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Abstract

The matrix spectral and nuclear norms appear in enormous applications. The generalizations

of these norms to higher-order tensors is becoming increasingly important but unfortunately they

are NP-hard to compute or even approximate. Although the two norms are dual to each other,

the best known approximation bound achieved by polynomial-time algorithms for the tensor

nuclear norm is worse than that for the tensor spectral norm. In this paper, we bridge this gap

by proposing deterministic algorithms with the best bound for both tensor norms. Our methods

not only improve the approximation bound for the nuclear norm, but are also data independent

and easily implementable comparing to existing approximation methods for the tensor spectral

norm. The main idea is to construct a selection of unit vectors that can approximately represent

the unit sphere, in other words, a collection of spherical caps to cover the sphere. For this

purpose, we explicitly construct several collections of spherical caps for sphere covering with

adjustable parameters for different levels of approximations and cardinalities. These readily

available constructions are of independent interest as they provide a powerful tool for various

decision making problems on spheres and related problems. We believe the ideas of constructions

and the applications to approximate tensor norms can be useful to tackle optimization problems

over other sets such as the binary hypercube.

Keywords: spectral norm, nuclear norm, sphere covering, spherical caps, polynomial optimiza-

tion, approximation algorithm, approximation bound

Mathematics Subject Classification: 15A60, 52C17, 90C59, 68Q17

1 Introduction

With the advances in data collection and storage capabilities, massive multidimensional and mul-

tiway tensor data are being generated in a wide range of emerging applications [21]. Tensor com-

putations and optimizations have been an active research area in the recent decade. Computing
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tensor norms are evidently essential in modelling various tensor optimization problems. One typical

example is tensor completion (see e.g., [38]) in which the tensor nuclear norm is commonly used as

the convex surrogate of the tensor rank. However, most tensor norms are NP-hard to compute [14],

such as the spectral norm [13] and the nuclear norm [10] when the order of a tensor is more than

two, a sharp contrast to matrices (tensors of order two) whose spectral and nuclear norms are easy

to compute, e.g., using singular value decompositions.

The tensor spectral norm [24] is commonly known as the maximization of a multilinear form over

Cartesian products of unit spheres, a standard higher-order generalization of the matrix spectral

norm. Taking a tensor T = (tijk) ∈ R
n×n×n of order three as an example, its spectral norm

‖T ‖σ = max {T (x,y,z) : ‖x‖2 = ‖y‖2 = ‖z‖2 = 1, x,y,z ∈ R
n} , (1.1)

where T (x,y,z) =
∑n

i=1

∑n
j=1

∑n
k=1 tijkxiyjzk is a trilinear form of (x,y,z). This is equivalent to

the best rank-one approximation of the tensor T in the tensor community

min {‖T − λx⊗ y ⊗ z‖F : λ ∈ R, ‖x‖2 = ‖y‖2 = ‖z‖2 = 1, x,y,z ∈ R
n} ,

where ‖ • ‖F stands for the Frobenius norm and ⊗ stands for the vector outer product, meaning

that x⊗ y ⊗ z is a rank-one tensor.

Although the tensor spectral norm is NP-hard to compute, it is easy to obtain feasible solutions

of (1.1) to approximate this norm. There have been a lot of research works [34, 39, 23, 12, 16]

on approximation algorithms of (1.1) in the optimization community since the seminal work of

He et al. [13]. The best known worst-case bound to approximate (1.1) in polynomial time is

Ω

(

√

lnn
n

)

[34, 12]. One simple approach for this bound is a naive randomized algorithm in [12]:

1. Sample a vector v uniformly on the sphere1 S
n := {x ∈ R

n : ‖x‖2 = 1} and compute the

spectral norm of the resulting matrix, i.e., max‖x‖2=‖y‖2=1 T (x,y,v);

2. Repeat the above procedure independently until the largest objective value from all samples

hits the desired bound.

If we were able to sample all vectors in the unit sphere for z, then this approach certainly finds

max‖x‖2=‖y‖2=‖z‖2=1 T (x,y,z). It is obviously not possible to cover the unit sphere by enumerating

unit vectors. However, if we are allowed some tolerance, say an approximation ratio τ ∈ (0, 1], then

a sample unit vector v becomes a spherical cap

B
n(v, τ) :=

{

x ∈ S
n : xT

v ≥ τ
}

with the angular radius θ = arccos τ . In this setting, v is able to generate a τ -approximate solution

if and only if the spherical cap B
n(v, τ) includes an optimal z in (1.1). Alternatively, if we have

a collection of sample unit vectors whose corresponding spherical caps joining together covers the

whole sphere, then the best one in this collection can generate a τ -approximate solution. In fact,

the above algorithm does imply a randomized cover of the sphere whose covering volume is at least

1 − ǫ for any ǫ > 0 with high probability. However, this is much weaker than what we need here

and even cannot guarantee the existence of a full cover. One of the major contributions in this

1The n in S
n refers to the dimension of the space in which this sphere of dimension n− 1 lives.
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paper is to find a reasonable number of spherical caps to cover the sphere, deterministically and

explicitly.

There are certainly lots of decision problems over spheres. Among them many are hard prob-

lems that approximate solutions are commonly acceptable such as wireless communications [36]

and spherical facility location [37]. There are even harder problems where sphere covering seems

irrelevant but it can be indeed helpful. One of these problems is computing the tensor nuclear

norm. Taking T ∈ R
n×n×n again as an example, its nuclear norm is

‖T ‖∗ = min

{

r
∑

i=1

|λi| : T =

r
∑

i=1

λi xi ⊗ yi ⊗ zi, λi ∈ R, ‖xi‖2 = ‖yi‖2 = ‖zi‖2 = 1, r ∈ N

}

.

(1.2)

The decomposition of T into rank-one tensors in (1.2) is known as a CANDECOMP/PARAFAC

(CP) decomposition [15]. While CP decompositions usually require the number of rank-one terms

to be minimum, there is no such constraint in (1.2). In fact, the tensor nuclear norm and spectral

norm are dual to each other (see e.g., [25]), i.e.,

‖T ‖∗ = max
‖X‖σ≤1

〈T ,X〉 and ‖T ‖σ = max
‖X‖∗≤1

〈T ,X〉,

where 〈, 〉 stands for the Frobenius inner product. Computing or approximating tensor nuclear norm

is much harder no matter using the definition (1.2) or the dual formulation—the corresponding

feasibility problem is not easy at all. The situation is different for the tensor spectral norm as the

feasibility to (1.1) is trivial. There are various methods [7, 31, 21, 4, 35, 28, 19, 6] to compute the

tensor spectral norm in practice but there is only one known method [27] to compute the tensor

nuclear norm, to the best of our knowledge. This crucial fact has resulted alternative concepts for

the tensor nuclear norm in practice, such as the average nuclear norms of the matrix flattenings

from three different ways. In terms of approximating the tensor nuclear norm, the best polynomial-

time worst-case approximation bound is Ω
(

1√
n

)

via matrix flattenings [18] or partitions into matrix

slices [22]. This bound is worse than the best known one Ω

(

√

lnn
n

)

for the tensor spectral norm. It

is natural to expect achieving this bound for the dual norm to the tensor spectral norm. As another

major work in this paper, via certain reformulation and convex optimization proposed in [17], we

are able to bridge the gap between the primal and dual norms, with the help of constructions of

spherical caps for sphere covering.

Covering a sphere by identical spherical caps has been studied in computational geometry since

the pioneering work of Rogers [32]. Instead of describing spherical caps via the angular radius,

the caps are measured in normalized volume in the study. Specifically, by defining the normalized

volume of a spherical cap to be its true volume over the volume of Sn (in this sense the normalized

volume of Sn is one), sphere covering asks for a given positive integer m, what is the smallest δ such

that there are m spherical caps with normalized volume δ covering S
n? The quantity δm is called

the density of the covering. Studying the bounds of this density has been the main research topic

along this line. An upper bound of O (n lnn) for the covering density was obtained by Rogers [33]

for sufficiently small δ. This remains the best known asymptotic upper bound although there were

improvements made in terms of the constant of the asymptotic bound and for any δ in [2, 8].

For the lower bound of covering density, there is not a clear answer in general other than the

trivial one, i.e., δm ≥ 1. Rogers [32] stated that the density of a covering cannot beat a natural

3



strategy based on tiling R
n with regular simplices, known as the simplex bound, whose value

remains a conjecture and unproven. Rogers [32] computed that for δ → 0 the density is close to
n

e
√
e
. It is believed that the density is Ω(n). Several special cases for the simplex bound have been

confirmed, either for very small δ or for δ in large cap regime; see [20] and references therein. Other

than the two trivial cases for m = 1 and m = 2 which correspond to δ = 1 and δ = 1
2 , respectively,

perhaps the first nontrivial work along this line is due to Lusternik and Schnirelmann [1]: If n open

or closed sets cover S
n, then one of these contains a pair of antipodal points. This implies that if

δ < 1
2 then m ≥ n+ 1. An obvious lower bound of Ω(n) for any universal constant δ < 1

2 .

There are two optimization problems that are relevant to sphere covering in the literature. The

sphere coverage verification is to decide whether a given set of spherical caps cover the sphere or not.

Petković et a. [29] showed that sphere coverage verification is NP-hard and proposed a recursive

algorithm based on quadratic optimization. The spherical discrepancy is to find the furthest point

in S
n to a given set of points {v1,v2, . . . ,vm} ⊆ S

n, i.e., minx∈Sn max1≤i≤m x
T
vi. The spherical

discrepancy is also NP-hard since it is the optimization version of sphere coverage verification who

is a decision version of spherical discrepancy. Jones and McPartlon [20] proposed a multiplicative

weights-based algorithm that obtains an approximation bound up to lower order terms.

Although there is extensive research on the density of sphere covering and related problems,

they do not exactly serve the purpose of our study in this paper. The asymptotic bounds on

the normalized volumes are not aligned with the goal to obtain approximation bounds based on

inner products between unit vectors. The upper bounds obtained in [2] are existence results via a

randomized approach. The construction in [30] works only in the large cap regime for δ = e−
√
n

which resulted the number of caps to be exponential in n. A recent work on spherical discrepancy

minimization [20] showed an algorithm to generate spherical caps sequentially until a covering is

satisfied but the running time to generate a cap is O(n10). Our goal is to achieve a good balance

between the approximation measured by cos θ for the angular radius θ and the number of caps that

are not too large, say bounded by a polynomial function of n. More importantly, we hope to obtain

explicit constructions of spherical caps to cover the unit sphere. These will be of great beneficial

to the algorithm and optimization community apart from our applications in approximating tensor

norms. The products of our simple and explicit constructions, together with some trivial and known

constructions, are summarized in Table 1.

