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Abstract. We study γ-vectors associated with h∗-vectors of symmetric edge polytopes
both from a deterministic and a probabilistic point of view. On the deterministic side,
we prove nonnegativity of γ2 for any graph and completely characterize the case when
γ2 = 0. The latter also confirms a conjecture by Lutz and Nevo in the realm of symmetric
edge polytopes. On the probabilistic side, we show that the γ-vectors of symmetric edge
polytopes of most Erdős-Rényi random graphs are asymptotically almost surely nonnegative
up to any fixed entry. This proves that Gal’s conjecture holds asymptotically almost surely
for arbitrary unimodular triangulations in this setting.

1. Introduction

Symmetric edge polytopes are a class of lattice polytopes that has seen a surge of interest in
recent years for their intrinsic combinatorial and geometric properties [MHN+11, HKM17,
OT21a, OT21b, CDK21] as well as for their relations to metric space theory [Ver15, GP17,
DH20], optimal transport [ÇJM+21] and physics, where they appear in the context of the
Kuramoto synchronization model [CDM18, Che19] (see [DDM22] for a more detailed account
of these connections).
Given a finite simple graph G = ([n],E), the associated symmetric edge polytope PG is
defined as

PG = conv(±(ei − ej) ∶ ij ∈ E).

On the one hand, the dependence on a graph allows for graph-theoretical characterizations
of some polytopal properties: for instance, Higashitani proved in [Hig15, Corollary 2.3] that
a symmetric edge polytope PG arising from a connected graph G is simplicial if and only
if G contains no even cycles, and this is also equivalent to PG being smooth. While for
simpliciality there hence exist infinitely many symmetric edge polytopes with this property,
the behavior is different for simplicity. In this case, there is only a finite list of graphs whose
symmetric edge polytopes are simple (see Proposition 2.3). On the other hand, there are
several pleasant properties that are shared by any symmetric edge polytope, independent of
the underlying graph: all of these polytopes are known to admit a pulling regular unimodular
triangulation [OH14, HJM19] and to be centrally symmetric, terminal and reflexive [Hig15].
In particular, by this latter property, it follows from work of Hibi [Hib92] that their h∗-
vectors are palindromic. Thus, given the h∗-vector h∗(PG) = (h∗0, . . . , h

∗
d) of a symmetric
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edge polytope, one can define the γ-vector of PG by applying the following change of basis:

(1)
⌊ d
2
⌋

∑
i=0

γit
i(t + 1)d−2i =

d

∑
j=0

h∗j t
j.

Obviously, γ(PG) = (γ0, . . . , γ⌊ d
2
⌋) stores the same information as h∗(PG) in a more com-

pact form. More generally, in the same way, one can associate a γ-vector with any sym-
metric vector and this has been done and studied extensively in a lot of cases. One of
the most prominent examples in topological combinatorics, which is strongly related to
the just mentioned example of h∗-vectors of reflexive polytopes, are h-vectors of simplicial
spheres. For flag spheres, Gal’s conjecture [Gal05] states that their γ-vectors are nonneg-
ative. Several related conjectures exist, including the Charney–Davis conjecture [CD95],
claiming nonnegativity only for the last entry of the γ-vector, and the Nevo–Petersen con-
jecture [NP11] which even conjectures the γ-vector of a flag sphere to be the f -vector
of a balanced simplicial complex. Those conjectures have been a very active area of re-
search in the last few years. However, even though they could be solved in special cases
[Ais14, Ath12, AV20, DO01, Gal05, LN17, NP11, NPT11] and new approaches have been
developed towards their solution [CN20, CN21], they remain wide open in general. For an in-
troduction to γ-nonnegativity, we invite the interested reader to consult the surveys [Ath18]
and [Brä15, Sections 3 and 6].
If a polytope P admits a regular unimodular triangulation ∆, which is the case for symmetric
edge polytopes, then the restriction of ∆ yields a unimodular triangulation of the boundary
complex of P, as well. If, in addition, P is reflexive, it is well-known that the h∗-vector of P
equals the h-vector of any unimodular triangulation ∆ of its boundary, which in particular
is a simplicial sphere. This provides a link between the study of the γ-vector of PG and the
rich world of conjectures on the γ-nonnegativity of simplicial spheres; however, note that
the objects we are interested in will not be flag in general. Despite the lack of flagness, in
all the cases known so far the γ-vector of PG is nonnegative, and this brought Ohsugi and
Tsuchiya to formulate the following conjecture, which is the starting point of this paper:

Nonnegativity Conjecture for γ-vectors of symmetric edge polytopes. [OT21a,
Conjecture 5.11] Let G be a graph. Then γi(PG) ≥ 0 for every i ≥ 0.

On the one hand, it is already known and follows e.g. from [BR07] that a weaker property,
namely, unimodality of the h∗-vector holds. On the other hand, though it is tempting to
hope that even the stronger property of the h∗-polynomial being real-rooted is true, this
is not the case in general, as shown by the 5-cycle. The γ-nonnegativity conjecture above
has been verified for special classes of graphs, mostly by direct computation: as shown in
[OT21a, Section 5.3], such classes encompass cycles, suspensions of graphs (which include
both complete graphs and wheels), outerplanar bipartite graphs and complete bipartite
graphs. This last instance was originally proved in [HJM19] but was generalized in [OT21a]

to bipartite graphs H̃ obtained from another bipartite graph H as in [OT21a, p. 708].
The main goal of this paper is to provide some supporting evidence to the γ-nonnegativity
conjecture, independent of the graph. We take two different approaches: a deterministic and
a probabilistic one.
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In the deterministic part, developed in Sections 3 and 4, we focus on the coefficient γ2.
Through some delicate combinatorial analysis, we are able to prove that γ2 is always non-
negative. Moreover, we provide a characterization of those graphs for which γ2(PG) = 0:

Theorem A (Theorems 3.2 and 3.11). Let G = ([n],E) be a graph. Then γ2(PG) ≥ 0.
Moreover, if G is 2-connected, then γ2(PG) = 0 if and only if either n < 5, or n ≥ 5 and G is
isomorphic to one of the following two graphs:

● the graph Gn with edge set {12} ∪ {1k,2k ∶ k ∈ {3, . . . , n}}; or
● the complete bipartite graph K2,n−2.

The “if” part of the equality statement can be deduced from the results in [HJM19] and
[OT21a], where the authors compute explicitly the γ-vector of the families of graphs appear-
ing in Theorem A. See the proof of Theorem 3.11 for more details. As an application, we
confirm a conjecture by Lutz and Nevo [LN16, Conjecture 6.1], characterizing flag spheres
with γ2 = 0, in the restricted context of some natural Gröbner-induced triangulations of
boundaries of symmetric edge polytopes: see Theorem 4.4. We want to point out that the
symmetric edge polytopes of the graphs from the second part of Theorem A indeed admit a
flag triangulation.
Finally, Section 5 brings random graphs into the picture. The Erdős-Rényi model G(n, p(n))
is one of the most popular and well-studied ways to generate a graph on the vertex set [n]
via a random process: for a graph G ∈ G(n, p), the probability of ij with 1 ≤ i < j ≤ n being
an edge of G equals p(n), and all of these events are mutually independent. Our question is
then: for an Erdős-Rényi graph G ∈ G(n, p), how likely is it that the entries of the γ-vector
of PG are nonnegative? As an extension, we pose the question of how big those entries will
most likely be. Our main result, answering both questions, is the following:

Theorem B (Theorems 5.4 and 5.12). Let k be a positive integer. For the Erdős-Rényi
model G(n, p(n)), where p(n) = n−β for some β > 0, β ≠ 1, the following statements hold:

● (subcritical regime) if β > 1, then asymptotically almost surely γ` = 0 for all ` ≥ 1;
● (supercritical regime) if 0 < β < 1, then asymptotically almost surely γ` ∈ Θ(n(2−β)`)

for every 0 < ` ≤ k.

In particular, this shows that γ` ≥ 0 for 1 ≤ ` ≤ k with high probability, thereby proving
that (up to a fixed entry of the γ-vector) Gal’s conjecture holds with high probability. To
prove this result, we need to distinguish two regimes: subcritical (β > 1) and supercritical
(0 < β < 1), the subcritical one being the easier one. Along the proof, we derive concentration
inequalities for the number of non-faces and faces of the triangulation of PG studied in
[HJM19, Proposition 3.8].
The paper is structured as follows. In Section 2 we provide necessary background on graphs,
simplicial complexes and polytopes and prove some basic statements for symmetric edge
polytopes, including the characterization of their edges and of when they are simple. Sec-
tion 3 is devoted to the proof of Theorem A, whereas in Section 4 we prove the previously
mentioned conjecture by Lutz and Nevo in our setting. Finally, Section 5 contains the proof
of Theorem B.

Acknowledgements. We wish to thank Emanuele Delucchi and Hidefumi Ohsugi for their
useful comments. L. V. is funded by the Göran Gustafsson foundation.
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2. Preliminaries

In this section, we provide the relevant definitions and notations concerning graph theory,
simplicial complexes, polytope theory and in particular symmetric edge polytopes. (For
more background, we refer to [Die17], [Sta96] and [BG09].)

2.1. Graphs. Let G = (V (G),E(G)) be a simple graph with vertex set V (G) and edge set
E(G). For {v,w} ∈ E(G), we use the shorthand notation vw. Though, a priori, all graphs in
this paper are undirected, we often consider different orientations of the edges. We then write
v → w and w → v for the directed edges going from v to w and w to v, respectively. A path of
length n, or n-path, denoted by Pn, is the graph Pn = ({v0, . . . , vn},{v0v1, v1v2, . . . , vn−1vn}).
The graph Cn = ({v1, . . . , vn},{v1v2, . . . , vn−1vn, vnv1}) is called n-cycle. The distance d(u, v)
between vertices u and v is given as the length of a shortest path from u to v. We denote by
G∪e and G∖e the graph obtained from G by adding and removing an edge e, respectively. We
define deleting a vertex set V ′ ⊆ V as G∖V ′ = (V ∖V ′,E ∖{e ∶ e∩V ′ ≠ ∅}). The cyclomatic
number of a graph G with c connected components is defined as cy(G) = ∣E∣−∣V ∣+c. It is well-
known that G is 2-connected if it has an open ear decomposition, meaning that G is either a
cycle (the closed ear) or can be obtained from such by successively attaching paths (the open
ears) whose internal vertices are disjoint from the previous ears and whose two end vertices
belong to an earlier ear. It is easy to see that the number of ears in any such decomposition
equals the cyclomatic number of G. Moreover, every graph decomposes uniquely into its 2-
connected components, i.e., inclusion-maximal 2-connected subgraphs, where when speaking
about this decomposition we also consider single edges to be 2-connected. We further use Kn

and Kn,m to denote respectively the complete graph on n vertices and the complete bipartite
graph on n and m vertices. If two graphs G and H both contain a subgraph isomorphic to
a k-clique Kk, the graph G ⊕k H obtained by gluing G and H together along Kk is called
the k-clique sum of G and H.

