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Abstract

This paper studies a new and highly efficient Markov chain Monte Carlo (MCMC) methodology to perform
Bayesian inference in low-photon imaging problems, with particular attention to situations involving observation
noise processes that deviate significantly from Gaussian noise, such as binomial, geometric and low-intensity Poisson
noise. These problems are challenging for many reasons. From an inferential viewpoint, low-photon numbers lead
to severe identifiability issues, poor stability and high uncertainty about the solution. Moreover, low-photon models
often exhibit poor regularity properties that make efficient Bayesian computation difficult; e.g., hard non-negativity
constraints, non-smooth priors, and log-likelihood terms with exploding gradients. More precisely, the lack of suitable
regularity properties hinders the use of state-of-the-art Monte Carlo methods based on numerical approximations of
the Langevin stochastic differential equation (SDE), as both the SDE and its numerical approximations behave poorly.
We address this difficulty by proposing an MCMC methodology based on a reflected and regularised Langevin SDE,
which is shown to be well-posed and exponentially ergodic under mild and easily verifiable conditions. This then
allows us to derive four reflected proximal Langevin MCMC algorithms to perform Bayesian computation in low-
photon imaging problems. The proposed approach is demonstrated with a range of experiments related to image
deblurring, denoising, and inpainting under binomial, geometric and Poisson noise.

Key words: Low-photon imaging, computational imaging, inverse problems, Bayesian inference, Markov chain Monte Carlo methods,
uncertainty quantification, proximal algorithms.
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1 Introduction
Photon-limited imaging problems arise in modalities that measure the number of photons emitted or reflected by an
object or scene of interest. Canonical examples include emission tomographic imaging [37], fluorescence microscopy
[9, 37], astronomical imaging [9, 69], and single-photon light detection and ranging (LIDAR) [6, 33, 58, 68]. While
these modalities have traditionally operated in moderately mild regimes, modern photon-limited imaging applications
increasingly operate in low-photon to photon-starved regimes, particularly in the context of quantum-enhanced imag-
ing technologies that exploit the particle nature of light and information in individual photons in order to go beyond
the limitations of classical imaging paradigms [29].

An important characteristic of low-photon imaging problems is that their (discrete-valued) data exhibit statistical
properties that deviate significantly from the Gaussian statistics encountered in many other imaging modalities. Mildly
low-photon problems often exhibit Poisson or compound-Poisson statistics, whereas more challenging photon-starved
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problems exhibit approximately Bernoulli/binomial or geometric data [4, 5]. Poisson-type statistics arise from using
sensors capable of discriminating photon-detection events within a given time period, assuming detector dead times
can be neglected [5, 58, 68]. The more challenging Bernoulli, binomial and geometric statistics arise from sensors that
cannot accurately quantify photons beyond the first detection, such as Single-Photon Detectors [29] and in particular
Single-Photon Avalanche Diodes (SPADs) [5, 25, 39, 58].

Accurate recovery of images from low-photon data is difficult for many reasons. First, from an inferential per-
spective, the data have very limited information about the solution. This leads to image estimation problems that
are severely ill-conditioned or ill-posed, and which exhibit high levels of intrinsic uncertainty. Second, from a com-
putational perspective, the data fidelity terms associated with Poisson, binomial and geometric statistics have poor
regularity properties (e.g., exploding gradients) and involve non-negativity constraints on the solution space. This
makes it difficult to use gradient-based computation algorithms that scale efficiently to large problems [24, 32]. These
difficulties can be mitigated to some extent by using tools from proximal optimisation as proposed in [27]. Some of
these ideas will be revisited in this paper in the context of Bayesian computation, and combined with new strategies
for addressing these difficult problems.

The literature considers three main frameworks to solve low-photon imaging problems: Bayesian statistics [4, 5,
46, 47, 72, 76], machine learning [3, 17, 45, 64, 65], and the variational framework [19, 27, 34]. This paper focuses
on the Bayesian statistical framework because it enables the use of Bayesian decision theory to analyse these difficult
imaging problems [60]. This theory allows deriving estimators, quantifying uncertainty, automatically adjusting un-
known model parameters, and performing model selection in the absence of ground truth, all of which are relevant in
problems with high intrinsic uncertainty [12, 24, 53, 71].

Bayesian computation for low-photon imaging problems is usually addressed in the following three ways: proximal
optimisation, variational inference (VI), e.g., variational Bayes (VB) [55] or Expectation-Propagation (EP) [40, 74,
75], and Markov chain Monte Carlo (MCMC) simulation [61]. Proximal optimisation strategies are mainly used for
maximum-a-posteriori (MAP) estimation in Bayesian models that are log-concave, where MAP estimation is a convex
problem that can be solved efficiently by using provably convergent and scalable algorithms [19, 27, 34]. Some
basic forms of uncertainty visualisation and quantification can also be formulated as convex optimisation problems
[53, 59]. Despite their theoretical rigour, these methods can only support very limited inferences and log-concave
priors. Some recent works consider generalisations to data-driven plug-and-play (PnP) priors that can deliver more
accurate results, usually at the expense of weaker theoretical guarantees [3, 17, 45, 64, 65]. Moreover, to support more
advanced inferences without significantly increasing computing effort, VI low-photon imaging methods approximate
the Bayesian posterior distribution by a tractable surrogate model (e.g., a Gaussian model) useful for approximate
inference. VI are often computationally efficient and deliver accurate point estimators, but they are by nature highly
problem-specific [46, 47] and may be unreliable for uncertainty quantification because of local convergence issues and
approximation errors [55]. EP methods can suffer from similar limitations, and their computation cost is higher, but
they can provide more accurate posterior estimates. Conversely, modern MCMC methods provide a general Bayesian
computation strategy to perform inference in imaging problems that can support a wide range of inferences and models,
with detailed convergence guarantees, albeit at computational cost that is potentially significantly higher than VI and
optimisation strategies. To the best of our knowledge, very few works consider MCMC methods for low-photon
imaging problems. For Poisson imaging problems, the state of the art MCMC methods are the Poisson hierarchical
Gibbs sampler (PHGS) given in [8], the primal-dual preconditioned Crank-Nicolson Langevin MCMC algorithm [76],
and the split-and-augmented (SPA) Gibbs sampler [72]. For Bernoulli, binomial and geometric data, the state of the
art are the Gibbs samplers described in [4, 5]. These MCMC methods are either highly model-specific, they do not
account for the non-negativity constraint in practice or they do not benefit from important recent developments such
as acceleration [54].

The aim of this paper is to propose a general computationally efficient MCMC methodology to perform Bayesian
inference in low-photon imaging problems, with special attention to models that are log-concave. Similarly to modern
MCMC methods for Gaussian imaging problems, the proposed strategy is based on approximations of the Langevin
stochastic differential equation (SDE) [18, 24, 54], which we modify in key ways to enable computation for low-
photon imaging problems with non-negativity constraints. More precisely, in this paper we develop a new approach
based on reflected Langevin SDEs, for which we develop convergence theory and a series of MCMC algorithms.

The remainder of this paper is organised as follows: Section 2 defines notation and introduces the class of problems
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and Bayesian models considered. Section 3 recalls the Langevin SDE, underlines the several issues preventing their
direct application to Bayesian low-photon imaging problems, and presents the proposed Reflected Langevin SDE as
well as its theoretical properties. Following on from this, Section 4 then presents the proposed MCMC samplers and
discusses connections with state of the art MCMC algorithms for models with Gaussian likelihoods [24, 31, 52, 54].
Section 5 demonstrates the proposed approach on a range of challenging experiments related to image deblurring with
Poisson data, denoising with binomial data, and inpainting with geometric data, including comparisons with MAP
estimation by convex optimisation [27] and the SPA sampler [72].

2 Problem Statement

2.1 Observation Models
We consider imaging inverse problems where we aim to estimate an unknown image x ∈ Rn from an observation
y ∈ Rm related to x through a statistical model with likelihood function p(y|x). In the problems we are interested
in, the recovery of x from y is ill-posed or severely ill-conditioned1 and involves non-negativity constraints on x.
The typical scenario is image recovery from Poisson distributed observations in imaging applications when the mean
photon arrival rate is low. In this case, we acquire a set of discrete photon measurements y = [y1, . . . , ym] ∈ Nm0 =
{0, 1, . . .}m related to the ground truth image x through the statistical model

y|x ∼ P(Ax) , (2.1)

where A ∈ Rm×n+ , Rm×n+ = {x ∈ Rm×n : mini xi ≥ 0}, is a linear operator which models the physical properties of
the observation process. A common difficulty in applications is thatAAT is often poorly conditioned or rank deficient.
The respective negative log-likelihood is given by

fP(x) =

m∑
i=1

[
(Ax)i − yi log((Ax)i) + log(yi!) + ιRn++

(x)
]
, (2.2)

where ιRn++
(·) is the indicator function on Rn++ = {x ∈ Rn : mini xi > 0} that requires x to be positive. Because

of the presence of A and the logarithm, the Poisson log-likelihood is not quadratic and often non-separable. Also,
x 7→ ∇fP(x) is not necessarily globally Lipschitz continuous. As a result, the estimation of x from y is highly
challenging.