Set of v’s for Bn(v, τ) τ for Bn(v, τ) Number of Bn(v, τ)’s

Any {v} where v ∈ Sn −1 1

Any {v,−v} where v ∈ Sn 0 2

Any regular simplex inscribed in Sn 1/n n+ 1

Any basis of Rn with their negations 1/
√
n 2n

Hn

1 (Section 2.1), Hn

4 and Hn

5 (Section 2.4) Ω
(
√

lnn/n
)

O(nα) for α > 1

Hn

2
(Section 2.2) Ω

(

1/
√
lnn

)

O(3n)

Hn

3 (Section 2.3) Ω
(

1
)

O(βn) for β > 4

Grid points in spherical coordinates 1−O
(

n/m2
)

O(mn−1)

Table 1: Constructions of spherical caps to cover the unit sphere

This paper is organized as follows. After introducing some uniform notations, we propose various

constructions of spherical caps for sphere covering and bound the ratio τ and number of caps of

each construction in Section 2. We work around a key ratio Ω

(

√

lnn
n

)

which is the largest possible
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if the number of spherical caps is O(nα) for some universal constant α > 1, from randomization

(Section 2.1) to deterministic covering (Section 2.4) with some interesting byproducts (Sections 2.2

and 2.3). In Section 3, we apply the covering results to approximate tensor norms. Specifically, we

propose the first implementable and deterministic algorithm with the known best approximation

bound for the tensor spectral norm and related polynomial optimization problems in Section 3.1.

A deterministic algorithm with an improved approximation bound for the tensor nuclear norm

is proposed in Section 3.2. Numerical performance of the proposed algorithms are reported in

Section 3.3. Finally, some concluding remarks are given in Section 4.

Some uniform notations

Throughout this paper we uniformly adopt lowercase letters (e.g., x), boldface lowercase letters

(e.g., x = (xi)), capital letters (e.g., X = (xij)), and calligraphic letters (e.g., X = (xi1i2...id))

to denote scalars, vectors, matrices, and higher-order (order three or more) tensors, respectively.

Denote R
n1×n2×···×nd to be the space of real tensors of order d with dimension n1 × n2 × · · · × nd.

The same notation applies for a vector space and a matrix space when d = 1 and d = 2, respectively.

Denote N to be the set of positive integers.

The Frobenius inner product between two tensors U ,V ∈ R
n1×n2×···×nd is defined as

〈U ,V〉 :=
n1
∑

i1=1

n2
∑

i2=1

· · ·
nd
∑

id=1

ui1i2...idvi1i2...id .

Its induced Frobenius norm is naturally defined as ‖T ‖ :=
√

〈T ,T 〉. The two terms automatically

apply to tensors of order two (matrices) and tensors of order one (vectors) as well. This is the

conventional norm (a norm without a subscript) used throughout the paper.

All blackboard bold capital letters denote sets, such as Rn, the unit sphere S
n, a spherical cap

B
n(v, τ), the standard basis E

n := {e1,e2, . . . ,en} of Rn, where the superscript n indicates that

the concerned set is a subset of Rn. Three vector operations are used, namely the outer product

⊗, the Kronecker product ⊠, and appending vectors ∨. Specifically, if x ∈ R
n1 and y ∈ R

n2 , then

x⊗ y = xy
T ∈ R

n1×n2

x⊠ y = (x1y
T, x2y

T, . . . , xn1y
T)T ∈ R

n1n2

x ∨ y = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2)
T ∈ R

n1+n2 .

These three operators also apply to vector sets via element-wise operations.

As a convention, the notion Ω(f(n)) means that there are positive universal constants α, β and

n0 such that αf(n) ≤ Ω(f(n)) ≤ βf(n) for all n ≥ n0, i.e., the same order of magnitude to f(n).

2 Sphere covering by spherical caps

This section is devoted to explicit constructions of spherical caps to cover S
n in R

n for n ≥ 2.

Although this is more commonly denoted by S
n−1 in the literature, our notation is to emphasize

that the sphere resides in the space of Rn and to better understand the constructions via Kronecker

products.

Recall that for v ∈ S
n and −1 ≤ τ ≤ 1, Bn(v, τ) =

{

x ∈ S
n : xT

v ≥ τ
}

is a closed spherical cap

with the angular radius arccos τ . Obviously, Bn(v,−1) = S
n, Bn(v, 0) is a hemisphere, and B

n(v, 1)

5



is a single point. A set of unit vectors H
n = {vi ∈ S

n : i = 1, 2, . . . ,m} is called a τ -hitting set

with cardinality m if
⋃m

i=1 B
n (vi, τ) = S

n, i.e., the m spherical caps cover the unit sphere. Denote

all τ -hitting sets of Sn with cardinality no more than m to be

T(n, τ,m) := {Hn ⊆ S
n : Hn is a τ -hitting set, |Hn| ≤ m} .

It is easy to see the monotonicity, i.e.,

T(n, τ2,m) ⊆ T(n, τ1,m) if τ1 ≤ τ2
T(n, τ,m1) ⊆ T(n, τ,m2) if m1 ≤ m2.

We will be working around τ -hitting sets with τ = Ω

(

√

lnn
n

)

. This is the largest possible if

the cardinality of the hitting set is bounded by O(nα) with some universal constant α > 1; see

e.g. [12]. Other useful τ -hitting sets with larger τ ’s are also constructed as byproducts that are of

independent interest. The aim is to construct hitting sets with the cardinality as small as possible.

Let us first look at some elementary ones.

It is obvious that for any v ∈ S
n,

{v} ∈ T(n,−1, 1) and {v,−v} ∈ T(n, 0, 2)

both attaining the minimum cardinality. For τ > 0, the famous Lusternik-Schnirelmann theorem [1]

rules out any possible τ -hitting set with cardinality no more than n. There is an elegant construction

of 1
n -hitting sets with cardinality n + 1. If v1,v2, . . . ,vn+1 are the vertices of a regular simplex

centered at the origin and inscribed in S
n, then

{v1,v2, . . . ,vn+1} ∈ T

(

n,
1

n
, n+ 1

)

.

Detailed construction is easier to be obtained from R
n+1 and is left to interested readers. Raising

τ to 1√
n
without increasing the number of vectors too much, one has for any basis {v1,v2, . . . ,vn}

of Rn,

{±v1,±v2, . . . ,±vn} ∈ T

(

n,
1√
n
, 2n

)

.

However, slightly increasing this threshold, say to
√

lnn
n , will significantly increase the cardinality

of a hitting set. As mentioned earlier, if the cardinality is bounded by a polynomial function of n,

then the largest possible τ = Ω

(

√

lnn
n

)

.

Toward the extreme case that τ is close to one, the longitude and latitude of the Earth

provide a clue. For any x = (x1, x2, . . . , xn)
T ∈ S

n, we denote its spherical coordinates to be

(ϕ1, ϕ2, . . . , ϕn−1) with ϕ1, ϕ2, . . . , ϕn−2 ∈ [0, π] and ϕn−1 ∈ [0, 2π) such that

x1 = cosϕ1

x2 = sinϕ1 cosϕ2

x3 = sinϕ1 sinϕ2 cosϕ3

...

xn−1 = sinϕ1 . . . sinϕn−2 cosϕn−1

xn = sinϕ1 . . . sinϕn−2 sinϕn−1.

6



If we let D1 =
{

kπ
m : k = 0, 1, . . . ,m− 1

}

and D2 =
{

kπ
m : k = 0, 1, . . . , 2m− 1

}

, then the grid points

in spherical coordinates (see [17, Lemma 3.1]) are

H
n
0 (m) := {x ∈ S

n : ϕ1, ϕ2, . . . , ϕn−2 ∈ D1, ϕn−1 ∈ D2} ∈ T

(

n, 1− π2(n− 1)

8m2
, 2mn−1

)

. (2.1)

To see why H
n
0 (m) is such a hitting set. For any z ∈ S

n with spherical coordinates ϕ(z), there

must exist x ∈ H
n
0 (m) with spherical coordinates ϕ(x), such that

‖x− z‖ ≤ ‖ϕ(x)− ϕ(z)‖ ≤ 1

2
· π
m

·
√
n− 1 =

π
√
n− 1

2m
.

Since ‖x‖ = ‖z‖ = 1, the above further leads to

x
T
z =

1

2

(

2− ‖x− z‖2
)

≥ 1

2

(

2− π2(n− 1)

4m2

)

= 1− π2(n− 1)

8m2
.

2.1 Randomized Ω
(
√

lnn/n
)

-hitting sets

It is instructive to consider randomized hitting sets via the uniform distribution on S
n. This is

also important as it guarantees the existence of Ω

(

√

lnn
n

)

-hitting sets. The following probability

bound (see e.g., [12, 3]) provides an insight of such a hitting set.

Lemma 2.1 For any γ ∈ (0, n
lnn), if u and v are drawn independently and uniformly on Sn, then

there is a constant δγ depending on γ only, such that

Prob

{

u
T
v ≥

√

γ lnn

n

}

≥ δγ

n2γ
√
lnn

.

In fact, it is not difficult to cover 1− ǫ of the volume of the unit sphere for any ǫ > 0 by applying

Lemma 2.1 with the union bound; see [12]. However, this is a much weaker statement than Theo-

rem 2.2 below. In particular, the event of covering 1 − ǫ of the volume of Sn for any given ǫ > 0

does not even guarantee the existence of a full cover, hence being weaker than the latter event. The

following randomized hitting set has a cardinality O(nα) for some constant α > 1.

Theorem 2.2 For any ǫ > 0 and γ ∈ (0, n
lnn), there is a constant κγ > 0 depending on γ only,

such that

H
n
1 (γ, ǫ) :=

{

zi is i.i.d. uniform on S
n for i = 1, 2, . . . ,

⌈

κγn
2γ
√
lnn

(

n lnn+ ln
1

ǫ

)⌉}

satisfies

Prob

{

H
n
1 (γ, ǫ) ∈ T

(

n,

√

γ lnn

2n
,

⌈

κγn
2γ
√
lnn

(

n lnn+ ln
1

ǫ

)⌉

)}

≥ 1− ǫ.