2.2. Simplicial complexes. A simplicial complex ∆ on vertex set V is any collection of
subsets of V closed under inclusion. The elements of ∆ are called faces, and a face that is
maximal with respect to inclusion is called facet. We will sometimes write ⟨F1, ..., Fm⟩ to
denote the simplicial complex with facets F1, ..., Fm. A set which is not in ∆ is a non-face. A
non-face is called minimal if it is minimal with respect to inclusion. The dimension of a face
F is defined as dim(F ) ∶= ∣F ∣−1, and the dimension of ∆ is dim(∆) = max(dim(F ) ∶ F ∈ ∆).
0-dimensional and 1-dimensional faces of ∆ are called vertices and edges, respectively. The 1-
skeleton of ∆ is the simplicial complex consisting of all edges and vertices of ∆. For v ∈ V , its
degree d(v) is the degree of v in the 1-skeleton of ∆ (as a graph). Given a (d−1)-dimensional
simplicial complex ∆, its f -vector f(∆) = (f−1(∆), f0(∆), . . . , fd−1(∆)) is defined by fi(∆) =

∣{f ∈ ∆ ∶ dim(F ) = i}∣ for −1 ≤ i ≤ d − 1 and its h-vector h(∆) = (h0(∆), h1(∆), . . . , hd(∆))

by

(2) hj(∆) =

j

∑
i=0

(−1)j−1(
d − i

d − j
)fi−j(∆)

for 0 ≤ i ≤ d. Then, f(∆, x) = ∑
d−1
i=−1 fi(∆)xi and h(∆, x) = ∑

d
i=0 hi(∆)xi are called the f - and

h-polynomial of ∆, respectively. If h(∆) is symmetric, i.e., hi(∆) = hd−i(∆) for every choice
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of i, the γ-vector γ(∆) = (γ0(∆), γ1(∆), . . . , γ⌊ d
2
⌋(∆)) of ∆ is defined via

h(∆, x) =
⌊ d
2
⌋

∑
i=0

γi(∆)xi(1 + x)d−2i.

One way to study a simplicial complex ∆ locally is to look at the link of a face F , i.e. the
subcomplex of ∆ defined as lk∆(F ) = {H ∈ ∆ ∶ H ∩ F = ∅, F ∪H ∈ ∆}.
For an edge F = {v,w} ∈ ∆, the edge contraction ∆/F of ∆ at F is the simplicial complex
obtained from ∆ by identifying v with w in all faces of ∆, i.e.,

∆/F = {H ∈ ∆ ∶ v ∉H} ∪ {H ∖ {v} ∪ {w} ∶ v ∈H}.

The face deletion ∆ ∖ F of a face F ∈ ∆ from ∆ is defined as ∆ ∖ F = {H ∈ ∆ ∶ F /⊆ H}.
Given simplicial complexes ∆ and Γ, the simplicial complex ∆⋆Γ = {F ∪H ∶ F ∈ ∆, H ∈ Γ}

is called the join of ∆ and Γ.

2.3. Lattice polytopes. A lattice polytope P is the convex hull of finitely many points of
a lattice in Rd, typically Zd. An example, which is of importance for us, is provided by
the d-dimensional cross-polytope ◇d = conv(±ei ∶ 1 ≤ i ≤ d). A triangulation T of a d-
dimensional lattice polytope P is a subdivision into simplices of dimension at most d. Such
a triangulation is unimodular if all its simplices are, i.e., they have normalized volume 1.
The triangulation T is called flag if its minimal non-faces all have cardinality 2.
Ehrhart [Ehr62] proved that ∣nP ∩Zd∣, i.e. the number of lattice points in the n-th dilation
of P, is given by a polynomial E(P, n) of degree dimP in n for all integers n ≥ 0. The
h∗-polynomial h∗(P, x) = h∗0(P) + h

∗
1(P)x +⋯+ h∗d(P)x

d of a d-dimensional lattice polytope
P is obtained by applying a particular change of basis to E(P, n); namely,

E(P, n) = h∗0(P)(
n + d

d
) + h∗1(P)(

n + d − 1

d
) +⋯ + h∗d(P)(

n

d
) .

Stanley [Sta80] showed that h∗(P, x) has only nonnegative coefficients. By work of Hibi
[Hib92], h∗(P, x) is palindromic, i.e., h∗(P, x) = xdh∗ (P, 1

x
), if and only if P is reflexive. If

P has a unimodular triangulation T , then h∗(P, x) coincides with the h-polynomial of T . If,
in addition, P is reflexive, then h∗(P, x) is also equal to the h-polynomial of the unimodular
triangulation of the boundary of P induced by T .

2.4. Basic properties of symmetric edge polytopes. Let G = ([n],E) be a simple
graph with symmetric edge polytope PG. For ij ∈ E, we will call the vertices ei − ej and
ej − ei of PG an antipodal pair. In the following, we will always identify a vertex ei − ej of
PG with the oriented edge i → j and use the short-hand notation ei,j = ei − ej. Though G is
unoriented, we can naturally orient each cycle of G by orienting its edges either clockwise or
counter-clockwise. By abuse of notation, we refer to those cycles as the oriented cycles of G.
Turning to triangulations of symmetric edge polytopes, we recall that it was shown in [OH14]
that PG admits a regular unimodular triangulation. It is well-known (see e.g., [Stu96, Corol-
lary 8.9]) that such a triangulation can be obtained from the Gröbner basis of the toric ideal
of PG (with respect to the degrevlex order), provided in [HJM19, Proposition 3.8], as follows:
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Lemma 2.1. Let < be a total order on the edges E of G. Then there exists a unimodular
triangulation ∆< of ∂PG such that the F is a non-face of ∆< if and only if it contains at
least one subset of the following form:

(i) an antipodal pair;
(ii) an `-element subset of an oriented (2` − 1)-cycle of G; or,

(iii) an `-element subset of an oriented 2`-cycle of G not containing its <-minimal edge.

We want to remark that the triangulation ∆< extends to a regular unimodular triangulation
of PG by coning over the origin. In (iii) an oriented edge i→ j of an oriented cycle C is called
<-minimal if ij is minimal with respect to < among {k` ∶ k → ` ∈ E(C)}. It is apparent that
the triangulation of Lemma 2.1 depends on the chosen ordering <. However, any edge of PG
is necessarily a face of any such triangulation. Complementing [HJM19, Theorem 3.1] which
characterizes facets of symmetric edge polytopes, we provide the following characterization
of their edges:

Theorem 2.2. Let G = ([n],E) be a graph. Two oriented edges of G form an edge of PG if
and only if they are not contained in a directed 3- or 4-cycle of G.

Proof. The “only if”-part directly follows from Lemma 2.1 and the paragraph preceding this
theorem. For the reverse statement, let i → j, k → ` oriented edges of G neither lying in a
directed 3- nor in a directed 4-cycle of G. The aim is to construct a supporting hyperplane
of PG only containing the vertices ei,j and ek,`. More precisely, we construct a ∈ Rn such
that aT ei,j = aT ek,` > aTy for every vertex y of PG different from ei,j and ek,`. We distinguish
different cases.
Case 1: {i, j} ∩ {k, `} = ∅. Since i → j and k → ` do not lie in an oriented 4-cycle, we
have ∣{i`, jk} ∩E∣ ≤ 1. If ∣{i`, jk} ∩E∣ = 0 then it is easy to verify that setting ai = ak = 1,
aj = a` = −1 and am = 0, otherwise, works. If ∣{i`, jk}∩E∣ = 1, then without loss of generality
assume i` ∈ E. In this case setting ai = 1, aj = −2, ak = 2, a` = −1 and am = 0, otherwise, has
the required properties.
Case 2: {i, j} ∩ {k, `} ≠ ∅. First assume i = k. In this case, we set ai = 1, aj = a` = −1 and
am = 0, otherwise. Similarly, if j = `, setting aj = −1, ai = ak = 1 and am = 0, otherwise,
works. Finally assume that i = ` or j = k. By symmetry, we only need to consider the case
i = `. Since i→ j and k → i do not lie in a directed 3-cycle, it follows that jk ∉ E. Similarly,
as i→ j and k → i do not lie in a directed 4-cycle, the vertices j and k do not have common
neighbors other than i. We can then set aj = −2, ak = 2, ai = 0, ap = −1 if jp ∈ E, aq = 1 if
kq ∈ E and am = 0, otherwise and this is well-defined by the previous arguments. It is again
easy to see that this choice of a works. �

Theorem 2.2 allows us to characterize simple symmetric edge polytopes in terms of their
graphs.

Proposition 2.3. Let G = ([n],E) be a graph with E ≠ ∅. Then PG is simple if and only
if, after removing isolated vertices, G ∈ {P1,2P1, P2,C3,C4}.

Proof. It follows by direct computation that PG is a 1-simplex, a 4-gon, a 4-gon, a 6-gon and
a 3-cube if G is equal to P1, 2P1, P2, C3 and C4, respectively.
Assume that G is connected and fix an oriented edge i → j. Observe that if there exists
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an edge k` such that both k → ` and ` → k lie in a 3- or 4-cycle together with i → j, then
the subgraph of G induced by the vertices i, j, k, ` (which must be all distinct) is isomorphic
to K4. Consider then the connected subgraph H of G obtained by removing all edges st
such that the induced subgraph of G on the vertex set {i, j, s, t} is isomorphic to K4. By
construction, for every edge k` of H different from ij, at least one of the oriented edges
k → ` and ` → k does not lie in a 3- or 4-cycle with i → j. By Theorem 2.2, this implies
that at least one of the vertices ek,` or e`,k is adjacent to ei,j both in PH and in PG. As all
edges of PH containing the vertex ei,j are also edges of PG (and vice versa), we conclude
that the number of edges containing ei,j in PG is greater than or equal to ∣E(H)∣−1. Hence,
PG cannot be simple if ∣E(H)∣ > dim(PG) + 1 = n. In order for PG to be simple, we must
hence have ∣E(H)∣ ∈ {n − 1, n}. If ∣E(H)∣ = n − 1, then H is a tree, while if ∣E(H)∣ = n, then
H can be built starting from a cycle and taking successive 1-clique sums with single edges.
Both cases can only happen if G =H, since otherwise H would contain at least two distinct
3-cycles. Using [OT21a, Proposition 4.2], it follows that if G is connected and PG is simple,
then PG is the free sum of the symmetric edge polytope of a cycle and some segments (since
the symmetric edge polytope of P1 is a segment). Since the free sum of two polytopes of
dimension greater than zero is simple if and only if the polytopes are segments, we are left
with the following possibilities: either G ∈ {P1, P2} or G ≅ Ck, for some k ≥ 3. For analogous
reasons, if G is not connected and PG is simple, PG must be the free sum of two segments,
i.e., G ≅ 2P1, the disjoint union of two edges. Finally, assume that G ≅ Ck, for some k ≥ 5.
Applying again Theorem 2.2, we conclude that the number of edges of PG containing ei,j
equals 2(k − 1) > k − 1 = dim(PG) and hence PG is not simple. �

3. Nonnegativity of γ2

The aim of this section is to prove Theorem A; namely, to show that γ2(PG) is nonnegative
for any graph G, and to characterize which graphs attain the equality γ2(PG) = 0. In
[OH14, Corollary 3.1] the authors prove that, when G is connected, PG has a unimodular
triangulation, and this was made more explicit in [HJM19] by providing a Gröbner basis.
This triangulation depends on an order < on the set of edges E, and, in particular, different
orders might yield non-isomorphic simplicial complexes. However, all of them are cones over
the corresponding triangulation ∆< of the boundary of PG (see Lemma 2.1). As the h∗-vector
of a lattice polytope which admits a unimodular triangulation is equal to the h-vector of such
a triangulation, we can write γ2(PG) in terms of the number of vertices and edges of ∆<, and
these numbers do not depend on the order <. Our first goal is to write the number γ2(PG)

as a function of certain invariants of the graph. For this aim, given a graph G = ([n],E) and
a fixed total order < on E, let

n1(G) ∶= (
2∣E∣

2
) − ∣E∣ − f1(∆<).