In some single-photon imaging applications, the Poisson likelihood assumption does not hold and the relation
between the unknown image and the observations is better modeled by binomial or geometric models [5, 39, 58, 68].
For instance, if the detector dead time2 can’t be neglected but can be reset a the end of a given period (referred to as
repetition period here), then the measurements y = [y1, . . . , ym] ∈ Nm0 an be related to the ground image x ∈ Rn by
the statistical model [5, 58, 68]

y|x, t ∼ Bin
(
t, 1− eAx

)
, (2.3)

where Bin(·, ·) stands for the product of independent binomial distributions, t = [t1, . . . , tn] ∈ Nn gathers the
numbers of repetition periods for each detector, and A is again a linear operator. Then negative log-likelihood is thus
given by

fB(x) =

m∑
i=1

[
−yi log(1− e−(Ax)i) + (ti − yi)(Ax)i + ιRn++

(x)
]
. (2.4)

In the first-photon imaging context [39] where the recordings are interrupted for each pixel after the first detection, the
number of repetition periods required to record the first detection event in each pixel follows a geometric distribution
specified (in vector form) by

t|x, y = 1 ∼ Geo
(
1− e−Ax

)
, (2.5)

1The estimation problem is said to be ill-posed or ill-conditioned when it does not admit a unique solution or it admits a solution that is not
stable w.r.t. small perturbations in y.

2A detector’s dead time period corresponds to the period following a photon detection during which additional photons cannot be detected.
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and the negative log-likelihood is given by

fG(x) =

m∑
i=1

[
(ti − 1)(Ax)i − log

(
1− e−(Ax)i

)
+ ιRn++

(x)
]

. (2.6)

Note that in (2.5), the variables treated as observations are in t, while in (2.3), the observations are in y and t is
only a fixed experimental parameter. In extreme photon-starved regimes, the binomial and geometric random noise
processes are highly non-linear, have very poor signal-to-noise properties and involve log-likelihoods that are not
Lipschitz continuous over the non-negative domain. These models differ from the more classical Poisson model but
share similar challenges, which is why we consider them as exemplar observation models in this work (to illustrate
that our general samplers are not likelihood-specific).

2.2 Bayesian inference for imaging applications
The identifiability issues of the aforementioned likelihoods imply that additional information is needed to reduce
the uncertainty about x and deliver accurate well-posed solutions. Within the Bayesian framework, regularization is
introduced via the prior distribution over x, denoted as p(x). This distribution promotes expected properties about x
(e.g. sparsity, piece-wise regularity or smoothness). Inferences are then based on the posterior distribution, given via
Bayes’ theorem [60] by

π(x) , p(x|y) =
p(y|x)p(x)∫

RN p(y|x)p(x)dx
.

In this work, we focus on log-concave models of the form

π(x) =
e
−fy(x)−g(x)−ιRn

++
(x)∫

Rd e
−fy(x)−g(x)−ιRn

++
(x)
dx

, (2.7)

where fy : Rn → R (corresponding to the data log-likelihood) and g : Rn → (−∞,+∞] are two lower bounded
functions and ιRn++

(·) is the indicator function on Rn++ which is convex and guarantees that the positivity constraint is
satisfied. The two functions fy and g satisfy the following conditions:

1. fy is convex and can be expressed as fy(x) = F (Ax) for some F : Rn++ → R which is Lipschitz continuous
on the set {x ∈ Rn++ : xi > b for all i} for any b > 0.

2. g is proper, convex and lower semi-continuous, but potentially non-smooth.

Calculating π exactly is often not feasible in imaging because of dimensionality of x. Instead, summaries such as
Bayesian estimators posterior probabilities or expectations are used to deliver some important information about π. In
particular, for log-concave models as (2.7), recent works often rely on the MAP estimator [53, 55]

x̂MAP = argmaxxπ(x) = argminx{fy(x) + g(x) + ιRn++
(x)} . (2.8)

which can efficiently computed, even in high dimensions, by using proximal convex optimization techniques [16, 20].
For instance, to solve the minimization problem of the form (2.8) under a Poisson likelihood, an ADMM variant was
considered in [27] which does not assume Lipschitz continuity in the gradient while a quadratic approximation of the
Poisson likelihood that turns the original problem into a constrained l2 denoising problem was proposed in [34].

Log-concavity also plays a central role in the calculation of moment-based estimators such as the minimum mean
square error (MMSE) estimator since it guarantees the existence of all posterior moments. It also enables the efficient
calculation of other advanced quantities related to uncertainty quantification, calibration of model parameters, and
model selection in the absence of ground truth [12, 24, 53, 71]. More precisely, to calculate such estimators or
perform more advanced analyses, it is necessary to use high-dimensional MCMC methods to simulate samples from
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the posterior π followed by Monte Carlo integration [32]. In recent years, highly efficient MCMC methods have
been developed to perform Bayesian inference for imaging sciences based on techniques from proximal optimization.
These methods are known as proximal MCMC methods [18, 24, 31, 52, 54, 72] and are useful for Bayesian imaging
since they are easy to implement, have significantly reduced computational time (compared to traditional Gibbs and
Metropolis-Hastings samplers) and offer theoretical convergence guarantees. However, they have been implemented
for Gaussian imaging problems and cannot directly be applied to low-photon imaging problems that involve poor
regularity properties and non-negativity constraints. In this work, we will present how proximal MCMC methods can
be adjusted to tackle the challenging class of models (2.7).

3 Langevin SDEs for sampling
Before presenting the proposed reflected SDE we first recall how to use the Langevin SDE for sampling from distri-
butions of the form

π(x) =
e−U(x)∫

RN e
−U(x)dx

, (3.1)

for some function U : Rn → R with e−U integrable. If π is given by (2.7) then U(x) = fy(x) + g(x) + ιRn++
(x).

Before we discuss the difficulties in such a model, we first consider the case where U is Lipschitz continuously
differentiable on Rn. As is shown in [44] the class of SDEs which target π is given by

dXt = [−(S(Xt) + J(Xt))∇xU(Xt) + Γ(Xt)]dt+
√

2S(Xt)dWt ,

Γi(x) =

n∑
j=1

∂xj (Sij(x) + Jij(x)) ,
(3.2)

for some positive semidefinite diffusion matrix S(x) and skew-symmetric matrix J(x). Here, Wt is a n-dimensional
Brownian motion. We concentrate on the overdamped Langevin SDE which corresponds to taking J = 0 and S(x) =
In, that is

dXt = −∇xU(Xt)dt+
√

2dWt . (3.3)

Another choice which is popular for sampling algorithms is the underdamped Langevin SDE which corresponds to
taking Xt = (qt, pt), U(q, p) = U(q) + |p|2/(2u),

S =

(
0 0
0 γu

)
, J =

(
0 −u
u 0

)
,

for some constants u, γ > 0, that is

dqt = ptdt

dpt = −u∇xU(qt)dt− γptdt+
√

2γudWt .
(3.4)

3.1 Sampling in a domain
In the case where U(x) = fy(x) + g(x) + ιRn+(x) we no longer have that the SDE (3.3) or even the more general
form of SDE (3.2) admits π as an invariant measure. Indeed there are several issues: (i) the function g does not need
to be differentiable, so ∇xg is not well-defined; (ii) π is only positive on a subset of the domain but the SDE (3.3) is
irreducible so any invariant measure of (3.3) admits a positive density on Rn; (iii) the function ∇xf is not Lipschitz
continuous and therefore the SDE may not be well-posed. Let us discuss each of these issues in turn.

∇g is not well defined. Since g is not differentiable, we approximate g by a function gλ which is obtained by
applying the Moreau-Yosida (MY) envelope on g, that is,

gλ(x) = min
y∈Rn
{g(y) +

1

2λ
‖y − x‖2} (3.5)
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where gλ → g as λ → 0. It is shown in [63, Proposition 12.19] that gλ is Lipschitz continuously differentiable with
Lipschitz constant λ−1 and gradient

∇gλ(x) =
1

λ

(
x− proxλg (x)

)
, (3.6)

where
proxλg (x) = argminy∈Rn{g(y) +

1

2λ
‖y − x‖2}.

The use of (3.6) to approximate terms such as the function g is investigated in [24].

Positivity constraint. Since the SDE (3.3) is non-degenerate, if it admits an invariant measure, then this measure
must have a strictly positive density. Therefore we can not use the SDE (3.3) to sample from a measure which is
supported on Rn+. In principle, by taking the matrix S(x) to be degenerate one can construct an SDE which has an
invariant measure supported on the manifold Rn+, however this introduces further complications such as not having
a unique invariant measure (see [13] for a discussion of the invariant measures of degenerate SDEs). Therefore,
we propose to introduce reflections on the boundary of Rn+ and construct a reflected SDE (RSDE) which targets an
invariant measure on Rn+.