Proof. The sphere covering is established in two steps, a spherical grid H
n
0 to cover the whole sphere

and the randomized hitting set Hn
1 to cover the grid.

7



According to (2.1) one has H
n
0 (m) ∈ T

(

n, 1− π2(n−1)
8m2 , 2mn−1

)

. Let m ≥ n. For any x ∈ S
n,

there exists y ∈ H
n
0 (m) such that xT

y ≥ 1 − π2(n−1)
8m2 . By Lemma 2.1, for any zi ∈ H

n
1 (γ, ǫ), there

exists an δγ depending on γ and Prob

{

y
T
zi ≥

√

γ lnn
n

}

≥ δγ
n2γ

√
lnn

, i.e., Prob

{

y
T
zi <

√

γ lnn
n

}

≤

1− δγ
n2γ

√
lnn

. Denote t = |Hn
1 (γ, ǫ)|. By the independence of zi’s, we have

Prob

{

y /∈
t
⋃

i=1

B
n

(

zi,

√

γ lnn

n

)}

= Prob

{

max
1≤i≤t

y
T
zi <

√

γ lnn

n

}

≤
(

1− δγ

n2γ
√
lnn

)t

.

Since |Hn
0 (m)| = 2mn−1 and the points of Hn

0 (m) are fixed, the probability that
⋃t

i=1 B
n

(

zi,
√

γ lnn
n

)

fails to cover at least one point of Hn
0 (m) is no more than 2mn−1

(

1− δγ
n2γ

√
lnn

)t
. In other words,

Prob

{

H
n
0 (m) ⊆

t
⋃

i=1

B
n

(

zi,

√

γ lnn

n

)}

≥ 1− 2mn−1

(

1− δγ

n2γ
√
lnn

)t

.

By noticing that m ≥ n ≥ 2, it is not difficulty to verify that if t ≥ n2γ
√
lnn

δγ

(

n lnm+ ln 1
ǫ

)

, then

the right hand side of the above is at least 1− ǫ.

To summarize, if Hn
0 (m) ⊆ ⋃t

i=1 B
n

(

zi,
√

γ lnn
n

)

, then for any x ∈ S
n, there exists y ∈ H

n
0 (m)

such that yT
x ≥ 1− π2(n−1)

8m2 and further there exists z ∈ H
n
1 (γ, ǫ) such that zT

y ≥
√

γ lnn
n . If we

are able to verify z
T
x ≥

√

γ lnn
2n , then we must have

⋃t
i=1 B

n

(

zi,
√

γ lnn
2n

)

= S
n. This finally leads

to

Prob

{

t
⋃

i=1

B
n

(

zi,

√

γ lnn

2n

)

= S
n

}

≥ Prob

{

H
n
0 (m) ⊆

t
⋃

i=1

B
n

(

zi,

√

γ lnn

n

)}

≥ 1− ǫ.

In order to show that z
T
x ≥

√

γ lnn
2n , we let θ1 = arccos(yT

x) and θ2 = arccos(zT
y). Since

cos θ1 ≥ 1− π2(n−1)
8m2 ≥ 1− 3

2m , one has | sin θ1| ≤
√

1−
(

1− 3
2m

)2 ≤
√

3
m . Therefore,

z
T
x ≥ cos(θ1+ θ2) = cos θ1 cos θ2− sin θ1 sin θ2 ≥

(

1− 3

2m

)

·
√

γ lnn

n
−
√

3

m
· 1 ≥

√

γ lnn

2n
(2.2)

if n ≥ n0 for some n0 that depends on γ only. By choosing m = n in H
n
0 (m) and κγ = 1

δγ
and we

have the desired t for n ≥ n0.

To finish the final piece for remaining n ≤ n0, we may enlarge m in H
n
0 (m) in order for (2.2) to

hold. If we choose κγ = lnm
δγ lnn correspondingly, this will ensure

κγn
2γ
√
lnn

(

n lnn+ ln
1

ǫ

)

=
lnm

lnn
· n

2γ
√
lnn

δγ

(

n lnn+ ln
1

ǫ

)

≥ n2γ
√
lnn

δγ

(

n lnm+ ln
1

ǫ

)

.

The largest κγ for these finite n ≤ n0 provides the final κγ that depends only on n0 who itself

depends on γ only. �
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Theorem 2.2 not only provides a simple construction with varying γ but also trivially implies the

existence of hitting sets in T

(

n,Ω

(

√

lnn
n

)

, O(nα)

)

. Although H
n
1 (γ, ǫ) is a full sphere covering

with probability 1− ǫ for any small ǫ > 0, it cannot be used to derive deterministic algorithms and

even in some scenarios the feasibility may be questioned as we will see in approximating the tensor

nuclear norm in Section 3.2. Moreover, to verify whether H
n
1 (γ, ǫ) covers the sphere or not, the

sphere coverage verification, is NP-hard [29]. Therefore, explicit and deterministic constructions of

hitting sets in T

(

n,Ω

(

√

lnn
n

)

, O(nα)

)

are important. To get this job done, let us first look at

two types τ -hitting sets with larger τ .

2.2 An Ω
(

1/
√
lnn
)

-hitting set

As the hitting ratio τ goes beyond Ω

(

√

lnn
n

)

, we have to give up the polynomiality of n. Let us

consider

H
n
2 :=

{

z

‖z‖ ∈ S
n : z ∈ {−1, 0, 1}n, ‖z‖ 6= 0

}

.

It is obvious that |Hn
2 | < 3n. We need to work out how large τ is for this τ -hitting set, essentially

Theorem 2.7 below. Interestingly, some results in matroid theory will be used in the proof.

To begin with, let I := {1, 2, . . . , n} and its power set 2I := {D : D ⊆ I}. For any D ∈ 2I, define

Y
n
D := {y ∈ R

n : yi ∈ {−1, 1} for i ∈ D and yi = 0 for i ∈ I \D} ,

and denote Yn =
⋃

D∈2I\{∅} Y
n
D
. It is easy to see that Hn

2 =
{

y

‖y‖ : y ∈ Y
n
}

. Our goal is to establish

a lower bound of minx∈Sn maxz∈Hn
2
x
T
z.

Theorem 2.3 It holds that

min
x∈Sn

max
z∈Hn

2

x
T
z = min

x∈Sn
max
y∈Yn

x
T
y

‖y‖ = min
x∈Sn

max
D∈2I\{∅}

max
y∈Yn

D

x
T
y

‖y‖ = min
x∈Sn

max
D∈2I\{∅}

∑

i∈D

|xi|
√

|D|
≥ 2√

lnn+ 5
.

(2.3)

It is straightforward to verify all the equalities in (2.3). To show the inequality, let us consider the

following optimization problem

max

{

‖x‖2 :
∑

i∈D
|xi| ≤ α

√

|D| for all D ∈ 2I \ {∅}
}

,

where α ≥ 0 is a given constant. This is equivalent to

max

{

‖x‖2 : x ≥ 0,
∑

i∈D
xi ≤ α

√

|D| for all D ∈ 2I

}

, (2.4)

which is to maximize a strictly convex quadratic function over a polyhedron

X
n =

{

x ∈ R
n
+ :
∑

i∈D
xi ≤ α

√

|D| for all D ∈ 2I

}

.

Therefore, the optimal solution of (2.4) must be obtained at some extreme points of Xn. To compute

the optimal value, we now characterize extreme optimal points of (2.4). We need the following two

technical results for the preparation.
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Lemma 2.4 g : 2I → R where g(D) = α
√

|D| with α > 0, then X
n is a polymatroid with respect to

the function g and the index set I.

Proof. It suffices to show that g is a rank function, i.e., normalized, nondecreasing and submodular.

Obviously, g(∅) = 0 and g(D1) = α
√

|D1| ≤ α
√

|D2| = g(D2) whenever D1 ⊆ D2 ⊆ I. It remains to

show the submodularity

g(D1 ∪ D2) + g(D1 ∩ D2) ≤ g(D1) + g(D2) ∀ D1,D2 ⊆ I.

If we let |D1| = a, |D2 \ D1| = b, and |D1 ∩ D2| = c, then the above inequality is equivalent to

√
a+ b+

√
c ≤ √

a+
√
b+ c ∀ a ≥ c ≥ 0, b ≥ 0.

This is actually implied by

√
a+ b−√

a =
b√

a+ b+
√
a
≤ b√

b+ c+
√
c
=

√
b+ c−√

c.

�

The next result is well known regarding an optimal solution of maximizing a linear function

over a polymatroid; see e.g., [9].

Lemma 2.5 Consider the linear program

max

{

a
T
x : x ≥ 0,

∑

i∈D
xi ≤ g(D) for all D ∈ 2I

}

where a ∈ R
n
+ and g is a rank function. Let π = (π1, π2, . . . , πn) be a permutation of I with

aπ1 ≥ aπ2 ≥ · · · ≥ aπn ≥ 0. An optimal solution x to the linear program can be obtained by letting

xπi
=

{

g({πi}) i = 1

g({π1, . . . , πi})− g({π1, . . . , πi−1}) i = 2, . . . , n.

We can now characterize extreme optimal points and upper bound the optimal value of (2.4).

Proposition 2.6 The optimal value of (2.4) is no more than
(

lnn+5
4

)

α2.

Proof. Denote z to be an optimal solution of (2.4). In fact, z is the unique optimal solution to the

linear program

max
x∈Xn

z
T
x. (2.5)

If this is not true, we then have another y ∈ X
n with y 6= z and z

T
y ≥ z

T
z = ‖z‖2. This implies

that ‖y‖2 > ‖z‖2, invalidating the optimality of z to (2.4).

Applying Lemma 2.4 and Lemma 2.5 to (2.5) with g(D) = α
√

|D| and a = z ∈ R
n
+ and choosing

a permutation π with zπ1 ≥ zπ2 ≥ · · · ≥ zπn ≥ 0, one has

zπi
=

{

α i = 1

α
(√

i−
√
i− 1

)

i = 2, . . . , n.

