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Abstract. For a regular polyhedron (or polygon) centered at the origin, the coordinates of the
vertices are eigenvectors of the graph Laplacian for the skeleton of that polyhedron (or polygon)
associated with the first (non-trivial) eigenvalue. In this paper, we generalize this relationship. For
a given graph, we study the eigenvalue optimization problem of maximizing the first (non-trivial)
eigenvalue of the graph Laplacian over non-negative edge weights. We show that the spectral
realization of the graph using the eigenvectors corresponding to the solution of this problem, under
certain assumptions, is a centered, unit-distance graph realization that has maximal total variance.
This result gives a new method for generating unit-distance graph realizations and is based on
convex duality. A drawback of this method is that the dimension of the realization is given by the
multiplicity of the extremal eigenvalue, which is typically unknown prior to solving the eigenvalue
optimization problem. Our results are illustrated with a number of examples.

1. Introduction

There is a beautiful observation attributed to C. D. Godsil that the coordinates of the vertices
of some polytopes are the eigenvectors of the adjacency matrix for the skeleton of that polytope
[God78]. For regular polygons and polyhedra that are centered at the origin, this connection is not
difficult to see geometrically as, by symmetry, averaging the neighboring vertices N(i) ⊂ V of a
given vertex i ∈ V gives a vector that is collinear with the vertex, i.e., there exists α ∈ R such that∑

j∈N(i)

xj = αxi, i ∈ V.

See fig. 1(a) for an illustration. This connection was established for platonic solids and some other
regular polytopes in [Pow88; LP03]. This observation can be used to motivate the use of “spectral
embeddings” in data analysis, where a graph is “embedded” in d-dimensional Euclidean space using
the first d (non-trivial) eigenvectors of the adjacency matrix or another matrix associated with the
graph, such as the graph Laplacian.

In this paper, we extend this result by investigating the relationship between graph realizations
and the eigenvectors for certain weighted graph Laplacians.

Graph realizations. Let G = (V,E) be a connected, undirected graph with n = |V | vertices and
m = |E| edges. We enumerate the vertices and edges and, when convenient, identify V = [n] :=
{1, . . . , n} and E = [m]. For fixed d ∈ N, a d-dimensional graph realization1 of G is a mapping
x : V → Rd with coordinate matrix X = [x(1) | x(2) | · · · | x(n)]t ∈ Rn×d. A graph realization
is centered if Xt1 = 0. A d-dimensional graph realization is unit-distance if ‖x(i) − x(j)‖ = 1
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1Note that a graph realization is not a topological embedding as it might not be injective. See fig. 1(c).
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(a) (b) (c) (d)

Figure 1. (a) For any vertex of a regular polygon or polyhedron, averaging the
adjacent vertices gives a collinear vector. (b) Two centered unit-distance realizations
of the 6-cycle graph. The regular hexagon is the solution to (1). (c) A two point
graph realization of a bipartite graph. (d) A tetrahedron is a 3-dimensional unit-
distance graph realization of the 4-vertex complete graph.

for every (i, j) ∈ E. Some examples of unit-distance graph realizations are given in fig. 1. Let

B = [b1 | b2 | · · · | bm]t ∈ Rm×n be an associated (arc-vertex) incidence matrix, given by

Bk,i =


1 i = head(k)

−1 i = tail(k)

0 otherwise

,

where the orientation of the edges are arbitrarily chosen. This unit-distance condition for a graph
realization can be equivalently expressed in terms of the coordinate and incidence matrices by

‖Xtbk‖ = 1, ∀k ∈ E.

Note that for a graph G, depending on the dimension d, there may:

(i) not exist a centered unit-distance graph realization (e.g., d = 1 and the complete graph on
3 vertices),

(ii) exist a unique (up to rotation) centered unit-distance graph realization (e.g., d ≥ 1 and the
complete graph on d+ 1 vertices; see fig. 1(d)), or

(iii) there may exist a family of unit-distance graph realizations (e.g., d = 2 and a centered
polygon with ≥ 4 vertices and unit-edge lengths; see fig. 1(b).)