In other words, n1(G) equals the number of edges of the (∣E∣−1)-dimensional cross-polytope
on vertex set {ei,j, ej,i ∶ ij ∈ E} that are non-edges of ∆<. By Lemma 2.1, n1(G) is equal to
the number of pairs of oriented edges of G where the two unoriented edges are different and
the pair satisfies at least one of the following:

(i) the pair is contained in an oriented 3-cycle;
7



(ii) the pair is contained in an oriented 4-cycle, and none of its edges is the <-minimal
edge of such a cycle.

We call a pair of oriented edges satisfying at least one of these two conditions a bad pair
and say that it is supported on the corresponding pair of unoriented edges. We use n1(G)

to express γ2(PG) explicitly, as follows.

Lemma 3.1. Let G be a connected graph. Then,

γ1(PG) = 2 cy(G),

and

(3) γ2(PG) = 2 cy(G)(cy(G) + 2) − n1(G).

Proof. Let G = ([n],E). The next computation shows the first statement:

γ1(PG) = h
∗
1(PG) − (n − 1) = h1(∆<) − (n − 1)

= f0(∆<) − 2(n − 1) = 2(∣E∣ − n + 1) = 2 cy(G),

where the first equality follows from the definition of γ1 and the fact that PG is (n − 1)-
dimensional. Using the first statement, we can further show (3):

γ2(PG) = h
∗
2(PG) − (

n − 1

2
) − (n − 3)γ1(PG)

= h2(∆<) − (
n − 1

2
) − 2(n − 3) cy(G)

= f1(∆<) − (n − 2)f0(∆<) + (
n − 1

2
) − (

n − 1

2
) − 2(n − 3) cy(G)

= (
2∣E∣

2
) − ∣E∣ − n1(G) − 2(n − 2)∣E∣ − 2(n − 3) cy(G)

= 2∣E∣(∣E∣ − n + 1) − n1(G) − 2(n − 3) cy(G)

= 2 cy(G)(∣E∣ − n + 3) − n1(G) = 2 cy(G)(cy(G) + 2) − n1(G).

�

Next, we present the main result of this section.

Theorem 3.2. Let G be a graph. Then, γ2(PG) ≥ 0.

The proof of this theorem will require several lemmas and propositions. The strategy is to
prove that there exists an edge e ∈ E such that γ2(PG) ≥ γ2(PG∖e), from which the claim
follows inductively. We note that, if e is not a bridge of G, then cy(G ∖ e) = cy(G) − 1, and
Lemma 3.1 directly yields

(4) γ2(PG) − γ2(PG∖e) = 4 cy(G) + 2 − (n1(G) − n1(G ∖ e)).

By the following lemma, we can reduce to the case when G is 2-connected.

Lemma 3.3. Let G be a graph, and let G1, . . . ,Gk be its 2-connected components. Then,
γ1(PG) = ∑

k
i=1 γ1(PGi), and

γ2(PG) =
k

∑
i=1

γ2(PGi) + 4 ∑
1≤i<j≤k

cy(Gi) cy(Gj) ≥
k

∑
i=1

γ2(PGi).

8



Proof. By [OT21a, Proposition 4.2], the h∗-polynomial of PG is the product of the h∗-
polynomials of the polytopes PGi . The same holds for their γ-polynomials, and hence we
obtain that γ2(PG) = ∑

k
i=1(∏j≠i γ0(PGj))γ2(PGi) + ∑1≤i<j≤k(∏`≠i,j γ0(PG`))γ1(PGi)γ1(PGj).

We conclude using that γ1(PGi) = 2 cy(Gi) and γ0(PGi) = 1 hold for every i.
�

In particular, proving nonnegativity of γ2(PG) for every 2-connected graph G is sufficient
to prove the statement for every graph. Our study is divided into cases, which we deal with
in Propositions 3.4, 3.5 and 3.8. We start with the simplest case.

Proposition 3.4. Let G = ([n],E) be a 2-connected graph. Assume that there exists e ∈ E
which is not contained in any 3- or 4-cycle. Then,

γ2(PG) = γ2(PG∖e) + 4 cy(G) + 2 > γ2(PG∖e).

Proof. Since e ∈ E is not contained in any 3- or 4-cycle of G, its deletion from G does not
change the set of 3- and 4-cycles of G and, therefore, n1(G) = n1(G ∖ e). The claim now
follows from (4). �

Next, we assume the existence of a vertex of degree 2. The reason why this case is taken care
of separately is that it forces restrictions on which edges can be removed (see Remark 3.9).

Proposition 3.5. Let G = ([n],E) be a 2-connected graph. Assume that there exists e = ij ∈
E such that degG(i) = 2. Then

γ2(PG) ≥ γ2(PG∖e).

Moreover, equality holds if and only if every edge of G lies in a 3- or 4-cycle together with e.

Proof. If e does not lie in any 3- or 4-cycle of G, the statement follows from Proposition 3.4.
Assume that e is contained in at least one 3- or 4-cycle. Let f = ik be the unique edge
adjacent to i other than e. As degG(i) = 2, each 3- or 4-cycle containing e needs to contain
f as well. Hence, if e is contained in some 3-cycle, then the one on the vertices i, j and k is
the unique such. Let s ∈ {0,1} and r ∈ N be the number of 3- and 4-cycles containing e (and
hence f), respectively. Let < be any order on E for which e > f > h for every h ∈ E ∖ {e, f}.
By the way < is defined, the minimal element of each 4-cycle containing e and f is distinct
from these.
We now list the bad pairs of G which are not bad pairs of G ∖ e. Their number is equal to
n1(G) − n1(G ∖ e), since every bad pair of G ∖ e is a bad pair of G.

- As e is contained in some 3- or 4-cycle, and e > f > h for every h ∈ E ∖ {e, f}, the
pairs {j → i, i→ k} and {k → i, i→ j} are bad pairs.

- If s = 1, there are 4 additional bad pairs, which are contained in an oriented 3-cycle
of G, but which are not bad pairs for G∖ e. Namely, the four pairs of oriented edges
{i → j, j → k}, {k → j, j → i}, {i → k, k → j} and {j → k, k → i}. Note that the latter
two are not bad pairs of G ∖ e since they neither lie in a 3-cycle nor in a 4-cycle of
G ∖ e as degG(i) = 2.

- For each 4-cycle containing e, there are 4 additional pairs. To see this, let {ij, j`, `k, ki}
be the edge set of such a 4-cycle. If the minimal element is j`, then we get {i→ j, `→
k}, {j → i, k → `}, {` → k, k → i} and {k → `, i → k}. If instead the minimal element
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is `k, then we get {i → j, j → `}, {j → i, ` → j}, {j → `, k → i} and {` → j, i → k}. It
follows from degG(i) = 2, that all of these pairs are not bad pairs of G ∖ e.

We deduce that n1(G) − n1(G ∖ e) = 4r + 4s + 2 and hence (4) implies

(5) γ2(PG) − γ2(PG∖e) = 4(cy(G) − s − r).

To conclude, let H be the subgraph of G consisting of all edges of G which are contained in
a 3- or 4-cycle together with e. By definition H is 2-connected and s+ r = cy(H). Moreover,
since H is a 2-connected subgraph of the 2-connected graph G, we have that cy(G) ≥ cy(H).
This inequality holds since the cyclomatic number counts the number of ears in any ear
decomposition of a graph, and any ear decomposition of H can be completed to one of G.
Using (5) this implies γ2(PG) − γ2(PG∖e) ≥ 0.
It remains to characterize the case when γ2(PG) = γ2(PG∖e). By the previous argument
γ2(PG) = γ2(PG∖e) = 0 if and only if cy(G) = cy(H). As the cyclomatic number of a
proper 2-connected subgraph of G needs to be strictly smaller than cy(G), it follows that
cy(G) = cy(H) if and only if G =H, which proves the claim. �

Before proving the last and main proposition we need a technical lemma.

Lemma 3.6. Let G = ([n],E) be a 2-connected graph without vertices of degree 2 and let H
be a 2-connected subgraph with k vertices of degree 2. Then,

cy(G) ≥ cy(H) +
k

2
.

Proof. Any ear decomposition of H can be completed to one of G by adding (cy(G)−cy(H))-
many ears. Since G does not have vertices of degree 2, every vertex of degree 2 in H is
adjacent to at least one new ear. Moreover, each new ear is adjacent to at most two such
vertices. The number of new ears must then be at least equal to half the number of vertices
of degree 2 in H. �

Before handling the remaining case towards the proof of Theorem 3.2, we need an additional
definition.

Definition 3.7. Let G = ([n],E) be a graph and let i and j be two new vertices.

(i) The double cone of G with respect to i and j is the graph with vertex set V ∪ {i, j}
and with edges

E ∪ ({i, j} × V ) ∪ {ij}.

(ii) If G is bipartite with bipartition given by V = V1 ∪ V2, the the bipartite cone of G
with respect to i and j is the bipartite graph with vertex set V ∪{i, j} and with edges

E ∪ ({i} × V1) ∪ ({j} × V2) ∪ {ij}.

Proposition 3.8. Let G = ([n],E) be a 2-connected graph. Assume that every edge of G is
contained in some 3- or 4-cycle, and that mini∈[n] degG(i) ≥ 3. Then, for every e ∈ E,

γ2(PG) ≥ γ2(PG∖e).

Moreover, equality holds if and only if G = G1 ⊕2 ⋯ ⊕2 Gm, where m ≥ 1, all the 2-clique
sums are taken along e, G1 is the double cone w.r.t. i and j over a connected graph G′

1 with
∣E(G′

1)∣ ≥ 1, and for every 2 ≤ ` ≤m either:
10



i

j

i

j

Figure 1. The double cone of a graph (left) and the bipartite cone of a 6-cycle (right).