10



As a consequence,

‖z‖2
α2

= 1 +

n
∑

i=2

(√
i−

√
i− 1

)2
= 1 +

n
∑

i=2

(

1√
i+

√
i− 1

)2

≤ 1 +

n
∑

i=2

1

4(i− 1)
≤ lnn+ 5

4
,

which shows that the optimal value of (2.4), ‖z‖2, is upper bounded by
(

lnn+5
4

)

α2. �

We are ready to finish the final piece, i.e., to show the inequality in (2.3). If this is not ture,

then there is an x ∈ S
n such that

max
D∈2I\{∅}

∑

i∈D

|xi|
√

|D|
≤ 2β√

lnn+ 5
with 0 < β < 1.

This means that |x| ∈ R
n
+ with ‖x‖2 = 1 is a feasible solution to (2.4) for α = 2β√

lnn+5
. However,

according to Proposition 2.6, the optimal value of this problem is no more than

(

lnn+ 5

4

)

α2 =

(

lnn+ 5

4

)

4β2

lnn+ 5
= β2 < 1,

giving rise to a contradiction. Finally, we conclude this part as below.

Corollary 2.7 It holds that

H
n
2 ∈ T

(

n,
2√

lnn+ 5
, 3n
)

.

2.3 Ω(1)-hitting sets

H
n
2 is simple and almost close to help the construction of deterministic Ω

(

√

lnn
n

)

-hitting sets,

whose story will be revealed in the next subsection. To make this final small but important step,

Ω(1)-hitting sets are needed. A finely tuned version of Hn
2 is in place.

Algorithm 2.8 Given S
n and two parameters α ≥ 1 and β ≥ α+ 1, construct Hn

3 (α, β).

1. Let m =
⌈

logβ αn
⌉

and partition I into disjoint subsets I1, I2, . . . , Im such that

|I1| = n−
m
∑

k=2

|Ik| and |Ik| =
⌊

αn

βk−1

⌋

for k = 2, 3 . . . ,m. (2.6)

2. For any partition {I1, I2, . . . , Im} of I satisfying (2.6), construct a set of vectors

Z
n(I1, I2, . . . , Im) =

{

z ∈ R
n : zi ∈

{

±1,±β
k−1
2

}

if i ∈ Ik for k = 1, 2, . . . ,m
}

.

3. Put all Zn(I1, I2, . . . , Im)’s together to form

Z
n =

⋃

{I1,I2,...,Im} is a partition of I satisfying (2.6)

Z
n(I1, I2, . . . , Im).

4. Project the vectors in Z
n onto the unit sphere, i.e., Hn

3 (α, β) :=
{

z

‖z‖ ∈ S
n : z ∈ Z

n
}

.
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We see from the first step of Algorithm 2.8 that

m
∑

k=2

|Ik| ≤
m
∑

k=2

αn

βk−1
=

αn

β − 1
− αn

βm−1(β − 1)
≤ αn

β − 1
,

implying that

|I1| = |I| −
m
∑

k=2

|Ik| ≥ n− αn

β − 1
=

(

1− α

β − 1

)

n ≥ 0. (2.7)

Therefore, the feasibility of the construction is guaranteed. On the other hand, as m =
⌈

logβ αn
⌉

,

we have

m
∑

k=2

(|Ik|+ 1) ≥
m
∑

k=2

αn

βk−1
=

αn

β − 1
− αn

βm−1(β − 1)
≥ αn

β − 1
− β

β − 1
≥ αn

β − 1
− 2,

implying that

|I1| = n−
m
∑

k=2

|Ik| = n+m−1−
m
∑

k=2

(|Ik|+1) ≤ n+logβ αn−
αn

β − 1
+2 ≤

(

1− α

β − 1

)

n+logβ n+3.

(2.8)

Theorem 2.9 For any x ∈ S
n, there exists z ∈ H

n
3 (α, β) such that zT

x ≥ α−1√
αβ(α+1)

.

Proof. For any given ‖x‖ = 1, define the index sets

D0(x) =

{

i ∈ I : |xi| ≤
1√
αn

}

Dk(x) =

{

i ∈ I :

√

βk−1

αn
< |xi| ≤

√

βk

αn

}

k = 1, 2, . . . ,m. (2.9)

For any entry xi of x, |xi| ≤ 1 ≤
√

βm

αn , and so {D0(x),D1(x), . . . ,Dm(x)} is a partition of I.

We first estimate |Dk(x)| for k ≥ 2. It is obvious that for k ≥ 2,

βk−1

αn
|Dk(x)| =

∑

i∈Dk(x)

βk−1

αn
<

∑

i∈Dk(x)

|xi|2 ≤ 1.

This implies that |Dk(x)| < αn
βk−1 , i.e., |Dk(x)| ≤

⌊

αn
βk−1

⌋

for k = 2, 3, . . . ,m. Hence, there exists a

partition {I1, I2, . . . , Im} of I satisfying (2.6) such that Dk(x) ⊆ Ik for k = 2, 3, . . . ,m. Furthermore,

we may find a vector z ∈ Z
n(I1, I2, . . . , Im) such that

zi =

{

sign (xi) i ∈ D0(x)

sign (xi)β
k−1
2 i ∈ Dk(x) for k = 1, 2, . . . ,m,

where the sign function takes 1 for nonnegative reals and −1 for negative reals.
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In the following, we shall estimate z
T
x and ‖z‖. First of all,

∑

i∈D0(x)

xi
2 ≤

∑

i∈D0(x)

1

αn
≤ 1

α
and

m
∑

k=1

∑

i∈Dk(x)

xi
2 =

∑

i∈I
xi

2 −
∑

i∈D0(x)

xi
2 ≥ 1− 1

α
.

Next, we have

∑

i∈D0(x)

zi
2 = |D0(x)| ≤ n and

m
∑

k=1

∑

i∈Dk(x)

zi
2 =

m
∑

k=1

∑

i∈Dk(x)

βk−1 <
m
∑

k=1

∑

i∈Dk(x)

αnxi
2 ≤ αn.

Summing the above two inequalities would give us ‖z‖2 ≤ (α+1)n since {D0(x),D1(x), . . . ,Dm(x)}
is a partition of I.

Lastly, as sign (xi) = sign (zi) for every i ∈ I,

z
T
x ≥

m
∑

k=1

∑

i∈Dk(x)

β
k−1
2 |xi| ≥

m
∑

k=1

∑

i∈Dk(x)

√

αn

β
|xi|2 =

√

αn

β

m
∑

k=1

∑

i∈Dk(x)

|xi|2 ≥
√

αn

β

(

1− 1

α

)

,

where the second inequality is due to the upper bound in (2.9).

To conclude, we find z

‖z‖ ∈ H
n
3 (α, β) such that

x
T z

‖z‖ ≥
√

αn

β

(

1− 1

α

)

· 1
√

(α+ 1)n
=

α− 1
√

αβ(α + 1)
,

proving the desired inequality. �

We also need to estimate the cardinality of Hn
3 (α, β). To simplify the display, we now replace

β by γ + 1 where γ ≥ α in the rest of this subsection.

Proposition 2.10 Given two constants 1 ≤ α ≤ γ, one has

|Hn
3 (α, γ + 1)| ≤

(

2
γ+α

γ α
−α

γ (γ + 1)
α(γ+1)

γ2

(

γ

γ − α

)
γ−α

γ

+ o(1)

)n

. (2.10)

Proof. For any given partition {I1, I2, . . . , Im} of I satisfying (2.6), xi can take 2 values if i ∈ I1

and 4 values if i ∈ Ik for k ≥ 2. By considering the number of such partitions and possible overlaps

after projecting on to S
n, one has

|Hn
3 (α, γ + 1)| ≤ n!

∏m
k=1 |Ik|!

2|I1|
m
∏

k=2

4|Ik|.

By (2.7), we have

2|I1|
m
∏

k=2

4|Ik| = 2|I1|4
∑m

k=2 |Ik| = 2−|I1|4
∑m

k=1 |Ik| ≤ 2
−(1−α

γ
)n
4n = 2

(1+α
γ
)n
.

It remains to estimate n!
∏m

k=1 |Ik|!
based on the followings from (2.6), (2.7) and (2.8) with β = γ +1,

η1n ≤ |I1| ≤ η1n+ lnγ+1 n+ 3 and |Ik| = ⌊ηkn⌋ for k = 2, 3 . . . ,m,
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where η1 = 1− α
γ and ηk = α

(γ+1)k−1 for k = 2, 3 . . . ,m, as well as
∑m

k=1 |Ik| = n, m =
⌈

logγ+1 αn
⌉

and 1 ≤ α ≤ γ.

We first notice that
∣

∣

∣

∣

∣

n−
m
∑

k=1

ηkn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

k=1

|Ik| −
m
∑

k=1

ηkn

∣

∣

∣

∣

∣

≤ ||I1| − η1n|+
m
∑

k=2

||Ik| − ηkn| ≤ O(lnn) +m− 1 = O(lnn).

We then consider the function f(x) = x lnx− x, which is increasing and convex over [1,∞) since

f ′(x) = lnx and f ′′(x) = 1
x . Therefore, for any x ≥ 1 and y > 0, f(x+y)−f(x)

y ≤ f ′(x+y) = ln(x+y),

implying that f(x+y)−f(x) ≤ y ln(x+y). Applying this fact to |Ik| for k = 1, 2, . . . ,m, we obtain

f(|I1|)− f(η1n) = O(ln2 n) and f(ηkn)− f(|Ik|) = O(lnn) for k = 2, 3, . . . ,m.

These, together with the Stirling approximation ln(n!) = f(n) +O(lnn), lead to

ln(|I1|!) = f(η1n) +O(ln2 n) and ln(|Ik|!) = f(ηkn) +O(lnn) for k = 2, 3, . . . ,m.

We are ready to estimate n!
∏m

k=1 |Ik|!
within a deviation of o(n) as follows:

ln
n!

∏m
k=1 |Ik|!

= ln(n!)−
m
∑

k=1

ln(|Ik|!)

