdy. (4.20)
o Y Lo o2, v .

We are now ready to estimate the terms in ;. As mentioned, we need to extract a good term on
an average of the perturbation w; from the shift part 2‘§(4|Xi|2 as follows, so that we could apply

Lemma 211

¢ (Estimate of shift part 2‘§\i4|Xi|2): We will show that: for each ¢,

5 o M6 [ (! ? L
X2 <~ Z(/ widyi> +C6(N+6g+¢ 2/ w;il? dy;
2M| | -\ ( 0 +e1) ; |w;]

(4.21)
+ C5; exp(—C6it) / n(U|T7) d.
R

As the estimates of 25—1\14|).(1|2 and 25—1\24|).(2|2 are the same, we only handle the case of X;. Since
X, = —%(YM + Yi2), we first estimate Y7; and Yis.
Using the relation ¢ + ¢2 = 1, we have

V= [ 05 or(p0) = p@) do+ [ BT a(p(0) ~ p(0) da
R O1 R O1

- L / ap(51) X161 (p(v) — p(D)) do + / 2 (@)X 6 (t, 2)(p(v) — p(@)) da.
01 JR R 01
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The first term is a main part for applying the Poincaré inequality. We use change of variable
x — x + X1 (t) and apply the change of variables for y;1,w; to observe that

— / ap(v1); ' ¢1(p(v) —p(@))de = — [ a(t,z + X1(t))wi dy:.

Then, using [AI9) and [|a — 1|[ o (r, xr) < A, We have

T
Yiin—— | widy
Om Jo

To estimate Y79, we first use the equation of state v = p(v)_l/ 7 and Taylor expansion to have

v —T— (—m@(v) —p('a)))

~
which together with the estimates (£20) and (4.8]) yields

0= (= 00) = ()| < OG-+ 20)lnte) ~ )L

This with the same argument as above implies

61 (! ! N .
Yip — 0_—;/ wy dy1| < Co1(A+ dg +€1)/ w1 | dyy +C/ |(01)7 [ galp(v) — p(D)| da.
m Jo 0 R

We combine the estimates for Y71 and Yi2 to obtain
. 2M ! M 6 *
‘X1+—2/ wy dy S—(Yn——;/ wy dyy )
g, 0 (51 g, 0

1 C -
< OO+ +21) / wnldin + & / )X |palp(v) — p(@)|de,
0 R

1
< O8I (A4 5) /0 | dys + C /R (@)X dslp(v) — p(@)] da

< Clp(v) — p(0)|?,

+

6 *
Yio — — / wy dyy
Im Jo

m

which implies

oM [1
(‘ 5 / wy dyy
Om Jo

We use an elementary inequality % —y% < (x —y)? for x,5 > 0 to obtain

1 2 1
</ wy dy1> — | X1P <O+ 6+ 51)2/ wi|? dyy
0 0

+5—c% </R\(’T)1)§l\¢2!(p(v) —p('ﬁ))!dfc>2-

The last term can be estimated as follows: by using Lemmas 2.2, 2.3, B3,

C Xy _ 20 [ x _
= ( [i@n |¢2|<p<v>—p<v>>|d:c> <s @ 22ds [ 160) ~ p(@) P o

2

2 1
—|X1|) <CO+a+e? | |w1|2dy1+%( / |@1>§1|¢2|<p<v>—p@md:c)

2M?

4
Tm (4.22)

C - - ~
< S (X IEE e [ Qi) da
1 7x
<C exp(—C’élt)/ n(U|U) da.
R

Therefore, we substitute the above estimate to [E22) to derive the following estimate on Xj:

2
& oo M§ /1
——— | XP<——= d

m

1 ~
+ C8y (N + do +€1)2/ \wl\zdy1+05%exp(—calt)/n(U\U) dz,
0 R
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which is the desired estimate ([E21]).

¢ (Estimate of the bad term B; and good term Gs): Recall

2
=Y 5 [@) () — @) o

i=1

= Bll

a,/ a;), ' Qv|v)d

=:G;2

M

Since the estimates for the two cases i = 1,2 are the same, we only handle the case of i = 2 for
simplicity.
First, we use the estimate on Q(v|v) in Lemma 23] to obtain

Xoy—3—1
oo > 0 [ (02 ) — o) o
—on [ (@) 0 00) () da

+ 52 [ @ (s =) ) o) () do

For simplicity, let Gao denote the good term given as

X) ;—1

A p(03
Gag = 0’2/ az fzi
]R( ) 2y
Using (£19) and ([£20]), we have

Bay < [ (@) lp(e) () do + % /R (a2)X2[p(v) — p(@)[? da

p(v) = p(0)[? da.