∇f not well-defined. The function ∇xfy is not necessarily Lipschitz-continuous and is not necessarily finite on
the boundary of Rn+. Thus, it is not clear that the SDE (3.3) is well-defined on Rn+ (even assuming at this stage
that reflections are included in a suitable manner and that g is replaced by gλ). Even if the SDE was well-defined,
these remain challenging for its numerical approximation since commonly used discrete time approximations need
not be stable in the absence of a Lipschitz condition (see [48]). To address this difficulty, we propose to introduce the
approximation f by defined by f by(x) = F (Ax + b) of fy . Note that by the assumptions of F , the function ∇xf by is
globally Lipschitz continuous. For these reasons, we propose to approximate π by the measure πλ,b which is supported
on Rn+ and defined for x ∈ Rn+ by

πλ,b(x) =
e−U

λ,b(x)∫
Rn+
e−Uλ,b(x̃)dx̃

, Uλ,b(x) = f by(x) + gλ(x). (3.7)

In the following lemma we show that πλ,b is an approximation of π that has interesting asymptotic properties as λ and
b vanish.

Lemma 3.1. Suppose that the conditions of Section 2.2 hold. Let f by and gλ be as above then with πλ,b given by (3.7)
and π defined by (2.7), we have

lim
λ→0,b→0

‖π − πλ,b‖TV = 0.

Proof. The proof is deferred to Appendix A.

3.2 Reflected SDE
In Section 3.1 we discussed the issue of sampling from the distribution π given by (2.7) and introduced an approxima-
tion πλ,b defined on the domain Rn+. In this section we introduce a RSDE which has πλ,b as an invariant distribution
and discuss its properties. In Section 3.3 we verify that this RSDE has the desired invariant distribution and converges
exponentially.

We consider the following RSDE defined on the convex domain Rn+ ⊆ Rn

dXt = −∇xUλ,b(Xt)dt+
√

2dWt + dκt. (3.8)

here Wt is a n-dimensional Brownian motion, κt is local time which only increases on ∂Rn+, Uλ,b : Rn+ → R and
is C2 with ∇xUλ,b being globally Lipschitz continuous. Observe that this RSDE is non-negative as it takes values in
Rn+. We define the semigroup, Pt, corresponding to this RSDE by

Ptϕ(x) = E[ϕ(Xx
t )] for all ϕ ∈ Bb(Rn+), x ∈ Rn+, t ≥ 0.
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For background on semigroups and operators we refer the reader to [26]. We (formally) define the generator corre-
sponding to this semigroup to be

Lϕ(x) = −〈∇xUλ,b(x),∇xϕ(x)〉+ ∆xϕ(x)

for ϕ : Rn+ → R sufficiently smooth. Under the above assumptions it is shown in [70, Theorem 4.1] there is a
(pathwise) unique strong solution to (3.8). We emphasise that the domain does not need to be smooth provided that
it is convex, in particular the domain Rn+ is permitted. Let us expand on what we mean by local time in this context,
κ : [0,∞)→ Rn is a cádlág function with bounded variation, κ0 = 0, the set {t ≥ 0 : Xi

t > 0 for all i} has measure
zero with respect to the measure d|κ| and we can write

κt =

∫ t

0

n̂(s)d|κs|

where the function n̂(s) is a unit normal vector at Xs for almost all s with respect to the measure d|κ|. Since the
domain needs not to be smooth we shall explain what we mean by a normal vector. A normal vector n̂ at x is any unit
vector which is orthogonal to some supporting hyperplane H of Rn+. A supporting hyperplane of Rn+ is a hyperplane
such that Rn+ is contained in one of the two closed half-spaces bounded by H and Rn+ has at least one boundary point
on the hyperplane. In this setting, the set of (inward) normal vectors at 0 is the set

{n̂ = (n̂1, . . . , n̂n) : |n̂| = 1, ni ≥ 0 for all i}.

If the set Rn+ had a smooth boundary and the coefficients are suitably smooth (see [28] for example), it is well known
that the semigroup Ptϕ corresponding to Xt solves a Neumann boundary value problem. As the case we are inter-
ested in has a non-smooth boundary for n > 1 more care is required. This domain is investigated in [22] under the
assumption that the drift coefficient ∇xUλ,b ∈ C1(Rn+) is globally Lipschitz, and it is shown that the semigroup
Ptϕ ∈ C1(Rn+) for ϕ ∈ Cb(Rn+) and satisfies the Neumann boundary conditions ∂xiPtϕ(x) = 0 whenever xi = 0.
Therefore the semigroup ut(x) = Ptϕ solves the Neumann boundary value problem:

∂tut(x) = Lut(x), x ∈ Rn+,
∂ut
∂xi

(x) = 0, for any x ∈ Rn+ with xi = 0,

u0(x) = ϕ(x), x ∈ Rn+.

(3.9)

In Proposition A.1 (see Appendix A) we apply the results of [22] to describe the smoothness of the semigroup,
indeed for any ϕ ∈ Cb(Rn+) we have that Ptϕ ∈ C1(Rn+) and by ellipticity we have Ptϕ ∈ C∞(Rn++).

3.3 Exponential Ergodicity of RSDEs
In order to show exponential ergocidity we shall apply [50, Theorem 6.1]. Before giving the details of this theorem
we provide an informal summary of the main assumption, the existence of a Lyapunov function. For our purposes, a
Lyapunov function is a function V : Rn+ → R+ which is positive, C2, V (x) → ∞ as x → ∞ and satisfies for some
C1 > 0, C2 ∈ R

LV ≤ −C1V + C2 (3.10)
∂V

∂xi
(x) = 0 whenever xi = 0, for some i ∈ {1, . . . , n}. (3.11)

The first condition (3.10) is a sufficient condition to have that PtV is bounded in t hence that the process is non-
explosive and can not spend too much time in the tails. The second condition (3.11) ensures that the boundary
condition arising from the non-negativity constraint is satisfied. This condition can be viewed as a necessary condition
to have that V is in the domain D(L) of the generator. However as V is unbounded it is not clear that V belongs
to the domain of the generator, indeed we do not even have that PtV is well-defined at this stage. For this reason
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we introduce a sequence of operators L` defined on functions from some bounded set O` to R. We construct such
functions by considering the process Xt∧T ` where T ` is the first exit time of O`, i.e. the process is equal to Xt up
until the first exit time of O` and then remains constant. Set L` to the generator of this process. Since O` is bounded
we have that V ∈ Cb(O`) and that V belongs to the domain of L`. We now give the more precise statement of this
assumption, which is phrased in terms of the extended generator. We assume there is a sequence of open (as a subset
of Rn+) and bounded sets O` such that O` ⊆ O`+1 for all ` ≥ 1 and

⋃∞
`=1O` = Rn+. Let T ` be the first exit time of

O` and set L` to be the extended generator of the process {Xx
t∧T `}t≥0, that is a function ϕ : Rn+ × R+ → R is in the

domain of L` if there exists a function ψ : Rn+ × R+ → R such that for each x ∈ Rn+, t > 0

E[ϕ(Xx
t∧T ` , t)] = ϕ(x, 0) + E

[∫ t

0

ψ(Xx
s∧T ` , s)ds

]
, E

[∫ t

0

|ψ(Xx
s∧T ` , s)|ds

]
<∞,

and we write L`ϕ = ψ. In our setting we can set O` = [0, `)n and the domain of L` contains all C2 functions with
∂xif(x) = 0 whenever xi = 0 by Itô’s formula. Now we shall state the conditions we require to apply [50, Theorem
6.1] which is [50, (CD3)] restated in our notation.

Hypothesis 3.2. There exists a function V : Rn+ → R+ which is positive, measureable, V (x) → ∞ as x → ∞ and
for some C1 > 0, C2 <∞

L`V (x) ≤ −C1V (x) + C2, x ∈ O`. (3.12)

Theorem 3.3. ([50, Theorem 6.1]) Suppose that Xt is a right process, and that all compact sets are petite (see [50]
for definitions). If Hypothesis 3.2 holds, then Xx

t admits a unique invariant measure π and there exists β < 1 and
B <∞ such that

sup
|ϕ|≤1+V

|Ptϕ(x)− π(ϕ)| ≤ B(1 + V (x))βt, t ≥ 0, x ∈ Rn+.

We can now apply this theorem for the RSDE (3.8).

Theorem 3.4. Let Pt be the semigroup corresponding to the RSDE (3.8). Assume that ∇xUλ,b is continuously
differentiable and globally Lipschitz. Suppose that Uλ,b is convex and e−U

λ,b(x) is integrable over Rn+ then Xx
t

admits a unique invariant measure π and there exist V : Rn+ → [0,∞), β < 1 and B <∞ such that

sup
|ϕ|≤1+V (x)

|Ptϕ(x)− π(ϕ)| ≤ B(1 + V (x))βt, t ≥ 0, x ∈ Rn+.