= n lnn− n−
m
∑

k=1

ηkn ln(ηkn) +

m
∑

k=1

ηkn+ o(n)

=

(

n−
m
∑

k=1

ηkn

)

(lnn− 1)−
m
∑

k=2

ηkn ln ηk − η1n ln η1 + o(n)

= −n

m
∑

k=2

α

(γ + 1)k−1
ln

α

(γ + 1)k−1
− n

γ − α

γ
ln

γ − α

γ
+ o(n)

= −n

m
∑

k=2

α lnα

(γ + 1)k−1
+ n

m
∑

k=2

α(k − 1)

(γ + 1)k−1
ln(γ + 1) +

(

γ − α

γ
ln

γ

γ − α

)

n+ o(n)

= −
(

α

γ
lnα

)

n+

(

α(γ + 1)

γ2
ln(γ + 1)

)

n+

(

γ − α

γ
ln

γ

γ − α

)

n+ o(n),

where the last equality is due to the fact that m =
⌈

logγ+1 αn
⌉

implies

m
∑

k=2

1

(γ + 1)k−1
=

1

γ
− 1

γ(γ + 1)m−2
=

1

γ
+ o(1)

m
∑

k=2

k − 1

(γ + 1)k−1
=

γ + 1

γ2
− m

γ2(γ + 1)m−2
+

m− 1

γ2(γ + 1)m−1
=

γ + 1

γ2
+ o(1).

Finally, by combining the upper bound of 2|I1|
∏m

k=2 4
|Ik|, we have |Hn

3 (α, γ + 1)| ≤ tn where

t = 2
γ+α

γ α−α
γ (γ + 1)

α(γ+1)

γ2

(

γ

γ − α

)
γ−α

γ

eo(1) = 2
γ+α

γ α−α
γ (γ + 1)

α(γ+1)

γ2

(

γ

γ − α

)
γ−α

γ

+ o(1).

�

In a nutshell, we have the following.
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Corollary 2.11 For any given 1 ≤ α ≤ γ,

H
n
3 (α, γ+1) ∈ T

(

n,
α− 1

√

α(α + 1)(γ + 1)
,

(

2
γ+α

γ α−α
γ (γ + 1)

α(γ+1)

γ2

(

γ

γ − α

)
γ−α

γ

+ o(1)

)n)

. (2.11)

For a fixed α ≥ 1, the largest α−1√
α(α+1)(γ+1)

is α−1
(α+1)

√
α
, achieved when γ = α. Correspondingly,

|Hn
3 (α,α + 1)| ≤

(

4α−1(α+ 1)
α+1
α + o(1)

)n
≤ (4 + ǫ)n for some large α.

If we maximize α−1
(α+1)

√
α
to achieve the best τ for the τ -hitting set, this is

√

1
2(5

√
5− 11) ≈ 0.30028

when α = 2 +
√
5 ≈ 4.236. For reference, we list the τ and the cardinality for some H

n
3 (α,α + 1)

in Table 2.

α 17.42 7.64 4.75 4.24 4.00 3.00 2.00

τ for the τ -hitting set 0.213 0.278 0.299 0.30028 0.300 0.288 0.235

t for |Hn

3
(α, α+ 1)| ≤ tn 5.00 6.00 7.00 7.31 7.48 8.47 10.40

Table 2: Properties of Hn
3 (α,α + 1) for some α.

If we are interested to minimize the upper bound of |Hn
3 (α, γ + 1)| in (2.10), then by fixing α

and choosing γ sufficiently large, the bound can even be (2 + ǫ)n. However, this makes sense only

if γ ≪ n. Moreover, the corresponding τ = α−1√
α(α+1)(γ+1)

will decrease quickly as γ goes large.

2.4 Ω
(
√

lnn/n
)

-hitting sets

The hitting sets in Sections 2.2 and 2.3 can be used to construct new hitting sets which in fact

derandomize the constructions in Section 2.1. Recall that E
n = {e1,e2, . . . ,en} is the standard

basis of Rn, ⊠ denotes the Kronecker product, and ∨ denotes vector appending.

Lemma 2.12 If a hitting set Hn1 ∈ T(n1, τ,m) with τ ≥ 0, then E
n2 ⊠H

n1 ∈ T

(

n1n2,
τ√
n2
,mn2

)

.

Proof. First, for any ei ∈ E
n2 and z ∈ H

n1 , one has ‖ei ⊠ z‖ = ‖ei‖ · ‖z‖ = 1. Thus, En2 ⊠H
n1 ⊆

S
n1n2 . For any x ∈ S

n1n2 , let x = x1 ∨ x2 ∨ · · · ∨ xn2 where xk ∈ R
n1 for k = 1, 2, . . . , n2. Since

∑n2
k=1 ‖xk‖2 = ‖x‖2 = 1, there exists an xi, such that ‖xi‖2 ≥ 1

n2
.

Observing that xi

‖xi‖ ∈ S
n1 , there exists y ∈ H

n1 such that y
T xi

‖xi‖ ≥ τ . Therefore, we have

ei ⊠ y ∈ E
n2 ⊠H

n1 satisfying

(ei ⊠ y)Tx = y
T
xi ≥ τ‖xi‖ ≥ τ√

n2
.

Finally, by noticing possible overlaps, one has |En2 ⊠H
n1 | ≤ |En2 | · |Hn1 | ≤ n2m. �

Lemma 2.13 If two hitting sets H
n1 ∈ T(n1, τ1,m1) and H

n2 ∈ T(n2, τ2,m2) with τ1, τ2 > 0, then

(Hn1 ∨ 0n2)
⋃

(0n1 ∨H
n2) ∈ T

(

n1 + n2,
τ1τ2√

τ12 + τ22
,m1 +m2

)

.
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Proof. For any x ∈ S
n1+n2 , let x = x1 ∨ x2 where x1 ∈ R

n1 and x2 ∈ R
n2 . If one of them is a zero

vector, say x1 = 0n1 , then ‖x2‖ = 1. There exists y ∈ H
n2 such that yT

x2 ≥ τ2, and so

〈0n1 ∨ y,x1 ∨ x2〉 = y
T
x2 ≥ τ2 ≥

τ1τ2√
τ12 + τ22

.

If both x1 and x2 are nonzero, then xk

‖xk‖ ∈ S
nk for k = 1, 2. There exist yk ∈ H

nk with
y
T
k
xk

‖xk‖ ≥ τk
for k = 1, 2. We have

〈y1 ∨ 0n2 ,x1 ∨ x2〉 = y
T
1 x1 ≥ τ1‖x1‖

〈0n1 ∨ y2,x1 ∨ x2〉 = y
T
2 x2 ≥ τ2‖x2‖.

As ‖x1‖2 + ‖x2‖2 = ‖x‖2 = 1, we must have either ‖x1‖ ≥ τ2√
τ12+τ22

or ‖x2‖ ≥ τ1√
τ12+τ22

. In any

case, we have

max{τ1‖x1‖, τ2‖x2‖} ≥ τ1τ2√
τ12 + τ22

,

implying that either y1 ∨ 0n2 or 0n1 ∨ y2 is close enough to x. �

We are ready to construct new hitting sets using H
n
2 ∈ T

(

n,Ω
(

1√
lnn

)

, 3n
)

in Section 2.2 and

H
n
3 ∈ T (n, µ, νn) with universal constants µ, ν > 0, a handy notation of (2.11) in Section 2.3.

Theorem 2.14 Given integer n ≥ 2, let n1 = ⌈ln n⌉, n2 = ⌊ n
n1
⌋, and n3 = n− n1n2. One has

H
n
4 := ((En2 ⊠H

n1
2 ) ∨ 0n3)

⋃

(0n1n2 ∨H
n3
2 ) ∈ T

(

n,Ω

(

√

lnn

n ln lnn

)

, O(n1+ln 3)

)

. (2.12)

Proof. First, as n3 = n− n1⌊ n
n1
⌋ < n1, we have

n1 ≤ lnn+ 1, n2 ≤
n

lnn
, and n3 ≤ lnn. (2.13)

According to Corollary 2.7 and Lemma 2.12,

E
n2 ⊠H

n1
2 ∈ T

(

n1n2,Ω

(

1√
n2 lnn1

)

, n23
n1

)

⊆ T

(

n1n2,Ω

(

√

lnn

n ln lnn

)

,
3n1+ln 3

lnn

)

.

Besides, one has

H
n3
2 ∈ T

(

n3,Ω

(

1√
lnn3

)

, 3n3

)

⊆ T

(

n3,Ω

(

1√
ln lnn

)

, nln 3

)

.

Noticing that 1√
ln lnn

≥
√

lnn
n ln lnn , (2.12) can be obtained by applying Lemma 2.13. �

Although Ω

(

√

lnn
n ln lnn

)

is slightly lower than Ω

(

√

lnn
n

)

, the construction of Hn
4 in (2.12) is

very simple (using H
n
2 ) and enjoys a low cardinality O(n1+ln 3) ≤ O(n2.1). We remark that it is

even possible to construct an Ω

(

√

lnn
n ln lnn

)

-hitting set with a lower cardinality O(n1.5). This can

be done by using H
n1
0 (m) with m = ⌈

√
lnn⌉ and n1 = ⌈ lnn

ln lnn⌉ in place of Hn1
2 in constructing H

n
4

in Theorem 2.14. We leave the details to interested readers. In order to remove the 1√
ln lnn

factor,

we need to make use of Hn
3 (α, β).
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Theorem 2.15 Given integer n ≥ 2, let n1 = ⌈ln n⌉, n2 = ⌊ n
n1
⌋, and n3 = n− n1n2. By choosing

any H
n
3 (α, β) ∈ T (n, µ, νn) in (2.11) with α ≥ 1 and β ≥ α+ 1, one has

H
n
5 (α, β) := ((En2 ⊠H

n1
3 (α, β)) ∨ 0n3)

⋃

(0n1n2 ∨H
n3
3 (α, β)) ∈ T

(

n, µ

√

lnn

n+ lnn
,O(n1+ln ν)

)

.

Proof. The proof is similar to that of Theorem 2.14 by noticing (2.13) and applying Lemma 2.12

and Lemma 2.13. We only need to carry out the calculations.

The τ for the τ -hitting set En2 ⊠H
n1
3 (α, β) is µ√

n2
and that for Hn3

3 (α, β) is µ. By Lemma 2.13,

the τ for Hn
5 (α, β) is

µ
√

n2
·µ

√

µ2

n2
+µ2

= µ√
n2+1

≥ µ
√

lnn
n+lnn .

For the cardinality, one has |En2 ⊠H
n1
3 (α, β)| ≤ n2ν

n1 ≤ νn1+ln ν

lnn and |Hn3
3 (α, β)| ≤ νn3 ≤ nln ν .