- G` is the double cone w.r.t. i and j over any connected graph G′
` with ∣E(G′

`)∣ ≥ 1, or
- G` is the bipartite cone w.r.t. i and j over an even cycle.

Proof. Let e = ij be any edge. We define H = (W,F ) to be the subgraph induced by all
edges of G which lie in a 3- or 4-cycle together with e. We now give an iterative procedure
to construct H in a sequence of steps, yielding a partition of F . We use H ′ = (W ′, F ′) to
denote the current graph in the procedure. Set E′ = E.

Step 0: Set H ′ = ({i, j},{ij}), namely H ′ is the graph consisting of the edge e alone.
Step 1: For every pair of edges f, g ∈ E′ such that {e, f, g} is a 3-cycle, add f, g to F ′ and

delete them from E′. This step adds to H ′ a number r1 of ears of length 2.
Step 2: Add to F ′ every edge k` ∈ E′ such that k and ` are vertices of H ′, and delete these

edges from E′. This step adds to H ′ a number r2 of ears of length 1;
Step 3: If there is a 4-cycle C in G with E(C)∩F ′ = {e}, add the three edges in E(C)∖ {e}

to F ′, and delete them from E′. Update H ′ and repeat this procedure as often as
possible. In this step, r3 many ears of length 3 are added to H ′.

Step 4: If there is a 4-cycle C in G with E(C)∩F ′ = {e, g} for some edge g, add E(C)∖{e, g}
to F ′ and delete these edges from E′. Update H ′ and iterate this procedure as long
as possible. This step adds to H’ a number r4 of ears of length 2;

Step 5: Add to F ′ the edges f ∈ E′ such that e and f are contained in a 4-cycle C with
E(C) ∖ F ′ = {f}. This step adds to H ′ a number r5 of ears of length 1.

(See Figure 2 for an example of how this algorithm works.) It is obvious that this procedure
indeed yields an open ear decomposition of H (the closed ear being the first cycle that is
constructed either in Step 1 or 3). Hence,

(6) cy(H) =
5

∑
i=1

ri.

Observe that we make multiple choices in Steps 3 and 4 and hence neither the decomposition
nor the numbers r3, r4 and r5 are uniquely determined. Fix now any linear order on F such
that:

- g is bigger than f if g has been added to F before f ;
- if f, g, h are edges added in an iteration of Step 3, then the smallest of the three is

the one not incident to e;
11



H =

Step 0 Step 1: r1 = 3 Step 2: r2 = 1

Step 3: r3 = 1 Step 4: r4 = 2 Step 5: r5 = 1

e

Figure 2. The construction of the graph H as in the proof of Proposition 3.8.

- if f, g are edges added in an iteration of Step 4, then the smallest of the two is the
one not incident to e.

Consider an extension < of this linear order to E such that any edge of E ∖F is smaller than
any edge of F . In particular, e is the <-maximal edge.
We now describe the bad pairs of G which are not bad pairs of G∖e. We will use the fact that
any pair of disjoint oriented edges determines a unique oriented 4-cycle. In the following, let
1C be the indicator function which equals 1 if condition C holds and 0 otherwise.

- For every edge f lying in a 3-cycle with e, there are 2 bad pairs supported on {e, f}.
As there are 2r1 such edges f , this gives rise to 4r1 bad pairs.

- There are 2 bad pairs supported on the set {f, g}, where {e, f, g} is the last 3-cycle
added in Step 1. As these pairs only occur if r1 ≥ 1, their number is 2 ⋅ 1r1≥1.

- Each edge h added in Step 2 lies in a subgraph of H isomorphic to K4 that also
contains e. In particular, there are two 4-cycles containing e and h, and in both
cycles h is the minimal element. For each cycle, only the two edges different from e
and h give rise to 2 new bad pairs. Therefore, for each edge h added in Step 2 we
get 4 new bad pairs, and hence we obtain 4r2 many.

- If f, g and h have been added in the same iteration of Step 3 with min<{e, f, g, h} = h,
then there are 2 bad pairs supported on each of {e, f}, {e, g} and {f, g}. This yields
6r3 such bad pairs.

- If {e, f, g, h} lie in a 4-cycle such that g and h have been added in the same iteration
of Step 4 and h < g, then there are 2 bad pairs supported on each of {e, g} and {f, g}.
Note that f is incident to e and has been added either in Step 1 or in Step 3. This
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implies that the two bad pairs supported on {e, f} have already been counted in the
previous discussion. Hence there are 4r4 new bad pairs.

- If {e, f, g, h} is a 4-cycle such that h has been added in Step 5, then there are 2 bad
pairs supported on {f, g}. These are new, since f and g did not lie in a 4-cycle with
e before Step 5. There are 2r5 such bad pairs.

g

e

e

e

e

Bad pairs
#

f

g

e

e

e

e ee e e e

g < h for every edge h added in Step 1

e
h h h

f f f

g g g

h < f , h < g

h h
h < g

4r1

2

4r2

6r3

4r4

2r5

e

g

heg g eh

Figure 3. The bad pairs of edges as in Proposition 3.8 for the graph H in Figure 2.

Figure 3 shows all bad pairs for the graph H in Figure 2. For the total number of bad pairs
in G that are not bad pairs of G ∖ e we hence get

n1(G) − n1(G ∖ e) = 4r1 + 2 ⋅ 1r1≥1 + 4r2 + 6r3 + 4r4 + 2r5

= 4 cy(H) + 2(r3 − r5) + 2 ⋅ 1r1≥1,

where the second equality follows from (6). Hence, (4) implies

(7) γ2(PG) − γ2(PG∖e) = 4(cy(G) − cy(H)) − 2(r3 − r5) + 2(1 − 1r1≥1).
13



As H is 2-connected, we have that cy(G) − cy(H) ≥ 0, and hence the only possibly negative
term in the last equation is −2(r3 − r5). In particular, if r3 − r5 ≤ 0, it follows that γ2(PG) −

γ2(PG∖e) ≥ 0. Now assume r3 − r5 ≥ 0. We claim that in this case

cy(G) ≥ cy(H) + (r3 − r5).(8)

Note that using (7) it then follows that

(9) γ2(PG) − γ2(PG∖e) ≥ 2(r3 − r5) + 2(1 − 1r1≥1),

which is even stronger than γ2(PG) − γ2(PG∖e) ≥ 0.
To show (8), let J =H ∖{i, j} (i.e., J is the graph obtained by removing the vertices i and j
from H). The vertex set of J can be partitioned as V (J) = V1 ∪ V3 ∪ V4, where V` is the set
of vertices that have been added to H during Step ` of the described procedure. Since Steps
2 and 5 add ears of length 1, no new vertices are introduced during these steps. Note that
∣E(J)∣ = r2 + r3 + r4 + r5. For each connected component J` of J , we let rk,` be the number
of edges of J` added to H in Step k, for k = 1, . . . ,5. We distinguish between two cases:

Case 1: If V (J`) ∩ V1 ≠ ∅, then we consider an auxiliary graph J ′` with vertex set V (J ′`) =

(V (J`) ∖ V1) ∪ {v}, where v is a new vertex. Two vertices a, b ∈ V (J ′`) form an edge
of J ′` if either ab ∈ E(J`) or a = v and wb ∈ E(J`), for some w ∈ V (J`) ∩ V1. Then J ′`
is connected. Hence,

r3,` + r4,` + r5,` ≥ ∣E(J ′`)∣ ≥ ∣V (J ′`)∣ − 1 = 2r3,` + r4,` + 1 − 1,(10)

where the first inequality follows from the fact that the edges in J` between two
vertices in V1 do not appear in J ′`. We obtain that r3,` − r5,` ≤ 0.

Case 2: If V (J`) ∩ V1 = ∅, then

r3,` + r4,` + r5,` = ∣E(J`)∣ ≥ ∣V (J`)∣ − 1 = 2r3,` + r4,` − 1.(11)

This implies r3,` − r5,` ≤ 1, with equality attained if and only if ∣E(J`)∣ = ∣V (J`)∣ − 1,
i.e., if J` is a tree (with at least one edge, since r3,` = r5,` + 1 ≥ 1). In this case, J` has
at least 2 leaves. Since each leaf of J` corresponds to a vertex of degree 2 in H, one
has that

∣{v ∈H ∶ degH(v) = 2}∣ ≥ 2 ⋅ ∣{` ∶ J` is a tree with ∣V (J`)∣ ≥ 2 and V (J`) ∩ V1 = ∅}∣.

Combining the two cases above and using the identities ∑` rk,` = rk we obtain that

(12) r3− r5 ≤ ∣{` ∶ J` is a tree with ∣V (J`)∣ ≥ 2, V (J`)∩V1 = ∅}∣ ≤
∣{v ∈H ∶ degH(v) = 2}∣

2
.

Using Lemma 3.6 we conclude that

cy(G) ≥ cy(H) +
∣{v ∈H ∶ degH(v) = 2}∣

2
≥ cy(H) + (r3 − r5),

which proves (8) and hence the inequality γ2(PG) − γ2(PG∖e) ≥ 0.
We now study the case when γ2(PG) − γ2(PG∖e) = 0. It follows from (7), (8) and (9) that
γ2(PG) − γ2(PG∖e) = 0 if and only if r3 = r5, r1 ≥ 1 and cy(G) = cy(H). The last equality
implies that G = H. In particular, since we assumed that every vertex in G has degree
at least 3, the same holds for H. It follows from (12) that there is no component J` with
V (J`)∩V1 = ∅ that is a tree with at least one edge. In particular, we have that r3,` − r5,` ≤ 0
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for any component J` and, as r3 = r5, all of these inequalities are in fact equalities. The idea
now is to analyze what the components J` can look like.
If V (J`) ∩ V1 ≠ ∅, then it follows from (10) that J ′` has to be a tree and that we have
∣E(J ′`)∣ = r3,`+r4,`+r5,`. It follows from these two conditions that for every w ∈ V (J`)∩(V3∪V4)

there is at most one edge of the form wz for some z ∈ V (J`) ∩ V1. This implies that every
vertex of degree 1 in J ′` (other than v) corresponds to a vertex of degree 2 in H. As there are
none such, we conclude that J ′` is just an isolated vertex, namely v. Hence, r3,` = r4,` = r5,` = 0
and J` is an arbitrary graph on r1,` vertices, where each vertex is connected to both i and j
in G. This implies that the subgraph of G induced on V (J`) ∪ {i, j} is the double cone over
J` w.r.t. i and j.
If V (J`)∩V1 = ∅, then by (11) we have that r3,` − r5,` = 0 if and only if ∣E(J`)∣ = ∣V (J`)∣. By
the same argument as above, J` cannot have vertices of degree 1 and must hence be a cycle.
Since all vertices of J` have been added in an iteration of Step 3 or 4, each vertex of J` is
connected to either i or j in G, but not to both. Consider an edge vw ∈ E(J`) and assume
that vi ∈ E(G). As vw lies in a 4-cycle together with e by assumption and there is a unique
such, namely the one with edges {vw, vi, e,wj}, it follows that wj ∈ E. This shows that J` is
a bipartite graph with vertex partition {v ∈ V (J`) ∶ vi ∈ E} ∪ {v ∈ V (J`) ∶ vj ∈ E}. Hence,
J` is an even cycle, and the subgraph of G induced on V (J`) ∪ {i, j} is the bipartite cone of
J` w.r.t. i and j.