Moreover, the invariant measure π is given by (3.7) for any x ∈ Rn+.

Proof. The proof is deferred to Appendix A.

Remark 3.5. Since all the models considered in Section 2.1 correspond to convex negative log-likelihoods, by impos-
ing a log concave prior which is integrable we have that the assumptions of Theorem 3.4 are satisfied and hence the
corresponding RSDE is exponentially ergodic in each of these cases. Note that the proof of the above theorem does
not explicitly require that Uλ,b is convex but only that there exist α > 0 and R > 0 such that for |x| ≥ R,

〈x,∇Uλ,b(x)〉 ≥ α|x|. (3.13)

It is shown in [7, Lemma 2.2] that any convex C1-function Uλ,b which is integrable must satisfy (3.13), however as
(3.13) only needs to hold outside a compact set it is clear that there are also non-convex functions Uλ,b for which
Theorem 3.4 holds.

3.4 Discrete time approximations of RSDEs
In Section 3.2 we introduced an RSDE which is exponentially ergodic and has the measure π as an invariant distri-
bution however this leads to the question of how do we approximate this process. In this section we discuss different
approaches to approximate the local time term in the RSDE. There are three approximations we will discuss: (i)
Penalty scheme; (ii) Projection scheme; (iii) Reflection scheme. Note there are more complicated schemes such as
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the half-plane approximation (see [30] for details) however, as this is more expensive and leads to the same order of
accuracy as the reflection scheme, we do not consider it.

The penalty scheme replaces the local time term in (3.8) by βε(Xt)dt where βε(x) = (x+ − x)/ε and x+ is the
vector whose i-component is max(xi, 0). Then for each fixed ε we have an SDE defined on the whole space Rn. An
alternative way to view this scheme is to consider the measure π given by (2.7) and apply the proximal operator to the
indicator function ιRn++

in the same way as we approximate g. This results in a measure πλ,b,ε supported on Rn which
can then be viewed as the invariant measure of the Langevin SDE

dXt = −∇xf b(Xt)dt−∇xgλ(Xt)dt+ βε(Xt)dt+
√

2dWt.

This SDE can then be approximated by standard numerical schemes for SDEs such as the Euler-Maruyama scheme.
In order to have a scheme which converges to the RSDE as the time step tends to zero we need to let ε be a function of
the time step h. A potential issue with this approach is that it allows for Xt to be negative which can lead to numerical
instabilities. For a further discussion about the convergence of this scheme in terms of mean square error, the reader is
invited to consult [56].

In contrast to the penalty scheme, the projection scheme ensures that the samples are always in Rn+ by applying a
projection at the end of each step. This scheme is defined by

Ytk+1
= X̄tk −∇xU(Xtk)h+

√
2hξk,

X̄i
tk+1

= (Y itk+1
)+ for all i ∈ {1, . . . , n}.

Here πγD(x) = πγ∂D(x) + (F (x))+γ(πγ∂D(x)), tk = kh, and ξk are i.i.d random variables with mean zero, covariance
given by the identity matrix and finite third moments. It has been shown in [21] that the weak error converges with
order h

1
2−ε for any ε > 0 and moreover that the rate h

1
2 is a lower bound for reflecting Brownian motion in an interval.

In the case where ξk is bounded, the weak error converges with order h
1
2 [21, Theorem 3.4].

The reflected Euler scheme is similar to the projected Euler scheme but the process is in the interior of the domain
with probability one, i.e. X̄i

tk
6= 0 for any i, k with probability 1. This scheme is defined by

Ytk+1
= X̄tk −∇xUλ,b(Xtk)h+

√
2hξk,

X̄tk+1
= |Ytk+1

| for all i ∈ {1, . . . , n}.

Here |·| is understood to be applied componentwise, i.e. for x ∈ Rn we define the vector |x| by (|x|)i = |xi|. It is
shown in [10, Theorem 1] that this scheme has weak error with order h, comparing favourably with the projection
scheme.

From the options that we have discussed above, we choose to adopt the reflected scheme as a way of incorporating
the non-negativity constraint without increasing the computational complexity of the methods or introducing signifi-
cant additional bias. The resulting proximal Markov chain Monte Carlo algorithms are presented in Section 4. From
an algorithmic viewpoint, these MCMC algorithms are closely related to their non-reflected counterparts, with the only
minor change being the careful introduction of a component-wise absolute-value operation. However, from a Bayesian
computation methodology perspective, this minor change has the profound effect of allowing us to approximate the
reflected SDE, which we have shown to be well-posed and to converge exponentially fast to the desired target density.

3.5 Related work
Let us mention some related works on the use of RSDEs for sampling. In the case of a smooth bounded domain,
convergence of RSDEs to their invariant distribution and numerical approximations as studied in [14, 43]. In both
of these papers the invariant distribution is unknown (as they work with general RSDEs) but can be shown to exist
and be unique since the domain is bounded and the noise is non-degenerate. Convergence of the numerical scheme
is then investigated by using suitable expansions and PDE estimates. In the case of convex bounded domains the
papers [11, 41] establishes exponential convergence of the RSDE to the invariant distribution and convergence of the
projected Euler scheme. Reflected Langevin dynamics have also been used in the context of optimisation, see [67],
in the case of a bounded smooth domain. Finally we mention that reflections can also be used with Hamiltonian
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dynamics [15, 23], although we note here that a Metropolis-Hastings step has been included to ensure the algorithm
has the desired invariant distribution. Since all of these algorithms are for bounded domains they are not applicable to
our setting and extra care is required as the domain is not smooth.

4 Reflected MCMC methods
In general, it is not possible to solve (3.8), and discrete approximations of the overdamped and underdamped Langevin
dynamics (Section 3) need to be considered instead. In this Section, numerical schemes will be described that aim
to solve (3.8) in a high dimensional setting. These schemes are inspired by the Reflected Euler scheme provided
in Section 3.4 and adjust current proximal MCMC methodology [18, 24, 42, 54] that has proven to be scalable and
efficient under Gaussian noise but cannot guarantee that the non-negative constraint is satisfied under Poisson, binomial
or geometric noise processes.

4.1 Reflected MYULA (PMALA)
In the absence of the non-negativity constraint requirement, a simple way to discretize the SDE in (3.3) is to follow
the Euler-Maruyama (EM) scheme leading to the known Unadjusted Langevin Algorithm (ULA) [62]. Under a non-
differentiable U = − log π, the authors in [52] approximated the non-smooth term g of U by its MY envelope gλ given
in (3.5). By using (3.6), ULA could be applied on (3.3) leading to the known Moreau-Yosida Unadjusted Langevin
Algorithm (MYULA). Taking into consideration the non-negativity constraint requirement, we propose a reflected
version of MYULA, namely Reflected MYULA (R-MYULA), where each sample is simply reflected by taking its
absolute value (see Section 3.4 ). The algorithm is presented in (1). If necessary, the asymptotic bias introduced
by the discretization of the RSDE in (3.8) and the approximation πλ,β of π can be corrected by complementing the
R-MYULA with a Metropolis-Hastings (MH) step [24, 52, 62] leading to the Reflected Proximal Metropolis Adjusted
Langevin Algorithm (R-PMALA).

A main computational drawback of R-MYULA and R-PMALA is the fact that in order to converge one needs to
choose δ ≤ 1/L where L = Lfby + 1/λ is the Lipschitz constant of ∇ log πλ,b and Lfby is the Lipschitz constant of
f by constituting a function of b. The parameters λ and b define a trade-off between the computational efficiency and
accuracy since letting λ → 0 and b → 0 brings πλ,b close to π, which reduces the asymptotic bias, but leads the
discretization time-step to be diminished and consequently reduces the chain efficiency [24]. Thus, in cases where the
likelihood is very informative (Lfby is large) or a high level of accuracy in the approximated gλ is required, the stepsize
will be small leading to a highly correlated Markov chain and an MCMC method that explores very slowly the target
distribution πλ,b.