Adding up these two would give O(n1+ln ν). �

With the cardinality O(n1+ln ν) in place, it is natural to select the best µ for H
n
3 (α, β) with

β = γ + 1 in (2.11). According to Table 2, the largest µ = 0.30028 with ν = 7.31, obtained when

α = 2 +
√
5 and β = 3 +

√
5. This results a cardinality O(n1+ln ν) ≤ O(n3). To conclude, we have

H
n
5 (2 +

√
5, 3 +

√
5) ∈ T

(

n, 0.3

√

lnn

n
,O(n3)

)

. (2.14)

Before concluding this section, we remark that the estimated τ serves a lower bound and m

serves an upper bound for the proposed hitting sets. We evaluate their exact values of one example

(n = 6) by numerical computations, shown in Table 3 where the Greek letters in estimated values

are some unknown constants. Due to the randomness of Hn
1 , we try ten times for any m and provide

corresponding τ by an interval range.

Hitting set in S6 Exact τ Exact m Estimated τ Estimated m

A regular simplex in S6 0.167 7 0.167 7

E6 ∪ (−E6) 0.408 12 0.408 12

H6

1
(γ1, ǫ1) [0.331, 0.442] 27 ω1 · 0.546 o1 · 6α1

H6
1(γ2, ǫ2) [0.521, 0.592] 60 ω2 · 0.546 o2 · 6α2

H6

4
0.546 27 ω3 · 0.546 o3 · 62.792

H
6

5(2 +
√
5, 3 +

√
5) 0.544 36 ω4 · 0.546 o4 · 62.989

H6

2
0.835 728 ω5 · 0.747 36 = 729

H6

3
(2 +

√
5, 3 +

√
5) 0.820 16896 ω6 · 1.000 7.316 = 152582

Table 3: Exact and theoretical estimates of τ and m for hitting sets in S
6

For our main constructions of Ω

(

√

lnn
n

)

-hitting sets, Hn
1 , H

n
4 and H

n
5 , comparisons of τ and

m for a few small n’s are shown in Table 4. We observe that random hitting sets will outperform

deterministic ones when n increases although they are worse when n is small.

3 Approximating tensor norms

In this section we apply explicit constructions for sphere covering, in particular the deterministic

Ω

(

√

lnn
n

)

-hitting sets in Section 2.4, to derive new approximation methods for the tensor spectral
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n = 6 n = 8 n = 12 n = 15

Hitting set τ m τ m τ m τ m

Hn

1
[0.331, 0.442] 24 [0.272, 0.384] 32 [0.368, 0.410] 104 [0.320, 0.391] 130

Hn

1
[0.521, 0.592] 60 [0.460, 0.502] 80 [0.441, 0.484] 184 [0.428, 0.452] 235

Hn

4 0.546 24 0.485 32 0.4653 104 0.431 130

Hn

5
0.544 36 0.489 48 0.4713 256 0.433 320

Table 4: Exact τ and m for Ω
(
√

lnn/n
)

-hitting sets in S
n

norm and nuclear norm. Let us formally define the approximation bound for tensor norms.

Definition 3.1 A tensor norm ‖•‖ω can be approximated with an approximation bound τ ∈ (0, 1],

if there exists a polynomial-time algorithm that computes a quantity ωT for any tensor instance T
in the concerned space, such that τ‖T ‖ω ≤ ωT ≤ ‖T ‖ω.

Obviously the larger the τ , the better the approximation bound. We consider the tensor space

R
n1×n2×···×nd of order d ≥ 3 and assume without loss of generality that 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd.

3.1 Approximation bound for tensor spectral norm

Given a tensor T ∈ R
n1×n2×···×nd , let us denote (recall that ⊗ stands for the outer product)

T (x1,x2, . . . ,xd) = 〈T ,x1 ⊗ x2 ⊗ · · · ⊗ xd〉 =
n1
∑

i1=1

n2
∑

i2=1

· · ·
nd
∑

id=1

ti1i2...id(x1)i1(x2)i2 . . . (xd)id (3.1)

to be the multilinear function of vector entries (x1,x2, . . . ,xd) where xk ∈ R
nk for k = 1, 2, . . . , d.

If any vector entry, say x1, is missing and replaced by •, then T (•,x2,x3, . . . ,xd) ∈ R
n1 becomes

a vector. Similarly, T (•, •,x3,x4, . . . ,xd) ∈ R
n1×n2 is a matrix, and so on.

Definition 3.2 For a given tensor T ∈ R
n1×n2×···×nd, the spectral norm of T is defined as

‖T ‖σ := max {T (x1,x2, . . . ,xd) : ‖xk‖ = 1, xk ∈ R
nk , k = 1, 2, . . . , d} . (3.2)

The tensor spectral norm was proposed by Lim [24] in terms of singular values of a tensor. In

light of (3.1), ‖T ‖σ is the maximal value of the Frobenius inner product between T and a rank-one

tensor whose Frobenius norm is one since ‖x1 ⊗ x2 ⊗ · · · ⊗ xd‖ =
∏d

k=1 ‖xk‖ = 1.

When d = 2, (3.2) is reduced to the matrix spectral norm or the largest singular value of the

matrix, which can be computed in polynomial time (e.g., via singular value decompositions). He

et al. [13] showed that (3.2) is NP-hard when d ≥ 3. They also proposed the first polynomial-time

algorithm with a worst-case approximation bound
(

∏d−2
k=1

1
nk

)
1
2
. The best known approximation

bound for the tensor spectral norm is Ω

(

(

∏d−2
k=1

lnnk

nk

)
1
2

)

by So [34]. However, the method in [34]

relies on the equivalence between convex optimization and membership oracle queries using the

ellipsoid method and it is computationally impractical. There is also a simple but randomized

algorithm for the same best bound proposed in [12]. Here in this subsection we are able to present

the first easily implementable and deterministic algorithm based on sphere covering, with the same

approximation bound Ω

(

(

∏d−2
k=1

lnnk

nk

)
1
2

)

. To make an exact bound without involving Ω, we need

to use H
n
5 (2 +

√
5, 3 +

√
5) ∈ T

(

n, 0.3
√

lnn
n , O(n3)

)

in (2.14).
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Algorithm 3.3 Given T ∈ R
n1×n2×···×nd, find approximate spectral norm of T .

1. Enumerate zk ∈ H
nk

5 (2 +
√
5, 3 +

√
5) for k = 1, 2, . . . , d − 2 and solve the resulting matrix

spectral norm problem max {T (z1,z2, . . . ,zd−2,xd−1,xd) : ‖xd−1‖ = ‖xd‖ = 1} whose opti-

mal solution is denoted by (zd−1,zd).

2. Compare all the objective values in the first step and output the largest one.

It is obvious that Algorithm 3.3 runs in polynomial time as |Hnk

5 (2+
√
5, 3+

√
5)| = O(nk

3) and

the matrix spectral norm is polynomial-time computable. Moreover, the corresponding approximate

solution (z1,z2, . . . ,zd−2) is universal, i.e., zk ∈ H
nk

5 (2+
√
5, 3+

√
5) is independent of the data T

for k = 1, 2, . . . , d− 2.

Theorem 3.4 Algorithm 3.3 is a deterministic polynomial-time algorithm that approximates ‖T ‖σ
with a worst-case approximation bound 0.3d−2

(

∏d−2
k=1

lnnk

nk

)
1
2
for any T ∈ R

n1×n2×···×nd, i.e., zk ∈
H

nk

5 (2 +
√
5, 3 +

√
5) for k = 1, 2, . . . , d− 2 and zk ∈ S

nk for k = d− 1, d can be found such that

0.3d−2

(

d−2
∏

k=1

lnnk

nk

)

1
2

‖T ‖σ ≤ T (z1,z2, . . . ,zd) ≤ ‖T ‖σ .

Proof. Let us denote τk = 0.3
√

lnnk

nk
for k = 1, 2, . . . , d − 2. Let (y1,y2, . . . ,yd) be an optimal

solution of (3.2), i.e., T (y1,y2, . . . ,yd) = ‖T ‖σ. For the vector v1 = T (•,y2,y3, . . . ,yd), either

‖v1‖ = 0 or there exists z1 ∈ H
n1
5 (2 +

√
5, 3 +

√
5) such that zT

1
v1

‖v1‖ ≥ τ1. In any case, one has

T (z1,y2,y3, . . . ,yd) = z
T
1 v1 ≥ τ1‖v1‖ ≥ τ1y

T
1 v1 = τ1T (y1,y2, . . . ,yd).

Similarly, for every k = 2, 3 . . . , d − 2 that are chosen one by one increasingly, there exists zk ∈
H

nk

5 (2 +
√
5, 3 +

√
5) such that

T (z1, . . . ,zk−1,zk,yk+1, . . . ,yd) = z
T
k vk ≥ τk‖vk‖ ≥ τky

T
k vk = τkT (z1, . . . ,zk−1,yk,yk+1, . . . ,yd),

where vk = T (z1, . . . ,zk−1, •,yk+1, . . . ,yd). By applying the above inequalities recursively, we

obtain

T (z1,z2, . . . ,zd−2,yd−1,yd) ≥
(

d−2
∏

k=1

τk

)

T (y1,y2 . . . ,yd) =

(

d−2
∏

k=1

τk

)

‖T ‖σ .

The first step of Algorithm 3.3 must have enumerated this (z1,z2, . . . ,zd−2) and computed

corresponding zd−1 ∈ S
nd−1 and zd ∈ S

nd , such that

T (z1,z2, . . . ,zd) = max
‖xd−1‖=‖xd‖=1

T (z1,z2, . . . ,zd−2,xd−1,xd)

≥ T (z1,z2, . . . ,zd−2,yd−1,yd)

≥
(

d−2
∏

k=1

τk

)

‖T ‖σ.
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Finally, the best one found by the second step must be no less than the above T (z1,z2, . . . ,zd). �

A closely related problem to the tensor spectral norm (3.2) is sphere constrained homogenous

polynomial optimization max {p(x) : ‖x‖ = 1} where p(x) a homogenous polynomial function of

degree d. In other words, there is a symmetric (entries are invariant under permutations of indices)

tensor T ∈ R
n×n×···×n of order d such that p(x) = T (x,x, . . . ,x). This is a widely applicable

optimization problem but is also NP-hard when the degree of the polynomial d ≥ 3 [26]. The

current best approximation bound for this problem is Ω
(

(

lnn
n

)d/2−1
)

, obtained by a randomized

algorithm [12] or a deterministic but not implementable algorithm [34] as it relies on the equivalence

between convex optimization and membership oracle queries using the ellipsoid method. In fact,

it is not difficult to obtain an easily implementable deterministic algorithm with the same best

approximation bound with the help of a polarization formula [13, Lemma 1] below.

