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Abstract. We explore the positive geometry of statistical models in the setting of toric varieties. Our focus
lies on models for discrete data that are parameterized in terms of Cox coordinates. We develop
a geometric theory for computations in Bayesian statistics, such as evaluating marginal likelihood
integrals and sampling from posterior distributions. These are based on a tropical sampling method
for evaluating Feynman integrals in physics. We here extend that method from projective spaces to
arbitrary toric varieties.
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1. Introduction. Every projective toric variety X is a positive geometry [1]. Its canonical
differential form ΩX has poles on the toric boundary, and it encodes probability measures on
the positive part X>0. Our aim is to develop the geometry of Bayesian statistics in this toric
setting. We introduce parametric statistical models by mappingX>0 into a probability simplex
∆m. The probabilities are written in Cox coordinates onX.We shall use the canonical measure
on X>0 for marginal likelihood integrals and for sampling from the posterior distribution.

We begin with an example for the product of three projective lines X = P1×P1×P1. This
toric threefold has six Cox coordinates x0, x1, s0, s1, t0, t1. Each letter refers to homogeneous
coordinates on one of the three lines P1. We consider the model X>0 → ∆m parameterized by

(1.1) p` =
(
m

`

)
x0

x0 + x1

s`0s
m−`
1

(s0 + s1)m +
(
m

`

)
x1

x0 + x1

t`0t
m−`
1

(t0 + t1)m for ` = 0, 1, . . . ,m.

These expressions are rational functions on X, positive on X>0, and their sum equals 1. This is
the conditional independence model form binary random variables with 1 binary hidden state.
Algebraically, it represents symmetric 2×2× · · ·×2 tensors of nonnegative rank 2.

For an intuitive understanding, imagine a gambler who has three biased coins, one in each
hand, and one more to decide which hand to use. The latter coin has probabilities x0 and
x1 for tails and heads, and this decides whether the left hand coin (with bias s0, s1) or the
right hand coin (with bias t0, t1) is to be used. The gambler performs m coin tosses with the
chosen hand and records the number of heads. The probability of observing ` heads equals p`.
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A more familiar formula for this event arises by dehomogenizing via x1 = x, x0 = 1− x, etc:

(1.2) p` =
(
m

`

)[
(1− x)(1− s)`sm−` + x(1− t)`tm−`

]
for ` = 0, 1, . . . ,m.

As is customary in toric geometry, we identify the positive variety X>0 with the open cube
(0, 1)3, which is the space of dehomogenized parameters (x, s, t). At first glance, the passage
from (1.2) to (1.1) does not change much. It is a reparameterization of the model in ∆m =
Pm>0, which comprises positive Hankel matrices that are semidefinite and have rank ≤ 2. For
instance, for m = 4 coin tosses, these are the 3× 3 Hankel matrices shown in [8, Section 1]:12p0 3p1 2p2

3p1 2p2 3p3
2p2 3p3 12p4

 = 12
x0 + x1

 s2
1 t21

s0s1 t0t1
s2

0 t20


 x0

(s0+s1)4 0
0 x1

(t0+t1)4

(s2
1 s0s1 s2

0
t21 t0t1 t20

)
.

The key insight for what follows is that our toric 3-fold X has a canonical 3-form

(1.3) ΩX =
1∑
i=0

1∑
j=0

1∑
k=0

(−1)i+j+k dxi
xi
∧ dsj
sj
∧ dtk
tk
.

This gives (X,X>0) the structure of a positive geometry in the sense of [1]. The associated
representations of prior distributions on the parameter spaceX>0 offer novel tools for Bayesian
inference. For instance, suppose our prior belief about the parameters (x, s, t) in the coin model
(1.2) is the uniform distribution on the cube [0, 1]3. Its pullback to X equals

(1.4) Ωunif
X = x0x1s0s1t0t1

(x0 + x1)2(s0 + s1)2(t0 + t1)2 ΩX .

Statistics is about data. If our gambler performs the experiment U times, and ` heads
were observed u` times, then 1

U (u0, u1, . . . , um) ∈ ∆m is the empirical distribution. The
likelihood function is a rational function on the toric variety X, namely Lu = pu0

0 pu1
1 · · · pumm .

The posterior distribution is the product of this function times the prior distribution on X>0.
For the prior that is uniform on [0, 1]3 we take (1.4). The marginal likelihood integral equals

(1.5)
∫
X>0

pu0
0 pu1

1 · · · p
um
m Ωunif

X .

Two important tasks in Bayesian statistics [7] are evaluating the integral (1.5) and sampling
from the posterior distribution. See [10] and [15, Section 5.5] for points of entry from an
algebraic perspective. In this paper, we explore these tasks using toric and tropical geometry.

We shall study our statistical problem in the following algebraic framework. Let f and g
be homogeneous polynomials of the same degree in the Cox coordinates on an n-dimensional
toric variety X. We assume that all coefficients in f and g are positive real numbers, so the
rational function f/g has no zeros or poles on X>0. The integral of the n-form (f/g)ΩX over
the positive toric variety X>0 is a positive real number, or it diverges. Our aim is to compute
this number numerically. We focus on integrals of interest in Bayesian statistics.
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The main contribution of this article is a geometric theory of Monte Carlo sampling, based
on the positive geometry (X,X>0). A central role is played by the canonical form ΩX . The
approach was first introduced in [2] for Feynman integrals on projective space X = Pn.

Our presentation is organized as follows. Section 2 reviews the quotient construction of a
toric variety X from its Cox ring. The canonical form ΩX is defined in (2.5). We introduce
integrals of the form

∫
X>0

(f/g)ΩX , and we present a convergence criterion in Theorem 2.5.
In Section 3, we replace the rational function f/g in the integrand by its tropicalization.

The resulting piecewise monomial structure divides the positive toric variety X>0 into sectors.
Theorem 3.8 gives a formula for integrating over each sector, against the tropical probability
distribution on X>0. Algorithm 1 offers a method for sampling from that distribution. Al-
though we here focus on its use in Bayesian statistics, we stress that the method of replacing
densities by their tropical approximation is not custom-tailored for Bayesian purposes; the
idea is applicable and might be beneficial more widely in statistics.

In Section 4, we develop a tropical approximation scheme for the classical integral∫
X>0

(f/g)ΩX . We apply rejection sampling to draw from the density induced by f/g on X>0
with its canonical form ΩX . The runtime is analyzed in terms of the acceptance rate.

Section 5 is devoted to discrete statistical models whose parameter space is a simple
polytope P. Familiar instances are linear models, toric models, and their mixtures [15]. We
show how to pull back Bayesian priors from P to X>0 via the moment map. The push-forward
of ΩX to P gives rise to the Wachspress model whose states are the vertices of P. The section
concludes with a combinatorial analysis of the coin model in Equation (1.1).

In Section 6, we apply tropical integration and tropical sampling to data analysis in the
Bayesian setting. We focus on the statistical models from Section 5, but now lifted from P to
X>0. We present algorithms, along with their implementation, for computing marginal likeli-
hood integrals. Sampling from the posterior distribution is also discussed. Our software and
other supplementary material for this article is available at the repository website MathRepo [5]
of MPI MiS via the link https://mathrepo.mis.mpg.de/BayesianIntegrals .

2. Toric Varieties and their Canonical Forms. We review the set-up of toric geometry,
leading up to the integrals studied in this paper. For complete details on toric varieties we refer
to the textbook [4] and to the notes [17]. Let T be an n-dimensional complex algebraic torus
with character lattice M and co-character lattice N = HomZ(M,Z). Fixing an isomorphism
T ' (C∗)n corresponds to identifying M ' Zn and N ' Zn. We write χa for the character in
M corresponding to the lattice point a ∈ Zn and λv for the co-character in N corresponding
to v ∈ Zn. The pairing 〈·, ·〉 : N ×M → Z is given by 〈λv, χa〉 = χa ◦λv ∈ HomZ(C∗,C∗) ' Z.
In coordinates, this is the dot product 〈v, a〉 = v · a.

Fix a complete fan Σ in Rn = N ⊗Z R. The n-dimensional toric variety X = XΣ ⊃ T is
normal and complete. Write Σ(d) for the set of cones of dimension d in Σ, and k = |Σ(1)| for
the number of rays of Σ. Each ray ρ ∈ Σ(1) has a primitive ray generator vρ ∈ Zn, satisfying
ρ ∩ Zn = N · vρ. We collect the rays in the columns of the n × k matrix V = [v1 v2 · · · vk].
This matrix has more columns than rows, i.e., k > n, since Σ is complete.

The free group of torus-invariant Weil divisors on X is DivT (X) =
⊕

ρ Z · Dρ ' Zk. A
character χa ∈ M extends to a rational function on X with divisor div(χa) =

∑
ρ〈vi, a〉Dρ.

The transpose matrix V >, viewed as a map of lattices M → DivT (X) ' Zk, sends a character

https://mathrepo.mis.mpg.de/BayesianIntegrals/
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to its divisor. Two torus-invariant divisors D1, D2 ∈ DivT (X) are linearly equivalent if and
only if D1 −D2 = div(χa) for some character χa. Equivalently, there is an exact sequence

(2.1) 0 −→ M
V >−→ Zk −→ Cl(X) −→ 0.