�

We can finally provide the proof of Theorem 3.2.

Proof of Theorem 3.2. Let G = ([n],E) be a graph. We show the claim by induction on ∣E∣.
If ∣E∣ = 1, the claim is trivially true. Assume that ∣E∣ > 1. Without loss of generality, we
can assume that G is connected since taking 1-sums of its connected components does not
change the symmetric edge polytope [DDM22, Remark 4.8] and, in particular, its γ-vector.
If G is not 2-connected, then let G1, . . . ,Gs be its 2-connected components, where s ≥ 2. As
∣E(Gi)∣ < ∣E(G)∣, it follows from the induction hypothesis and Lemma 3.3 that γ2(PG) ≥ 0.
Assume that G is 2-connected. Applying Propositions 3.4, 3.5 and 3.8, it follows that there
exists e ∈ E with γ2(PG) ≥ γ2(PG∖e). Since, by the induction hypothesis, the latter expression
is nonnegative, this finishes the proof. �

Remark 3.9. We remark that in the proof of Theorem 3.2 we do not claim that γ2(PG) ≥

γ2(PG∖e) for every edge e ∈ E. This statement is indeed false. For a small counterexample,
let G be the 2-connected graph on 5 vertices with E = {12,23,34,45,15,35}. Then γ2(PG) = 4
and γ2(PG∖35) = 6, so γ2 increases when removing the edge 35. However, degG(3) = degG(5) =
3 and degG(1) = degG(2) = degG(4) = 2 in G, so this is the setting from Proposition 3.5. In
particular, the proof states that we should choose e to be adjacent to one of the vertices of
degree 2, a condition that the edge 35 does not satisfy.

In the remaining part of this section, we focus on the problem of when γ2(PG) = 0.

Definition 3.10. Let n ≥ 3. Let Gn be the graph on n vertices obtained from the complete
bipartite graph K2,n−2, considered with bipartition [n] = [2]∪ {3, . . . , n}, by adding the edge
12.

We note that Gn has 2n − 3 edges.
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Theorem 3.11. Let G = ([n],E) be a 2-connected graph. Then γ2(PG) = 0 if and only if
either n < 5, or n ≥ 5 and G ≅ Gn or G ≅K2,n−2.

Proof. By [OT21a, Example 5.9] we have that γi(PKn) = (
n−1
2i

)(
2i
i
), and in [HJM19] it is

proved that γi(PKm,n) = (
m−1

2i
)(
n−1
2i

)(
2i
i
). Moreover, γi(PGn) = γi(PK2,n−1) for every i ≥ 0 by

[OT21a, Proposition 5.4]. This proves the “if” statement, which can be also verified directly
using Lemma 3.1, (14) and (15).
We prove the claim by double induction on the pairs (n, k), with n = ∣V (G)∣ and k = ∣E(G)∣.
The base case is given by any graph with n < 5, as γ2(PG) = 0 for every graph G with less
than 5 vertices.
Let n ≥ 5. First assume that G has a vertex i of degree 2. Let e = ij be any of the two
edges incident with i. Being 2-connected, G is either a cycle (in which case Theorem 3.2 and
Proposition 3.5 imply that n ∈ {3,4}) or can be obtained from a 2-connected graph G′ by
adding an open ear P of length ` ≥ 2 containing e. Assume the latter. We then have that

0 = γ2(PG) ≥ γ2(PG∖e) = γ2(PG′) ≥ 0,

where the first inequality follows from Proposition 3.5, the last equality from (3) in Lemma 3.1,
and the last inequality from Theorem 3.2. Hence γ2(PG′) = 0 and, by induction, G′ ∈ {Gn′ ∶

n′ ≥ 3}∪{K2,n′−2 ∶ n′ ≥ 4}∪{K4}. We claim that the length ` of the ear P must be 2. Indeed,
consider any edge f in G′ different from the one (if it exists) connecting the two endpoints
of P . Then every cycle containing both e and f has length at least `+2, and Proposition 3.5
forces ` = 2. Let then e = ij, ik be the edges in P . Note that G′ cannot be a K4, as otherwise
the edge of K4 opposite to jk would not be contained in any 3- or 4-cycle together with e.
Then either G′ ≅ Gn−1 or G′ ≅K2,n−3, and thus G ≅ Gn (if jk ∈ E) or G ≅K2,n−2 (otherwise).
If min degG(v) ≥ 3, we choose e to be the unique edge in the last ear of any ear decomposition
of G. We then have that G ∖ e is 2-connected and has n ≥ 5 vertices. As γ2(PG∖e) = 0, we
conclude by induction that G ∖ e ≅ K2,n−2 or G ∖ e ≅ Gn. In both cases, G ∖ e has at least
3 vertices of degree 2. Hence G has at least one degree 2 vertex, which contradicts the
assumption min degG(v) ≥ 3. �

The characterization of the equality case γ2 = 0 can be extended to all graphs as follows.

Corollary 3.12. Let G = ([n],E) be a graph. Then γ2(PG) = 0 if and only if either

(i) G is a forest, or,
(ii) all but one of the 2-connected components of G are edges and the remaining component

is isomorphic to one of K4, G` for some ` ≥ 3, and K2,` for some ` ≥ 2.

Proof. Assume γ2(PG) = 0. If G has at least two 2-connected components that are not edges,
then the product of their cyclomatic numbers is positive, as the cyclomatic number of any
2-connected graph is strictly positive. By Lemma 3.3 and Theorem 3.2, this implies that
γ2(PG) > 0. Hence, G has at most one 2-connected component that is not an edge. Let
us denote this component by H, if it exists. Again using Lemma 3.3 we observe that if
γ2(PH) > 0, then γ2(PG) > 0. The claim now follows from Theorem 3.11 by noting that the
only 2-connected graphs on less than 5 vertices are K4, C3 = G3, C4 =K2,2 and G4. �

We close this section with a conjecture that extends Theorem 3.11. To state the conjecture,
for k ≥ 2, let Gn,k be the graph that is obtained from Kk,n−k by adding all edges between
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Figure 4. The graphs G6 and K2,4.

the vertices on the side of the vertex partition with k elements. In other words, Gn,k can be
thought of as the k-fold cone over a set of n − k isolated vertices. In particular, for k = 2 we
have Gn,2 = Gn. The following conjecture naturally generalizes Theorem 3.11 and has been
verified computationally for small values of k and n.

Conjecture 3.13. Let k ∈ N and let G be a k-connected graph on n vertices. Then γk(PG) =
0 if and only if n < 2k + 1 or, n ≥ 2k + 1 and Kk,n−k ⊆ G ⊆ Gn,k.

4. On a conjecture of Lutz and Nevo

In this section, our focus lies on a conjecture by Lutz and Nevo [LN16, Conjecture 6.1] which
characterizes flag PL-spheres ∆ with γ2(∆) = 0. Our goal is to show that symmetric edge
polytopes with γ2 = 0 admit a triangulation of their boundary with the properties predicted
by [LN16, Conjecture 6.1].

Conjecture 4.1. [LN16, Conjecture 6.1] Let ∆ be a (d − 1)-dimensional flag PL-sphere,
with d ≥ 4. Then the following are equivalent:

(i) γ2(∆) = 0;
(ii) There exists a sequence of edge contractions

∆ = ∆0 →∆1 = ∆0/F1 → ⋯→∆k−1/Fk ≅◇d−1,

such that each ∆i is a (d − 1)-dimensional flag PL-sphere, and lk∆i−1(Fi) ≅ ◇d−3, for
every 1 ≤ i ≤ k.

The implication “(ii)⇒(i)” follows easily from the well-known fact that the γ1 = γ2 = 0 for the
boundary of any cross-polytope combined with the following relation between the γ-vectors
of ∆ and of an edge contraction ∆/F :

(13) γ2(∆) = γ2(∆/F ) + γ1(lk∆(F )).

The remaining implication has been proven for the subclass of (dual complexes) of flag
nestohedra (see [LN16, Section 6] and [Vol10]) and has been tested computationally by Lutz
and Nevo [LN16, Section 6], but is open in general.
In the following, we show that the boundary complexes of the symmetric edge polytopes of
the graphs K2,n−2 and Gn admit a triangulation satisfying (i) and (ii) above. We start by
fixing labelings on K2,n−2 and Gn. We label the vertices of K2,n−2 and Gn so that E(K2,n−2) =

{1,2}×{3, . . . , n} and E(Gn) = E(K2,n−2)∪{12}. Let further < be a total order on the edges
of both graphs such that 2n < 2(n − 1) < ⋅ ⋅ ⋅ < 23 are the smallest edges and let ∆K2,n−2

and ∆Gn be the corresponding unimodular triangulations of ∂PK2,n−2 and ∂PGn , respectively,
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provided by Lemma 2.1. The 6n2 − 28n+ 34 edges of ∆K2,n−2 and the 6n2 − 24n+ 24 edges of
∆Gn can then be listed as follows:

E(∆K2,n−2) ={±{ei,a, ei,b} ∶ 1 ≤ i ≤ 2,3 ≤ a < b ≤ n}∪

{±{e1,a, eb,2} ∶ 3 ≤ a ≠ b ≤ n}∪

{±{e1,a, e2,a} ∶ 3 ≤ a ≤ n}∪(14)

{±{e2,b, e1,a} ∶ 3 ≤ a < b ≤ n}∪

{±{e2,a, eb,2} ∶ 3 ≤ a < b ≤ n}∪

{±{e1,n, en,2}}.

E(∆Gn) ={±{ei,a, ei,b} ∶ 1 ≤ i ≤ 2,3 ≤ a < b ≤ n}∪

{±{e1,a, eb,2} ∶ 3 ≤ a ≠ b ≤ n}∪

{±{e1,a, e2,a} ∶ 3 ≤ a ≤ n}∪(15)

{±{e2,b, e1,a} ∶ 3 ≤ a < b ≤ n}∪

{±{e2,a, eb,2} ∶ 3 ≤ a < b ≤ n}∪

{±{e1,2, e1,a},±{e1,2, ea,2} ∶ 3 ≤ a ≤ n}.

In particular, we get that E(∆K2,n−2) ∖E(∆Gn) = {±{e1,n, en,2}}, and the only edges of ∆Gn

that are non-edges of ∆K2,n−2 are those containing e1,2 or e2,1.