20,

and

Gor > 5—(1=C8) [ (@)Xlple) ~ 9l do.

m

Then, using ¢; + ¢2 = 1 and ([L3]), we estimate

Ba — s < O / (a2)X2 p(v) — p(D)? de
(4.23)

~X2
< oo [ 110 0 ) — ()2 o+ O [ 1@ 168100 - p(@) P o

By change of variable x — = + Xg( ), the first term of the right-hand side of (23] is rewritten in
the new variables wo, ya:

’P(gg{z)x’ N2 e ! 2
CoaA |p2(p(v) — p(V))|"dz = Coa X | |wal” dya.
0
Using Lemma B3] the last term of (£23]) can be estimated as

oA / (@2)22162p(v) — p(@)? d < CNGE exp(—Cat) / n(U|7) da
R R
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Hence we have

By — QQ<ZC)\5/ lw;|? dy; + CA6? exp(— C(St)/n(U]ﬁ)da:

=1 R

e (Estimate of the bad term B3): Recall

ZOZ/ Z' acp U|U

—-812

Again, we only handle the case of i = 2 for simplicity. First, we have
Bag = 02/ a(D2) X2 pap(v|D) dx + o9 / a(2)X2(1 — ¢3)p(v|v) da
R R

For the first term, using Lemma 23] (£19]), ([£20) and then the change of variables, we obtain

552, _
O'Q/Ra(ﬂz)xXQQ%p(ﬂﬂ) d:nzag/Ral;s(%Xz) gbgp(vh}) dx
P@32)s] o 7+1 )2 da
g@/Ra,p (NXQ)‘%( I e ) o) ~ ) d
v+1

< g+ O+ A 21) [ @)l a(o(0) — @) do

1
§5zam(1+0(5o+>\+61))/ lwa|? dya,
0
y+1

. . . 2yomp(vm)
Again, the last interaction term of Bao can be estimated as

o2 /R a(T2), (1 + o) rp(vlF) d < C /R |@)22 (1 |p(v) — p(@) 2 da

where we used the simple notation o, =

< 63 exp(—C’égt)/ n(U|U) dz
R
Therefore, we have
1 ~
Bag < G20, (1 + C (6 + A+ 51))/ lwo|? diyp 4+ C'62 exp(—C52t)/ n(U|U) dx
0 R
which yields
2 1 _
By < Z diam (14 C(dp + X+ ¢1)) / lw;|? dy; + C8? exp(—C;t) / n(U|U) dx
i=1 0 R
Hence, combining the above estimates on B, Gy and Bs, we have

By — 92+Bg<25am1+0(50+)\+€1 /]wzl2dyz+052exp( C(St)/n(U]ﬁ)da:

i=1 R
2
—o; [ (a; X1ty 5772 (p(v) — p(@))? da .
+3  [@X @ 00 - s (4.24)

+ g_; /R(ai)fi <p(?7)_%—1 _p(”gff)—%—l) Ip(v) _p(5)|2d$]'
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e (Estimate of the diffusion term D(U)): First of all, using the fact that ¢ + ¢ = 1 and
1> ¢; > ¢? > 0 for any i, we separate D(U) into

2
= ))|*dx
D)= [ 5@+ o0l )i =3 [

a
< Jr (V)

210 (p(v) = p(v)) [Pd.
Since Young’s inequality yields: for any d, > 0 small enough,

L . v) — (v 2 - g a 7 N ) i
/Mp(v)\ax(@(p( ) = p(0)))Pdx < (146 )/Mp(v) 210, (p(v) — p(@))[2d
C 8 5 6 2ie) — o) 2de
+ 5 | 1.6 Plplo) - p(@) P

we have

D) < 1+52/W (0up(0) = pO)) P+ 5 [ 510061 Ploto) = p(@) P
=:J; + Jo.

To write J; in terms of the variables y;, w;, we use the following estimates in the proof of [I1],
Lemma 4.5]:

1 1 dy 3ip" (Um)
vi(1 = y:) w(@) dv — 2|p/(vn)Pom

This with Ha% - 1HLOO < O + 1 + ) yields

< 2.

2

J = — / a —0 -W; — | d i
P, ; o P vp(vi)‘ wl™ g )

2
62' " m 1
<= (1-C(o+e1+A+0d.) <& - C5?> / yi(1 = yi)|0y,wil* dy;
i=1 0

2 (vm) [Pom

2 1
— Zéiam(l —C(o+e1+ A+ (5*))/ yi(1 — ;)| 0y, wi|* dyi,
i=1 0

(UM)

where we used ) = 2+
2|p ( m)|2om

2’YJmp(Um) = Qm-
To estimate the term Jo, we use the following estimate: for each ¢ = 1,2,

Oui(t,2)| < ———2 VreR, te(0,T] (4.25)

o9 —opt

Indeed, (@I0) yields
S ((X%a0) + 020 = (X1 (0) + 1)) 2

which implies ([E25]).
Thus,

02 — 01

1 t>0, te (0,7,

C ~
< -
R < 5 [ 01T da,

which implies that for any 0 < §, < 1 small enough (to be determined below),

2 1
C ~
—Zéiam(l—C(éo—F)\—FEl—i-é*))/ yi(l—yi)layiwiﬁdyi—km/n(U!U)daz.
. 0 * R
(4.26)
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e (Conclusion): Combining the estimates ([4.24]) and ([@.26]), we have

3
31—1-32—92——7)

3 1
<Z5am<1+0(50+/\+61 / |w2|2dyl—1(1—00(50—1-)\—1-614-5 ))/ i(1 —yi)|8yiwi|2dyi>
0

=1

1 -
+C (Z 62 exp(—C&;t) + 5*?> /Rn(U]U) dx

i=1
Now, choose d, as
1
O = ——,
120,
which together with the smallness of dg, A, &1 yields
1
Co(do+A+e1+6:) < &

and
—~ 3
31+Bz—92—17)

