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Abstract

We study the computational complexity of the optimal transport problem that evaluates the Wasser-

stein distance between the distributions of two K-dimensional discrete random vectors. The best known

algorithms for this problem run in polynomial time in the maximum of the number of atoms of the

two distributions. However, if the components of either random vector are independent, then this num-

ber can be exponential in K even though the size of the problem description scales linearly with K.

We prove that the described optimal transport problem is #P-hard even if all components of the first

random vector are independent uniform Bernoulli random variables, while the second random vector

has merely two atoms, and even if only approximate solutions are sought. We also develop a dynamic

programming-type algorithm that approximates the Wasserstein distance in pseudo-polynomial time

when the components of the first random vector follow arbitrary independent discrete distributions, and

we identify special problem instances that can be solved exactly in strongly polynomial time.

1. Introduction

Optimal transport theory is closely intertwined with probability theory and statistics [Boucheron et al.,

2013, Villani, 2008] as well as with economics and finance [Galichon, 2016], and it has spurred fundamental

research on partial differential equations [Benamou and Brenier, 2000, Brenier, 1991]. In addition, optimal

transport problems naturally emerge in numerous application areas spanning machine learning [Arjovsky

et al., 2017, Carriere et al., 2017, Rolet et al., 2016], signal processing [Ferradans et al., 2014, Kolouri

and Rohde, 2015, Papadakis and Rabin, 2017, Tartavel et al., 2016], computer vision [Rubner et al., 2000,

Solomon et al., 2014, 2015] and distributionally robust optimization [Blanchet and Murthy, 2019, Gao and

Kleywegt, 2022, Mohajerin Esfahani and Kuhn, 2018]. For a comprehensive survey of modern applications

of optimal transport theory we refer to [Kolouri et al., 2017, Peyré and Cuturi, 2019]. Historically, the

first optimal transport problem was formulated by Gaspard Monge as early as in 1781 [Monge, 1781].

Monge’s formulation aims at finding a measure-preserving map that minimizes some notion of transporta-

tion cost between two probability distributions, where all probability mass at a given origin location must

be transported to the same target location. Due to this restriction, an optimal transportation map is not

guaranteed to exist in general, and Monge’s problem could be infeasible. In 1942, Leonid Kantorovich
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formulated a convex relaxation of Monge’s problem by introducing the notion of a transportation plan

that allows for mass splitting [Kantorovich, 1942]. Interestingly, an optimal transportation plan always

exists. This paradigm shift has served as a catalyst for significant progress in the field.

In this paper we study Kantrovich’s optimal transport problem between two discrete distributions

µ =
∑

i∈I

µiδxi
and ν =

∑

j∈J

νjδyj
,

on R
K , where µ ∈ R

I and ν ∈ R
J denote the probability vectors, whereas xi ∈ R

K for i ∈ I = {1, . . . , I}
and yj ∈ R

K for j ∈ J = {1, . . . , J} represent the discrete support points of µ and ν, respectively.

Throughout the paper we assume that µ and ν denote the probability distributions of two K-dimensional

discrete random vectors x and y, respectively. Given a transportation cost function c : RK×RK → [0,+∞],

we define the optimal transport distance between the discrete distributions µ and ν as

Wc(µ, ν) = min
π∈Π(µ,ν)

∑

i∈I

∑

j∈J

c(xi,yj)πij , (1)

where Π(µ,ν) = {π ∈ R
I×J
+ : π1 = µ, π⊤1 = ν} denotes the polytope of probability matrices π with

marginal probability vectors µ and ν. Thus, every π ∈ Π(µ,ν) defines a discrete probability distribution

π =
∑

i∈I

∑

j∈J

πijδ(xi,yj)

of (x,y) under which x and y have marginal distributions µ and ν, respectively. Distributions with these

properties are referred to as transportation plans. If there exists p ≥ 1 such that c(x,y) = ‖x − y‖p for

all x,y ∈ R
K , then Wc(µ, ν)1/p is termed the p-th Wasserstein distance between µ and ν. The optimal

transport problem (1) constitutes a linear program that admits a strong dual linear program of the form

max µ⊤ψ + ν⊤φ

s.t. ψ ∈ R
I , φ ∈ R

J

ψi + φj ≤ c(xi,yj) ∀i ∈ I, j ∈ J .