Algorithm 1 Reflected MYULA

Set X0 ∈ Rn++, b > 0, λ > 0, δ ∈ (0, λ/(λLfby + 1)], N ∈ N
for k = 0 : (N − 1) do
Zk+1 ∼ N (0, In)

Yk+1 =
(
1− δ

λ

)
Xk − δ∇f by(Xk) + δ

λproxλg (Xk) +
√

2δZk+1 (MYULA)
Xk+1 = |Yk+1|

end for
return {Xk : k ∈ {1, . . . , N}}

4.2 Reflected SKROCK
The authors in [54] dealt with the step-size limitation of MYULA by applying a more sophisticated discretization
scheme to simulate the Langevin SDE (3.3) based on explicit stabilized Runge-Kutta integrators [1, 2]. This scheme is
known as the stochastic second kind orthogonal Runge-Kutta Chebyshev (SKROCK) method, and allows for acceler-
ated and efficient sampling from the posterior distribution [2, 54]. Under the non-negativity requirement, we propose
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Algorithm 2 Reflected SKROCK

Set X0 ∈ Rn++, b > 0, λ > 0, N ∈ N, s ∈ {3, . . . , 15}, η > 0
Compute ls = (s− 0.5)2(2− 4/3η)− 1.5

Compute ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′s(ω0)
, µ1 =

ω1

ω0
, ν1 = sω1/2, k1 = sω1/ω0

Choose δ ∈ (0, δmaxs ], where δmaxs = ls/(Lfby + 1/λ)

for k = 0 : (N − 1) do
Zk+1 ∼ N (0, In)

K0 = Xk

W1 = Xk + ν1
√

2δZk+1

Y1 = Xk − µ1δ∇f by(W1)− µ1δ
λ (W1 − proxλg (W1)) + k1

√
2δZk+1

K1 = |Y1|
for j = 2 : s do

Compute µj =
2ω1Tj−1(ω0)

Tj(ω0)
, νj =

2ω0Tj−1(ω0)

Tj(ω0)
, kj = −Tj−2(ω0)

Tj(ω0)
= 1− νj

Yj = −µjδ∇f by(Kj−1)− µjδ
λ (Kj−1 − proxλg (Kj−1)) + νjKj−1 + kjKj−2

Kj = |Yj |
end for
Xk+1 = Ks

end for
return {Xk : k ∈ {1, . . . , N}}

Algorithm 3 Reflected MYUULA

Set X0 ∈ Rn++, V0 ∈ Rn, b > 0, λ > 0, γ > 0, u = λ/(λLfby + 1), δ = O(1), N ∈ N

Set Σ =

(
u
(
δ − 1

γ2 e
−2γδ − 3

γ2 + e−γδ
)
In u

γ (1 + e−2γδ − 2e−2γδ)In
u
γ (1 + e−2γδ − 2e−2γδ)In u(1− e−2γδ)In

)
for k = 0 : (N − 1) do

(Z1
k+1, Z

2
k+1) ∼ N (0,Σ)

Vk+1 = Vke
−γδ − u

γ
(1− e−γδ)(−∇f by(Xk)− 1

λ (Xk − proxλg (Xk)))

Yk+1 = Xk +
1

γ
(1− e−γδ)Vk −

u

γ

(
δ − 1

γ
(1− e−γδ)

)
(−∇f by(Xk)− 1

λ (Xk − proxλg (Xk)))

Xk+1 = |Yk+1|
end for
return {Xk : k ∈ {1, . . . , N}}

the Reflected SKROCK (R-SKROCK) algorithm by applying reflection after every gradient evaluation. The algorithm
is presented in (2).

4.3 Reflected MYUULA
In a similar manner with MYULA, the authors in [31] used a MY smoothed approximation Uλ of a non-differentiable
U = − log π to solve the underdamped dynamics in (3.4). Literature regarding formulations of Langevin-based
algorithms to integrate (3.4) can be found, for instance, in [18, 49, 66]. In this work, we present a reflected version of
the the well-known Euler exponential integrator [18, 36] to solve (3.4). The algorithm is presented in (3).
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4.4 Implementation guidelines
We now discuss suitable ranges and recommended values for the parameters of Algorithm 1, Algorithm 2 and Algo-
rithm 3. Our recommendations seek to provide general rules that are simple and robust, rather than optimal values for
specific models.

Setting λ and b

Similarly to [24], we recommend to set λ ∈ [L−1
fby
, 10L−1

fby
] and use λ = L−1

fby
in our numerical experiments (larger

values of λ lead to faster convergence at the cost of additional bias). Our experiments suggest that the value of b is
more critical in terms of controlling bias than λ. We recommend setting b to be 1% of the expected Mean Intensity
Value (MIV) of x (i.e., ||x||1/n), which provides a good trade-off of efficiency and accuracy.

Setting δ, γ, u, s, and η

The convergence theory for MYULA [24] requires setting δ ∈ (0, δmax) with δmax = 1/(Lfby + 1/λ] (the value
δmax is derived from bounding the Lipschitz constant of ∇f by + (x − proxλg (x))/λ). In our experiments, given the
dimensionality involved, and because we did not observe significant bias, we choose δ = δmax to improve convergence
speed. Regarding R-MYUULA, following the spirit of [18, 66], we set δ = 2, u = 1/(Lfby + 1/λ), and γ = 2.
For R-SKROCK, similarly to [54], we recommend setting δ ∈ (0, δmaxs ], where δmaxs = ls/(Lfby + 1/λ), ls =

(s − 0.5)2(2 − 4/3η) − 1.5 and s ∈ {3, . . . , 15}; we use δ = δmaxs with s = 10 and η = 0.05 in our experiments.

Lastly, to maximise the asymptotic computational efficiency of R-PMALA we set δ to achieve an acceptance rate close
to 57% within the range of admissible values for geometric ergodicity (0, δmax) with δmax = 1/(Lfby + 1/λ] [57].

5 Numerical Experiments
In this section, the MCMC methods proposed in Section 4 are demonstrated through a range of experiments related to
Poisson image deconvolution, binomial denoising and geometric image inpainting These experiments were selected
to represent a variety of challenging configurations in terms of ill-posedness, ill-conditioning and dimensionality of
y and x. We report results for R-MYULA, R-SKROCK, R-MYUULA and R-PMALA and comparisons with MAP
estimation by using the ADMM algorithm PIDAL [27]. Because PIDAL was originally designed to work with Poisson
likelihoods, in the binomial and geometric experiments we make minor changes to PIDAL so that it performs MAP
inference w.r.t. to the correct model. Moreover, in the Poisson deconvolution experiment, we also report a comparison
with the state-of-the-art Gibbs sampler SPA [72], which was successfully applied to total-variation Poisson image
deblurring in [72] (SPA combines MYULA with an augmentation-relaxation strategy to improve convergence speed,
at the expense of more bias).

To make the comparisons fair, and without loss of generality, we conduct all our experiments by using the same
total-variation prior that is considered in PIDAL and SPA. This prior is given by p(x|θ) ∝ exp{−θTV (x)}, where
TV (·) denotes the isotropic total-variation pseudo-norm, and θ > 0 is a regularisation parameter. We automatically
estimate θ from y for each experiment by marginal maximum likelihood estimation by using [71, Algorithm 1].
Furthermore, for fairness, all methods are run with the same computing time budget. In particular, we generate 106

samples for the R-MYULA and R-MYUULA, 106/s samples with s = 10 for the R-SKROCK, 6.5 × 105 samples
for the R-PMALA (there is an additional computational overhead associated with the Metropolis-Hastings (MH) step
[52]), and 6.8× 105 for SPA. In all cases, we use a 5% burn-in period. Also, to check the asymptotic bias introduced
by the approximation πλ,b of π, the discretization and the reflection, for each experiment we also run a long R-
PMALA chain targetting π. In all cases, we observed a very good agreement between the unadjusted methods and the
R-PMALA reference, indicating that the asymptotic bias is indeed very small.

The Monte Carlo samples produced by the MCMC methods are then used to compute the following quantities:
1) the posterior mean E(x|y), which is the minimum mean square error (MMSE) Bayesian estimator of x|y; 2)
uncertainty visualisation plots presenting the marginal standard deviation of pixels at different resolutions [12]; and 3)
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the sample autocorrelation function (ACF) of the fastest and slowest mixing components of the Markov chain (these
correspond to the one-dimensional subspaces where the Markov chain achieves the highest and slowest convergence
rates, corresponding to the subspaces with lowest and highest variance respectively3). For completeness, the ACF
for a pixel with typical variance is also included in the plots (we use the median). Lastly, as a way of illustrating
convergence speed, for each experiment we also plot the evolution of the estimated normalized root MSE (NRMSE)
for the posterior mean estimate, as a function of the number of gradient evaluations.

(a) True image x (b) Observation y (5.8 dB) (c) R-MYULA (20.4 dB) (d) R-SKROCK (20.5 dB)

(e) R-MYUULA (20.4 dB) (f)R-PMALA (20.5 dB) (g) SPA (20.4 dB) (h) MAP (19.2 dB)

Figure 1: Poisson experiment: (a) True image x of size 256 × 256; (b) Blurred observation y; (c)-(f) MMSE estimators; (h)
MAP estimator.