The cokernel Cl(X) = Zk/imV > is the divisor class group of X. The Picard group Pic(X) ⊆
Cl(X) is the subgroup of Cartier divisors modulo linear equivalence. Applying the functor
HomZ(−,C∗) to (2.1), we obtain the following exact sequence of multiplicative abelian groups:

(2.2) 1 −→ G −→ (C∗)k −→ (C∗)n −→ 1.

The group G = HomZ(Cl(X),C∗) is reductive: it is a quasi-torus of dimension k − n.
We will now recall the definition of the Cox ring of X. Consider the polynomial ring

S = C[x1, . . . , xk], with one variable xρ for each divisor Dρ, ρ ∈ Σ(1). The sequence (2.1)
defines a grading of S by the group Cl(X), and the sequence (2.2) gives the associated quasi-
torus action by G on the affine space Spec(S) = Ck. The grading is as follows:

S =
⊕

γ∈Cl(X)
Sγ , where Sγ =

⊕
a :V >a+c≥0

C · xV >a+ c.

The vector c ∈ Zk is fixed. It represents any divisor Dc =
∑
ρ cρDρ such that [Dc] = γ. The

sum on the right is over all a ∈M such that the integer vector V >a+ c is nonnegative.
The toric variety X can be realized as a quotient (Ck\V(B))//G. The irrelevant ideal B/S

is generated by the squarefree monomials xσ̂ =
∏
ρ/∈σ xρ representing maximal cones, i.e.,

B = 〈xσ̂ | σ ∈ Σ(n) 〉.

The map (C∗)k → (C∗)n in (2.2) is constant on G-orbits. It is the restriction of the map
π : Ck\V(B) → X which presents X as the quotient above. The notation // indicates that
this is generally not a geometric quotient. However, it is if Σ is a simplicial fan. Under this
extra assumption, we write X = (Ck\V(B))/G and there is a one-to-one correspondence

{G-orbits in Ck\V(B)} 1:1←→ {points in X}.

The polynomial ring S, with its Cl(X)-grading and irrelevant ideal B, is the Cox ring of X.
The zero locus in Ck of a homogeneous polynomial f ∈ S is stable under the G-action.

Hence, the zero locus of f in X is well-defined. In fact, homogeneous ideals of S define
subschemes of X, and all subschemes arise in this way. If X is smooth, then the subschemes
of X are in one-to-one correspondence with the B-saturated homogeneous ideals of S.

If f, g ∈ S are homogeneous of the same degree and g 6= 0, the quotient f/g gives a rational
function onX, defined on the open subset π

(
(C∗)k \ (V(B) ∪ V(g))

)
via (f/g)(p) = f(x)/g(x)

where x is any point in the G-orbit π−1(p). In the rest of the paper, we will use homogeneous
rational functions of degree 0 in the fraction field of S to denote the corresponding rational
function on X. Similarly, meromorphic differential forms on X can be represented by rational
functions in Cox coordinates, as in (1.3) for X = P1 × P1 × P1. See also Remark 2.3.



BAYESIAN INTEGRALS ON TORIC VARIETIES 5

The material above may look overly formal to a novice. Yet, toric varieties X and their
Cox coordinates x1, . . . , xk are practical tools for applications, e.g., in the numerical solution
of polynomial equations [16]. The present paper extends the utility of the abstract setting
to numerical computing at the interface of statistics and physics [2, 14]. In applications, the
toric variety X is usually projective, i.e., Σ is the normal fan of a lattice polytope in Rn.

Example 2.1 (3-cube). Let n = 3, k = 6 and Σ the fan given by the eight orthants in R3.
Then X = P1 × P1 × P1, with Cox ring S = C[x0, x1, s0, s1, t0, t1], graded by Cl(X) = Z3.
The irrelevant ideal is B = 〈x0, x1〉 ∩ 〈s0, s1〉 ∩ 〈t0, t1〉 = 〈x0s0t0, x0s0t1, . . . , x1s1t1〉. We
represent X as the quotient of C6\V(B) modulo the action G = (C∗)3, as in the Introduction.
See [11, Example 6.2.7 (2)] for a detailed study of this example and its tropicalization.

Figure 1. This pentagon specifies the projective toric surface in Example 2.2.

Example 2.2 (Pentagon). Fix n = 2, k = 5, and the polygon in Figure 1. The rays of its
normal fan Σ are the inner normals to the edges. We write their generators in the matrix

(2.3) V =
(

1 1 −1 −1 0
0 −1 −1 1 1

)
.

We have G ' (C∗)3, since Cl(X) = Z5/imV > is isomorphic to Z3. The irrelevant ideal is

B = 〈x1x2x3, x2x3x4, x3x4x5, x4x5x1, x5x1x2〉 / S = C[x1, x2, x3, x4, x5].

The map (x1, . . . , x5) 7→(x1x2x
−1
3 x−1

4 , x−1
2 x−1

3 x4x5) represents X as the quotient (C5\V(B))/G.
We find it convenient to write the image of V > in Z5 as the kernel of another matrix, e.g.,

(2.4) W =

0 1 0 1 0
1 0 1 0 1
2 0 1 1 0

 .
The Z3-grading of S sends xi to the i-th column of W. The G-action on C5 is

x1 7→ t2t
2
3 x1, x2 7→ t1x2, x3 7→ t2t3x3, x4 7→ t1t3x4, x5 7→ t2x5.

If c ∈ Z5 then γ = Wc ∈ Z3 represents the class [Dc] ∈ Cl(X) of the divisor Dc on X.
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The positive orthant Rk>0 is disjoint from V(B) since B is a monomial ideal. We can
restrict the quotient map Ck\V(B)→ X to Rk>0. The image of this restriction is the positive
part X>0 of the toric variety X. The Euclidean closure of X>0 in X is denoted X≥0. If X is
projective with polytope P then the moment map gives a homeomorphism from X>0 onto P ◦.

Motivated by statistics (see Equation (1.5)), we wish to integrate meromorphic n-forms
with poles outside X>0 over the nonnegative part X≥0. We here describe an explicit repre-
sentation of such forms via the Cox ring S. For any n-element subset I ⊂ Σ(1), let det(VI)
denote the minor of V indexed by I. We define a meromorphic n-form on Ck as follows:

(2.5) ΩX =
∑

I⊂Σ(1), |I|=n
det(VI)

∧
ρ∈I

dxρ
xρ

.

This is the canonical form of the pair (X,X≥0), viewed as a positive geometry, as explained
by Arkani-Hamed, Bai, and Lam in [1, Sect. 5.6.2]. The canonical form ΩX is the pullback
under the quotient map π of the T -invariant n-form

∧n
j=1

dtj
tj
∈ Ωn

T (T ), where tj = χej are

coordinates on T. This follows from [4, Cor. 8.2.8] by observing that π∗(tj) =
∏k
i=1 x

〈vi,ej〉
ρ . By

homogeneity, ΩX can be viewed as a meromorphic form on X. We will use ΩX to denote this
form on Ck, onX, as well as its restriction toX>0 without mentioning the respective transition.

After scaling by a rational function, the canonical form ΩX defines a probability measure
on X>0. Given a rational function f/g on X, we are interested in the definite integral of the
differential form (f/g) ΩX over the positive toric variety X>0. In symbols, this equals

(2.6) I =
∫
X>0

f

g
ΩX .

The integrals I appear as Feynman integrals in physics. The article [2] introduces trop-
ical sampling for Feynman integrals over the projective space X = Pn. The present paper
generalizes that approach to the setting where X can be any toric variety.

Remark 2.3. The canonical form ΩX of a toric variety X is closely related to the canonical
sheaf ωX . Indeed, by the discussion following [4, Corollary 8.2.8], ωX is the sheaf of the cyclic
graded S-module generated by the n-form

(∏k
i=1 xi

)
ΩX . See also [3, Proposition 2.1].

We next explain how to understand and evaluate the integral (2.6). Let γ = deg(f) =
deg(g) ∈ Cl(X) be the class of the divisor Dc. The canonical isomorphism

Sγ =
⊕

a :V >a+c≥0
C · xV >a+ c '

⊕
a :V >a+c≥0

C · ta

represents dehomogenization. It sends f and g to Laurent polynomials f̂ and ĝ, respectively.
This is compatible with the quotient map π : Ck\V(B)→ X in the following way. The map

of tori π|(C∗)k : (C∗)k → T ⊂ X realizes the torus of X as a geometric quotient T ' (C∗)k/G.
Further restricting to the positive part gives T>0 ' X>0. Let φ : X>0 → T>0 denote this dif-
feomorphism. In Cox coordinates, φ is the monomial map given by the rows of V, see Exam-
ple 2.2. One checks easily that the functions (f/g) : X>0 → C and (f̂/ĝ) : T>0 → C satisfy
(f/g) = (f̂/ĝ)◦φ. Moreover, ΩX restricted to its dense torus is the form π∗

(∧n
j=1

dtj
tj

)
which,

in turn, uniquely determines ΩX . Those observations imply the following proposition.
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Proposition 2.4. The integral I in (2.6) equals a more familiar integral over the positive
orthant T>0 = Rn>0, namely

(2.7) I =
∫
T>0

f̂

ĝ

n∧
j=1

dtj
tj
.