Strong duality holds because π = µν⊤ is feasible in (1) and the optimal value is finite. Both the primal

and the dual formulations of the optimal transport problem can be solved exactly using the simplex al-

gorithm [Dantzig, 1951], the more specialized network simplex algorithm [Orlin, 1997] or the Hungarian

algorithm [Kuhn, 1955]. Both problems can also be addressed with dual ascent methods [Bertsimas and

Tsitsiklis, 1997], customized auction algorithms [Bertsekas, 1981, 1992] or interior point methods [Kar-

markar, 1984, Lee and Sidford, 2014, Nesterov and Nemirovskii, 1994]. More recently, the emergence of

high-dimensional optimal transport problems in machine learning has spurred the development of efficient

approximation algorithms. Many popular approaches for approximating the optimal transport distance

between two discrete distributions rely on solving a regularized variant of problem (1). For instance,

when augmented with an entropic regularizer, problem (1) becomes amenable to greedy methods such

as the Sinkhorn algorithm [Sinkhorn, 1967, Cuturi, 2013] or the related Greenkhorn algorithm [Abid and

Gower, 2018, Altschuler et al., 2017, Chakrabarty and Khanna, 2021], which run orders of magnitude faster

than the exact methods. Other promising regularizers that have attracted significant interest include the

Tikhonov [Blondel et al., 2018, Dessein et al., 2018, Essid and Solomon, 2018, Seguy et al., 2018], Lasso [Li

et al., 2016], Tsallis entropy [Muzellec et al., 2017] and group Lasso regularizers [Courty et al., 2016]. In
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addition, Newton-type methods [Blanchet et al., 2018, Quanrud, 2019], quasi-Newton methods [Blondel

et al., 2018], primal-dual gradient methods [Dvurechensky et al., 2018, Guo et al., 2020, Jambulapati et al.,

2019, Lin et al., 2019, 2022], iterative Bregman projections [Benamou et al., 2015] and stochastic average

gradient descent algorithms [Genevay et al., 2016] are also used to find approximate solutions for discrete

optimal transport problems.

The existing literature mainly addresses optimal transport problems between discrete distributions

that are specified by enumerating the locations and the probabilities of the underlying atoms. In this case,

the worst-case time-complexity of solving the linear program (1) with an interior point algorithm, say,

grows polynomially with the problem’s input description. In contrast, we focus here on optimal transport

problems between discrete distributions supported on a number of points that grows exponentially with

the dimension K of the sample space even though these problems admit an input description that scales

only polynomially with K. In this case, the worst-case time-complexity of solving the linear program (1)

directly with an interior point algorithm grows exponentially with the problem’s input description. More

precisely, we henceforth assume that µ is the distribution of a random vector x ∈ R
K with independent

components. Hence, µ is uniquely determined by the specification of its K marginals, which can be encoded

using O(K) bits. Yet, even if each marginal has only two atoms, µ accommodates already 2K atoms.

Optimal transport problems involving such distributions are studied by Çelik et al. [2021] with the aim

to find a discrete distribution with independent marginals that minimizes the Wasserstein distance from a

prescribed discrete distribution. While Çelik et al. [2021] focus on solving small instances of this nonconvex

problem, our results surprisingly imply that even evaluating this problem’s objective function is hard. In

summary, we are interested in scenarios where the discrete optimal transport problem (1) constitutes a

linear program with exponentially many variables and constraints. We emphasize that such linear programs

are not necessarily hard to solve [Grötschel et al., 2012], and therefore a rigorous complexity analysis is

needed. We briefly review some useful computational complexity concepts next.