5.1 Non-blind Poisson image deconvolution
In this experiment, we consider the estimation of a high-resolution image x ∈ Rn from a blurred observation y ∼
P(Ax), where the blur operator is known. We chose A to be nearly singular leading to an ill-conditioned problem
with highly noise-sensitive solutions. The posterior distribution is given by

π , p(x|y) ∝ exp(−fP(x)− θTV (x)) . (5.1)

where we recall that fP(·) is the Poisson negative log-likelihood defined in (2.2).
Figure 1a presents the ground truth cameraman image x of size n = 256 × 256 pixels, whose intensities we

scaled for this experiment so that its MIV is 1 (recall that in the Poisson model the noise power is directly determined
by the intensities of the image x, so in order to test different signal-to-noise ratios it is necessary to scale the ground
truth image). Figure 1b shows a realization y with peak signal-to-noise ratio (PSNR) ∼ 5.8 dB generated by the
observation model (2.1) with A being a 5 × 5 uniform blur. For this experiment, the maximum marginal likelihood
estimate of θ is θ̂ = 5.65. All the methods are implemented by using this value, and by following the recommendations
of Section 4.4. For R-PMALA, achieving the optimal acceptance probability of 57% is not possible in this experiment

3To identify the directions with smallest and largest uncertainty, someone would need to compute the posterior covariance matrix, an infeasible
task in high dimensions. Instead, approximations of the posterior covariance are used by assuming that the latter is diagonalizable on the same basis
as the forward operator A.
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as the maximum admissible value δmax = 1/(Lfby + 1/λ) leads to an acceptance probability of 85% (we use this
value of δ for our experiments). Regarding SPA [72], we test a large range of values in a supervised manner and find
that (ρ, α) = (0.035, 0.035) provide a competitive trade-off between asymptotic accuracy and convergence speed.

Figure 1 presents also the MMSE estimates given by the proposed methods and the MAP estimate calculated by
PIDAL. The MMSE estimates are visually similar with an apparent staircase effect while the MAP estimate returns
an oversmoothed reconstruction. It should be noted that this oversmoothed result is related to the particular choice of
θ. A value for θ that improves the MAP estimate can be found (e.g. through cross-validation) but this would require
knowledge of the true image (the MMSE restults can also be marginally improved by tailoring θ in this way). The
PSNR values of each method are also reported in Figure 1. The MMSE estimates have almost identical PSNR values
and outperform the MAP estimate in this case.

(a) (b) (c)

Figure 2: Evaluation of NRMSE for (a) the Poisson deblurring experiment (b) the binomial denoising experiment and (c) the
geometric inpainting experiment. The number of gradient evaluations are presented in log-scale (base 10).

Figure 2a presents the evolution of the NRMSE estimation for the MMSE solutions as a function of the number of
gradient evaluations (in log-scale). We observe that R-SKROCK has the highest convergence speed followed by SPA
whose NRMSE increases for a small number of iterations. This is due to a transient regime of the auxiliary variables
introduced in SPA. It can also be observed that R-MYULA and R-MYUULA have similar convergence speed, and
R-PMALA has slightly slower convergence speed due to its Metropolised nature.

In Figure 3, we present uncertainty visualization plots that are useful to quantify the uncertainty related to image
structures at different spatial scales. Specifically, for different scales j, we downsample (by averaging) the stored
samples by a factor of 2j before computing the standard deviation. The estimates of the pixel-wise standard deviations
(j = 0) obtained by each algorithm are presented in the first column of Figure 3. It is observed that the estimates
obtained by R-MYULA, R-PMALA and R-MYUULA are less accurate of the respective one obtained by R-SKROCK
in agreement with the experiments under Gaussian noise in [54]. High uncertainty is concentrated around the edges
of the cameraman which is expected from the particular choice of prior. Some uncertainty also exists within the
background of the scene, since the likelihood is highly uninformative for these pixel regions and the prior does not
carry any information to recover important details (e.g. the buildings). Note that because of the Poisson likelihood
and the positivity constraints, the uncertainties appear larger in the background (higher average intensity) than on
the coat of the cameraman (lower average intensity). However, the relative uncertainties (i.e., when dividing by the
pixelwise true intensities) would be higher in dark than bright pixels. For larger structures of pixels (j 6= 0), the
highest uncertainty is observed at the background of the cameraman’s image, since there both the likelihood and the
prior are the most weak.

To conclude this experiment, the sample ACFs are computed for the slowest and the fastest directions in the
Fourier domain4. In Figure 4, we see that independence is reached in approximately 20 iterations (after thinning)
in the median and fastest directions, and it is much slower for the few very uncertain coefficients. In addition, the
superiority of R-SKROCK and SPA in sense of convergence properties can be observed along all directions. The ACF

4The slowest (fastest) direction corresponds to the Fourier coefficient with the highest (lowest) variance.
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(a) R-MYULA: standard deviation (log-scaled) at different scales.

(b) R-SKROCK: standard deviation (log-scaled) at different scales.

(c) R-MYUULA: standard deviation (log-scaled) at different scales.

(d) R-PMALA: standard deviation (log-scaled) at different scales.

Figure 3: Marginal posterior standard deviation for the Poisson deblurring problem at different scales (0,2,4,8 from left to right).
The scale i corresponds to a downsampling by a factor 2i of the original sample size. Most of the uncertainty is located around the
edges and the cameraman’s background.

Poisson deblurring cases MMSE MAP
NRMSE PSNR NRMSE PSNR

MIV = 1, g.e. = 1× 106 0.1612 20.53 dB 0.1873 19.25 dB
MIV = 10, g.e. = 2× 106 0.1143 23.54 dB 0.1186 23.22 dB
MIV = 100, g.e. = 5× 106 0.088 25.74 dB 0.089 25.72 dB

Table 1: Comparison of MMSE and MAP estimator for different Poisson deblurring cases. After a large number of gradient
evaluations (g.e.), the algorithms exhibit identical performance.

of the R-SKROCK samples along the slowest direction decay the fastest among all the methods.
Finally, Table 1 reports comparisons between the MMSE estimation and the MAP estimation under less severe

Poisson noise (i.e. higher MIV for the target image). We run the MCMC algorithms enough time so the calculated
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(a) Fastest direction (b) Median direction (c) Slowest direction

Figure 4: ACF for the fastest, median, and slowest direction for the Poisson deblurring problem. The ACF is shown for lags up to
100 for all images in the Fourier domain.

MMSE estimates of each method have identical performance. It is observed that the MMSE estimate outperforms the
MAP estimate, particularly in cases where the likelihood is uninformative (i.e. low MIV).

(a) True image x (b) Observation y (17.25 dB) (c) R-MYULA (23.8 dB) (d) R-SKROCK (23.9 dB)

(e) R-MYUULA (23.8 dB) (f)R-PMALA (23.8 dB) (g) MAP (23.2 dB)

Figure 5: Binomial experiment: (a) True image x; (b) Observation y; (c)-(f) MMSE estimators; (g) MAP estimator.

5.2 Binomial denoising
We consider now a binomial denoising problem, where we seek to estimate a high-resolution image x ∈ Rn from a
realization y ∼ Bin(t, 1− e−x). The posterior distribution is given by

π , p(x|y) ∝ exp(−fB(x)− θTV (x)) , (5.2)
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where fB(·) is the binomial negative log-likelihood in (2.4).
Figure 5b presents a binomial realization y of the cameraman image generated by using the observation model
(2.3) with A = I , ti = 10 ∀i = 1, . . . , n and the MIV of x equal to 1 (recall that in the binomial model the noise
power is directly determined by the intensities of the image x and the repetition periods t). For this experiment, the
maximum marginal likelihood estimate of θ is θ̂ = 6.4. All the methods are implemented by using this value, and
by following the recommendations of Section 4.4. For R-PMALA, we achieved an acceptance rate of 83% by setting
δ = δmax = 1/(Lby + 1/λ).

Figure 5 also presents the MMSE estimates given by the proposed methods and the MAP estimate calculated by
adjusting PIDAL for binomial likelihoods. The MMSE estimates are visually similar with an apparent staircase effect
while the MAP estimate returns an oversmoothed reconstruction. The PSNR values of each method are reported in
the respective captions in Figure 5. The MMSE estimates have almost identical PSNR values which are higher than

(a) R-MYULA: standard deviation (log-scaled) at different scales.

(b) R-SKROCK: standard deviation (log-scaled) at different scales.

(c) R-MYUULA: standard deviation (log-scaled) at different scales.

(d) R-PMALA: standard deviation (log-scaled) at different scales.

Figure 6: Marginal posterior standard deviation for the binomial denoising problem at different scales (0,2,4,8 from left to right).
The scale i corresponds to a downsampling by a factor 2i of the original sample size. Most of the uncertainty is located around the
edges and the cameraman’s background.
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the respective one of the MAP estimate.
Figure 2b presents the evolution of the NRMSE estimation for the MMSE solutions as a function of the number

of gradient evaluations (in log-scale). We observe that R-SKROCK has the highest convergence speed, R-MYULA
and R-MYUULA have similar convergence speed, and R-PMALA has the slowest convergence among the proposed
methods.

The estimates of the pixel-wise standard deviations (j = 0) are presented in the first column of Figure 6. It
is observed that the estimates obtained by R-MYULA, R-PMALA and R-MYUULA are slightly more noisy than
respective one obtained by R-SKROCK. High uncertainty is concentrated around the edges (e.g. cameraman figure
and buildings) and some uncertainty also exists in homogeneous regions, since the likelihood is quite uninformative
for these pixel regions. For larger structures of pixels (j 6= 0), the highest uncertainty is spotted at the background
part of the cameraman’s image. see Figure 6. R-SKROCK returns a smooth estimate of the posterior variance while
R-PMALA returns a slightly noiser estimate since its Metropolised nature leads to higher estimation variance [12, 24].