: 9 1, 5 (! )
< iCm | 2 il " dys — 2 i(1 = i) | Oy, wi| ™ dy;
<3 de (3 [ a3 [ ot woloyu an)
2 1 B

i=1

Then, using Lemma 2] with the identity:

1 1 1
/ lw — w|2dy = / w?dy — w2, W = / wdy,
0 0 0

2 1 1 2
—~ 3 0; Q0 9 50; e,
— — < _ . . . .
Bl + B2 g2 4D =~ ;:1 [ ] /0 "wz’ dyz + 4 (/0 w; dyz> ]
2 1
) -
C ( E 57 exp(—Co;t) + _t2> /Rn(U|U) dx

i=1

we have

Finally, using (£.21]) with the choice M = 40 O, We have

0i | 3
—ZZM|X2'|2—|—B1—|—B2—Q2—ZD

+o; /R <a,>X@ @) 2(p(v) — p(3))? da

< 22: [ diaum,
1=1
5 / (@) (p@) = —p@-’%‘%—l) (v) —p@)rzdx]
R
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which implies
2
— )5 i (p(v) — p(@))|? d a;) X Ip(v) = p(@)|? dx
Rléi;[ Cl/R!( i)z '[l9i(p(v) — p(v)) " d +C/R!( i)z 'lp(v) = p(V)” d
+CAI(ai)fiII5—5fillp(v) —p(5)|2d$] (4.27)
2

1 -
+C <Z 62 exp(—Céit) + t_2> /RU(U|U) dx.
i=1

4.7. Estimate of the remaining terms. We substitute ([{27)) to ([£IX]) and use the Young’s
inequality

2 6 2 5 2 o5
D | XY 324](4|Xi|2+232|1%|2 (4.28)
i=1 j=3 i=1 i=1 ' j=3
to have
a1, (U|U) dx
dt Ju "
< _Clgs + K1+ Ko
2
+C (Z o7 exp(—Oéit)+12) /n(U|z7) dz (4.29)
i=1 t R
2 Iy 2 C 6 5 )
% 9 2
_Z4M!Xi! +Zé_iz,}/;j’ +ZBi+Sl+82_gl_ZD’
=1 =1 " j=3 i=3
where

2
S._ TZ}'Xz . V) — v 21-
g_;émumw>mmw

2
= a;)Xi||p(v) — p(@)>dx
&~20Q<%m>pmw

=K1

2
Kai=32C [ 1N =75 ) = (0 da
i=1

=:Ki2

In what follows, to control the remaining terms, we will use the good terms G;,G° and the dif-
fusion term D.

e (Estimate of K1): To control the term K;; by the above good terms, we localize it via ¢; as

Kﬂgc%AQ@ﬁﬂ@ww—m@wwx+c%Ag@mﬂu—¢mmw—maﬁm. (4.30)
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Using the Gagliardo-Nirenberg interpolation inequality and §; < XA < C+/9;, the first term is
controlled by the good terms as

c5 [ 1S o) - pP do

< C(% [p(v) —P(a”%w(m) \//]R \(@)?i“@@(m —p(0))|? dx\// \(T)i)fi] du

C% 12 (p(v) = PO L2 () lP(v) = P(O) | 2 \//\’Uz )z ||¢i(p(v) — p(0))[* da

< Cer [10:(p(v) = p(0))l 2w \//R!(@)fi\!@(p(v) —p(0))]? dx

< Ce1 05(p(v) — p(@)) 22y + Cer /}R @)X I6ip(e) ~ p@)P do < (D + 1)

Using Lemma [3.3] the second term in (£30) is estimated as
A X _ _
c5 [ 1EX10 = lp) = pO)* do < Corxdiexn(~Cat) [ Ip(w) — p(®) da
< CerAo; exp(—Cd,-t)/ n(U|U) dz
R

Combining the estimates for i = 1,2, we derive

Ky i(D+ClgS +CZ<€1)\(5 exp(— cat)/n(mﬁ)dx
24 R

=1

¢ (Estimate of K3): To estimate Ko, we use Lemma B.2] to obtain
Kiz = C/R (i) 1[0 = ;[ [p(v) = p(0)[? da
<0 [ 1@ =75 1In(w) - )P
< C\310 exp(—C'min(dy, 62 )t) / n(U|U) dz

R

which completes the estimate on Ks:
Ky < CA6105 exp(—C min{4y, 65 }t) / n(U|U) dx
R
¢ (Estimate of 5QZ_|YZ-j|2 for i =1,2,7=3,...,6): Using (£2)2 and ([@0]), we estimate Y3 as

1/ap( Dz <h—ﬁ—7w> daz'

<X /‘C“XZ ‘N—M da:scj%\/g_,

Vis| =

which gives
Cé;
A

C
—vis]? <
¥l <
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Using Lemma [3.2] we control Y;4 as

|%d<0/hwf% @)X Ip(v) — p(@)] da

<C\// o — o |( Ul)fll)zda:\//Rn(U\ﬁ)daz

< C/6;6165 exp(—C min(6y, 83)t) /n(U![})daz
R

which yields
Q|Yi4|2 < 05%53 eXp(—C’min(51,52)t)/ 77(U|(7) dx
j R

For YZ5, we first estimate h — h in terms of u — @ and v — ¥ as follows. Using 0, = (01)X + (vg) X2
and C~! <w U‘lxl,UQ 2 < C, we have

lh—h| < |u—0|+|(Inv), + (o), — (In052),|

i | (@) (12)3°
o T2
e =T 11\ . 11\, 11\
< oy — - - 1 i 2
<|u—u|+ +'<v U>Ux+<5 2 (1)t + 7 (02);
(v