In case (iii) above, when the unit-distance graph realization is not unique, we may consider
the realization with maximal total variance, ‖X‖2F =

∑
i∈V ‖x(i)‖2. Thus, for fixed graph G and

dimension d, we consider the nonlinear optimization problem of finding the centered unit-distance
graph realization with maximum total variance,

max
X∈Rn×d

‖X‖2F(1a)

s.t. ‖Xtbk‖2 = φk, ∀k ∈ E(1b)

Xt1 = 0.(1c)

Here, we have slightly generalized the problem by introducing a vector φ ∈ Rm+ := {φ ∈ Rm : φi ≥
0, ∀i ∈ [m]} which specifies the squared edge-lengths; φ = 1 in the case that we seek a unit-distance
graph. In fig. 2, we plot a variety of graph realizations corresponding to solutions of (1) with φ = 1.
We’ll explain how we computed these solutions momentarily.

To accommodate case (i) above, when there does not exist a realization satisfying the edge-length
constraint, it will be convenient to relax the constraint and also consider the optimization problem
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Figure 2. Maximal spectral realizations solving (2) for a variety of graphs: square
lattice graph, triangular lattice graph, hexagonal lattice graph, tetrahedral graph,
cube graph, dodecahedral graph, icosahedral graph, octahedral graph, buckyball
graph, truncated tetrahedron graph, truncated cube graph, and circular ladder
graph. All plots have been scaled so that the largest magnitude vertex has magni-
tude 1. See section 3.1 for more details.
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max
X∈Rn×d

‖X‖2F(2a)

s.t. ‖Xtbk‖2 ≤ φk, ∀k ∈ E(2b)

Xt1 = 0.(2c)

Note that the constraint set for (2) is non-empty for any graph G and choice of dimension d. For a
given graph G and φ ∈ Rm+ , we say that the solution X? ∈ Rn×d to (2) is a maximal d-dimensional
realization of G or maximal graph realization when the dimension and graph are understood.

The weighted graph Laplacian and spectral graph realizations. Let us recall that a popular
method for constructing a graph realization is to use eigenvectors of a matrix corresponding to
the graph, such as the (weighted) graph Laplacian. Given an incidence matrix, B, for a graph
G = (V,E), the graph Laplacian is ∆1 = BtB ∈ Sn+ := {A ∈ Rn×n : A = At}2. For weights
w ∈ Rm+ , the w-weighted graph Laplacian, is given by

(3) ∆w = Btdiag(w)B ∈ Sn+.

Spectral properties of ∆w have been well-studied [Moh91; Chu96; BLS07]. We enumerate the
eigenvalues of ∆w in increasing order, 0 = λ1(∆w) ≤ λ2(∆w) ≤ · · · ≤ λn(∆w). Denote the
corresponding normalized eigenvectors by {ui}i∈[n] (arbitrarily choosing vectors from the eigenspace
in the case of eigenvalue multiplicity ≥ 2) and note that u1 is a constant vector. A d-dimensional
w-spectral graph realization of G is given by the rows of the coordinate matrix

X = [u2 | · · · | ud+1] ∈ Rn×d.

This spectral graph realization (or a variant thereof) is the first step in spectral clustering [Lux07]
and is also commonly used for network visualization [Tra+09].

In this paper, we consider how the w-spectral graph realization of G depends on the choice of
weights w ∈ Rm+ . In particular, for a fixed graph G = (V,E) and φ ∈ Rm+ , we consider the eigenvalue
optimization problem

max
w∈Rm

λ2(∆w)(4a)

s.t. ∆wui = λiui, ∀i ∈ [n](4b)

w ≥ 0, wtφ = 1.(4c)

This problem is (i.e., can be formulated as) a convex optimization problem [GB06b; GB06a;
OBO14]. Our goal is to investigate whether the w?-spectral graph realization, where the weight,
w? is the solution to (4), might have special properties.

Results. We first show that the optimization problem in (2) is well-posed.