We conclude Section 2 with a result on convergence. This 2.5 generalizes [2, Theorem 3].
Theorem 2.5. Suppose that the Newton polytope of the denominator g is n-dimensional and

contains that of the numerator f in its relative interior. Then the integral (2.6) converges.
Proof. We use the formulation in (2.7). By linearity of the integral, it suffices to consider

the case when f is a monomial. In that special case, our integral can be viewed as the Mellin
transform of the polynomial g. Hence the analysis by Nilsson and Passare in [12] applies here.
Their result is stated for integrals over T≥0 = Rn≥0, so we can use it for (2.7). The convergence
result then follows from [12, Theorem 1].

Remark 2.6. The hypothesis of Theorem 2.5 will be satisfied for the Bayesian integrals
that arise from our statistical models in Sections 5 and 6. An example is the integrand in (1.4).
The Newton polytope of the denominator is the standard 3-cube scaled by a factor of two.
Its unique interior lattice point is the Newton polytope of the monomial in the numerator.

In fact, it can be proven that the hypothesis of Theorem 2.5 is also necessary for the
convergence of (2.6) as long as the polynomials f and g have positive coefficients. Hence, we
can expect convergent statistical integrals over ratios of such polynomials to fulfill it.

3. Tropical Sampling. Our aim is to evaluate the integral I in (2.6) and (2.7). To this
end, we consider a tropicalized version of the integral. Following [2], we define the tropical
approximation of a polynomial f ∈ S = C[x1, . . . , xk] to be the piecewise monomial function

f tr : Rk>0 −→ R>0, x 7→ max
`∈supp(f)

x`.

This differs in two aspects from the textbook definition of tropicalization in [11]. First, we
adopt the max-convention. Second, we use monomials x` instead of linear forms 〈x, `〉. Thus
f tr is the exponential of the piecewise-linear convex function trop(f) usually derived from f .

If f ∈ S\{0} is homogeneous with positive coefficients, then the ratio f(x)/f tr(x) is a
well-defined function on Rk>0 ⊂ Ck\V(B) and is constant on G-orbits. It induces a function
X>0 → R>0, which takes x ∈ X>0 to f(x′)/f tr(x′) for any x′ ∈ π−1(x). Employing a slight
abuse of notation, the ratio f(x)/f tr(x) also denotes that function on X>0.

As a special case of [2, Theorems 8A and 8B], where also polynomials with negative or
complex coefficients are allowed, such functions are bounded above and below:

Proposition 3.1. Suppose that f(x) =
∑
`∈supp(f) f` x

` has positive coefficients, and set
C1 = min`∈supp(f) f` and C2 =

∑
`∈supp(f) f`. Then, we have

0 < C1 ≤
f(x)
f tr(x) ≤ C2 < ∞ for all x ∈ X>0.

We assume from now on that f and g are homogeneous polynomials in S, with positive
coefficients, of the same degree in Cl(X), and that the hypothesis of Theorem 2.5 is satisfied.
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Corollary 3.2. The following integral over the positive toric variety is finite:

(3.1) Itr =
∫
X>0

f tr

gtr ΩX .

Proof. The tropical function f tr/gtr is positive on X>0 and it is bounded above by a
constant times the classical function f/g. This follows by applying Proposition 3.1 to both f
and g. Since the integral over f/g is finite, so is the integral over f tr/gtr.

The function f tr/gtr is piecewise monomial on X>0. The pieces are the sectors to be
described below. The integral of each monomial over its sector is given in Theorem 3.8. The
value of Itr is the sum (3.6) of the sector integrals. Here is an illustration:

Example 3.3 (Classical integral versus tropical integral). We fix the projective line X = P1

with coordinates (x0 : x1). The following binary cubics satisfy our convergence hypotheses:

f = x2
0x1 and g = (x0 + x1)(x0 + 3x1)(5x0 + x1).

The corresponding tropical polynomial functions on the line segment X≥0 = P1
≥0 are

f tr = f = x2
0x1 and gtr =

{
x3

0 if x0 ≥ x1,

x3
1 if x0 ≤ x1.

The classical integral (2.6) equals 1
56(6 ln(3)− ln(5)) = 0.088968.... We find this on either chart

{x0 = 1} or {x1 = 1}. The tropical integral (3.1) evaluates to 1 + 1
2 = 3

2 . We integrate the two
monomials in f tr/gtr over the sectors {x0 ≥ x1} and {x0 ≤ x1}.

Since the tropical integral is easier to compute, we now rewrite (2.6) as

(3.2) I =
∫
X>0

f

g
ΩX = Itr ·

∫
X>0

h µtr
f,g ,

where
h = f · gtr

g · f tr and µtr
f,g = 1

Itr
f tr

gtr ΩX .

The function h is positive and bounded on X>0, again by Proposition 3.1. The differential
form µtr

f,g is nonnegative on X>0, and it integrates to 1. In symbols,∫
X>0

µtr
f,g = 1.

Viewed statistically, the following function is a probability density on X>0:

(3.3) d tr
f,g := 1

Itr
f tr

gtr .

This density is given in terms of Itr and the tropical approximations of f and g. For brevity,
we refer to d tr

f,g as the tropical density. In those terms, µtr
f,g = dtr

f,g ·ΩX is a probability measure
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on X>0 and the pair (X>0, µ
tr
f,g) is a probability space. For basic terminology from probability,

we refer to the textbook [13], and to the guided tours in [7, Chapter 1] and [15, Chapter 2].
If we can draw samples from the distribution defined by the tropical density, then we

can use Monte Carlo integration to estimate the integral (2.6). Furthermore, using rejection
sampling, we can also produce samples from the classical density df,g = 1

I
f
g on X>0, where

the value of the integral (2.6) plays the role of a normalization factor. We will describe these
computations in the next section. They play a fundamental role in Bayesian inference. For
an introduction to Bayesian statistics see [7].

In the remainder of this section, we present our tropical sampling algorithm, for sampling
from the probability distribution on X>0 that is given by the tropical density d tr

f,g. This
algorithm was introduced in [2] for the special case of projective space X = Pn, and it was
successfully applied to Feynman integrals. We here extend it to other toric varieties X.

The Newton polytopes N (f) and N (g) of the homogeneous polynomials f and g live in
Rk, but their dimension is at most n, since they lie in an affine translate of imR(V >) ' Rn. In
light of Theorem 2.5, we assume that N (g) has the maximal dimension n.We are interested in
the normal fan of the n-dimensional polytope N (f) +N (g) = N (fg), which lies in a different
affine translate of imR(V >). Its normal fan has the lineality space K := ker(V ) ' Rk−n, so
that fan can be seen as a pointed fan in Rk/K ' Rn. We fix a simplicial refinement F of this
normal fan. Each maximal cone of F is spanned by n linearly independent vectors, and the
union of these cones covers Rk/K. We alert the reader that there are now two different fans:
Σ is the fan of the toric variety X, whereas F comes from our polynomials f and g.

Example 3.4. In the application to Feynman integrals in [2], the polynomials f and g are
Symanzik polynomials. Their Newton polytopes are generalized permutohedra [2, Section 6].
For such integrals, we can take F to be the fan determined by the hyperplanes {xi = xj}. The
computational results in [2, Section 7.4] rely on this special combinatorial structure.

We now abbreviate ey = (ey1 , . . . , eyk), and we define the exponential map

(3.4) Exp : Rk/K → X>0 , [(y1, . . . , yk)] 7→ π(ey).

Here π : Ck\V(B)→ X is the quotient map from Section 2. The map Exp is well-defined since
the subspace K is mapped into the image of G under the homomorphism Rk → (C∗)k, y 7→ ey,
cf. the exact sequences (2.1) and (2.2).

Remark 3.5. The exponential map is an inverse to tropicalization. The coordinate-wise
logarithm map Rk>0 → Rk turns the multiplicative action of G into an additive action of K.
That is, it induces a map Log : X>0 → Rk/K. We refer to [11, Chapter 6] for details.

We continue to retain the hypotheses dim(N (g) ) = n and N (f) ⊆ relintN (g).
Lemma 3.6. For all nonzero elements y ∈ Rk/K, we have

(3.5) max
ν∈N (g)

y · ν − max
ν∈N (f)

y · ν > 0.

Proof. The left hand side of the inequality is well-defined modulo K, because both Newton
polytopes lie in the same affine translate of K. Suppose the two maxima are attained for
νf ∈ N (f) and νg ∈ N (g). If y · νg ≤ y · νf were to hold, then νf lies in both N (f) and the
boundary of N (g). This contradicts our hypothesis. We therefore have y · νg > y · νf .
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Lemma 3.7. Fix a cone σ in the simplicial fan F and consider any vertices νf and νg of
the corresponding faces of the Newton polytopes N (f) and N (g). Then

f tr(x)
gtr(x) = x−(νg−νf ) for all x ∈ Rk such that π(x) ∈ Exp(σ).

Proof. By definition of the normal fan, the two functions y 7→ maxν∈N (f) y · ν and
y 7→ maxν∈N (g) y · ν are linear on the cone σ. Let y ∈ σ satisfy Exp(y) = x. We have

log f tr(x) = log max
`∈supp(f)

x` = max
`∈supp(f)

` · y = max
ν∈N (f)

ν · y = νf · y.