Lemma 4.2. For every n ≥ 3 we have:

(i) ∆K2,n−2 ≅ ⟨e2,n, en,2⟩ ∗∆Gn−1,
(ii) (∆Gn/{e1,2, e1,n})/{e2,1, en,1} ≅ ∆K2,n−2.

Observe that {e1,2, e1,n} is an edge of ∆Gn and {e2,1, en,1} is an edge of ∆Gn/{e1,2, e1,n}. Hence
it makes sense to consider the corresponding edge contractions in (ii).

Proof. To prove (i) we first note that, since by Lemma 2.1 both complexes involved in the
statement are flag spheres, it suffices to provide an isomorphism between the 1-skeleta of the
corresponding complexes. For this aim, let ϕ ∶ ∆K2,n−2 → ⟨e2,n, en,2⟩ ∗∆Gn−1 be the simplicial
map induced by ϕ(±e1,n) = ±e1,2 and ϕ(e) = e for any other vertex e ∈ ∆K2,n−2 . By comparing
(14) and (15), it is easily seen that ϕ is a simplicial isomorphism between the 1-skeleta of
∆K2,n−2 and ⟨e2,n, en,2⟩ ∗∆Gn−1 .
To show (ii), observe that by Lemma 2.1 ∆K2,n−2 and ∆Gn are flag simplicial complexes. We
first show that so is (∆Gn/{e1,2, e1,n})/{e2,1, en,1}. For this it is enough to show that {e1,2, e1,n}

and {e2,1, en,1} are not contained in any induced subcomplex of ∆Gn and ∆Gn/{e1,2, e1,n},
respectively, that is isomorphic to a 4-cycle (see [LN16, proof of Corollary 6.2]). If, by contra-
diction, such a subcomplex exists in ∆Gn , then it has to contain the vertex e2,n (respectively,
en,2) since e2,n (respectively, en,2) is the only vertex lying in an edge with e1,n but not e1,2 (re-
spectively, vice versa). As {e2,n, en,2} is not an edge of ∆Gn , such a subcomplex cannot exist.
The same reasoning shows the corresponding statement for ∆Gn/{e1,2, e1,n} and {e2,1, en,1}.
In particular, it follows that (∆Gn/{e1,2, e1,n})/{e2,1, en,1} is flag. We consider the simplicial
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map ξ ∶ (∆Gn/{e1,2, e1,n})/{e2,1, en,1} → ∆K2,n−2 , defined by ξ(±e1,2) = ±e1,n and ξ(e) = e for
any other vertex of (∆Gn/{e1,2, e1,n})/{e2,1, en,1}. Using (14), (15) and the definition of edge
contraction it is easy to check that ξ induces a simplicial isomorphism between the 1-skeleta
of (∆Gn/{e1,2, e1,n})/{e2,1, en,1} and ∆K2,n−2 , which shows the claim. �

We record here an explicit computation that will come in handy in the proof of Theorem 4.4
below.

Example 4.3. Consider the graphs K4 and G4 (with the labeling described previously) and
order their edges so that 34 < 24 < 23 < 14 < 13 < 12. Let ∆K4 and ∆G4 be the respective
(flag) unimodular triangulations of ∂PK4 and ∂PG4 induced by this choice.
Consider the sequence of edge contractions

∆K4 =∶ ∆0 →∆1 ∶= (∆K4/{e1,4, e3,4})→∆2 ∶= (∆K4/{e1,4, e3,4})/{e4,1, e4,3}.

One can check that ∆1 and ∆2 are flag spheres and, since ∆0 is 2-dimensional, both
lk∆0({e1,4, e3,4}) and lk∆1({e4,1, e4,3}) consist of two vertices. We claim that ∆2 is isomorphic
to ∆G4 : since both complexes are flag, this can be verified by exhibiting a simplicial map
between ∆2 and ∆G4 which is an isomorphism on the 1-skeleta. The map ϕ∶∆2 → ∆G4 de-
fined by ϕ(±e1,2) = ±e1,3, ϕ(±e1,3) = ±e2,3, ϕ(±e1,4) = ±e4,2, ϕ(±e2,3) = ±e2,1, ϕ(±e2,4) = ±e4,1

gives the desired result.

We can now state the main result of this section.

Theorem 4.4. Let G be a connected graph on n ≥ 5 vertices. Then γ2(PG) = 0 if and only
if there exist a flag unimodular triangulation ∆G of ∂PG and a sequence of edge contractions
∆G =∶ ∆0 →∆1 ∶= ∆0/F1 →∆2 ∶= ∆1/F2 → ⋯→∆2k ∶= ∆2k−1/Fk such that

(i) ∆i is a flag sphere for every 0 ≤ i ≤ 2k;
(ii) ∆2k ≅◇n−2;

(iii) lk∆i−1(Fi) ≅◇n−4 for every 1 ≤ i ≤ 2k.

Moreover, if the conditions above are met, for every 0 ≤ i ≤ k the complex ∆2i is a unimodular
triangulation of the boundary of some symmetric edge polytope.

Proof. The validity of the “if”-part has already been observed for general flag PL-spheres at
the beginning of this section.
For the other direction assume first that G is 2-connected. By Theorem 3.11 we know that
γ2(PG) = 0 if and only if either G ≅ K2,n−2 or G ≅ Gn. Iteratively applying Lemma 4.2 and
recalling that (∆ ∗ Γ)/F = ∆ ∗ (Γ/F ) whenever F is a face of Γ, we obtain the following
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chain of edge contractions and isomorphisms:

∆Gn = ∆0 →∆1 = (∆Gn/{e1,2, e1,n})→∆2 = (∆Gn/{e1,2, e1,n})/{e2,1, en,1}

(ii)
≅ ∆K2,n−2

(i)
≅ = ⟨e2,n, en,2⟩ ∗∆Gn−1

→∆3 = ⟨e2,n, en,2⟩ ∗ (∆Gn−1/{e1,2, e1,n−1})

→∆4 = ⟨e2,n, en,2⟩ ∗ (∆Gn−1/{e1,2, e1,n−1})/{e2,1, en−1,1}

(ii)
≅ ⟨e2,n, en,2⟩ ∗∆K2,n−3

(i)
≅ ⟨e2,n, en,2⟩ ∗ ⟨e2,n−1, en−1,2⟩ ∗∆Gn−2

⋮

∆2n

(ii)
≅ ⟨e2,n, en,2⟩ ∗⋯ ∗ ⟨e2,4, e4,2⟩ ∗∆K2,1 ≅◇n−2,

where the last isomorphism holds as ∆K2,1 ≅ ◇1, and the (n − 3)-fold suspension over ◇1 is
isomorphic to ◇n−2. It follows from Lemma 4.2 that all complexes in this sequence are flag.
Moreover, the proof of Lemma 4.2 (ii) shows that the links of the contracted edges need to
satisfy the link condition, implying that all complexes in the sequence are triangulations of
spheres (see [LN16, Section 6] and [Nev07]). Since the link of a simplex in a flag sphere
is again a flag sphere, and γ1 ≥ 0 for all flag spheres [Gal05, Mes03], a double application
of (13) together with Theorem 3.11 implies that γ1 = 0 for every link of an edge that is
contracted. As the only flag spheres with γ1 = 0 are the boundaries of cross-polytopes (see
[Gal05, Mes03]), (iii) follows.
The “Moreover”-statement follows from the above sequence of contractions and the fact that
adding a leaf to a graph corresponds to taking the suspension of the corresponding symmetric
edge polytope.
Finally, assume G is not 2-connected. Let G = H1 ∪ ⋯ ∪ Hk be its decomposition in the
2-connected components Hi. Then ∆G = ∆H1 ∗ ⋯ ∗∆Hk . Corollary 3.12 implies that there
exists at most one i such that Hi is not a single edge. If all Hi are edges, then PG is a cross-
polytope and there is nothing to show in this case. Otherwise, without loss of generality, we
can assume that H1 is not an edge. It follows from the above proof and Example 4.3 that
H1 admits edge contractions as required. As all PHi are line segments for any 2 ≤ i ≤ k and
since edge contractions and taking links commute with taking joins, the claim follows. �

5. Symmetric edge polytopes for Erdős-Rényi random graphs

In this section, we consider symmetric edge polytopes for random graphs generated by the
Erdős-Rényi model. The ultimate goal is to prove Theorem B. We try to keep this section self-
contained and tailored for a reader without much knowledge of random graphs. However, we
recommend [AS16, Bol01] and [FK16] for more background on Erdős-Rényi random graphs.

5.1. Edges and cycles in Erdős-Rényi graphs. We write G(n, p) for the Erdős-Rényi
probability model of random graphs on vertex set [n], where edges are chosen independently
with probability p ∈ [0,1]. Usually, p ∶ N → [0,1] is a function depending on n that tends
to 0 at some rate as n goes to infinity. For ease of notation we mostly just write p. We
will say that a graph property A, i.e., a family of graphs closed under isomorphism, holds
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asymptotically almost surely (a.a.s. for short) or with high probability if the probability that
G ∈ G(n, p) has property A tends to 1 as n goes to infinity, i.e.,

lim
n→∞

P(G ∈ A) = 1 for G ∈ G(n, p).

In the following, given G ∈ G(n, p), we will consider the symmetric edge polytope PG of G.
It follows from (21) and Lemma 2.1 that the γ-vector of PG is independent of the vertex and
edge labels of G and hence, in particular, properties as γ(PG) being nonnegative or exhibiting
a certain growth are graph properties as defined above. For the study of γk(PG), the key idea
is that its growth is governed by the number of cycles of length at most 2k in G. Therefore,
we will take a detour through studying the number of cycles of length smaller than or equal
to 2k in G for G ∈ G(n, p). Most of the results we need can be found somewhere in the
literature (most often in more general form) and are probably well-known to the stochastics
community. However, since we do not assume the typical reader of this article to be entirely
familiar with this topic, we include proofs of most of the needed statements to keep this
article as self-contained as possible.
We start by considering the number XE(G) of edges of G ∈ G(n, p). This random variable
is highly concentrated around its expectation.

Lemma 5.1. (i) E(XE) = (
n
2
)p,

(ii) Var(XE) = (
n
2
)(p − p2),

(iii) limn→∞ P(∣XE−E(XE)∣ ≤ AE(XE)) = 1 for any A ∈ R>0 and p(n) = n−β with 0 ≤ β ≤ 1.

Proof. (i) and (ii) follow from an easy computation. For (iii) Chebyshev’s inequality implies

P(∣XE −E(XE)∣ > AE(XE)) ≤
Var(XE)

A2E(XE)
2
=

p − p2

A2(
n
2
)p2

≤
1

Bn2−β ,

where B ∈ R is a positive constant. Since β ≤ 1, the above expression tends to 0 as n goes to
infinity, which shows the claim. �

For G ∈ G(n, p) and k ∈ N we denote by Xk(G) and X(G) the number of k-cycles and cycles
of any length in G, respectively. Moreover, based on the following lemma (see e.g. [FK16,
Theorem 5.3]) we will divide our study of γ`(PG), where G ∈ G(n, p), into two cases.