Theorem 1.1. The optimization problem in (2) is well-posed; there exists an admissible X? that
attains the supremum value of the objective over the constraint set. Furthermore, if w ∈ Rm+ satisfies
wtφ = 1,

(5) ‖X?‖2F ≤
1

λ2(∆w)
.

2The graph Laplacian we consider here is referred to as the unnormalized graph Laplacian. It can also be written
∆1 = D−A, where A is the vertex adjacency matrix and D = diag(d) is the diagonal matrix with the degrees d = A1
on the diagonal.
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A proof of theorem 1.1 will be given in section 2. We will see that the inequality in (5) is a weak
duality result for (2) and (4). Our main result is that the solution to (4) can be used to generate
a maximal graph realization.

Theorem 1.2. Suppose w? ≥ 0 solves (4) and the maximum eigenvalue λ? has a d-dimensional
eigenspace Eλ?. Then there exist orthogonal eigenvectors x` ∈ Eλ?, ` ∈ [d] such that the d-
dimensional graph realization x : V → Rd with coordinate matrix X = (x1| · · · |xd) ∈ Rn×d is a maxi-
mal graph realization solving (2). In particular, the graph realization is centered, i.e.,

∑
i∈[n] x`(i) =

0, ∀` ∈ [d] and satisfies the edge-length constraints, i.e., ‖x(i) − x(j)‖2 = φk, ∀ k = (i, j) ∈ E.
Moreover, if w? > 0, then X ∈ Rn×d is a solution to (1).

A proof of theorem 1.2 will be given in section 2 and depends on the duality between (2) and
(4). The graphs in fig. 2 were generated using theorem 1.2; see section 3. However, there are
a couple of practical limitations of theorem 1.2 relevant to its use the application of generating
a unit-distance graph realization. For a given graph, before solving (4), we do not know (i) the
dimension d = dimEλ? of the spectral graph realization or (ii) if the assumption that w? > 0 holds.
In section 3, we will give examples of when the dimension of the graph realization is greater than
3 and when the assumption w? > 0 fails.

A useful consequence of the strong duality used in the proof of theorem 1.2 is the following
corollary.

Corollary 1.3. Suppose X ∈ Rn×d and w ∈ Rm satisfy the following conditions:

Xt1 = 0, ‖Xtbk‖2 ≤ φk, ∀k ∈ E(6a)

w ≥ 0, wtφ = 1, d = dimEλ2(∆w)(6b)

‖X‖2F =
1

λ2(∆w)
.(6c)

Then X and w are respective solutions of (2) and (4).

Note that (6c) is the saturation of the inequality (5). The following example shows how corol-
lary 1.3 can be used to establish a maximal graph realization for a cycle graph.

Example 1.4. A centered, regular n-gon with unit edge lengths satisfies

‖X‖2F =
∑
i∈[n]

(
1

2
csc
(π
n

))2

=
n

4
csc2

(π
n

)
.

The skeleton of the n-gon, an n-cycle, with edge weights 1
n satisfies

λ2(∆w) =
1

n
λ2(∆1) =

4

n
sin2

(π
n

)
.

The corresponding eigenspace is d = 2 dimensional. Since ‖X‖2F = 1
λ2(∆w) , by corollary 1.3, we

have that the maximal graph realization of the n-cycle is a centered, regular n-gon.

A partial converse to theorem 1.2 can be established. We show that, under certain assumptions,
the coordinate vectors of a maximal graph realization are eigenvectors of a w-weighted graph
Laplacian corresponding to the same eigenvalue for some choice of graph weights w ∈ Rm+ . The
main hurdle is that the dimension d for (2) is unknown. To state our result, we require the following
definition.

Definition 1.5. For a realization of graph G, we say the coordinate matrix X ∈ Rn×d is regular if
there does not exist a weight w ∈ Rm \ {0} such that ∆wX = 0.
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Note that in the definition of a regular coordinate matrix, we do not restrict the weights to be
nonnegative. We also note that the equation ∆wX = 0 specifies nd linear conditions on m variables,
so a regular coordinate matrix for graph with n vertices and m edges s in Rd must satisfy m ≤ nd.