Similarly, log gtr(x) = νg · y. Applying the exponential function yields the assertion.
To evaluate the integral (2.6), we use the factorization in (3.2). The first task is to evaluate

the tropical integral Itr. Since Exp is a bijection, we use the decomposition

(3.6) Itr =
∑

σ∈F(n)
Itr
σ where Itr

σ =
∫

Exp(σ)

f tr

gtr ΩX .

The positive toric variety X>0 is partitioned into the sectors Exp(σ). Each tropical integral
Itr
σ is the integral of a Laurent monomial of degree zero, namely x−δσ , where δσ = νg − νf .

The integral of x−δσ over all of X>0 diverges, but our set-up ensures that it converges on the
sector Exp(σ). We saw this for X = P1 in Example 3.3.

We next present a formula for the integral Itr
σ . We fix a matrix W = [w1 · · · wn] ∈ Rk×n

whose n column vectors w` generate the simplicial cone σ in Rk/K.
Theorem 3.8. The tropical sector integral in (3.6) is equal to

(3.7) Itr
σ = det(VW )∏n

`=1w` · δσ
.

Before proving (3.7), we comment on its interpretation. The columns w` of W are only
defined up to the equivalence in Rk/K. Still, the numerator is well-defined, because det(VW ) =
det(VW ′) for any choices of representatives in the matrix W ′ = [w′1 · · · w′n] with w′i = wi +λi
and λi ∈ K = kerV. As x−δσ has degree 0, we have δσ = νg − νf ∈ imR(V >) = K⊥. Thus,
the denominator does not depend on the choice of representative for w`. Similarly, the lengths
of the generators w` are irrelevant for the description of the cone. The quotient in (3.7) is
invariant under rescalings of a vector w` → ξw`, as the multiplier ξ, which factors out of the
determinant, cancels between the numerator and the denominator. The sign of the numerator
depends on the ordering of the vectors w` in W which is arbitrary a priori. We arrange
them in the matrix W so that the condition det(VW ) > 0 holds. Hence, the value of Itr

σ is
an invariant of the cone σ equipped with a positive orientation and the data V and δσ. By
Lemma 3.6, we have w` · δσ > 0 for all ` and hence 0 < Itr

σ <∞ for all σ.
Proof. From Lemma 3.7 and our discussion above, we know that

Itr
σ =

∫
Exp(σ)

x−δσ ΩX .
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We expand ΩX as in (2.5), and we change coordinates under the exponential map:

(3.8) Itr
σ =

∫
σ
e−y·δσ

∑
I⊂Σ(1),
|I|=n

det(VI)
∧
i∈I

dyi =
∑

I⊂Σ(1),
|I|=n

det(VI)
∫
σ
e−y·δσ

∧
i∈I

dyi.

On the right is the integral of the exponential of a linear form over a simplicial cone. Since σ
is the image of Rn>0 under the linear map given by the matrix WI , we obtain∫

σ
e−y·δσ

∧
i∈I

dyi = det(WI)∏n
`=1w` · δσ

.

The Cauchy–Binet formula det(VW ) =
∑
I det(VI) det(WI) now proves (3.7).

The next result generalizes [2, Lemma 17]. For an arbitrary kernel ψ, the sector integral
is transformed to the standard cube. Our proof technique is adapted from [2].

Proposition 3.9. For any bounded function ψ : X>0 → R, we have

(3.9)
∫

Exp(σ)

f tr

gtr ψ ΩX = Itr
σ ·

∫
[0,1]n

ψ(xσ(q)) dq1 ∧ · · · ∧ dqn,

where

(3.10) xσi (q) =
n∏
`=1

q
−(w`)i/(w`·δσ)
` for i = 1, 2, . . . , k.

In particular, the integral in (3.9) is finite for any cone σ ∈ F(n).
Proof. With the exponential map as in (3.8), the integral on the left equals

(3.11)
∑

I⊂Σ(1),
|I|=n

det(VI) ·
∫
σ
e−y·δσψ(Exp(y))

∧
ρ∈I

dyρ.

Using coordinates λ on Rn>0, and writing yi =
∑n
`=1 λ`(w`)i, the integral in (3.11) is

det(WI) ·
∫
Rn>0

e−(Wλ)·δσψ(Exp(Wλ))
n∏
`=1

dλ`.

We now transform the integral from Rn>0 to the cube [0, 1]n using the logarithm function.
Namely, we apply the transformation λ` = (w` · δσ)−1 log(q`) for ` = 1, . . . , n. This yields the
right hand side in (3.9). This last step uses the fact that w` · δσ > 0, which is known from
Lemma 3.6. Together with boundedness of ψ, this implies convergence.

Remark 3.10. The formula (3.10) is a parameterization of each sector by a standard cube:

xσ : [0, 1]n → Exp(σ), q 7→ xσ(q).

To digest the exponent in (3.10), note that the (i, `)-th entry of W is the ith entry (w`)i of
the vector w`, that δσ lies in K, and that the row vector δσ ·W has coordinates w` · δσ.
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We use the sector decomposition of X>0 given by the fan F to evaluate the integral (2.6).
Rewriting (2.6) as in (3.2), the parameterization Exp : Rk/K → X>0 gives

(3.12)
∫
X>0

f

g
ΩX =

∫
X>0

f tr

gtr hΩX =
∑

σ∈F(n)

∫
Exp(σ)

f tr

gtr hΩX .

Each integral on the right hand side is an integral over the cube by Proposition 3.9. These
integrals over [0, 1]n are suitable to be evaluated using black-box integration algorithms. We
implemented this in Julia, using the package Polymake.jl (v0.6.1) for polyhedral computa-
tions; see [6, 9] and [5]. Moreover, specializing to h = 1 in this representation of (2.6) gives a
method for computing the normalization factor Itr =

∑
σ∈F(n) Itr

σ in Equation (3.2).
Remark 3.11. The sector decomposition (3.12) gives an alternative proof of Theorem 2.5,

with no reference to [12]. It would be interesting to undertake a more detailed study of the
Mellin transform from a tropical perspective.

Proposition 3.9 also gives the desired algorithm to sample from the distribution in (3.2).
As input we need the simplicial fan F , where each maximal cone σ comes with the following
data: a generating set, the vector δσ that encodes the function f tr/gtr as in Lemma 3.7, and
the numbers Itr

σ in (3.7). Hence we also know Itr =
∑
σ∈F(n) Itr

σ .

Algorithm 1 (Sampling from the tropical density d tr
f,g).

Input: F(n), δσ, Itr
σ and Itr.

1. Draw an n-dimensional cone σ from F(n) with probability Itr
σ /Itr.

2. Draw a sample q from the unit hypercube [0, 1]n using the uniform distribution.
3. Compute xσ(q) ∈ Exp(σ) with xσ(q) as in Proposition 3.9.

Output: The element xσ(q) ∈ X>0, a sample from the probability space (X>0, µ
tr
f,g).

The vector δσ and the generators of σ enter in the definition of the function xσ(q) in step 3.
To show the correctness of Algorithm 1, consider any bounded test function ψ : X>0 → R. By
Proposition 3.9, the expected value of the function (σ, q) 7→ ψ(xσ(q)) on F(n)× [0, 1]n, where
σ and q are sampled by steps 1 and 2, is

∑
σ∈F(n)

Itr
σ

Itr

∫
[0,1]n

ψ(xσ(q)) dq1 ∧ · · · ∧ dqn = 1
Itr

∑
σ∈F(n)

∫
Exp(σ)

f tr(x)
gtr(x) ψ(x) ΩX .

We conclude from (3.2) that the sum on the right is equal to the desired expectation

Eµtr
f,g

[ψ] =
∫
X>0

ψ(x)µtr
f,g =

∫
X>0

ψ(x)d tr
f,gΩX = 1

Itr

∫
X>0

ψ(x)f
tr(x)
gtr(x) ΩX .

To run Algorithm 1 efficiently, we assume that the simplicial refinement F of the normal
fan of N (fg) has been precomputed offline. That computation can be time-consuming. In
the application to statistics, cf. Section 6, this is done only once for any fixed model. Step 1
in Algorithm 1 requires to sample from a finite set F(n) with a given probability distribution.
With some preprocessing (cf. [18]), this task can be performed in a runtime which is indepen-
dent of the cardinality of F(n). The runtime of the algorithm is therefore independent of the
size of the fan F , and it depends only linearly on the dimension n of X.
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4. Numerical Integration and Rejection Sampling. In the previous section, we computed
the tropical integral Itr and we explained how to sample from the tropical density. This will
now be utilized in a non-tropicalized context. The domain of integration is the positive toric
variety X>0. We denote by µf,g the measure

(4.1) µf,g := 1
I
f

g
ΩX , where I =

∫
X>0

f

g
ΩX .

We assume that f and g satisfy the convergence criteria from Theorem 2.5. Similarly to that
in Equation (3.3), the following function is a probability density on X>0:

(4.2) df,g := 1
I
· f
g
.