~ ~  ~Xo|/~
< Ju— 1l + C(|(v = D)ol + v = B[] + [0 = 7| (002 + [0~ 5[ (T2)22])-

(4.31)
Then, Lemma B.2] implies
1h =Pl 2 < C ( lu =l 2y + lv = Vll g1 )
\// ([ — 57| (@) 2dx+\// ([ — 552 (T Xz]ﬁdm)
< C (Il =l 2y + lo = 1y + €802 + C31857%)
and therefore,
lh = hl| oo 102y < Cler + C8285 + C5165). (4.32)

Hence, we estimate Y5 as

2
12 i | (@)X . a;) i
ma§o<2éu% d)(é(»

" 2
< CGyi || (@) || 1o <||h — i poo 0,2 (my) + v — U||L°°(0,T;L2(R))>
< C)\(Si(al + 0(51(52)291,

)5 P = p(@)

0

y 7 P =P

which yields
C
g’Yii’!P < C)\(El + (15152)291.
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Finally, using Lemma 23] (3), A < Cv/9; and Lemma B3, we estimate Y as

i < £ ([ a¥lpt0) - P ) < S ( [ @210 - o ar)
< S 10(0) POy [ 1GR Ipte) — p(@)
<083 /R @)X Ip(v) - p(@)? da
=2t [ 1@ llostoe) — p(@)P o+ €2 [ 1@ - o) - o) da

< 4—895+051/ 13211 = 60)lp(v) — p(@)? de

< 4895+CE%52exp( Cé,-t)/n(U\U) dx

R

Combining all the estimates for Y;; and use the smallness of the parameters, we conclude that

2 6 2
C Co;

E =) |[vi;?] < (e1 + C0102)°Gy
0i = =\ A

i=1 j=

ggs + 0(5%53 exp(—C min(dy, 62)t) + £362 exp(—C’&it)) / n(U|U) da
R

g + —QS
2 ~
+ C((S%é% exp(—C'min(8y, 2)t) + €7 Z 6% exp(—C9; t)) / n(U|U) dx
= R
o (Estimate of B3): Recall Bs := B3 + Bas where

S PTG PR
Bui= = [ (@ P E0, (p(o) (@) e

As done before, using Lemma B3] we estimate B;3 as

\str§4—82>+c< ) [ 1@ o) p
< gD +OX / @)X 6i(p(v) — p(@)P dz + ON? / @)X = do)lp(v) — p(@)? da
R

< 4_8(1) + C1G%) + CA262 exp(—Cdit) / (U107 da
R

Therefore, we have

Bs < _(D+clg5 +C)\2Z(52 exp(—C6; t)/n(U\ﬁ) dx
R

=1

e (Estimate of B;): Recall By := By4 + B2y where

D.p(V)

TG

Bu = — /R (01)X (p(v) — p(3))?
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Likewise, we estimate B4 by using Lemma B3l with (@8] and |0,p(0)| < C (|(01)X] + |(02)52]) as
& X
Bal £ 03,3 [ 1) llp(e) ~ @) do
j=1
2 X
<0ng® + Oy [ 1R 1= oylln(e) ~p@) do
j=1

2
Cl S 2 rr
< —12g + C\; g 65 eXp(—C5jt)/ n(U|U) dx.

=1 R

Therefore, we bound B, as
C 2 .
1B,| < Flgs +CY 63 exp(—ccsjt)/Rn(mU) dz.
j=1

o(Estimate for B5): As in B;3, we have

B3l < 5D+ C [ (GOX + G2 P) o) ~ P da

< 4—182) + %gs + (67 exp(—Cd1t) + 63 exp(—C(52t))/ n(U|0) dz.
R

o(Estimate for the interaction terms S; and Sy): We first estimate E; and Fy. We use
() = (071)X1 + (U2)X2 to estimate F; as

m-a Q- @G o (1o )+ (3- ) @)
(o Vg v vy v U5

_L L Y anxap 1 5X22_W
+ (wf(l)g (17)2) |(01)z "+ <(~X2)2 (17)2> |(V2)5 2" — 2 GE .

Therefore, thanks to ([23]), E; is bounded as

[E1| < Corl()3H|[o = 07| + Ca|(B2)22 [0 — T3 2| + C|(@1)2 [[(02) 2]
Similarly, we estimate Fs as

|| < 19/(0) = p' (@) [[(@0)27 | + 10 (0) — p (55 2)]1(T2) 2]
< OJ(@)H |Io = 07 | + Cl(02)2 10 — 352,

Therefore, the above estimates yield
2 ~
i +[S:| <O </R @) 1[0 = 5] (Ip(v) = p(@)] + [ = hl) dw)
i=1

e /R @)X )2 Ip(v) — p(@)] d.
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Using ([4.32]), Lemma B.2] and the assumption ([B.7) with (A.8]), we have

2
Sil+1S <0y ((Hv Wl oreramy + 1~ humo,w(m))\/ /R @) 2 »vffi\?da:)

i=1
+Cer [ @)1 ds
R
< Ce16165(51"% + 63/%) exp(—C min(6y, 62)t) + C262(61 + 0a) exp(—C min(dy, 5, )¢)

+ Ce16169 eXp(—C min(51, 52)t).