Theorem 1.6. For any regular solution X? ∈ Rn×d of (2), there exists w ≥ 0 such that

∆wX
? = X?,

i.e., the columns of X? are eigenvectors of the w-weighted graph Laplacian corresponding to eigen-
value 1. Moreover, if for some k ∈ E, we have that ‖(X?)tbk‖2 < φk, then wk = 0.

A proof of theorem 1.6 will be given in section 2.

We can also consider the problem of minimizing λmax(∆w) over the edge weights, w.

Theorem 1.7. Suppose w? ≥ 0 solves

min
w∈Rm

λn(∆w)(7a)

s.t. ∆wui = λiui, ∀i ∈ [n](7b)

w ≥ 0, wtφ = 1.(7c)

and the minimum eigenvalue λ? has a d-dimensional eigenspace Eλ?. Then there exist orthogonal
eigenvectors x` ∈ Eλ?, ` ∈ [d] such that the d-dimensional graph realization x : V → Rd with
coordinate matrix X = [x1 | · · · | xd] ∈ Rn×d is a minimal graph realization solving

min
X∈Rn×d

‖X‖2F(8a)

s.t. ‖Xtbk‖2 ≥ φk, ∀k ∈ E(8b)

Xt1 = 0.(8c)

Moreover, if w? > 0, then X ∈ Rn×d satisfies ‖Xtbk‖2 = φk, ∀k ∈ E.

The proof of theorem 1.7 is similar to the proof of theorem 1.2 and will be omitted. In section 3,
we give several examples to illustrate theorem 1.7. Analogous to corollary 1.3, the following corollary
is a consequence of the strong duality used in the proof of theorem 1.7.

Corollary 1.8. Suppose X ∈ Rn×d and w ∈ Rm satisfy the following conditions:

Xt1 = 0, ‖Xtbk‖2 ≥ φk, ∀k ∈ E(9a)

w ≥ 0, wtφ = 1, d = dimEλ2(∆w)(9b)

‖X‖2F =
1

λn(∆w)
.(9c)

Then X and w are respective solutions of (8) and (7).

The following example shows how corollary 1.8 can be used to establish a minimal graph real-
ization for a semi-regular bipartite graph.

Example 1.9. Let G be a (d+, d−)-semi-regular bipartite graph with bipartition V = V+ ∪ V−.
Recall that a bipartite graph with bipartition V = V+ ∪ V− is (d+, d−)-semi-regular if all vertices
in V+ have degree d+ and all vertices in V− have degree d−. We claim the the minimal graph
realization solving (8) with φ = 1 is given by

(10) x(i) =

{
c+ 1

2 , i ∈ V+

c− 1
2 , i ∈ V−

,

6



where c = − |V+|−|V−|
2(|V+|+|V−|) . First observe that the graph realization in (10) is centered:

∑
i∈[n]

x(i) = |V+|
(
c+

1

2

)
+ |V−|

(
c− 1

2

)
= 0.

We then compute

‖X‖2F =
∑
i∈[n]

x(i)2 =
|V+||V−|
|V+|+ |V−|

.

For a (d+, d−) semi-regular graph and wk = 1
m , ∀k ∈ [m], we have λn(∆w) = 1

mλn(∆1) =
1
m (d+ + d−); see [AM85] or [Moh91, Thm. 2.2(b)]. Using that d+|V+| = d−|V−| = m, we obtain

λn(∆w) =
|V+|+ |V−|
|V+||V−|

=
1

‖X‖2F
.

The corresponding eigenspace is d = 1 dimensional. By corollary 1.8, the two point realization in
(10) is a minimal graph realization.

1.1. Related work. The second eigenvalue of the graph Laplacian is referred to as the algebraic
connectivity and is related to the other notions of graph connectivity [Fie73]. The problem (4) of
maximizing the algebraic connectivity as a function of the edge weights has been considered in a
variety of previous papers; see, for example, [GB06b; GB06a; OBO14]. However, the optimality
conditions have not previously been interpreted in terms of edge-length constrained spectral re-
alizations. In [OM17], the authors consider maximizing spectral quantities of a weighted graph
Laplacian, where the edge weights depend on the distance between adjacent vertices in a graph
realization. Here, we take the edge weights to vary independently of the coordinates of the graph
realization.