Note that µf,g = df,g ·ΩX . We regard (X>0, µf,g) as the classical version of the tropical prob-
ability space (X>0, µ

tr
f,g) which was introduced in Equation (3.2). The normalizing constant I

in (4.1) is the classical integral we saw in Equations (2.6) and (2.7). The classical and tropical
probability measures µf,g and µtr

f,g are related to each other by the formula

µf,g = Itr

I
· h · µtr

f,g.(4.3)

This section contains two novel contributions. We present a tropical Monte Carlo method
for numerically evaluating I, and we develop an algorithm for sampling from the density df,g
in (4.2). Applications to statistics appear in Sections 5 and 6.

We shall evaluate I using the formula in (3.2), by computing the expected value

Eµtr
f,g

[h] =
∫
X>0

hµtr
f,g(4.4)

with respect to the tropical measure µtr
f,g on the positive toric variety X>0.

Corollary 4.1. Suppose that Algorithm 1 is used to draw N i.i.d. samples x(1), . . . , x(N)

from the space X>0 with its tropical density. Then our integral (2.6) approximately equals

(4.5) I ≈ IN = Itr

N

N∑
i=1

h
(
x(i)

)
.

To assess the quality of this approximation, we first observe that Proposition 3.1 yields
bounds in terms of the coefficients f` and g` of the given polynomials. We have

(4.6) M1 ≤ h(x) ≤ M2 for all x ∈ X>0,

where

(4.7) M1 =
min`∈supp(f) f`∑

`∈supp(g) g`
and M2 =

∑
`∈supp(f) f`

min`∈supp(g) g`
.
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Proposition 4.2. The standard deviation of the approximation (4.5) satisfies

(4.8)
√
E[ (I − IN )2 ] ≤ Itr ·

√
M2

2 −M2
1

N
.

Proof. The expected value of the random variable IN from (4.5) equals I. By the linearity
of the variance for independent random variables, we have

E[(I − IN )2] = Var[IN ] =
(
I tr

N

)2

Var[h(x(1)) + · · ·+ h(x(N))] = (I tr)2

N
Var[h].

Using the bounds in (4.6), we find that Var [h] = E
[
h2]− E [h]2 ≤M2

2 −M2
1 .

Proposition 4.2 ensures that the method in Corollary 4.1 correctly computes a numerical
approximation of the integral I. The variance stays bounded and does not depend on n =
dim(X). Another application of the tropical approach in Algorithm 1 is drawing from the
probability density df,g via rejection sampling. In the next paragraph, we briefly review the
overall principle of rejection sampling. For further reading we refer to [7, Section 10.3].

Let d1 and d2 be densities on the same space with respect to the same differential form
(e.g. X>0 with ΩX). Suppose it is hard to sample from d1, but sampling from d2 is easy,
and we know a constant C ≥ 1 such that d1(x)/d2(x) ≤ C for all x in the domain. Our
aim is to sample from d1 using samples from d2. For this, we draw a sample x using the
distribution d2 and a sample ξ from the interval [0, C] with uniform distribution. We accept
x if ξ < d1(x)/d2(x). Otherwise, we reject x. The density of producing an accepted sample
from this process is d2(x) · d1(x)/d2(x). So, accepted samples follow the density d1.

We now apply rejection sampling to our problem. This is done as follows. The two
densities of interest are d1 = df,g and d2 = d tr

f,g. From (4.3) and (4.6), we obtain

(4.9) df,g ≤
I tr

I
·M2 · d tr

f,g.

We thus choose C = (I tr/I) ·M2 as our constant for rejection sampling. This suggests that
rejection sampling requires us to compute the integral I. However, if ξ is sampled uniformly
from [0, C], then ξ′ = (I/I tr) · ξ is sampled uniformly from [0,M2] and ξ < df,g(x)/d tr

f,g(x) is
equivalent to ξ′ < h(x). This leads to the following algorithm.

Algorithm 2 (Sampling from the density df,g).
Input: The input from Algorithm 1 and the constant M2.

1. Draw a sample x from X>0 using the tropical density d tr
f,g.

2. Draw a sample ξ from the interval [0,M2] using the uniform distribution.
3. If ξ < h(x), output x. Otherwise reject the sample and start again.

Output: The element x ∈ X>0, a sample from the probability space (X>0, µf,g).
To check the validity of this algorithm, consider a bounded test function ψ : X>0 → R. The
expected value of ψ, using the samples produced by Algorithm 2, is equal to

E[ψ] = 1
D

∫
X>0×[0,M2]

ψ(x)H (h(x)− ξ) µtr
f,g ∧ dξ.
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Here D is a normalization factor that ensures E[1] = 1, and H denotes the Heaviside function,
i.e., H(t) = 0 for t ≤ 0 and H(t) = 1 for t > 0. By Equation (4.6), we have h(x) ≤M2 for all
x ∈ X>0. By evaluating the inner integral over ξ first, we obtain

E[ψ] = 1
D

∫
X>0

ψ(x)h(x)µtr
f,g = 1

D

∫
X>0

ψ(x) f
g

ΩX .

This shows that D = I, and we conclude that the expected value E[ψ] equals Eµf,g [ψ].
The expected runtime of Algorithm 2 is equal to the runtime of Algorithm 1 divided by

the acceptance rate. The latter is the probability that a sample drawn from d tr
f,g results in a

valid sample for df,g. The bounds on h in (4.6) give rise to a lower bound for this probability.
Proposition 4.3. The acceptance rate in Algorithm 2 is at least M1/M2.

Proof. The probability for acceptance of a sample equals

1
M2

∫
X>0×[0,M2]

H (h(x)− ξ) µtr
f,g ∧ dξ = 1

M2
·
∫
X>0

h(x)µtr
f,g ≥

1
M2
·M1.

Here we used the lower bound from Equation (4.6).
The practical significance of Proposition 4.3 comes from the fact that the lower bound

does not depend on the dimension n of the sample space X>0. This guarantees that—even for
high-dimensional problems—the acceptance rate in Algorithm 2 remains strictly positive.

A word of caution is in order. If f and g have many terms with coefficients of roughly
the same magnitude, it is clear that M1 and M2 are very small and very large, respectively.
Moreover, in the statistical setting, the coefficients of f and g depend on the data vector, which
was called u in the Introduction. We warn the reader that, despite dimension independence
of the bounds, the efficiency of our sampling and integration approach in this setting declines
when the entries of u get large. We will see this in our computations of Section 6.

We conclude with an example that illustrates the material seen in this section.
Example 4.4 (Pentagon). Let X be the toric surface in Example 2.2. We consider the

integral I in (4.1) and the probability density df,g in (4.2) defined by

f = 2x2
1x

2
2x

3
3x4x

3
5 + 3x2

1x2x
2
3x

2
4x

4
5 + 5x1x

2
2x

5
3x4x

2
5,

g = 7x3
1x

3
2x

2
3x

3
5 + 11x3

1x2x
2
4x

5
5 + 13x1x

3
3x

3
4x

4
5 + 17x2

2x
7
3x4x5.

Both f and g are homogeneous of degree γ = (3, 8, 8) in the grading given by (2.4). We remark
that γ ∈ Cl(X) \ Pic(X) does not come from a Cartier divisor. The 16 monomials of that
degree are the lattice points in a quadrilateral whose normal fan is refined by Σ. This is shown
in green in Figure 2. We see that the orange triangle N (f) is contained in the interior of the
purple quadrilateral N (g). Hence Theorem 2.5 ensures that the integral I converges.

Let F be the normal fan of the hexagon N (f) +N (g). There are six cones σ in F(2). The
tropical integral Itr is the sum of the six numbers Itr

σ in (3.7). We find

Itr = 1 + 2 + 3
2 + 1 + 1

4 + 7
2 = 37

4 .
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g

f

Figure 2. Newton polygons and sector decomposition from Example 4.4.

The surface X>0 is divided into six sectors Exp(σ). This can be visualized via the moment
map X>0 → P ◦, as shown in Figure 2. On each sector, we have a monomial map q 7→ xσ(q)
with rational exponents, given in Equation (3.10). Using this map, we now apply Algorithm 1.
We draw N = 10000 samples from the tropical density dtr

f,g. The formula (4.5) then gives the
following approximate value for the classical integral:

I ≈ 2.8677596477559826.

We next apply Proposition 4.2. From (4.7) we get M1 = 1/24 and M2 = 10/7. This
implies that the standard deviation

√
E[(I − IN )2] is at most 0.132. By comparing with a

more accurate approximation, using numerical cubature for (3.9), we find that the error is no
larger than 0.005. Repeating this experiment for a range of sample sizes N, we find that our
approximation beats the generic bound (4.8) by two orders of magnitude. This illustrates a
phenomenon that is observed for many examples: the bounds (4.8) are overly pessimistic.

Finally, we use Algorithm 2 to sample from the posterior distribution df,g. From N =
100000 candidate samples, 21808 were accepted. The bound on the expected value of the
acceptance rate in Proposition 4.3 is M1/M2 ≈ 0.03. Again, this is pessimistic. From the
proof of Proposition 4.3 we see that the actual expected acceptance rate is

1
M2
· I
I tr ≈ 0.22.

5. Statistical Models. In this section, we present several statistical models, some well-
known and others less so. They all have a natural polyhedral structure which allows for a
parameterization X>0 → ∆m from a toric variety X. This includes both toric models and
linear models. We argue that this passage to toric geometry makes sense, also from an applied
perspective, since Bayesian integrals (5.3) can now be evaluated using tropical sampling. Such
integrals depend on experimental data. We will study them in the next section.