(a) Fastest component (b) Median component (c) Slowest component

Figure 7: ACF for the fastest, median, and slowest components for the binomial denoising problem. The ACF is shown for lags up
to 100 for all images in the pixel domain.

Finally, in Figure 7, we see that independence is reached fast for the components of low or median uncertainty, and
is much slower for the few very uncertain pixels. The superiority of R-SKROCK in sense of convergence properties
compared with the other methods can also be observed. Particularly, the ACF of the R-SKROCK samples along the
slowest component decay the fastest among the ones given by R-MYULA, R-MYUULA, and R-PMALA.

Table 2 reports NRMSE and PSNR comparisons between the MMSE estimation and the MAP estimation for
different cases of binomial noise. We run the MCMC algorithms enough time so the calculated MMSE estimates of
each method have identical performance. It is observed that the MMSE estimator outperforms the MAP estimator in
cases where the likelihood is quite uninformative (low MIV or low number of repetition periods t) while the MAP
estimator is more competitive under more informative likelihoods.

Binomial denoising cases MMSE MAP
NRMSE PSNR NRMSE PSNR

MIV = 1 , t=10 , g.e.= 5× 106 0.1092 23.94 dB 0.1189 23.20 dB
MIV = 1 , t=100 , g.e.= 5× 106 0.0592 29.25 dB 0.0573 29.54 dB
MIV = 0.1 , t=100 , g.e.= 3× 106 0.0946 25.19 dB 0.099 24.76 dB
MIV = 0.1 , t=1000 , g.e.= 5× 106 0.0496 30.79 dB 0.045 31.66 dB

Table 2: Comparison of MMSE and MAP estimator for different binomial denoising cases. After a large number of gradient
evaluations (g.e.), the algorithms exhibit identical performance.

5.3 Geometric Inpainting
We consider now a very challenging inpainting problem, where we seek to estimate a high-resolution image x ∈ Rn
from a set of geometric measurements t ∼ Geo(1 − e−Ax), where A is a m × n matrix containing m ≤ n randomly
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selected rows of the n× n identity matrix. The posterior distribution is given by

π , p(x|t) ∝ exp(−fG(x)− θTV (x)) , (5.3)

where fG(·) is the geometric log-likelihood in (2.5).

(a) True image x (b) Observation log(AT t+ 1) (c) R-MYULA (19.6 dB) (d) R-SKROCK (19.6 dB)

(e) R-MYUULA (19.6 dB) (f)R-PMALA (13.3 dB) (g) MAP (17.6 dB)

Figure 8: Geometric experiment: (a) True image x; (b) Observation AT t is displayed as log(AT t+1) for visualization purposes;
(c)-(f) MMSE estimators as computed by the different MCMC algorithms; (g) MAP estimator.

Figure 8 presents a (backprojected) realization of x generated by using the model (2.5) with A being a masking
operator with 30% mixing pixels and the MIV of x being 10−2. For this experiment, the maximum marginal likelihood
estimate of θ is θ̂ = 632. All the methods are implemented by using this value, and by following the recommendations
of Section 4.4. Regarding R-PMALA, it struggled to reach stationarity up to the available computational time because
of the extremely uninformative likelihood. It required to take a very small step size (δ << δmax) to reach an acceptable
acceptance rate of 57%.

Figure 8 presents the MMSE estimates given by the proposed methods and the MAP estimate calculated by the
adjusted PIDAL for geometric likelihoods. The MMSE estimates given by R-MYULA, R-SKROCK, R-MYUULA
are visually similar with an apparent staircase effect while the MAP estimate returns an oversmoothed reconstruction.
Since R-PMALA failed to properly converge in the available computing budget, it returned a noisy reconstruction.
The PSNR values of each method are reported in the respective captions in Figure 8. The comparison between MMSE
and MAP estimation is more significant in this challenging experiment. Specifically, the PSNR values given by the
MMSE estimates of R-MYULA, R-SKROCK, R-MYUULA are significantly higher than the PSNR value of the MAP
estimator.

Figure 2c presents the evolution of the NRMSE estimation for the MMSE solutions as a function of the number
of gradient evaluations (in log-scale). It can be observed that R-SKROCK has again the highest convergence speed,
R-MYULA and R-MYUULA have similar convergence speed, and R-PMALA is by far the slowest algorithm.

The estimates of the pixel-wise standard deviations (j = 0) are presented in the first column of Figure 9. It is
observed that the estimates obtained by R-MYULA and R-MYUULA are slightly less accurate of the SKROCK esti-
mate. High uncertainty is concentrated around the edges (e.g. cameraman figure ) and the cameraman’s background,
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(a) R-MYULA: standard deviation (log-scaled) at different scales.

(b) R-SKROCK: standard deviation (log-scaled) at different scales.

(c) R-MYUULA: standard deviation (log-scaled) at different scales.

Figure 9: Marginal posterior standard deviation for the geometric inpainting problem at different scales (0,2,4,8 from left to right).
The scale i corresponds to a downsampling by a factor 2i of the original sample size. Most of the uncertainty is located at places
where the likelihood is highly uninformative e.g. at the cameraman’s background.

since the likelihood is highly uninformative for these pixel regions. For higher scales (j 6= 0), the highest uncertainty
is spotted at the background part of the cameraman’s image as expected.

To conclude this experiment, in Figure 10 we see that independence is reached fast for the components of low
or median uncertainty, and is much slower for the few very uncertain pixels. Similarly to the previous experiments,
R-SKROCK has better convergence properties compared with the other methods, see the decay of the ACF samples
along the median and slowest components.

6 Conclusion
This work presented a new MCMC methodology based on a reflected and regularised Langevin SDE, specialised for
performing Bayesian computation in low-photon imaging inverse problems involving a non-negativity constraint on
the solution space. This reflected SDE is shown to be well-posed, have the desired invariant distribution, and to be
exponentially ergodic under mild and easily verifiable conditions. This allowed deriving three unadjusted Langevin
MCMC algorithms to perform Bayesian computation, as well as a Metropolised Langevin algorithm. The proposed
approach was demonstrated with a range of experiments involving binomial, geometric, and low-intensity Poisson
noise processes. In these experiments, we compared the computational accuracy and efficiency of the proposed MCMC
algorithms, and illustrated their use for point estimation as well as uncertainty visualisation analyses. Moreover, we
observed that in all the experiments with weakly informative data, the MMSE estimator computed by MCMC sampling
outperformed MAP estimation (by convex optimization [27]) in terms of accuracy. The methods also compared
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(a) Fastest component (b) Median component (c) Slowest component

Figure 10: ACF for the fastest, median, and slowest components for the geometric inpainting problem. The ACF is shown for lags
up to 100 for all images in the pixel domain.

favourably against the state-of-the-art SPA proximal MCMC algorithm in the context of Poisson image deblurring
[72]. Future works will include a more detailed theoretical analysis of the proposed methodology and algorithms (e.g.
non-asymptotic convergence rates [24]), as well as new variants suitable for data-driven priors such as plug-and-play
priors encoded by image denoising neural networks [42] and priors encoded by generative neural network models [38].

A Proof of exponential ergodicity
Proof of Lemma 3.1. Observe that f by(x), gλ(x) both converge pointwise to fy(x), g(x) respectively as (λ, b) →
(0, 0). For f by this follows since F is continuous and for gλ this follows from [24, Equation (10)]. Moreover from [24]
we have gλ ≤ g and f by is lower bounded by assumption. Therefore by the dominated convergence theorem we have∫
e−f

b
y−g

λ

dx→
∫
e−fy−gdx as (λ, b)→ (0, 0). Then by Scheffé’s Lemma, see [73, (5.10)], we have

lim
λ→0,b→0

∫
Rd+
|π(x)− πλ,b(x)|dx = 0.

That is, πλ,b converges to π in total variation.

Proposition A.1. Let Pt be the semigroup corresponding to the SDE (3.8). Assume that ∇xUλ,b is continuously
differentiable and globally Lipschitz with constant L ≥ 0. Then for all ϕ ∈ Cb(Rn+) we have Ptϕ ∈ C1

b (Rn+) for all
t > 0 and moreover there exists C > 0 such that for all t > 0 and ϕ ∈ Cb(Rn+) we have

‖∇xPtϕ‖∞ ≤
CeLtn√

t
‖ϕ‖∞.