There are deep connections between the symmetry properties of a graph (automorphism group)
and the eigendecomposition of the graph Laplacian [Ter82; DKT16].

Our primary motivation is from recent results in spectral geometry. In particular, A. Frasier and
R. Schoen recently showed that the solution of an extremal Steklov eigenvalue problem on a closed
surface with boundary can be used to generate a free boundary minimal surface (FBMS) [FS15].

Using this connection, the author together with É. Oudet and C.Y. Kao computed many FBMS
[OKO21]. Analogously, R. Petrides showed that the solution of an extremal Laplace-Beltrami eigen-
value problem generates a minimal isometric immersion into some d-sphere by first eigenfunctions
[Pet14]. The problem considered in this paper can be considered as a graph version of these results.

Outline. In section 2, we prove theorem 1.1, theorem 1.2, and theorem 1.6. We give several
numerical examples in section 3. We conclude in section 4 with a brief discussion.

2. Proofs of Theorems 1.1, 1.2, and 1.6.

Proof of Theorem 1.1. For X ∈ Rn×d satisfying the constraints in (2), and w ∈ Rm+ satisfying
wtφ = 1, we compute

1 =
∑
k∈[m]

wkφk =
∑
k∈[m]

wkb
t
kXX

tbk = tr

∑
k∈[m]

wkbkb
t
k

XXt

 = tr
(
Xt∆wX

)
≥ λ2(∆w)‖X‖2F

which gives (5). The result then follows from the Bolzano–Weierstrass theorem. �
7



Proof of Theorem 1.2. It is equivalent to write (4) as the convex semidefinite program (SDP)

max
t,w

t(11a)

s.t ∆w � tJ(11b)

w ≥ 0, φtw = 1.(11c)

Here, J ∈ Sn+ is the rank n− 1 project matrix given by J = I − 11t/n.
Our proof relies on the Lagrange dual formulation of (11). For the dual variables Y ∈ Sn+ and

µ ∈ R, we consider the Lagrangian

L(w, t;Y, µ) := t− 〈tJ −∆w, Y 〉F − µ(φtw − 1)

= µ+ t (1− 〈J, Y 〉F ) +
∑
k∈[m]

wk(b
t
kY bk − µφk).

For fixed Y ∈ Sn+ and µ ∈ R, the dual function is defined

g(Y, µ) := max
w≥0,t

L(w, t;Y, µ)

=

{
µ, 〈J, Y 〉F = 1, btkY bk ≤ µφk
∞, otherwise

.

The dual problem can then be written

min
Y ∈Sn+,µ

µ(12a)

s.t. 〈J, Y 〉F = 1(12b)

btkY bk ≤ µφk, ∀k ∈ [m].(12c)

Note that replacing Y by Y + α11t for any α > 0 in (12) does not change the objective value and
still satisfies all constraints. Thus, we may augment (12) with the additional constraint,

(12d) 1tY 1 = 〈11t, Y 〉F = 0

The semi-definite optimization problem in (11) is a convex. Furthermore, the following argument
shows that Slater’s condition (see, e.g., [BV04, Section 5.2.3]) is satisfied. Define ŵ ∈ Rm+ by

ŵk = 1
φt1 , k ∈ [m] so that ŵtφ = 1. Define t̂ = 1

2
1
φt1λ2(∆1) and note that the connectivity

assumption on G guarantees that t̂ > 0. We then compute

∆ŵ =
1

φt1
∆1 �

1

φt1
λ2(∆1)J � t̂J,

which shows that ŵ, t̂ satisfy Slater’s condition for the constraints in (11).
The primal and dual convex optimization problems ((11) and (12)) then satisfy strong duality,

i.e., denoting their optimal values with the superscript ?, we have that t? = µ?. It is also necessary
and sufficient that the Karush-Kuhn-Tucker (KKT) conditions be satisfied by the optimal solution.
The KKT conditions can be stated: there exist primal variables w? ∈ Rm, t? ∈ R and dual variables
Y ? ∈ Sn+, µ? ∈ R, satisfying