The common parameter space for our models is the positive part of a projective toric
variety X = XΣ of dimension n. We assume that the fan Σ is simplicial, so it is the normal
fan of a simple lattice polytope P in Rn. The polytope P is not unique. There is one such
polytope for each very ample divisor on X. The vertex set V(P ) is in bijection with the
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maximal cones in the normal fan of P. The prior distribution on X>0 has a density that is a
positive rational function. We obtain 1 when integrating this density against the form

(5.1) ΩX =
∑
I

det(VI)
∧
i∈I

dxi
xi
.

Fix the uniform distribution on the polytope P. We consider models of the form

(5.2) P → ∆m, y 7→
(
p0(y), p1(y), . . . , pm(y)

)
.

One task in Section 6 is to evaluate marginal likelihood integrals

(5.3)
∫
P
pu0

0 pu1
1 · · · p

um
m dy1 ∧ · · · ∧ dyn.

Here we use uniform priors on P . One still needs to divide by the volume of P.We here ignore
this factor for simplicity. While (5.2) is fairly natural from a statistical perspective, it seems
that the construction in the next paragraph, namely lifting this to the toric variety via the
moment map, has not yet been considered in the statistics literature.

We lift (5.2) to the positive toric variety X>0 by composing with the moment map X>0 →
P ◦, where P ◦ is the interior of P. We do this in two steps, by writing the moment map as
ϕ ◦ φ, where φ is the identification X>0 ' Rn>0 and ϕ : Rn>0 → P ◦ is the affine moment map.
The latter can be defined by a Laurent polynomial with positive coefficients ca ∈ R>0,

q =
∑

a∈V(P )
ca t

a ∈ R[t±1
1 , . . . , t±1

n ].

The map ϕ sends t ∈ Rn>0 to the following convex combination of V(P ):

(5.4) ϕ(t) = 1
q(t) ( θ1(q(t)), . . . , θn(q(t)) ) =

∑
a∈V(P )

ca t
a

q(t) · a.

Here, θi denotes the ith Euler operator ti∂ti . The toric Jacobian (θj(ϕi))i,j of the map ϕ is
the toric Hessian H of log(q(t)). This is the symmetric n × n matrix with entries Hi,j =
θiθj (log q(t)) . Since ϕ is a diffeomorphism, the determinant of H is nowhere zero on Rn>0.
Moreover, its denominator qn has positive coefficients, so there are no poles on Rn>0 either.
Recall that the columns of V ∈ Zn×k are the facet normals of the simple polytope P. This
gives us a formula for the density on X>0 that represents the uniform distribution on P.

Proposition 5.1. The pullback of dy1 · · · dyn under the moment map X>0 → P ◦ is a positive
rational function r times the canonical form ΩX . We obtain r(x) from the toric Hessian H(t)
by replacing t1, . . . , tn with the Laurent monomials in x1, . . . , xk given by the rows of V.

Example 5.2. For the coin model in the Introduction, with n = 3, P = [0, 1]3, and X =
P1 × P1 × P1, the desired function r is the factor before ΩX in Equation (1.4).

Proposition 5.1 means that the integral (5.3) is the following integral over X>0:

(5.5)
∫
X>0

p0(x)u0p1(x)u1 · · · pm(x)un r(x) ΩX ,

where pi(x) arises from pi(y) by the above two-step substitution: we first set y = ϕ(t) and
then we replace t with the Laurent monomials in x given by the rows of V.
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Example 5.3. The pentagon P from Example 2.2 is the Newton polytope of

q(t1, t2) = t−1
2 + t−1

1 t−1
2 + t−1

1 + t2 + t1.

We identify its interior P ◦ with the positive quadrant R2
>0 via the affine moment map

ϕ : R2
>0

'−→ P ◦, (t1, t2) 7→ 1
q

(θ1(q), θ2(q)) .

Its toric Jacobian is the toric Hessian H of log(q). Its determinant is

det(H) = 4t31t22 + 4t21t32 + 9t21t22 + 4t21t2 + 4t1t22 + t21 + 8t1t2 + t22 + 1
(t1t2)2 · q(t1, t2)3 .

Turning rows of (2.3) into monomials, we set t1 = x1x2x
−1
3 x−1

4 and t2 = x−1
2 x−1

3 x4x5. This
substitution turns det(H) into the rational function r, as seen in Proposition 5.1. Writing r =
f/g as in Theorem 2.5, one sees that the Newton polygons satisfy the containment hypothesis.
It is instructive to compute the area of the pentagon via∫

X>0
r(x) ΩX =

∫
P

1 dy1dy2 = 5
2 .

The integrals are (5.5) = (5.3) with ui = 0. The first is found numerically by Section 4.
We now turn to the statistical models associated to our polytope P . We begin with the

linear model associated with our polytope P. From now on we assume that P contains the
origin in its interior. We thus have the inequality representation

P =
{
y ∈ Rn | 〈vi, y〉+ αi ≥ 0 for i = 1, 2, . . . , k },

where α1, . . . , αk are positive integers. Vertices qI of P are indexed by cones I ∈ Σ(n). The
vertex qI ∈ Zn is the unique solution to the n linear equations 〈vi, y〉 = −αi for i ∈ I. The
following lemma helps to interpret the facet equations as probabilities.

Lemma 5.4. There exist γi > 0, i = 1, . . . , k such that
∑k
i=1 pi(y) = 1, with

(5.6) pi(y) = 1
γi

(
αi + 〈vi, y〉

)
.

Proof. It suffices to find a positive vector 1/γ = (1/γ1, . . . , 1/γk) in the kernel of V =
[v1 · · · vk], scaled so that (1/γ) · α = 1. Such a vector exists because the columns vi are the
rays of a complete fan ΣP . Indeed, −vi is a positive combination of the rays spanning the
smallest cone of ΣP containing it. This gives a nonnegative vector wi ∈ kerV with i-th entry
1 for each i. Pick an interior point y ∈ P ◦. Since αj > −〈vj , y〉 for all j, we have wi · α > 0.
We conclude that the vector 1/γ = 1∑k

i=1 wi·α

∑k
i=1wi is positive.

The states of the linear model are the k facets of P. The probability of the i-th facet
is given by (5.6). The probabilities are nonnegative precisely on the polytope P. The linear
model is the image of the resulting map P → ∆k−1. While the states in the linear model are
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the facets of our simple polytope P, we now introduce a variant where the vertices qI serve as
the states. Their number is m+ 1 = |Σ(n)|.

The following polynomial in n variables is known as the adjoint of the polytope P :

A(y) =
∑

I∈Σ(n)
|det(ṼI)| ·

∏
i 6∈I

(
1 + 1

αi
〈vi, y〉

)
.

Here the matrix Ṽ is obtained from V by scaling the ith column with α−1
i . This formula

looks like the canonical form ΩX on the toric variety X. Namely, we replace xi in (5.1) by
the i-th facet equation and we clear denominators. The following differential form on P is the
pushforward of ΩX under the moment map X>0 → P :

ΩP = A∏k
i=1

(
1 + 1

αi
〈vi, y〉

) dy1 · · · dyn.

Arkani-Hamed, Bai, and Lam [1, Theorem 7.2] proved that ΩP is the canonical form of the
pair (Pn, P ). The adjoint A endows P with the structure of a positive geometry.

Each summand of A has degree k−n. The adjoint has degree k−n− 1, since the highest
degree terms cancel. Consider the summand indexed by the cone I ∈ Σ(n):

(5.7) pI(y) = |det(ṼI)|
A(y)

∏
i 6∈I

(
1 + 1

αi
〈vi, y〉

)
.

These products of k − n affine-linear forms satisfy the following remarkable identities:∑
I∈Σ(n)

pI(y) = 1 and
∑

I∈Σ(n)
pI(y) qI = y.

These identities tell us that the pI(y) serve as barycentric coordinates on P. They express
each point y in the polytope P canonically as a convex combination of the m+ 1 vertices qI .
The resulting statistical model with state space Σ(n) is the map

P −→ ∆m, y 7→
(
pI(y)

)
I∈Σ(n).

We call this the Wachspress model on the polytope P . We believe that this model, unlike the
linear model on P , has not yet been considered in the statistics literature.

Example 5.5 (Pentagon). The pentagon in Example 2.2 matches [1, Figure 8]. Here,
n = 2, k = m+ 1 = 5, and P is the set where the following are nonnegative:

(5.8) `1 = 1 + y1, `2 = 1 + y1 − y2, `3 = 1− y1 − y2, `4 = 1− y1 + y2, `5 = 1 + y2.

Here, P was shifted so that the interior point in Figure 1 is the origin. The vertices are

y12 = (−1, 0) , y23 = (0, 1) , y34 = (1, 0) , y45 = (0,−1) , y51 = (−1,−1).
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The linear model is the map P → ∆4, y 7→ 1
5(`1(y), . . . , `5(y)). Its states are the edges of the

pentagon P. The distributions in this model are the points p ∈ ∆4 that satisfy

2p1 − 2p2 + p3 − p4 = −p2 − 2p4 + p3 + 2p5 = 0.

We next describe the Wachspress model. The adjoint of P is the quadratic polynomial

A = 7 + 2(y1 + y2)− (y1 − y2)2 = `1`2`3 + `2`3`4 + `3`4`5 + 2`4`5`1 + 2`5`1`2.