Hence we finally estimate S; and S, as
‘Sl‘ + ‘82‘ S 0(51(52 exp(—C min(51,52)t). (433)

4.8. Estimate in small time. Note that the estimate [@27) on R, contains the coefficient tiz,

which is not integrable near ¢ = 0. Thus, in order to get the desired result, we would find a rougher
estimate in a short time. To this end, we return to the previous right-hand side R in (ZIS):

2 2 6 5
5 . .
R==D Kl (XD Yy | +D BitSi1+8 -6 -G~ D.
=1 i=1 7j=3 i=1
By the Young’s inequality (L28]), we first have

2 2 6 5
5 C
R+ 4M|Xi|2+g1+D+gS§§ 675 Vi | + D Bi+ 81+ 82+ G5,
i=1 i=1 j=3 i=1

Using (37) and Lemma 22 with (£0), we have

6
SOVl < C @Y oy (I~ Bl + [p@) — @) 2ey)
j=3

+ [|(ai)y"
S C(Sifl,

Loy (10 = BllZ2gg) + Ip(v) = P@72r)

which yields

Likewise, we have

5 2 2
ZBz‘ < CZ (H(ai)fiHLw(R) + ||(5i)m||Loo(R)) v — 5”%11(11@) < Cej 25%
=1 =1 =1

and

2 2
G5 < S N@) N oy 1(0) ~ PO 22y < C3 D57
=1

i=1
Hence, the above estimates and ([{33]) provides a rough bound: for any 41,2 € (0, dp),

2
5
R+ AKX +G+D 4G5 <Coy, >0, (4.34)
=1
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4.9. Proof of Lemma [l We here complete the proof of Lemma ETl First of all, from (£34)
with ([4.I8]), we have a rough estimate for a short time ¢t < 1 as follows:

i/an(UW) dx < Cdy,
dt Jp
which implies
/an(U\ﬁ) dx
R t=1

On the other hand, for ¢ > 1, we combine all the estimates in Section and Section .7 to derive

+C6.  (4.35)
t=0

1 2
0; 9 g ~

=1

1
X+ g + 1QS+§D

d

pn an(U|U d$+z

<C (Z 8 exp(—Cd;t) 4 6102 exp(—C min(dy, 83)t) + %2) / an(U|U) dx
=1 R

+ C(Slég exp(—C min(él, (52)t).

Hence, we use Gronwall inequality to conclude that for all ¢ > 1,

2
i< 1
MIXZ-|2+ g1+—gs+ D)d

3 ERY
/Ran(U(t,x)w(t,x))dﬁ/l (;4 S

~ Cd162
< (/Ran(U\U)dx +7>

min(617 52)

t 2 .

X exp / Z(Si exp(—C0;s) + 6102 exp(—C min(dy, d2)s) + = ds
1 =1

(4.36)

+ C'max(d1, d2).
t=1

Finally, we combine the estimates (£30) and (£36) to conclude that

: /2
/Ran(U(t,a:)]ﬁ(t,a:))da:—k/o (Z(Si]Xi\z—i-gl—FgS—i-D) ds

i=1

< 0/ an(U|U) dx
R

<c /R a(0, 2)n(Uo ()| T (0, 2)) dax + ',

which together with 3+ < a < 1, D(U) < CD(U) and G1(U) < CGy(U), completes the proof of
Lemma [4.11

5. PROOF OF PROPOSITION

In this section, we complete the proof of Proposition

5.1. Zeroth-order estimate. We first estimate the zeroth-order term of [lu — | ;2
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Lemma 5.1. Under the hypotheses of Proposition 3.2, there exists a positive constant C > 0, that
is independent of 01, 02,1, T, such that for all t € (0,T],

t 2 t
ol + =Tl + [ SabkPass (@ 4pen)as
0 i1 0 5.1

~ ~ 1/2
<C <||Uo —0(0, ')H%Il(]R) + |luo — u(0, ')H%Z(R)) + 050/
where G° and D are the good terms of Lemma [f-1}, and
Dy = / \(u — 10), 2 da. (5.2)
R
Proof. As in Section 3] the system (I.I]) can be written as:
Ui+ A(U)z = 0,(M(U)0: Dn(U)),

where

U= (”) . AU) = ({(Zf)) ) =S ) = “; R <8 0) .