∆w? ≥ t?J, w? ≥ 0, φtw? = 1(13a)

Y ? ∈ Sn+, 〈J, Y ?〉F = 1, 1tY 1 = 0, btkY
?bk ≤ µ?φk, ∀k ∈ [m](13b)

wk
(
btkY bk − µφk

)
= 0, ∀k ∈ [m].(13c)

Here, we’ve grouped the conditions as primal feasible (13a), dual feasible (13b), and complimentary
slackness (13c).
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For a solution to the KKT conditions, we have

t? = t?〈J, Y ?〉F ≤ 〈∆w? , Y ?〉F =
∑
k∈[m]

w?kb
t
kY

?bk = µ?
∑
k

w?kφk = µ?.(14)

By strong duality, t? = µ? = λ?2, which implies that

(15) 〈∆w? , Y ?〉F = λ?2.

Noting that 1 is an eigenvector of Y ? with eigenvalue 0, we can write the eigenvalue decomposition
Y ? =

∑
i∈[n−1] βivi ⊗ vi with ‖vi‖ = 1 and vi ⊥ 1. We have

λ?2 = 〈∆w? , Y ?〉F =
∑

i∈[n−1]

βi〈vi,∆w?vi〉 ≥
∑

i∈[n−1]

βiλ
?
2‖vi‖2 = λ?2,

which implies that either βi = 0 or vi ∈ Eλ? . Let d = dimEλ?2 . Relabelling if necessary, we have
that

Y ? =
∑
i∈[d]

βivi ⊗ vi, βi ≥ 0, vi ∈ Eλ? , ∀i ∈ [d].

This implies that Y ? has rank at most d < n. Making the substitution

Y = µXXt, X ∈ Rn×d

in (12), it follows that (12) is equivalent to the optimization problem

min
µ∈R,X∈Rn×d

µ(16a)

s.t. µ‖X‖2F = 1(16b)

‖Xtbk‖2 ≤ φk, ∀k ∈ [m](16c)

Xt1 = 0.(16d)

Here,

X =
1√
µ?

[√
β1v1| · · · |

√
βdvd

]
∈ Rn×d

is a coordinate matrix for a centered realization of the graph. Eliminating µ by setting µ = 1
‖X‖F ,

this can be equivalently rewritten as (2). If w? > 0, then by the complimentary slackness condition
(13c), it is a unit-distance realization. In this case, the solution to (2) is also a solution to (1), since
the latter constraint set is smaller. �

Proof of Theorem 1.6. We first observe that the condition that the realization be centered is nec-
essary. For any w > 0, taking the inner product of both sides of ∆wu` = u` with the ones vector
gives that

〈1, u`〉 = 〈1,∆wu`〉 = 〈∆w1, u`〉 = 0, ∀` ∈ [d].

We will consider the Karush-Kuhn-Tucker (KKT) conditions for (2), which are necessarily sat-
isfied for a stationary point satisfying constraint qualifications. We use the constraint qualification
that the gradients with respect to the active inequality constraints and equality constraints are
linearly independent. Writing ‖Xtbk‖2 = tr(bkb

t
kXX

t), we compute

(17) ∇X‖Xtbk‖2 = 2bkb
t
kX, ∀k ∈ [m].

Writing X = [x1 | · · · | xd] ∈ Rn×d and Xt1n =
[
xt11n | · · · | xtd1n

]t
, we compute

(18) ∇Xxt`1n = 1ne
t
`, ∀` ∈ [d].
9



Note that the gradients in (17) and (18) are linearly independent since btk1n = 0. The condition that
the gradients in (17) are linearly independent can be stated: there does not exist a w ∈ Rm \ {0}
such that ∑

k∈[m]

wkbkb
t
kX = 0n×d.

Since ∆w =
∑

k∈[m]wkbkb
t
k, this is precisely the regularity of X (definition 1.5).