Lemma 5.2. Let k ≥ 3 and let G ∈ G(n, p). Then

lim
n→∞

P(Xk > 0) = {
0 if limn→∞ np(n) = 0

1 if limn→∞ np(n) =∞.
.

In the following sections, we will distinguish between

● the subcritical regime, i.e., limn→∞ np(n) = 0,
● the supercritical regime, i.e., limn→∞ np(n) =∞.

5.2. The subcritical regime. We start by proving a strengthening of Lemma 5.2.

Lemma 5.3. Let p(n) be such that limn→∞ np(n) = 0. Then

lim
n→∞

P(X > 0) = 0.
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Proof. By Markov’s inequality we have

(16) P(X ≥ 1) ≤ E(X).

For an `-cycle C in Kn, let XC be the indicator variable on G(n, p) with XC(G) = 1 if C ⊆ G
and XC(G) = 0, otherwise. Then E(XC) = P(XC = 1) = p` and since there are (

n
`
) ways to

choose ` vertices in Kn out of which (`−1)!
2 different cycles can be built, we conclude

(17) E(X`) = (
n

`
)
(` − 1)!

2
p`.

Using the linearity of expectation and (16), we further obtain

P(X > 0) ≤
n

∑
`=3

E(X`) =
n

∑
`=3

(
n

`
)
(` − 1)!

2
p` ≤

1

2

n

∑
`=3

(pn)`

`
≤

1

2

∞
∑
`=1

(pn)`

`

As limn→∞ np(n) = 0, we have 0 < np(n) < 1 for n large enough and hence the above series is
convergent and equals − ln(1 − pn). Taking the limit we obtain

lim
n→∞

P(X > 0) ≤ lim
n→∞

− ln(1 − pn) = − ln(1) = 0.

�

The next theorem describes the behavior of the γ-vector in the subcritical regime.

Theorem 5.4. Let p(n) be such that limn→∞ np(n) = 0. Then

lim
n→∞

P(γk = 0 for all k ≥ 1) = 1.

Proof. Lemma 5.3 implies that a.a.s. G ∈ G(n, p) is a forest. As the γ-vector of the symmetric
edge polytope of a forest equals (1,0, . . . ,0), the claim follows. �

Remark 5.5. We want to point out that Lemma 5.3 implies that, in the subcritical regime,
a.a.s. the symmetric edge polytope is a free sum of cross-polytopes, the number of summands
being the number of components of the graph, and as such a cross-polytope itself.

5.3. The supercritical regime. We now consider the situation where limn→∞ np(n) =∞.
We start by computing the variance of the number Xk of k-cycles.

Proposition 5.6. Let p(n) be such that limn→∞ np(n) = ∞. For k ∈ N, k ≥ 3 and n large
enough we have

Var(Xk) ≤ A ⋅E(Xk)
2 ⋅ (np(n))−1,

where A ∈ R is a positive constant.

We include a proof as a service to the reader.

Proof. We need to compute Var(Xk) = E(X2
k) − E(Xk)

2. As in the proof of Lemma 5.3, for
a k-cycle C ⊆ Kn, we denote by XC the corresponding indicator variable. Moreover, we use
H to denote the set of all k-cycles in Kn. By linearity of expectation, it follows that

(18) E(X2
k) = ∑

C,C′∈H
E(XC ⋅XC′) = ∑

C,C′∈H
p2k−∣E(C∩C′)∣ ≤ ∑

C,C′∈H
p2k−∣V (C∩C′)∣,
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where for the last inequality we use that C∩C ′ is a subgraph of a cycle and hence ∣E(C∩C ′)∣ ≤

∣V (C ∩C ′)∣. For 0 ≤ ` ≤ k we set H` = {(C,C ′) ∈ H2 ∶ ∣V (C ∩C ′)∣ = `}. If (C,C ′) ∈ H0, the
random variables XC and XC′ are independent and we have

∑
(C,C′)∈H0

P(C ∪C ′ ⊆ G) = ∑
(C,C′)∈H0

P(C ⊆ G)P(C ′ ⊆ G)

≤(∑
C∈H

P(C ⊆ G))(∑
C∈H

P(C ⊆ G)) = E(Xk)
2.

For ` ≥ 1 a simple counting argument shows that

∣H`∣ = (
n

k
)
(k − 1)!

2
(
k

`
)(
n − k

k − `
)
(k − 1)!

2
.

This together with (18) yields

E(X2
k) ≤ E(Xk)

2 +
k

∑
`=1

(
n

k
)
(k − 1)!

2
(
k

`
)(
n − k

k − `
)
(k − 1)!

2
p2k−`

= E(Xk)
2 + (

n

k
)
(k − 1)!

2
pk

k

∑
`=1

(
k

`
)(
n − k

k − `
)
(k − 1)!

2
pk−`

≤ E(Xk)
2 +E(Xk)

k

∑
`=1

A1,`(
k

`
)nk−`

(k − 1)!

2
n`pk(np)−`

≤ E(Xk)
2 +E(Xk)

k

∑
`=1

A2,`(
k

`
)(
n

k
)
(k − 1)!

2
pk(np)−`

= E(Xk)
2 +E(Xk)

k

∑
`=1

A2,`(
k

`
)E(Xk)(np)

−`

= E(Xk)
2 +E(Xk)

2
k

∑
`=1

A2,`(
k

`
)(np)−`,

where A1,`,A2,` ∈ R are positive constants. If limn→∞ np(n) = ∞, then (np)−` ≤ (np)−1 for
large n and hence

E(X2
k) ≤ E(Xk)

2 +E(Xk)
2
k

∑
`=1

A2,`(
k

`
)(np)−1 = E(Xk)

2 +E(Xk)
2 ⋅A ⋅ (np)−1

for large n, where A = ∑
k
`=1A2,`(

k
`
). The claim now follows from the definition of the variance.

�

Using Chebyshev’s inequality, Proposition 5.6 implies the following concentration inequalities
for Xk.

Corollary 5.7. Let p(n) be such that limn→∞ np(n) =∞. For k ∈ N, k ≥ 3 and A ∈ R>0 we
have

lim
n→∞

P(∣Xk −E(Xk)∣ ≤ AE(Xk)) = 1.

In the following, we assume that p(n) = n−β for some 0 < β < 1. Using Corollary 5.7 we show
different concentration inequalities which are more convenient for our purposes.
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Lemma 5.8. Let 0 < β < 1, p(n) = n−β, α = min(1
2 ,

β
2−β ) and k ∈ N, k ≥ 3. Then for A ∈ R>0

large enough we have that

lim
n→∞

P(
1

2
E(X`) ≤X` ≤ AE(XE)

⌈`/2⌉−α for all 3 ≤ ` ≤ k) = 1.

Proof. We note that it suffices to show the existence of some constant A satisfying the
claimed statement, since then every A′ ≥ A satisfies it as well.
By (17) and Lemma 5.1, for n large enough, it holds that

E(X2`) ≤A1 ((
n

2
)p)

`

p` = A1E(XE)
`(n2−β)

−β`
2−β

≤A2E(XE)
` ((

n

2
)p)

−β`
2−β

≤ A2E(XE)
` ⋅E(XE)

−β
2−β ≤ A2E(XE)

`−α,

where for the last two inequalities we use that E(XE) ≥ 1 for n large enough and A1,A2 ∈ R
are positive constants. This yields for A ∈ R>0 and n large enough

P(X2` < (1 +A)E(X2`)) ≤ P(X2` < (1 +A)A2E(XE)
`−α).

Setting A3 = (1 +A)A2 we infer from Corollary 5.7 that limn→∞ P(X2` < A3E(XE)
`−α) = 1.

Since, again by Corollary 5.7,

lim
n→∞

P(X2` <
1

2
E(X2`)) ≤ lim

n→∞
P(∣X2` −E(X2`)∣ >

1

2
E(X2`)) = 0,

we obtain

(19) lim
n→∞

P(X2` <
1

2
E(X2`) or X2` > A3E(XE)

`−α) = 0.

For odd cycles, a similar computation as for even cycles shows that for n large enough

E(X2`−1) ≤ A4 ⋅E(XE)
`− 1

2 ⋅ n−β`+
1
2
β ≤ A4 ⋅E(XE)

`− 1
2 ≤ A4 ⋅E(XE)

`−α,

where A4 ∈ R is a positive constant and for the last inequality we use that E(XE) ≥ 1 for n
large enough. Almost the same argument as for even cycles implies that

(20) lim
n→∞

P(X2`−1 <
1

2
E(X2`−1) or X2`−1 > A4E(XE)

`−α) = 0.

Combining (19) and (20) we finally get

lim
n→∞

P(
1

2
E(X`) ≤X` ≤ AE(XE)

⌈`/2⌉−α for all 3 ≤ ` ≤ k)

≥ 1 −
k

∑
`=3

lim
n→∞

P(X` <
1

2
E(X`) or X` > AE(XE)

⌈ `
2
⌉−α) = 1,

where A is taken as the maximal constant appearing in (19) and (20) for 3 ≤ ` ≤ k. �

To get information about the γ-vector of the symmetric edge polytope of a random graph
G ∈ G(n, p) we want to use Lemma 2.1. The first part of our strategy consists in turning
the concentration inequalities of Lemma 5.8 into concentration inequalities for the number
of non-faces and faces of bounded cardinality. In a second step, we use the latter to infer
concentration inequalities for the γ-vector up to a fixed entry. We now make this idea
more precise. Given a graph G on n vertices, we let ∆G be a unimodular triangulation
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of ∂PG as described in Lemma 2.1. Since PG is reflexive and ∆G is unimodular, we have
h∗j (PG) = hj(∆G) for every j. Using the symmetry of h(∆G) and the definition of the
γ-vector we further know that

⌊dimPG
2

⌋

∑
i=0

γi(PG)t
i(t + 1)dimPG−2i =

dimPG
∑
j=0

h∗j (PG)t
dimPG−j.

The usual relation between the f - and h-vector of a simplicial complex together with the
substitution of t by t + 1 implies

dimPG
∑
j=0

fj−1(∆G)t
dimPG−j =

⌊dimPG
2

⌋

∑
i=0

γi(PG)(t + 1)i(t + 2)dimPG−2i.

In particular, evaluating the coefficient of tdimPG−k (and truncating the right hand side at
i = k) yields that

(21) γk(PG) = fk−1(∆G) − [tdimPG−k]
k−1

∑
i=0

γi(PG)(t + 1)i(t + 2)dimPG−2i.

In order to be able to make sense out of (21), we need to know what the dimension of PG is
for “most” Erdős-Rényi graphs G ∈ G(n, p) in the supercritical regime. Denoting by XdimP
the corresponding random variable, we have:

Lemma 5.9. Let 0 < β < 1, p(n) = n−β. Then, for G ∈ G(n, p), we have

lim
n→∞

P(XdimP = n − 1) = 1.