Lemma 3.5 Let T ∈ R
n×n×···×n be a symmetric tensor of order d and p(x) = T (x,x, . . . ,x). If

ξi, ξ2, . . . , ξd are i.i.d. symmetric Bernoulli random variables (taking values ±1 with equal probabil-

ity), then

E

[(

d
∏

i=1

ξi

)

p

(

d
∑

k=1

ξkxk

)]

= d!T (x1,x2, . . . ,xd).

We only state the results but leave the details to interested readers.

Theorem 3.6 Let p(x) be a homogenous polynomial function of dimension n and degree d ≥ 3.

If d is odd, then there is a deterministic polynomial-time approximation algorithm which outputs

z ∈ S
n, such that

p(z) ≥ 0.3d−2d!d−d

(

lnn

n

)d/2−1

max
‖x‖=1

p(x).

If d is even, then there is a deterministic polynomial-time approximation algorithm which outputs

z ∈ S
n, such that

p(z)− min
‖x‖=1

p(x) ≥ 0.3d−2d!d−d

(

lnn

n

)d/2−1(

max
‖x‖=1

p(x)− min
‖x‖=1

p(x)

)

.

3.2 Approximation bound for tensor nuclear norm

We now study the approximation for the tensor nuclear norm.

Definition 3.7 For a given tensor T ∈ R
n1×n2×···×nd, the nuclear norm of T is defined as

‖T ‖∗ := min

{

r
∑

i=1

|λi| : T =
r
∑

i=1

λi x
(i)
1 ⊗ x

(i)
2 ⊗ · · · ⊗ x

(i)
d , ‖x(i)

k ‖ = 1 for all i and k, r ∈ N

}

.

(3.3)

From (3.3), we see that the tensor nuclear norm is the minimum of the sum of Frobenius norms

of rank-one tensors in any CP decomposition. A CP decomposition of T that attains ‖T ‖∗ is called
a nuclear decomposition of T [10]. When d = 2, the tensor nuclear norm is reduced to the matrix

nuclear norm, which is the sum of all singular values. Similar to the role of matrix nuclear norm

used in many matrix rank minimization problems, the tensor nuclear norm is the convex envelope

of the tensor rank and is widely used in tensor completions [11, 38].
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The tensor nuclear norm is the dual norm to the tensor spectral norm, and vice versa, whose

proof can be found in [25, 5].

Lemma 3.8 For given tensors T and Z in a same tensor space, it follows that

‖T ‖σ = max
‖Z‖∗≤1

〈T ,Z〉 and ‖T ‖∗ = max
‖Z‖σ≤1

〈T ,Z〉. (3.4)

Computing the tensor nuclear norm is also NP-hard when d ≥ 3 showed by Friedland and

Lim [10]. In fact, it is much harder than computing the tensor spectral norm. From the def-

inition (3.3) finding a CP decomposition is not an easy task for a given r, and from the dual

formulation (3.4) checking the feasibility ‖Z‖σ ≤ 1 is also NP-hard. Perhaps the only known

method is due to Nie [27], which is based on the sum-of-squares relaxation and can only work for

symmetric tensors of low dimensions. In terms of polynomial-time approximation bounds, the best

bound is
∏d−2

k=1
1√
nk

. There are two methods to achieve this bound, one is via matrix flattenings of

the tensor [18] and the other is via partitioning the tensor into matrix slices [22]. This bound is

worse than the best one for the tensor spectral norm. Let us now bridge the gaps using an idea

similar to grid sampling in [17].

To better illustrate our main idea, we discuss the details for a tensor T ∈ R
n1×n2×n3 of order

three. According to the dual formulation (3.4),

‖T ‖∗ = max {〈T ,Z〉 : ‖Z‖σ ≤ 1}
= max {〈T ,Z〉 : Z(x,y,z) ≤ 1 for all ‖x‖ = ‖y‖ = ‖z‖ = 1}

= max

{

〈T ,Z〉 : max
‖y‖=‖z‖=1

Z(x,y,z) ≤ 1 for all ‖x‖ = 1

}

. (3.5)

Notice that for a given x, the constraint max‖y‖=‖z‖=1 Z(x,y,z) ≤ 1 is the same to ‖Z(x, •, •)‖σ ≤
1 or the largest singular value of the matrix Z(x, •, •) is no more than one. This can be equivalently

represented by I � Z(x, •, •)Z(x, •, •)T. Here a symmetric matrix A � O where O is a zero matrix

means that A is positive semidefinite and A � B means that A − B � O. Applying the Schur

complement, we then have

max
‖y‖=‖z‖=1

Z(x,y,z) ≤ 1 ⇐⇒ I � Z(x, •, •)Z(x, •, •)T ⇐⇒
[

I Z(x, •, •)
Z(x, •, •)T I

]

� O.

By combining with (3.5) we obtain an equivalent formulation of the tensor nuclear norm

‖T ‖∗ = max

{

〈T ,Z〉 :
[

I Z(x, •, •)
Z(x, •, •)T I

]

� O for all ‖x‖ = 1

}

. (3.6)

Obviously there is no way to enumerate all x in S
n1 in (3.6) but the sphere covering is indeed

helpful in this scenario. If we replace ‖x‖ = 1 with x ∈ H
n1 for some deterministic H

n1 ∈
T(n1, τ, O(n1

α)) with some university constant α, (3.6) is then relaxed to

max

{

〈T ,Z〉 :
[

I Z(x, •, •)
Z(x, •, •)T I

]

� O for all x ∈ H
n1

}

.

This becomes a semidefinte program with O(n1
α) number of positive semidefinite constraints.
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Algorithm 3.9 Given T ∈ R
n1×n2×n3, find approximate nuclear norm of T .

1. Choose a τ -hitting set Hn1 ∈ T(n1, τ, O(n1
α)) and solve the semidefinite program

u = max

{

〈T ,Z〉 :
[

I Z(x, •, •)
Z(x, •, •)T I

]

� O for all x ∈ H
n1

}

. (3.7)

2. Output τu.

Theorem 3.10 For any H
n1 ∈ T(n1, τ, O(n1

α)), Algorithm 3.9 is a deterministic polynomial-time

algorithm that approximates ‖T ‖∗ with a worst-case approximation bound τ .

Proof. Denote Y to be an optimal solution of (3.7). It is easy to see that (3.7) is a relaxation of

the maximization problem (3.6) since H
n1 ⊆ S

n1 . Therefore, u = 〈T ,Y〉 ≥ ‖T ‖∗.
For any y,z, denote v = Y(•,y,z) and we have either ‖v‖ = 0 or there exists x ∈ H

n1 such

that xT v

‖v‖ ≥ τ , both leading to Y(x,y,z) = x
T
v ≥ τ‖v‖ = τ‖Y(•,y,z)‖. Therefore,

max
x∈Hn1 ,‖y‖=‖z‖=1

Y(x,y,z) ≥ τ max
‖y‖=‖z‖=1

‖Y(•,y,z)‖ = τ max
‖x‖=‖y‖=‖z‖=1

Y(x,y,z) = τ‖Y‖σ .

By the feasibility of Y in (3.7), ‖Y(x, •, •)‖σ ≤ 1 for all x ∈ H
n1 , implying that

‖τY‖σ = τ‖Y‖σ ≤ max
x∈Hn1 ,‖y‖=‖z‖=1

Y(x,y,z) = max
x∈Hn1

‖Y(x, •, •)‖σ ≤ 1.

This means that τY is a feasible solution to the dual formulation (3.4), and so

‖T ‖∗ = max
‖Z‖σ≤1

〈T ,Z〉 ≥ 〈T , τY〉 = τ〈T ,Y〉 = τu ≥ τ‖T ‖∗.

�

Compared to Algorithm 3.3 that requires (possibly large) enumeration and then comparison,

Algorithm 3.9 only needs to solve one semidefinite program, albeit the size is large if Hn1 is large.

We emphasize that Hn1 in Algorithm 3.9 needs to be a deterministic τ -hitting set in order to archive

a feasible solution of ‖Z‖σ ≤ 1 in (3.4) with the desired approximation bound τ in Theorem 3.10.

Although a randomized hitting set H
n1
1 (γ, ǫ) can be used in Algorithm 3.9, it is likely that τY in

the proof of Theorem 3.10 is not feasible to (3.4). However, 〈T ,Y〉 could still be a good upper

bound of ‖T ‖∗ in this case. Let us now extend Algorithm 3.9 to a general tensor of order d.

Algorithm 3.11 Given T ∈ R
n1×n2×···×nd, find approximate nuclear norm of T .

1. Choose H
nk ∈ T(nk, τk, O(nk

αk)) for k = 1, 2, . . . , d− 2 and solve the semidefinite program

u = max

{

〈T ,Z〉 :
[

I Z(x1,x2, . . . ,xd−2, •, •)
Z(x1,x2, . . . ,xd−2, •, •)T I

]

� O for all xk ∈ H
nk

}

.

2. Output u
∏d−2

k=1 τk.
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We state the final theorem that obtains an improved approximation bound for the tensor nuclear

norm using the hitting set Hn
5 (2+

√
5, 3+

√
5) in (2.14). This bound finally matches the current best

one for the tensor spectral norm; see Theorem 3.4. The proof is similar to that of Theorem 3.10

and is omitted.

Theorem 3.12 By choosing H
nk

5 (2 +
√
5, 3 +

√
5) for k = 1, 2, . . . , d − 2, Algorithm 3.11 is a

deterministic polynomial-time algorithm that approximates ‖T ‖∗ with a worst-case approximation

bound 0.3d−2
(

∏d−2
k=1

lnnk

nk

)
1
2
for any T ∈ R

n1×n2×···×nd.

3.3 Numerical performance of approximation methods

We now test the numerical performance of the methods for approximating tensors norms, in com-

plement to the theoretical results established earlier. All the experiments are conducted on a linux

server (Ubuntu 20.04) with an Intel Xeon Platinum 8358 @ 2.60GHz and 512GB of RAM. The com-

putations are implemented in Python 3. The semidefinite optimization solver2 in COPT Fusion

API for Python 9.3.13 is called whenever semidefinite programs are involved.