SEL

Then, the shifted composite wave U = (¥, %) satisfies
- - - - 2o 0
U+ A(U)z = 0:(M (U)o, Dn(U)) — E:XZ(UZ)fZ + ( > ; (5.3)

where

2 a 2 TARS
By :=p(@); =Y p0; )es Eyi=— <§> 2 <(~Z))ff ) '

1=1

Then, the relative entropy method (see e.g. [I1, Lemma 5.1]) implies that

2 6
L i, )Tt ) de = 3 (XatDi) + 3T,

dt Jr i=1 i=1



LARGE-TIME BEHAVIOR OF COMPOSITE WAVES OF VISCOUS SHOCKS FOR THE NS EQUATIONS 37

where

Vo [ @RS DO = 0)ds = = | FE@ (0= )do+ [ @R = de = o+ Vi
7, = /aGUU /a (p—5)(u— @) da = 0,

Io = —/R(&EDn( )A U|U Z/ U)o p(v|v) de =: Toy + oo,

Ty = /R (Dn() ~ Du(0)) 0, (M), (D (V) ~ D)) dar = /R ~10u(u — D) de,

=D,

715~ [ (Do)~ Do) 2, (((0) - M@)2.Do()) do = [ (w10 ((1 - i) a) dr,

T~ [ on@id, (@0.00@) ar = [ (TG (o) ) ar=o.

v

Ts == —/D%(ﬁ)(U <E2 +E3> de = — u—u)(E2 + E3)dx

e S5 1)

In the following, we estimate each term above one by one.

e (Estimate of V;1): We use ¢1 + ¢ = 1 to have
Vi == [ FOEI 60 =) do — [ P @@ 00~ do
Since

2
<c / @) de / @)X |pr (v — B de < C8:1°,
R R

[r@EE -5 ds
and (by Lemma [3.3))

/ o (5)(50) X a0 — 7) da|
R

we have

< C/ ‘ U1) X1¢2| da:/ v — B2 dx < C83 exp(—=Cé1t) |lv — 17“%2(R) ,

. o1 - -
X < =X + Iy ? < —|X1|2 +CG% + C6f exp(—Cd1t) || — V|72
1 ()

Likewise, we estimate nggl as
%] < 2|l + 00 + O8 exp(~Coat) [0~ 3aqe,
e (Estimate of };2): We use a similar estimate as in (4.31]) to obtain
ju =] < [h—= D]+ C(|(v = 0)e| + [TalJo = B] + @) [T = 57| + [(@2)22][7 — T 2]).
On the other hand, since
(P(v) = p(0))e = P'(v)(v = D)o + Ta(p/(v) — P'(V)),

we have
(v = 0)s| < Cl(p(v) — p(V))s] + Cloz|lv — 0]
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Then, using the localizations ¢;, and then the good term Gp of Lemma 1] and Lemma and
Lemma 3.3 with ([2.5]), we have

Vial < c/R|<51>§1|<\h—%— S
T 1(p(0) - p())a |+|vm||v—v|+|<v1>X1||v—5f“|+|<v2>X2||v—vX1|> s

<C (%ﬁl +4/01V/G5 + /R (@)X ||62(p(v) — p(2))| dz + 81v/D + 616 exp(—Cminwl,az)t)) -

This yields

+lp(v) — p(0)|

ul G1+ CG® +C8,D

+ caf exp(—calt) [v =T 72 gy + C6105 exp(—C min(61, 62)t).

| X1 V12| < \X \2+C

A similar estimate holds for \nggg\.

o (Estimate of Z): We use the estimate ([2.0); and the localization, and then use Lemma B3] with

[Z3) to obtain
] £ 0G5+ [ 1@ 6ulp(v) ~ () do

<Cg5+0\// |(v1) X1¢2|2d:17\// Ip(v) 0)|* dx

< CG5 + 8} exp(—C61t) [[v — Tl ooy 0 — Tl 2y

and the same estimate holds for Zos.

e (Estimate of Zy): To control Z,, we will use the good term D; generated by Zs. We use the
localization, and then use Lemma B.3] with (2.5]) to derive

|Z4| éAl(u—ﬂ)xllv—ﬂl(l(ﬂl)fll+I(&’2)§Zl)dw
< iDl + C(6, + 02)G°

+051/ I(ﬂl)fll@lp(v)—p(5)|2d$+052/ |(@2)22 |61 lp(v) = p(D)|* da

1 s 5/2 _
ZD1+C(61+52)Q +C;5 exp(—Cdit) [|v = V| oo (ry IV = Ul L2y

o (Estimate of Zg) First, we note that the following estimate holds:

< C (@R + @)X NE)X DT = T + (@)% ]+ (@)X E) X ) - 5|
1) @)X + @) @)2)
< C (@R 1E)PPIT - 5 + (@321 + @052 P)IF - 532+ 1E)XE)2))
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Thanks to (23] in Lemma B2 we have |(7;)Xi], |(0:)X1|? < |(9;)X?|, and therefore, we estimate Zg
as

16<0/|u—UI (@02 1[5 =077+ 1(@2)2 217 — T3 2] + (@) [[(32)22]) dae

< Cer IG5 =5 + 1) 15— 552 + G0 1@,

where we used a smallness of the perturbation (B.1)).