Recall that the complexity class P comprises all decision problems (i.e., problems with a Yes/No answer)

that can be solved in polynomial time. In contrast, the complexity class NP comprises all decision problems

with the property that each ‘Yes’ instance admits a certificate that can be verified in polynomial time. A

problem is NP-hard if every problem in NP is polynomial-time reducible to it, and an NP-hard problem

is NP-complete if it belongs to NP. In this paper we will mainly focus on the complexity class #P, which

encompasses all counting problems associated with decision problems in NP [Valiant, 1979a,b]. Loosely

speaking, an instance of a #P problem thus counts the number of distinct polynomial-time verifiable

certificates of the corresponding NP instance. Consequently, a #P problem is at least as hard as its

NP counterpart, and #P problems cannot be solved in polynomial time unless #P coincides with the

class FP of polynomial-time solvable function problems. A Turing reduction from a function problem A

to a function problem B is an algorithm for solving problem A that has access to a fictitious oracle for

solving problem B in one unit of time. Note that the oracle plays the role of a subroutine and may be

called several times. A polynomial-time Turing reduction from A to B runs in time polynomial in the

input size of A. We emphasize that, even though each oracle call requires only one unit of time, the time

needed for computing all oracle inputs and reading all oracle outputs is attributed to the runtime of the

Turing reduction. A problem is #P-hard if every problem in #P is polynomial-time Turing reducible to

it, and a #P-hard problem is #P-complete if it belongs to #P [Valiant, 1979b, Jerrum, 2003].

Several hardness results for variants and generalizations of the optimal transport problem have recently
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been discovered. For example, multi-marginal optimal transport and Wasserstein barycenter problems were

shown to be NP-hard [Altschuler and Boix-Adsera, 2021, 2022], whereas the problem of computing the

Wasserstein distance between a continuous and a discrete distribution was shown to be #P-hard even in

the simplest conceivable scenarios [Taskesen et al., 2022]. In this paper, we focus on optimal transport

problems between two discrete distributions µ and ν. We formally prove that such problems are also #P-

hard when µ and/or ν may have independent marginals. Specifically, we establish a fundamental limitation

of all numerical algorithms for solving optimal transport problems between discrete distributions µ and ν,

where µ has independent marginals. We show that, unless FP = #P, it is not possible to design an

algorithm that approximates Wc(µ, ν) in time polynomial in the bit length of the input size (which scales

only polynomially with the dimension K) and the bit length log2(1/ε) of the desired accuracy ε > 0.

This result prompts us to look for algorithms that output ε-approximations in pseudo-polynomial time,

that is, in time polynomial in the input size, the magnitude of the largest number in the input and the

inverse accuracy 1/ε. It also prompts us to look for special instances of the optimal transport problem

with independent marginals that can be solved in weakly or strongly polynomial time. An algorithm runs

in weakly polynomial time if it computes Wc(µ, ν) in time polynomial in the bit length of the input.

Similarly, an algorithm runs in strongly polynomial time if it computes Wc(µ, ν) in time polynomial in the

bit length of the input and if, in addition, it requires a number of arithmetic operations that grows at most

polynomially with the dimension of the input (i.e., the number of input numbers).

The key contributions of this paper can be summarized as follows.

• We prove that the discrete optimal transport problem with independent marginals is #P-hard even

if µ represents the uniform distribution on the vertices of the K-dimensional hypercube and ν has only

two support points, and even if only approximate solutions of polynomial bit length are sought (see

Theorem 3.3).

• We demonstrate that the discrete optimal transport problem with independent marginals can be solved

in strongly polynomial time by a dynamic programming-type algorithm if both µ and ν are supported

on a fixed bounded subset of a scaled integer lattice with a fixed scaling factor and if ν has only two

atoms—even if µ represents an arbitrary distribution with independent marginals (see Theorem 4.1,

Corollary 4.6 and the subsequent discussion). The design of this algorithm reveals an intimate connec-

tion between optimal transport and the conditional value-at-risk arising in risk measurement.