Proof of Proposition A.1. Fix ϕ ∈ Cb(Rn+) then by [22] we have that Ptϕ ∈ C1(Rn+) and we have the following
representation by [22, Theorem 2]

∂

∂xj
Ptϕ(x) =

1√
2t

d∑
i=1

E
[

E0,j

[
ϕ(Xx

t )

∫ t

0

1ξs=i1τ>sρ0,sdW
i
s

]]
. (A.1)

Here E0,j is the expectation of the process ξs for with ξ0 = j, and ξs is a continuous time Markov chain on {1, . . . , d}
with generator

Lϕ(i) =

d∑
k=1

|ct(i, k)|[ϕ(k)− ϕ(i))], ct(i, k) =
∂2Uλ,b

∂xi∂xj
(Xx

t ).
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Let η` be the sequence of jump moments of ξ, i.e. η`+1 = inf{s > η` : ξs 6= ξη`}. Let τ be the stopping time

τ = inf{s > 0 : Xx,ξs
s = 0}.

With this notation we can define ρ0,s as

ρ0,s = exp

∫ s

0

∑
k 6=ξr

|cr(ξr, k)|dr +

∫ s

0

cr(ξr, ξr)dr

 ∏
0<ηk≤s

sign(cηk(ξηk−1,ξηk
)).

Since ∇xUλ,b(x) is globally Lipschitz we have that ct(i, k) is bounded in (t, i, k), i.e. there exists L > 0 such that
ct(i, k) ≤ L which gives the following bound on ρ0,s:

|ρ0,s| ≤ esLn.

Using this bound in (A.1) we have∣∣∣∣ ∂∂xj Ptϕ(x)

∣∣∣∣ ≤ etLn

t
‖ϕ‖∞

d∑
i=1

E
[
|W i

s |
]

=

√
2

π

etLnn√
t
‖f‖∞.

As a consequence of the above smoothing result we show that every compact set is small.

Definition A.2. A set C ⊆ Rn+ is called a small set if there exist t > 0 a probability measure ν with ν(C) = 1 and
positive constant η > 0 such that

Pt1E(x) ≥ ην(E) for all x ∈ C,E ⊆ Rn+ measureable.

Proposition A.3. Let Pt be the semigroup corresponding to the SDE (3.8). Assume that ∇xUλ,b is continuously
differentiable and globally Lipschitz. Then every compact set K ⊆ Rn+ is small.

Proof of Proposition A.3. First we show using a Girsanov transformation that the law of Xx
t is equivalent to the law

of a reflected Brownian motion and hence admits a positive density on Rn+ with respect to Lebesgue measure. Define
the exponential martingale

Zt = exp

(
1√
2

∫ t

0

∇Uλ,b(Xs)dWs −
1

4

∫ t

0

∇xUλ,b(Xs)
2ds

)
we observe that this is a true martingale by Novikov’s condition which is satisfied since ∇xUλ,b(Xx

s ) is bounded.
Then by Girsanov’s theorem

W̃t = Wt −
1√
2

∫ t

0

∇Uλ,b(Xs)ds

is a Brownian motion under Q where
dQ
dP

= Zt. Therefore under Q we have

Xt = x−
∫ t

0

∇Uλ,b(Xs)ds+
√

2Wt + Lt = x+
√

2W̃t + Lt

is a reflected Brownian motion. By [35, Lemma 7.9] we have for any measurable E ⊆ RN+ and x ∈ RN+ that
Q(Xx

t ∈ E) = 0 if and only if E has zero Lebesgue measure. Hence P(Xx
t ∈ E) = 0 if and only if E has zero

Lebesgue measure since P is equivalent to Q. In particular we have that the law of Xx
t admits a density pt(·;x) with

respect to Lebesgue measure on Rn+ and the density is strictly positive.
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Fix a compact set K ⊆ Rn+ and t > 0. Define the measure ν by

ν(E) =
infx∈K P(Xx

t ∈ E ∩K)

infx∈K P(Xx
t ∈ K)

, for any measurable E ⊆ Rn+,

it remains to show that ν is a probability measure, i.e. that infx∈K P(Xx
t ∈ K) > 0. Since the law of Xx

t admits
a strictly positive density we know that P(Xx

t ∈ K) > 0 for each x ∈ K. If we have that x 7→ P(Xx
t ∈ K) is

continuous then since K is compact, P(Xx
t ∈ K) attains its minimum value and that value must be positive, i.e.

infx∈K P(Xx
t ∈ K) > 0. It remains to show x 7→ P(Xx

t ∈ K) is continuous. Let ϕ(x) = 1K(x) and approximate
this function by the sequence {ϕk}k≥0 where

ϕk(x) = max

(
1− 1

k
d(x,K), 0

)
and d(x,K) denotes the distance between x and the set K. Note that ϕk ∈ Cb(Rn+), ‖ϕk‖∞ ≤ 1 = ‖ϕ‖∞ and
ϕk(x) → ϕ(x) as k → ∞ for each x ∈ Rn+. By the dominated convergence theorem Ptϕk(x) → Ptϕ(x) for each
x ∈ Rn+, t > 0. On the other hand by Proposition A.1 the derivative of Ptϕk is bounded uniformly in k and x and in
particular, for fixed t > 0 the sequence {Ptϕk} is uniformly bounded and equicontinuous therefore by Arzelá–Ascoli
Theorem there exists some ψ ∈ Cb(Rn+) such that Ptϕk converges locally uniformly to ψ. Since Ptϕk converges
pointwise to Ptϕ we have that ψ = Ptϕ and hence Ptϕ ∈ Cb(Rn+).

Before we prove Theorem 3.4 we need the following elementary lemma from [7, Lemma 2.2]. Note that although
this Lemma is proved for functions on the whole space Rn the proof still holds when restricted to the space Rn+.

Lemma A.4. If Uλ,b is differentiable, convex and
∫
Rn+
e−U

λ,b(x)dx <∞ then there exist α > 0 and R > 0 such that

for |x| ≥ R, (3.13) holds.

Proof of Theorem 3.4. By Proposition A.3 we have that every compact set is small and hence is petite (by [51, Propo-
sition 5.5.3]) therefore to verify the conditions of Theorem 3.3 it remains to find a function V (x) which satisfies
Hypothesis 3.2. Set

V (x) = exp
(
γ(1 + ‖x‖2)

1
2

)
.

Note that
∂xiV (x) =

γixi

(1 + ‖x‖2)
1
2

V (x)

In particular, we see that ∂xiV (x) = 0 if xi = 0 and hence V is in the domain of the extended generator L` for each
`. It remains to show that V (x) satisfies (3.12). For any x ∈ O` we have

L`V (x)

V (x)
= − γ

(1 + ‖x‖2)
1
2

〈∇xU(x), x〉+
γn

(1 + ‖x‖2)
1
2

+
γ2‖x‖2

1 + ‖x‖2
. (A.2)

For |x| ≥ R, using Lemma A.4 we have

L`V (x)

V (x)
≤ − γ

(1 + ‖x‖2)
1
2

α‖x‖+
γn

(1 + ‖x‖2)
1
2

+
γ2‖x‖2

1 + ‖x‖2
.

Since z/
√

1 + z2 is increasing for z > 0 we can use that ‖x‖ ≥ R to obtain the bound

LmV (x)

V (x)
≤ γ

(
γ − α R

(1 +R2)
1
2

)
+

γn

(1 +R2)
1
2

. (A.3)

Set γ = α/4 and let R be sufficiently large that γn

(1+R2)
1
2
≤ α/4, R/(1 + R2)

1
2 ≥ 3/4 and that γn

(1+R2)
1
2
≤ α2/16

then we have
L`V (x)

V (x)
≤ − 1

16
α2.
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Therefore Hypothesis 3.2 is satisfied and by Theorem 3.3 we have that Xx
t is exponentially ergodic.

In order to show that π is given by (3.7) it is sufficient to show that for some core C of the domain of L we have∫
Rn+
Lϕ(x)e−U

λ,b(x)dx = 0 for all ϕ ∈ C.

Here we are viewing L as the infinitesimal generator of the semigroup Pt in the space C0(Rn+) (i.e. the set of
continuous functions vanishing at infinity endowed with the supremum norm). Let

C = {ϕ ∈ C∞((0,∞)n) ∩ C1
b (Rn+) : Lϕ ∈ C0(Rn+), ∂xiϕ(x) = 0 if xi = 0}.

That is C is the set of functions which are infinitely differentiable in the interior of Rn+, are C1 up to the boundary, is
bounded with bounded first order derivative, the generator applied to ϕ belongs to C0(Rn+) and satisfies the boundary
conditions of the PDE (3.9). Since Pt preserves the set C, and C is contained within the domain of L and is dense in
C0(Rn+) we have that C is a core of L by [26, Proposition 3.3]. Fix f ∈ C then by integration by parts∫

Rn+
Lϕ(x)e−U

λ,b(x)dx =

n∑
i=1

∫
Rn+

(
∂xiU

λ,b(x)∂xiϕ(x) + ∂2xiϕ(x)
)
e−U

λ,b(x)dx

=

n∑
i=1

∫
Rn+

[−∂xiUλ,b(x)∂xiϕ(x) + ∂xiU
λ,b(x)∂xiϕ(x)]e−U

λ,b(x)dx

+
[
∂xiϕ(x)e−U

λ,b(x)
] ∣∣
xi=0

= 0.
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