Combining all the estimates and using (3.7]) with Sobolev embedding, we have

_ 1
i ) n(U(t,z)|U(t,x)) dx + §D1

<Zj|xﬁ+o§jA@+wg Loy o

i=1 (5.4)
3/2 2 6262
+ Ceq Z 5. " exp(—Cd;t) + Cz 151-2 exp(—C min(dy, d2)t)

i=1 i=1

+ Cey

) 7= 53+ )11 — T3+ 52 )

On the other hand, we use the estimates
@)X e <62, 10 =07 oo < 82, [0 — 85 ||1 < 61,

and Lemma to derive the following inequalities :

H| )Xo — UX’| < 05;/25152 exp(—C'min(dy, d2)t),
v 3/2 :3/2 (55)
@) @) ]| 2 < 67765 exp(—C min(31, 62)1).
Integrating (5.4 over [0,¢] for any ¢ < T, and using (5.5), we have
_ 2 1 t
/ ('“ a Q(v|5)> dz + —/ D, (U) ds
R 2 2Jo
uo — u(0,z)[? -
scA(L—j}—ﬂ+Qmm&dex 5.6
¢/ 2
+/0 (2 1 X% + C’Z )\Gl +16% + 0;5 D) ds + Cey max (3, 62)"/2.

Therefore, multiplying (5.6 by the constant
with the smallness of §;/\, d;,e1, we have

72 max (101 and then adding the result to ([44]), together

lv = Blf32gy + 12— Rll32m) + v — U7z /Zam ds+/ (G5 + D +Dy) ds .

<C<Hvo (0, )2y + 100 = B)(0, )72 gy + luo — (0, )||L2(R)+051/2

where we have used that
C v -2 < Q) < Clv—72%

To complete the proof, we need to control |[(v — V)| r2r) and |[(h — 1)(0, 2wy Specifically, we
will show that

10 = DallZaggy < C (I = Flldaggy + e — @ll2agey + o — 0l3ag + 6 +83)  (58)
(R) R)
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and
[ = B0, 22y < € (oo = 50, My + lluo — O, M Eagey + 0363 +0368) . (5.9)

Using the definition of h and ﬁ, we observe that
(u—1) — (h—h) = (Inv—InT* —Inv52),

R R DN
= T (%—%fﬁ (U1)z _@(UQ):C
which yields
~ ~Xo ~X1
~ ~ ~ v — V. ~ Vv ~
(0= D)a = v(u— 1) — v — ) = L2 o — ) + L2 )30 1 T yxe,
v (0 VU,

This, together with the fact that H v;) X H LR < C§? implies (5.8). On the other hand, it follows
from the estimate (£3T]) that

I(h = B0, )22y < € (llvo = 50, )31y + lluo = W0, ) Fqxy + €703 + Co353)

which yields (5.9). Hence, combining (5.7),(E.8) and (5.9) with D; < CD;, we obtain the desired
estimate (5.1]). O

5.2. First-order estimate. We now present the following estimate for |[u — || ;1 (), which com-
pletes the proof of Proposition

Lemma 5.2. Under the hypotheses of Proposition 3.2, there exists a positive constant C' > 0,
independent of 61,02,e1,T, such that for all t € (0,T],

o = W ay + e = e /§ijﬁw+/(¢+D+Druhwk
0 =1 (510)
- ~ 1/2
< C (Jlvo = 50, )3z + lluo = (0, )31 g ) + €05,
where G°, D are as in Lemma[{-1], and Dy is as in (G1), and

= [ = sl da

Proof. Considering (B.0]), we only need to estimate ||0,(u — u)| z2(). For notational simplicity, we
define ¢ := u — u. Then, v satisfies

2 ~
m—zx@%w@w—mmF<%—@)—&—&. (5.11)
i=1 x

v v

We multiply (|5I|:|) by —., and integrate over R to obtain

—/ (ﬁ—%> wmdx—l—/(Eg—i-Eg)wmdx
R v v z R
= J1+ Jo+ J3 + J4.

o (Estimate of J; and Jy): We first define the good term

1
D, IZ/—Wdel’,
RV




LARGE-TIME BEHAVIOR OF COMPOSITE WAVES OF VISCOUS SHOCKS FOR THE NS EQUATIONS 41

and split J; as Ji1 + Ji2 where
Jli = —XZ/(ﬂZ)i(lﬂ)mm d$
R

Then, using Holder inequality and Lemma 2.2, and then Young’s inequality, we obtain
| J1| < \Xz'\\// \(ﬂi)fipdw\// Ve |® da
R R
) S 1
<1082 | [ nal? do < FIXP + O8D2 < 21X + Do
R

2.5 1
iy 2
Ul’SE Ein\ +§D2-

i=1

which yields

Similarly, using Young’s inequality, we have
1
|Jo| < §D2 +CD.

e (Estimate of J3): We estimate J3 as

Y e, [
R /R<v>ﬂ””d””
R vov R vov

=: —Do + J31 + J32 + J33,

from which we derive the good term Dy. On the other hand, we use (1), < Clv,| < C(|(v —0),| +
|v,.|) and the interpolation inequality to derive

1 Ta1] < 1 = D)all 2 1900 l] oo [0l 2 + 1Tell poo [0l g2 [tbn] 2
< Cep [Wall3e 1aallbe 10eall 12 + C (61 + 82) [0l 2 1w 2
1
< Cler + 81+ B) (el 7z + [Yaallzz) < gD2 + Cler + 01 + 82) Dy

Moreover, using |(t;):| < C|(7;)2X7| in Lemma[Z2] relation ¢1+¢2 = 1, and then the same estimate
as before, we have

s < C / (@)X + ()22 o — e da

< by 1 08,65 + 08,65

oo

+C0y / |(01)3 | d2lp(v) — p(D)[* da + C6y / |(02)22 |61 [p(v) — p(V)|* dr

< 1D, 405,65 + 05,65 + C22 Z 572 exp(~Cit).