The states of the model are the five vertices of the pentagon P. Their probabilities are

(5.9) (p45, p51, p12, p23, p34) = 1
A

(
`1`2`3, `2`3`4, `3`4`5, 2`4`5`1, 2`5`1`2

)
.

Each pij is a rational function with cubic numerator and quadratic denominator. This defines
the Wachspress model P → ∆4. Its distributions are points p ∈ ∆4 that satisfy

2p12p45 + 2p23p45 − p23p51 − 2p34p51 = 2p12p34 − 2p23p45 − p23p51 + p34p51 = 0.

Geometrically, this is a del Pezzo surface of degree four in P4, obtained by blowing up P2 at
five points. These points are the intersections of edge lines outside P .

We now turn to toric models. In algebraic statistics [15], these are models parameterized
by monomials. We recast them in the setting of Section 2. Fix a degree γ ∈ Cl(X). Let Z be
a homogeneous polynomial of degree γ with positive coefficients,

Z = c0x
a0 + c1x

a1 + · · · + cmx
am ∈ S.

We divide each of the summands by Z to get rational functions pi of degree zero on X:

pi = cix
ai

Z
, for i = 0, 1, . . . ,m.

These functions are positive on X>0 and their sum is equal to 1. The toric model of Z is
the resulting map X>0 → ∆m into the probability simplex. In this manner, we identify toric
models on X with homogeneous positive polynomials Z in the Cox ring.

The model is especially nice when the degree γ is ample and Z uses all monomials of
degree γ. In that case, the Newton polytope P = N (Z) is simple and we have F = Σ. This
simplifies the combinatorics and hence is a favorable situation for tropical sampling.

Example 5.6. Let γ be the very ample degree for the pentagon in Example 2.2. A general
polynomial of degree γ has six terms, one for each lattice point in Figure 1:

Z = c0x2x
3
3x4 + c1x1x

2
2x

2
3 + c2x

2
3x

2
4x5 + c3x1x2x3x4x5 + c4x

2
1x

2
2x5 + c5x1x

2
4x

2
5.

The toric model is the map X>0 → ∆5 given by the six terms. Geometrically, up to scaling
the coordinates by the ci > 0, this is the embedding of X into P5 given by γ.

Remark 5.7. Let P be a product of standard simplices, so the toric variety X is a product
of projective spaces. For γ = (1, 1, . . . , 1), the line bundle O(γ) is very ample. This line bundle
defines the Segre embedding of X. Here, the toric model coincides with the Wachspress model.
Each distribution in this model is a tensor of rank one [15, Section 16.3]. Its mixture models
encode tensors of higher rank.
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The setting of Section 2 is convenient for working with mixture models [15, Section 14.1].
Given any model p : X>0 → ∆m, its r-th mixture model lives on the toric variety Xr × Pr−1.
The parameter space (Xr × Pr−1)>0 = Xr

>0 × Pr−1
>0 is mapped into the probability simplex

∆m by the secant map. Geometrically, the mixture model is the rth secant variety of im(p).
For more information see [15, Definition 14.1.5]

Mixture models of toric models play an important role in applications. Going beyond
Remark 5.7, consider the model of symmetric tensors of nonnegative rank ≤ r. In statistics,
this is known as the model of conditional independence for identically distributed random
variables. We refer to [10] for Bayesian integrals and to [14, Section 5] for likelihood inference.

The model in the Introduction is the r = 2 mixture of a toric model on X = P1. We
conclude this section with a case study of this coin model from the perspective of Section 3.
The rational functions in (1.1) have distinct numerators P0, . . . , Pm but the same denominator
Q = (x0 + x1)(s0 + s1)m(t0 + t1)m. The Minkowski sum of their Newton polytopes is a
3-dimensional polytope in R6. In symbols, this is

(5.10) N (Q) + N (P0) + N (P1) + · · · + N (Pm),

The normal fan F , of this polytope, which lives in a quotient space R6/R3, is an essential
ingredient for the algorithms in Sections 3 and 4. We now compute this.

Theorem 5.8. The Newton polytope (5.10) has 8(m + 1) vertices, 14m + 12 edges and
6(m+ 1) facets. Each of the eight vertices of the cube N (Q) is a summand of m+ 1 vertices.
Among the 6(m+1) facets, four are pentagons, two are 2(m+1)-gons and the remaining ones
are quadrilaterals.

Sketch of Proof. Consider a generic vector w in R6 that assigns weights to the six Cox
coordinates. The leading monomial xismj tmk of Q is determined by the signs of the quantities

(5.11) w(x0)− w(x1), w(s0)− w(s1), w(t0)− w(t1).

We record this leading monomial in the binary string ijk. Each of these eight choices allows for
m+1 consistent choices of leading monomials from the tuple (P0, . . . , Pm). Indeed, the leading
monomial of P` coincides with that of P̃` = x0s

`
0s
m−`
1 tm0 + x1t

`
0t
m−`
1 sm0 . The line segments

N (P̃`) lie in translates of a common 2-dimensional subspace in R6, and their Minkowski sum
is a (2m + 2)-gon. Precisely half of its vertices are compatible with the inequalities (5.11).
These m+ 1 vertices become vertices of (5.10), and they are all the vertices.

We encode each vertex of (5.10) by a binary string of length m + 4, starting with ijk.
The other m + 1 entries indicate the leading terms of the P`. Namely, we write 0 if the the
following expression is positive, and we write 1 if it is negative:

w(x0)− w(x1) + (m− `)(w(s0)− w(s1)) + (m− `)(w(t0)− w(t1))

With this notation, here is the list of all 8(m+ 1) vertices of our polytope:

000 1`0m−`+1 , 010 1`0m−`+1 , 100 0`+11m−` , 110 0`+11m−` ,
001 0`1m−`+1 , 101 0`1m−`+1 , 011 1`+10m−` , 111 1`+10m−` , for ` = 0, 1, . . . ,m.
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001111

111111

110001 111110

111100110000

110011

011111

011110 010110

101111101011

101001 100001

100000

010000 010100

011100

100011

001011

001001 000110

000100000000

Figure 3. Schlegel diagram of the polytope (5.10) for m = 2. The 24 vertices are labeled by binary strings.
There are four special edges (orange) and 36 regular ones: 16 of class 1 (green) and 20 of class 2 (blue). Among
the 18 facets, we see two hexagons and four pentagons.

Any pair of such strings that differs in precisely one entry is an edge of (5.10). This accounts
for all but four of the edges. These special edges are pairs of strings that differ in two positions:

[000 0m+1 , 001 0m1], [000 1m0 , 001 1m+1],
[110 0m+1 , 111 10m], [110 01m , 111 1m+1].

The other 14m + 8 regular edges come in two classes. In the first class, the initial triple ijk
in the binary string is fixed. For each initial triple ijk there are m such edges, for a total
of 8m edges. The remaining 6m + 8 edges correspond to a sign change in w(x0) − w(x1),
w(s0) − w(s1) or w(t0) − w(t1). Here, the terminal m + 1 letters in the binary string is
fixed. If that string is 0m+1 or 1m+1 then there are four edges which form a square facet of
our polytope, namely the square 000m+2, 010m+2, 110m+2, 100m+2, 000m+2 and the square
001m+2, 011m+2, 111m+2, 101m+2, 001m+2. For each of the other 2m terminal strings, there
are only three edges which form a 3-chain, for instance 0010m1, 1010m1, 1000m1, 1100m1.
This accounts for all 4 + 8 ·m+ (4 + 4) + (2m) · 3 = 14m+ 12 edges of our polytope (5.10).

We now discuss the 6m+6 facets. First, there are two centrally symmetric 2(m+1)-gons.
They are formed by all strings that start with 00 or 11 respectively. There are precisely two
other facets adjacent to both 2(m+ 1)-gons, namely the two squares facets mentioned above.
Adjacent to these two squares and to the two big facets are the four pentagons, which are

0000m+1, 1000m+1, 1000m1, 1010m1, 0010m1 0011m+1, 0111m+1, 0111m0, 0101m0, 0001m0,
1111m+1, 1011m+1, 10101m, 10001m, 11001m 1100m+1, 0100m+1, 01010m, 01110m, 11110m.

Each pentagon contains one of the four special edges. The remaining facets are quadrilaterals.
They come in six strips of m facets. See Figure 3 for the case m = 2.
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6. Marginal Likelihood Integrals. We now come to applications of our results to Bayesian
statistics. We fix a statistical model X>0 → ∆m that is specified by m+ 1 rational functions
pi on the toric variety X. These rational functions sum to 1. We write pi(x) = qi(x)/ri(x),
where the numerator qi and the denominator ri are homogeneous polynomials with positive
coefficients that have the same degree in Cl(X).We further assume that we are given a rational
function f/g that defines a probability distribution µf,g on X>0 as in (4.1). This serves as
the prior distribution for Bayesian inference.

Remark 6.1. For the prior distribution onX>0 we can choose any two positive polynomials
f and g of the same degree in Cl(X) such that the relevant integrals converge. This is ensured
by the hypothesis on Newton polytopes in Theorem 2.5.