For dual variables z ∈ Rd and w ∈ Rm+ , we introduce the Lagrangian,

L(X; z, w) := ‖X‖2F + ztXt1−
∑
k∈[m]

wk
(
‖Xtbk‖2 − φk

)
(19a)

= tr(XtX) + tr(1ztXt)−
(
tr(∆wXX

t)− wtφ
)
.(19b)

The KKT conditions are that there exist z ∈ Rd and w ∈ Rm+ such that

∇XL(X; z, w) = 2X + 1zt − 2∆wX = 0(20a)

wk
(
‖Xtbk‖2 − φk

)
= 0.(20b)

Multiplying both sides of (20a) on the left by 1 ∈ Rn gives z = 0, yielding ∆wX = X. The
complementary slackness condition (20b) gives the final statement of the theorem. �

3. Numerical Examples

Since (11) is a convex optimization problem, it can easily be solved using CVXPY [DB16]. To
represent the graphs, we use the networkx library [22]. Our implementation is available at the
author’s github page [Ost22]. We report here the result of several small-scale numerical experiments
to illustrate our ideas. All experiments were performed in a small number of seconds on a laptop
with a 1.6GHz Intel Core i5 processor and 8GB of RAM.

3.1. Some two- and three-dimensional graph realizations. By example 1.4, a maximal graph
realization for a n-cycle graph is the centered regular n-gon. We computationally verified this for
several values of n.

We considered several other graphs, including the a square lattice graph, a triangular lattice
graph, a hexagonal lattice graph, a tetrahedral graph, a cube graph, a dodecahedral graph, an
icosahedral graph, an octahedral graph, a buckyball graph, a truncated tetrahedron graph, a trun-
cated cube graph, and a circular ladder graph. For each of these graphs, we solved the eigenvalue
optimization problem (4) with φ = 1, which gave a solution with w? > 0. By theorem 1.2, there
exist orthogonal eigenvectors so that the spectral graph realization is a solution to (1). The re-
sulting unit-distance graph realizations are plotted in fig. 2. The edge colors represent the edge
weights, w?. Interestingly, while the square and triangular lattices have the regular embedding,
the hexagonal one does not. The Platonic polyhedron graphs all have edges with equal weight, as
expected. In the buckyball embedding, the edges adjacent to only hexagons and edges adjacent
to both hexagons and pentagons have different weights. For the truncated tetrahedron and cube
graphs, the edges resulting from truncations have different weight. For a circular ladder graph, we
again observe different weights on the two types of edges.

3.2. Petersen graph. The Petersen graph has 10 vertices and 15 edges and
is known to have the two-dimensional unit-distance realization drawn on the
right. The solution to (4) with φ = 1 yields a solution with w? > 0 and
all equal optimal weights. But the multiplicity of the optimal eigenvalue is
5, giving a spectral realization in d = 5 dimensions. The total variance for
the five-dimensional maximal graph realization is ‖X‖F = 7.5 and the total
variance for the two-dimensional realization is ‖X‖2F = 5.
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Figure 3. Maximal spectral realizations of the house graph and the house x-graph.
Both plots have been scaled so that the largest magnitude vertex has magnitude 1.
See section 3.3 for details.

Figure 4. Maximal spectral realizations of the 3-cycle with non-unit edge length
constraints. All plots have been scaled so that the largest magnitude vertex has
magnitude 1. See section 3.4 for details.

3.3. House graph and house x-graph. Here we consider the house graph and the house x-graph.
The house graph has n = 5 vertices and m = 6 edges and the usual two-dimensional realization

is given in fig. 3(left). For the house graph, the solution to (4) with φ = 1 yields a solution with
w? > 0. The maximal spectral realization is the usual drawing of the graph as in fig. 3(left).

The house x-graph has n = 5 vertices and m = 8 edges and the usual two-
dimensional realization of the house-x graph is given on the right. It is the
house graph with two additional edges incident diagonally opposite vertices
of the square. For the house x-graph, the solution to (4) with φ = 1 yields a
solution where one of the edge weights w?k is zero. The edge with zero weight
is at the top of the square, drawn in red to the right. The maximal spectral
realization is given in fig. 3(right). For the edge k with zero weight, we have
‖Xtbk‖ = 0, so that the two vertices at the top left and top right of the square
are mapped to the same position.