Proof. Since for any graph G on n vertices dimPG = n − 1 if and only if G is connected, the

result follows e.g. from [FK16, Theorem 4.1] using the fact that n−β grows faster than log(n)
n

for any 0 < β < 1. �

In order to use (21) to show concentration inequalities for the γ-vector of PG, we need
to study the random variables fk−1 or equivalently the number of non-faces of ∆G. For
G ∈ G(n, p) we denote by nk−1(G) the number of (k − 1)-dimensional non-faces of ∆G that
do not contain antipodal vertices. Note that n1(G) equals the number of bad pairs of G as
in Section 3.

Theorem 5.10. Let 0 < β < 1, p(n) = n−β, α = min(1
2 ,

β
2−β ) and k ∈ N, k ≥ 1. Then for

B ∈ R>0 large enough we have

lim
n→∞

P(n`−1 ≤ BE(XE)
`−α for all 2 ≤ ` ≤ k + 1) = 1.

Proof. As in the proof of Lemma 5.8, it suffices to show the existence of some constant B
satisfying the claimed statement.
Let G ∈ G(n, p) and let 2 ≤ ` ≤ k +1. On the one hand, any (`−1)-non-face of ∆G contains a
minimal (not necessarily unique) r-non-face of ∆G for some 1 ≤ r ≤ `−1. On the other hand,
any such minimal r-non-face of ∆G can be extended to an (` − 1)-non-face of ∆G by adding
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` − 1 − r non-antipodal vertices to it, for which there are (
XE(G)−(r+1)

`−1−r ) ⋅ 2`−1−r possibilities.
Hence, denoting by Nr(G) the number of minimal r-non-faces of ∆G, we conclude

n`−1(G) ≤
`−1

∑
r=1

(
XE(G) − (r + 1)

` − 1 − r
) ⋅ 2`−1−r ⋅Nr(G) ≤

`

∑
r=2

Br,`XE(G)`−rNr−1(G),

where Br,` ∈ R are positive constants. Let A1 ∈ R such that Lemma 5.8 holds. As, by

Lemma 2.1, for G ∈ G(n, p) we have Nr−1(G) ≤ 2 ⋅ (2r−1
r

)(X2r(G)+X2r−1(G)), it follows that

P(Nr−1 ≤ 4 ⋅ (
2r − 1

r
) ⋅A1 ⋅E(XE)

r−α) ≥ P (X2r ≤ A1E(XE)
r−α and X2r−1 ≤ A1E(XE)

r−α)

and by the choice of A1 we have limn→∞ P(Nr−1 ≤ 4 ⋅ (2r−1
r

) ⋅ A1 ⋅ E(XE)
r−α) = 1. As, by

Lemma 5.1 (iii), we also have limn→∞ P(XE ≤ (1 + A2)E(XE)) = 1 for any A2 ∈ R>0, we
conclude that a.a.s. it holds that

n`−1 ≤
`

∑
r=2

Br,`(1 +A2)
`−rE(XE)

`−r ⋅ 4 ⋅ (
2r − 1

r
) ⋅A1 ⋅E(XE)

r−α

=(
`

∑
r=2

Br,`(1 +A2)
`−r ⋅ 4 ⋅ (

2r − 1

r
) ⋅A1)E(XE)

`−α = B ⋅E(XE)
`−α

with B = ∑
`
r=2Br,`(1 +A2)

`−r ⋅ 4 ⋅ (2r−1
r

) ⋅A1. The claim follows. �

For G ∈ G(n, p) we denote by fk−1(G) the number of (k−1)-faces of ∆G. From Theorem 5.10
we can deduce concentration inequalities for these random variables.

Theorem 5.11. Let 0 < β < 1, p(n) = n−β, α = min(1
2 ,

β
2−β ) and k ∈ N, k ≥ 1. Then, for ε > 0

and B ∈ R>0 large enough, we have

lim
n→∞

P(2`−ε(
E(XE)

`
) −BE(XE)

`−α ≤ f`−1 ≤ 2`+ε(
E(XE)

`
) for all 1 ≤ ` ≤ k) = 1.

In particular,

(22) lim
n→∞

P (f`−1 ∈ Θ(n(2−β)`) for all 1 ≤ ` ≤ k) = 1.

Proof. The statement trivially holds for k = 1 since f0 = 2XE. Let k ≥ 2 and 1 ≤ ` ≤ k. For
G ∈ G(n, p) we have

f`−1(G) = 2`(
XE(G)

`
) − n`−1(G).

Let 0 < A1 < 1 be such that (
(1−A1)E(XE)

`
) = 2−ε(E(XE)

`
).

It follows from Theorem 5.10 and Lemma 5.1 (iii) that for large enough B ∈ R>0

(23) lim
n→∞

P(f`−1 ≥ 2`−ε(
E(XE)

`
) −BE(XE)

`−α) = 1.

Finally, let A2 > 0 be such that (
(1+A2)E(XE)

`
) = 2ε(E(XE)

`
). As for G ∈ G(n, p) the triangulation

∆G is a subcomplex of a cross-polytope of dimension XE(G), we can bound f`−1(G) from

above by 2`(XE(G)
`

). Using Lemma 5.1 (iii) we conclude that

(24) lim
n→∞

P(f`−1 ≤ 2`+ε(
E(XE)

`
)) = 1.
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Combining (23) and (24) for any 1 ≤ ` ≤ k finishes the proof of the first statement.
For the “In particular”-part it suffices to note that, since E(XE) ∈ Θ(n2−β), the upper and
lower bounds for f`−1 both lie in Θ(n(2−β)`). �

We are now ready to state the main result of this subsection.

Theorem 5.12. Let 0 < β < 1, p(n) = n−β and k ∈ N. Then

lim
n→∞

P(γ` ∈ Θ(n(2−β)`) for all 0 ≤ ` ≤ k) = 1.

Proof. We show the statement by induction on k. Since γ0 = 1 is constant, the statement
holds for k = 0.
Now assume k ≥ 1. Since by the induction hypothesis we have

(25) lim
n→∞

P(γ` ≥ 0 for all 0 ≤ ` ≤ k − 1) = 1,

it follows from (21) that

(26) lim
n→∞

P(γ` ≤ f`−1 for all 0 ≤ ` ≤ k) = 1.

Thus, we have an upper bound for γ`, which a.a.s. lies in Θ(n(2−β)`) by (22). Combining
this upper bound with a more detailed analysis of (21) will enable us to prove that γ`
can be bounded asymptotically always surely by a lower bound that also lies in Θ(n(2−β)`).
Lemma 5.9 implies that XdimP = n − 1 a.a.s.; hence, by (26) and (21) we have a.a.s.

γ` ≥f`−1 − [tn−1−`]
`−1

∑
i=0

fi−1(t + 1)i(t + 2)n−1−2i(27)

=f`−1 −
`−1

∑
i=0

fi−1

⎛

⎝

n−1−`
∑

j=n−1−`−i
2n−1−2i−j(

i

n − 1 − ` − j
)(
n − 1 − 2i

j
)
⎞

⎠
.

Using Theorem 5.11 we conclude that for large enough B ∈ R>0 it holds a.a.s. that

γ` ≥ 2`−ε(
E(XE)

`
)−BE(XE)

`−α−
`−1

∑
i=0

2i+ε(
E(XE)

i
)
⎛

⎝

n−1−`
∑

j=n−1−`−i
2n−1−2i−j(

i

n − 1 − ` − j
)(
n − 1 − 2i

j
)
⎞

⎠
.

Since for n ≥ 2` + 1 one has n − 1 − ` − i ≥ n−1−2i
2 , the expression (

n−1−2i
j

) in the last sum is

maximal for j = n−1−`− i. As also 2n−1−2i−j is maximal in this case and (
i

n−1−`−j) ≤ (
`−1

⌊(`−1)/2⌋)

for 0 ≤ i ≤ ` − 1 and any j, it follows that a.a.s.

γ` ≥ 2`−ε(
E(XE)

`
) −BE(XE)

`−α − (
` − 1

⌊(` − 1)/2⌋
)
`−1

∑
i=0

2i+ε(
E(XE)

i
)(i + 1)2`−i(

n − 1 − 2i

n − 1 − ` − i
)

= 2`−ε(
E(XE)

`
) −BE(XE)

`−α − (
` − 1

⌊(` − 1)/2⌋
)
`−1

∑
i=0

2`+ε(
E(XE)

i
)(i + 1)(

n − 1 − 2i

` − i
).

Analysing the expressions in the last equation, we see that

2`−ε(
E(XE)

`
) −BE(XE)

`−α ∈ Θ(n(2−β)`)
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and

2`+ε(
E(XE)

i
)(i + 1)(

n − 1 − 2i

` − i
) ∈ Θ(n(2−β)i ⋅ n`−i) = Θ(ni+`−iβ).

As (2 − β)` > i + ` − iβ for ` > i, this implies

2`−ε(
E(XE)

`
) −BE(XE)

`−α −
`−1

∑
i=0

2`+ε(
E(XE)

i
)(i + 1)(

n − 1 − 2i

` − i
) ∈ Θ(n(2−β)`).

As a consequence we have found that γ` can a.a.s. be bounded from below by an expression in
Θ(n(2−β)`). Combining this with the previously shown upper bound completes the proof. �

Remark 5.13. It is natural to ask if the results for γk we obtained in the subcritical and
the supercritical regime (Theorems 5.4 and 5.12) can be extended to the critical regime, i.e.,
p(n) = c

n for a constant c > 0. Indeed, using that in this regime X` converges in distribution

to a Poisson distribution with mean and variance c`

2` (see e.g., [AS16, Theorem 10.1.1]), one
can show that X` is highly concentrated around its mean. More precisely,

lim
n→∞

P (∣X` −E(X`)∣ ≤ ω(n)) = 1

for any arbitrarily slowly increasing function ω ∶ N→ R. By similar arguments as in the proof
of Theorem 5.10, this gives rise to the following concentration inequality for the non-faces:

(28) lim
n→∞

P(n`−1 ≤ n
κE(n`−1)) = 1.

By the same method as in the proof of Theorem 5.11, one can show that

(29) lim
n→∞

P(f`−1 ∈ Θ(n`)) = 1.

Unfortunately, the arguments from the proof of Theorem 5.12 only allow us to bound the
double sum in the second row of (27) by an expression in Θ(n`). Hence, in order to be able to
turn (29) into concentration inequalities for γ`, different arguments or at least a more refined
analysis including the leading coefficients would be needed. It is reasonable to believe that,
analogously to the variety of behaviors of the largest component of an Erdős-Rényi graph
(see e.g. [AS16, Chapter 11]), one would also get different behaviors for γ` depending on
whether c < 1, c = 1 or c > 1. We leave this as an open problem.
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[BR07] Winfried Bruns and Tim Römer. h-vectors of Gorenstein polytopes. J. Combin. Theory Ser. A,
114(1):65–76, 2007.
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