We first test Algorithm 3.3 to approximate the tensor spectral norm using examples in Nie and

Wang [28, Examples 3.12, 3.13 and 3.14]. The semidefinite relaxation method in [28] works well

in practice and usually finds optimal values. This also enable us to check the true approximation

bounds in practice rather than the conservative theoretical bounds. The results for the first two

examples are shown in Table 5. For Example 3.13, the method in [28] calls the fmincon function

in MATLAB for a local improvement. This is the benchmark optimal value used to compute the

approximation bounds. We also apply the classic alternating least square (ALS) method [21] as a

local improvement starting from the approximate solutions obtained by Algorithm 3.3. Whenever

a local improvement method is applied, the corresponding indicator is appended with a ‘+’ sign.

Example Method CPU CPU+ Value Value+ Bound Bound+

Ex 3.12 [28] 0.703 2.8167 1.0000

Alg 3.3 0.000 0.000 2.2076 2.8167 0.7837 1.0000

Ex 3.13 [28] 0.545 0.612 0.9862 1.0000 0.9862 1.0000

Alg 3.3 0.000 0.250 0.8397 1.0000 0.8397 1.0000

Table 5: Numerical results for Examples 3.12 and 3.13 in [28]

The results for Example 3.14 in [28] are shown in Table 6. In this example, the method in [28]

obtained global optimality directly without applying the local improvement. We also listed the

theoretical approximation bound
√

lnn
n (without showing the constant disguised under the Ω) of

our algorithm for comparison.

Observed from the numerical results of these three examples, Algorithm 3.3 obviously fails to

obtain optimality in contrast to a practical method, but with the help of the ALS method the global

optimality is obtained for all the test instances. The approximation bounds calculated by these

numerical instances are better than the theoretical approximation bounds shown in Section 3.1. In

2https://docs.mosek.com/latest/pythonfusion/tutorial-sdo-shared.html
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n Method CPU CPU+ Value Value+ Bound Bound+
√

lnn/n

5 [28] 0.997 6.0996 1.0000

Alg 3.3 0.020 0.050 4.3058 6.0996 0.7059 1.0000 0.5674

10 [28] 1.411 14.7902 1.0000

Alg 3.3 0.320 1.920 8.4779 14.7902 0.5732 1.0000 0.4799

15 [28] 3.696 25.4829 1.0000

Alg 3.3 1.670 3.680 11.4022 25.4829 0.4474 1.0000 0.4249

20 [28] 8.763 33.7020 1.0000

Alg 3.3 4.870 20.120 13.3617 33.7020 0.3964 1.0000 0.3870

25 [28] 37.535 46.7997 1.0000

Alg 3.3 50.310 110.000 19.5674 46.7997 0.4181 1.0000 0.3588

30 [28] 52.994 64.9106 1.0000

Alg 3.3 101.380 152.160 24.5234 64.9106 0.3778 1.0000 0.3367

35 [28] 111.547 80.7697 1.0000

Alg 3.3 197.510 350.360 28.6220 80.7697 0.3543 1.0000 0.3187

40 [28] 241.565 95.0878 1.0000

Alg 3.3 362.230 548.350 33.7020 95.0878 0.3307 1.0000 0.3037

Table 6: Numerical results for Example 3.14 in [28]

terms of the computational time by comparing with the method in [28], Algorithm 3.3 runs quicker

for low dimensions but the time increases quickly when the dimension of the problem increases.

To systematically verify and compare with the theoretical approximation bounds obtained by

our algorithms, we now test randomly generated tensors whose spectral and nuclear norms can be

easily obtained. In particular, let

T =
r
∑

i=1

λi xi ⊗ yi ⊗ zi with λi > 0 and ‖xi‖ = ‖yi‖ = ‖zi‖ = 1 for i = 1, 2, . . . , r, (3.8)

where (xT
i xj)(y

T
i yj) = z

T
i zj = 0 if i 6= j. This is a special type of orthogonally decomposable

tensors. With the special structure of T in (3.8), it is not difficulty to see that ‖T ‖σ = max1≤i≤r λi

and ‖T ‖∗ =
∑r

i=1 λi. The components of T in (3.8), λi’s, xi’s, yi’s and zi’s, are generated from

i.i.d. standard normal distributions and made positive (by taking the absolute value) or orthogonal

if necessary.

We apply Algorithm 3.3 to approximate the spectral norm and Algorithm 3.9 to approximate

the nuclear norm for n×10×10 tensors and 10×n×n tensors, both with varying n. Instead of the

deterministic hitting set H5 used in the original algorithms, we replace it with a randomized hitting

set H1 that is numerically more stable and efficient. The results are shown in Tables 7 and 8 for the

spectral norm and in Tables 9 and 10 for the nuclear norm. For each type of tensors with a fixed

size, say 5× 10× 10, we randomly generate 200 instances and find an approximate solution of the

spectral norm by Algorithm 3.3, whose approximation bound is then computed since the optimal

value is known. We then use the approximate solution as a starting point to apply the ALS method

as a local improvement. As before, the corresponding indicator is appended with a ‘+’ sign when

a local improvement is involved. The same setting is implemented for the tensor nuclear norm by

Algorithm 3.9 except that (1) there is no local improvement method to improve our approximation

solution and (2) we do not multiply τ to the output solution Y as τ involves an Ω but directly use

〈T ,Y〉 to obtain the bound (see the proof of Theorem 3.10) and so the bound is larger than one.
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In this scenario, the closer to one the better the bound.

n 5 10 20 30 40 50
√

lnn/n 0.5674 0.4799 0.3870 0.3367 0.3037 0.2797

Min bound 0.6317 0.6344 0.5751 0.5263 0.4663 0.4602

Min bound+ 0.6921 0.6500 0.5847 0.5371 0.4768 0.8603

Max bound 0.9879 0.9611 0.8572 0.7653 0.7025 0.6579

Max bound+ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean bound 0.8898 0.8219 0.6786 0.6459 0.5778 0.5278

Mean bound+ 0.9895 0.9896 0.9859 0.9825 0.9758 0.9932

% of optimality+ 92.0% 92.0% 91.0% 87.5% 84.5% 89.0%

Mean CPU+ 0.02 0.23 0.78 6.84 12.47 18.39

Table 7: Approximating spectral norm by Algorithm 3.3 (using H
n
1 ) for n× 10× 10 tensors

n 5 10 20 30 40 50

Min bound 0.6574 0.5016 0.5094 0.6858 0.5133 0.5905

Min bound+ 0.6746 0.5321 0.5109 0.7236 0.5261 0.6099

Max bound 0.9451 0.9453 0.9472 0.9375 0.9819 0.9620

Max bound+ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean bound 0.8271 0.8292 0.8308 0.8280 0.8326 0.8295

Mean bound+ 0.9899 0.9826 0.9893 0.9933 0.9814 0.9851

% of optimality+ 90.0% 85.5% 91.0% 93.5% 88.5% 90.0%

Mean CPU+ 0.06 0.23 0.76 1.81 3.12 5.53

Table 8: Approximating spectral norm by Algorithm 3.3 (using H
10
1 ) for 10× n× n tensors

n 5 10 20 30 40 50
√

n/ lnn 1.7626 2.0840 2.5838 2.9699 3.2929 3.5751

Min bound 1.1791 1.2521 1.7417 1.8815 2.1672 2.5568

Max bound 1.4998 1.5263 2.0248 2.0187 2.2854 3.2108

Mean bound 1.3078 1.4135 1.9055 1.9522 2.2221 2.9763

Mean CPU+ 0.69 13.31 101.49 1957.03 5365.99 11609.46

Table 9: Approximating nuclear norm by Algorithm 3.9 (using H
n
1 ) for n× 10× 10 tensors

n 5 10 20 30 40 50

Min bound 1.2999 1.3110 1.3008 1.3225 1.3638 1.3511

Max bound 1.5275 1.5303 1.5257 1.5405 1.5099 1.5726

Mean bound 1.4120 1.4112 1.4148 1.4148 1.4200 1.4239

Mean CPU+ 2.06 13.23 160.03 941.46 6618.63 9488.85

Table 10: Approximating nuclear norm by Algorithm 3.9 (using H
10
1 ) for 10 × n× n tensors

From the above tables, we see that the exact approximation bounds obtained by numerical

instances outperform the theoretical bound Ω

(

√

lnn
n

)

for both the spectral and nuclear norms.

For the latter, it obviously beats the previous known best one Ω
(

1√
n

)

. For the spectral norm,
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running the ALS method starting with our approximate solutions can lead to global optimality for

most random generated tensor instances.

4 Concluding remarks

We constructed hitting sets or collections of spherical caps to cover the unit sphere with adjustable

parameters for different levels of approximations and cardinalities, listed roughly in Table 1. These

readily available products can be used for various decision making problems on spheres or related

problems. By applying the covering results we proposed easily implementable and deterministic

algorithms to approximate the tensor spectral norm with the current known best approximation

bound. The algorithms can be extended to provide approximate solutions for sphere constrained

homogeneous polynomial optimization problems. Deterministic algorithms with an improved ap-

proximation bound for the tensor nuclear norm were proposed as well. This newly improved bound

attains the best known one for the tensor spectral norm.

For 1 ≤ p ≤ ∞, the tensor spectral p-norm [24] generalizes the tensor spectral norm in which the

unit sphere ‖x‖ = 1 is replaced by the Lp-sphere ‖x‖p = 1. The tensor nuclear p-norm can also be

defined similarly [10]. Hou and So [16] studied related Lp-sphere constrained homogeneous polyno-

mial optimization problems and proposed approximation bounds. It is natural to ask whether one

can construct Lp-sphere coverings and apply them to approximate the tensor spectral and nuclear

p-norms. The answer is likely true but still challenging. In fact, one can construct randomized hit-

ting sets using similar ideas in Section 2.1 to show the Lp version of Theorem 2.2 but deterministic

constructions remain difficult. Perhaps a more interesting problem is to explicitly construct hitting

sets for the binary hypercube {1,−1}n with different levels of approximations and cardinalities. It

will have wider applications, particularly in discrete optimization and graph theory. We leave these

to future works.
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