3.4. Non-unit edge length constraints. To illustrate the problem where the edge length con-
straints are not unity, i.e., φ 6= 1, we consider the cycle on n = 3 vertices and φ = (a, 1, 1) for
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Figure 5. Minimal graph realizations for a variety of graphs: a 5-cycle graph, an
octahedral graph, a dodecahedral graph, and an icosahedral graph. All plots have
been scaled so that the largest magnitude vertex has magnitude 1. See section 3.5
for more details.

a ∈ (0, 2). The maximal graph realization are plotted in fig. 4 for a = 0.5 (left), a = 1 (center), and
a = 1.5 (right). For a > 2, a realization with these edge length constraints is not possible by the
triangle inequality. In this case, one of the edge weights becomes zero and the realization becomes
one-dimensional.

3.5. Minimizing the largest graph Laplacian eigenvalue and minimal graph realizations.
We consider the problems of minimizing the largest eigenvalue of the graph Laplacian (7) and
minimal graph realizations (8). By example 1.9, a minimal graph realization for a semi-regular
bipartite graphs is the two point realization. We computationally verified this for the cube graph,
the square lattice graph, and the n-cycle graph for several even values of n.
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In fig. 5, we plot the minimal graph realizations for the 5-cycle graph, the octahedral graph, the
dodecahedral graph, and the icosahedral graph. The minimal graph realizations generated using
theorem 1.7 are more compact than the maximal graph realization generated using theorem 1.2
and hence generally have more crossing edges, are more “spiky”, and are not injective. We also
found the minimal graph realization for a tetrahedral graph, but it is the same as the maximal
graph realization (the usual graph embedding). This might be anticipated because there is a unique
(modulo rotation) embedding of the tetrahedral graph in three dimensions.

4. Discussion

In this paper, for a fixed graph G, we considered the relationship between maximal graph real-
izations satisfying (2) and the optimization problem of maximizing the first non-trivial eigenvalue
of the (unnormalized) graph Laplacian over non-negative edge weights (4). Our main result (the-
orem 1.2) is that the spectral realization of a graph using the eigenvectors corresponding to the
solution to (4), under certain assumptions, is a maximal graph realization. We also prove a converse
result (theorem 1.6) that a maximal graph realization, under certain assumptions, has coordinate
vectors which is are eigenvectors for some graph Laplacian. In section 3, we illustrated theorem 1.6
and theorem 1.2 with a number of examples.

While the analysis here provides an interesting theoretical tool for finding unit-distance graph
realizations, practically speaking, there are limitations since, before solving (4), we do not know (i)
the dimension d = dimEλ? of the maximal graph realization or (ii) if the assumption that w? > 0
holds. However, as shown in section 3, there are a number of interesting graphs for which the
dimension is either 2 or 3 and w? > 0 (see fig. 2).

There are a number of interesting extensions of this work. For structured graphs, it might be
possible to explicitly identify a maximal graph realization, so this could yield interesting exam-
ples to test computational methods for eigenvalue optimization. In this paper, we considered the
unnormalized graph Laplacian and optimized over nonnegative edge weights. It is possible to con-
sider other matrices associated with a graph (e.g., the normalized graph Laplacian) and also vertex
weights. Another variation would be to consider the spectral realization corresponding to an ex-
tremal first (non-trivial) Steklov eigenvalue for a vertex subset. Finally, in data analysis, pairwise
comparison data is often represented using a w-weighted graph where the weights correspond to
the pairwise comparisons. The spectral realization of a G (for these fixed weights) is then used for
analysis or visualization. It is an interesting question of whether properties of this spectral graph
realization could be bounded by further analyzing the extremal graph realizations.

Acknowledgments. B. Osting would like to thank Édouard Oudet for useful conversations and
the Laboratoire Jean Kuntzmann (LJK), Université Grenoble Alpes for hosting him during his
sabbatical leave, where this work was initiated.
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