The data comes in the form of U samples from the state space {0, 1, . . . ,m}. We write ui
for the number of samples that are in state i. We assume that the integers ui are positive.
They satisfy u0 + u1 + · · ·+ um = U. Given u = (u0, u1, . . . , um), the likelihood function Lu is

(6.1) Lu(x) :=
∏m
i=0 qi(x)ui∏m
i=0 ri(x)ui .

This is the probability of observing the data vector u, assuming that the model, the parame-
ters x, and the sample size U are fixed. The Multinomial Theorem implies

∑
|u|=U

U !
u0!u1! · · ·um! · Lu(x) = 1 for all x ∈ X>0.

We are interested in the posterior density on X>0. Up to a constant factor, this is

(6.2) du := Lu · df,g.

The marginal likelihood integral Iu is the integral of (6.1) against µf,g, i.e.,

(6.3) Iu :=
∫
X>0

Lu(x)µf,g = 1
I

∫
X>0

Lu(x) f(x)
g(x) ΩX .

We shall evaluate Iu using the methods in Section 4, but with f/g replaced by Lu · f/g. Also
of interest is sampling from the posterior density du, by way of Algorithm 2.

The Newton polytope of the integrand Lu · f/g admits the decomposition

(6.4) N (f) + N (g) +
m∑
i=0

uiN (qi) +
m∑
i=0

uiN (ri).

The normal fan of (6.4) is independent of the data u since u0, . . . , um are positive. As before,
we let F be a simplicial refinement of the normal fan of the polytope in (6.4). We note the
following fact, which is important for the applicability of our method.

Observation 6.2. The simplicial fan F is independent of the data u. It is computed from
the statistical model. This is done in an offline step that is carried out only once per model.
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We point out that we may allow some of the ui to be zero. In this case, the true fan is a
coarsening of F . One may still use F in our method, at the cost of having more sectors.

The computation of F is expensive when the dimension n gets larger. Observation 6.2
means that the running time of the algorithms in Sections 3 and 4 is fairly independent of u.
For instance, consider the computation of the sector integrals Itr

σ using the formula in (3.7).
The data u do not appear in the numerator, but they do enter in the denominator. Namely,
the monomial x−δσ that represents the tropicalized integrand Ltr

u f
tr/gtr on Exp(σ) satisfies

δσ = νg − νf +
m∑
i=0

ui(νri − νqi).

In an offline step, done once per model, we precompute the k × (m + 1) matrix of inner
products w` · (νri − νqi). In the online step, with data u, we evaluate (3.7) rapidly.

One point that does depend on the data u is the accuracy of the approximation in (4.5).
The bounds M1 and M2 for the function h scale exponentially in U, and hence so does the
right hand side of (4.8). The quality of the estimate IN can decrease a lot for larger U , so
that many more samples are needed to obtain an accurate approximation. We observed this
phenomenon in our computations. This issue requires further study.

We now present computational experiments with the models we saw in Sections 1 and 5.
This material is made available at MathRepo [5]. Our readers can try it out. Our implemen-
tation is in Julia. It uses Polymake [6] for polyhedral computations.

Example 6.3 (Coin model). Consider the coin model from the Introduction. We begin with
m = 2. Fix U = 5 and u = (u0, u1, u2) = (2, 1, 2). The marginal likelihood integral (6.3) is a
rational number. Using symbolic computation as in [10], we find

Iu = 2267
1559250 ≈ 0.001454.

We reproduce this number using tropical sampling. The Newton polytope (5.10) of the integrand
is shown in Figure 3. Its normal fan has 24 maximal cones, one for each vertex. But, this
fan is not simplicial since eight of the vertices are 4-valent. We turn (5.10) into a simple
polytope by a small displacement of the facets. The resulting normal fan is simplicial, and it
has 32 = 24 + 8 maximal cones. That simplicial fan F is used for the sector decomposition.
The right hand side in (3.12) has 32 summands, one for each cone σ ∈ F(3). The values of
the 32 tropical sector integrals Itr

σ are the rational numbers 1
280 ,

1
280 ,

1
280 ,

1
280 ,

1
120 , . . . ,

1
8 ,

1
7 ,

1
7 .

Their sum equals Itr = 40
21 = 1.9047. This gives the discrete probability distribution used in

Step 1 of Algorithm 1. Numerical evaluation of (4.5) with sample size N = 50000 yields

IN = 0.001486.

We validated our method with a range of experiments for larger values of U,m,N.
Example 6.4 (Pentagon models). We revisit the linear model and the Wachspress model

from Example 5.5. Their common parameter space is the pentagon P with uniform prior.
This is lifted to the toric surface X>0 with density df,g given by the homogeneous polynomials
f and g in Example 5.3. The coordinates of the two models are obtained from the polynomials
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in y seen in Example 5.5. We first substitute y1 = t1
q
∂q
∂t1

and y2 = t2
q
∂q
∂t2
, and then we set

t1 = x1x2x
−1
3 x−1

4 and t2 = x−1
2 x−1

3 x4x5. In each case, this yields a rational function Luf/g
that is homogeneous of degree zero in x, and satisfies the hypothesis in Theorem 2.5.

The likelihood functions for the linear model and the Wachspress model look similar, but
there is a crucial distinction. The latter also involves the adjoint A. This means that statistical
inference is different for the two models. For instance, the maximum likelihood (ML) degree
of the linear model on P equals five, while the ML degree of the Wachspress model on P equals
eight. Recall, e.g. from [8, 14, 15], that the ML degree of an algebraic statistical model is the
number of complex critical points of the likelihood function of that model for general data.

Consider the linear model with (u1, u2, u3, u4, u5) = (20, 16, 10, 15, 23). With (5.8),

(6.5) Iu = 1
584 ·

2
5 ·
∫
P
`20
1 `

16
2 `

10
3 `

15
4 `

23
5 dy1dy2.

For the approximation by tropical sampling, we note that the Newton polygon of Luf/g has
seven vertices, so its normal fan F has |F(2)| = 7. We find that Iu ≈ 9.652 · 10−60.

We now compare this to the Wachspress model, where the probabilities are products of the
linear forms, as shown in (5.9). We pick the data (u123, u234, u345, u451, u512) = (2, 3, 5, 7, 11)
in order to match the exponents of the linear factors in the respective likelihood functions. The
marginal likelihood integral for the Wachspress model equals

(6.6) Iu = 213 · 2
5 ·
∫
P
`20
1 `

16
2 `

10
3 `

15
4 `

23
5 A

−84 dy1dy2.

where A = 7 + 2(y1 + y2)− (y1− y2)2 is the adjoint. Again, the Newton polygon of Luf/g has
seven vertices, so its normal fan F has |F(2)| = 7. We find that Iu ≈ 1.218 · 10−66.

We next illustrate how our techniques can be applied to Bayesian model selection.
Example 6.5 (Bayes factors). As before, let µf,g denote the prior arising from the toric Hes-

sian. We consider the data u = (u0, u1, . . . , u5) = (1, 2, 4, 8, 16, 32). We wish to decide between
two models with n = 2 and m = 5. The two competitors are toric models with pi and Z as
in Example 5.6, with different coefficient vectors c = (c0, c1, . . . , c5). Model M1 is given by
c(1) = (2, 3, 5, 7, 11, 13) while model M2 is given by c(2) = (32, 16, 8, 4, 2, 1). We denote the
respective likelihood functions by L(1)

u and L(2)
u and the marginal likelihood integrals by

I(i)
u =

∫
X>0

L(i)
u (x)µf,g, i = 1, 2.

In order to decide which model fits the data better, we compute the ratio K = I(1)
u /I(2)

u of the
two marginal likelihood integrals. This ratio is the Bayes factor. Using numerical cubature
with tolerance 1e-5, we find that I(1)

u ≈ 5.675 · 10−38 and I(2)
u ≈ 2.694 · 10−39. Therefore,

K ≈ 21.06, which reveals that the modelM1 is a better fit for u thanM2.

Another important Bayesian application is sampling from the posterior distribution. In
principle, this can be done with Algorithm 2, applied to the density du in (6.2). However, this
fails to work as an off-the-shelf method. At present, the method is of theoretical interest only.
The challenge arises from large integer exponents, like 84 in Equation (6.6). These exponents
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lead to a very low acceptance rate in Proposition 4.3. We also observed this in practice: in a
typical run of Algorithm 2 for (6.5) with N = 100000, all samples are rejected.

We conclude that our tropical sampling method rests on solid and elegant mathematical
foundations, and it holds considerable promise for Bayesian inference. Yet, more research is
needed to make it widely applicable for computational statistics. For larger sample size U,
the likelihood function Lu has a sharp peak around its maximum, so it will be important
to precompute the critical points of Lu. The algebraic complexity for this task is the ML
degree of the model. This suggests combining tropical sampling with the topological theory
of ML degrees. Our experiments also showed that exact symbolic algorithms (cf. [10]) are still
surprisingly competitive. For instance, the exact value of the integral Iu in (6.5) equals

139123 · 1256291317 · 2602507379 · 47336895027767486610187
24 · 36 · 588 · 72 ·11· 132 · 172 · 19 · 232 · 292 · 312 · 372 · 412 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 79 · 83 .

This rational number is intriguing. We conclude that it would be desirable to combine the
methods of Sections 3 and 4 with such exact evaluations. This is left for a future project.
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