=1

oo
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Finally, we estimate J33 as

| J3] < C/(!(’?Il)fl\+\(ﬂz)fz\)(!v—’?!+\(v—'?7)x!)!1/1m\dx

—_

—D2+C/ DX 4 @) X2P2) (Jo— 52 + (v — D)af?) da

8

1

§D2 + C(61 + d2) (D—i—gs +EIZ<55/2 exp(—C9; t)>
i=1

e (Estimate of Jy): We control J; as

[ Ja] < C 1wl e (| (1@0)20 |+ 1@0)2" )T =077+ (1(@2) 2] + (@ )X2|2)|17 Ty 2 4 1(01)2 [1(72)2

L2

< 2D+ C |G T - 70 + 1@ - 5 + 1R @ |

Therefore, combining the estimates for J;, there exists a positive constant ¢y > 0 such that

|¢x| 2 S 2 5/2
- <__
; 5 dx Ds + E ]X\ + oD+ C(ey + 01 + 02)(G° + D1) + Cef ;16 exp(—Cd;t)

+c||i@) X1||v—a 1@ - 5+ 1R @

Integrating the above estimate over [0,¢] for any ¢ < T, and using (5.0]), we obtaln

u— )g|? ug — (0, )z |? t 2.
/RI( ut dﬂ“/R'(O ©0.0)| dﬁ/o <_3D2+Z|Xi|2>ds

i=1

t
+ / (e2D + Cle1 + 61+ 62)(G° + D1)) ds + Ce1 max(61,62)'/7.
0

Multiplying the above inequality by the constant W and then adding the result (G.1), to-
gether with the smallness of 1, d1, 2, we have

t 2
lv = B3y + 1w = Tll 3 gy +/ (Z 5i|Xi?+G%+ D+ Dy + Dz) ds
0 \i=1
1 2
< C (Jlvo = 50, ) gy + llwto = (0, )1 3ps gy ) + o’
which is the desired estimate ([B.8]). This completes the proof of Proposition ]

APPENDIX A. PROOF OF LEMMA

In this appendix, we present the detailed proof of Lemma 3.2l We only consider the case of i = 1,
since the other case can be shown in the same manner. It follows from ([2.2]) that

()| = [0)(z — o1t — X1(t))| < C8F exp(—Cdilz — ot — X1(t)]), Vz eR, t>0 (A1)
and

"?}XLXZ _ ~X1’ _ ‘~X2 v ’ < C(Sg exp(—Cégla: — O'Qt — Xg(t)’), if X § O'gt —I-Xg(t), (
= Cdo, if x> O'gt—l—Xg(t).

Recall that (3.22)) implies X5 (t) 4+ oot > %t > 0. Therefore, we combine (A.Il) and (A.2) to derive

~ ~ ~ C6305 exp(—Cla|x — oot — Xo(t if <0,
|(v1)§1||vX1’X2 —vf(1| < ; 2 p( 2| 2 2( )|) . > (A.3)
C702 exp(—Cd1|x — o1t — X1 (t)]), if x>0,

A.2)
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and
0(51(52 exp(—Célla: — O'1t — Xl(t)‘), if x > 0.
Again, we note that ([3:22]) implies
x — oot — Xo(t) §$—%t§—%t<0, if =<0,
o1 o1 (A.5)
x — o1t — Xq(t) 2$—7t2—7t>0, if >0,
which combined with (A3)) yields the first desired estimate:
(01X [0 X2 — ) < €626y exp(—Cmin{dy,d2}t) if Yz €R, t>0.
Similarly, we combine (A.4]) and ([A.3]) to obtain
()X V25X X2 ) < 0616y exp(—C min{dy, &2 }t) if Yz eR, t>0.
On the other hand, since ([2.2]) implies
/ (@)X V2 dx < C, (A.6)
R

we obtain the second estimate. Finally, we again use (2Z2]) and (A.5) to find
(@) ](02)22] < C8163 exp(~C'min{y, 62}t), Vr €R, t>0.

We combine the above estimate with (A6 to derive the last desired estimate.

APPENDIX B. PROOF OF LEMMA [3.3]

In this appendix, we provide the proof of Lemma 3.3l Again, we only focus on the case of v;. It
follows from (AJ) that

G| () X2 < Cpaby exp(—Coy|x — o1t — X1(t)]), Vo eR, ¢>0, (B.1)

and
¢2|(51)§1| < 0(1525% exp(—C’51|:17 — o1t — Xl(t)|), VreR, t>0. (B.Q)

We note that the support of ¢o(t,-) is {z : x > (X1(t) + o1t)/2}, on which the following estimate
holds:

Xl(t)—l-dlt ot
—t>—>0.
2 - 4

x— (o1t + X1(t)) > —
Since 0 < ¢ < 1, we use (B.2)) to derive
d2|(01)3] < C6F exp(—Cyt),
which yields the desired first estimate. Similarly, we use (B.I]) to obtain
do|(T1)X1 M2 < €6y exp(—Cé1t).

Combining the above estimate with (A.6)), we derive the second estimate. This complete the proof
of Lemma 3.3
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