• Using a rounding scheme to approximate µ and ν by distributions µ̃ and ν̃ supported on a scaled integer

lattice with a sufficiently small grid spacing constant, we show that if ν has only two atoms, then ε-

accurate approximations of the optimal transport distance between µ and ν can always be computed

in pseudo-polynomial time via dynamic programming—even if µ represents an arbitrary distribution

with independent marginals (see Theorem 4.9). This result implies that the optimal transport problem

with independent marginals is in fact #P-hard in the weak sense [Garey and Johnson, 1979, § 4].

Our complexity analysis complements existing hardness results for two-stage stochastic programming

problems. Indeed, Dyer and Stougie [2006, 2015], Hanasusanto et al. [2016] and Dhara et al. [2021] show

that computing optimal first-stage decisions of linear two-stage stochastic programs and evaluating the

corresponding expected costs is hard if the uncertain problem parameters follow independent (discrete or

continuous) distributions. This paper establishes similar hardness results for discrete optimal transport

problems. Our paper also complements the work of Genevay et al. [2016], who describe a stochastic gradient
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descent method for computing ε-optimal transportation plans in O(1/ε2) iterations. Their method can

in principle be applied to the discrete optimal transport problems with independent marginals studied

here. However, unlike our pseudo-polynomial time dynamic programming-based algorithm, their method

is non-deterministic and does not output an approximation of the optimal transport distance Wc(µ, ν).

The remainder of this paper is structured as follows. In Section 2 we review a useful #P-hardness result

for a counting version of the knapsack problem. By reducing this problem to the optimal transport problem

with independent marginals, we prove in Section 3 that the latter problem is also #P-hard even if only

approximate solutions are sought. In Section 4 we develop a dynamic programming-type algorithm that

computes approximations of the optimal transport distance in pseudo-polynomial time, and we identify

special problem instances that can be solved exactly in strongly polynomial time.

Notation. We use boldface letters to denote vectors and matrices. The vectors of all zeros and ones are

denoted by 0 and 1, respectively, and their dimensions are always clear from the context. The calligraphic

letters I,J ,K and L are reserved for finite index sets with cardinalities I, J,K and L, that is, I = {1, . . . , I}
etc. We denote by ‖ · ‖ the 2-norm, and for any x ∈ R

K we use δx to denote the Dirac distribution at x.

2. A Counting Version of the Knapsack Problem

Counting the number of feasible solutions of a 0/1 knapsack problem is a seemingly simple but surprisingly

challenging task. Formally, the problem of interest is stated as follows.

#Knapsack

Instance. A list of items with weights wk ∈ Z+, k ∈ K, and a capacity b ∈ Z+.

Goal. Count the number of subsets of the items whose total weight is at most b.

The #Knapsack problem is known to be #P-complete [Dyer et al., 1993], and thus it admits no

polynomial-time algorithm unless FP = #P. Dyer et al. [1993] discovered a randomized sub-exponential

time algorithm that provides almost correct solutions with high probability by sampling feasible solutions

using a random walk. By relying on a rapidly mixing Markov chain, Morris and Sinclair [2004] then

developed the first fully polynomial randomized approximation scheme. Later, Dyer [2003] interweaved

dynamic programming and rejection sampling approaches to obtain a considerably simpler fully polynomial

randomized approximation scheme. However, randomization remains essential in this approach. Determin-

istic dynamic programming-based algorithms were developed more recently by Gopalan et al. [2011], and

Štefankovič et al. [2012]. In the next section we will demonstrate that a certain class of discrete optimal

transport problems with independent marginals is at least as hard as the #Knapsack problem.

3. Optimal Transport with Independent Marginals

Consider now a variant of the optimal transport problem (1), where the discrete multivariate distribution

µ = ⊗k∈Kµk is a product of K independent univariate marginal distributions µk =
∑

l∈L µ
l
kδxl

k
with support

points xl
k ∈ R and corresponding probabilities µl

k for every l ∈ L. This implies that µ accommodates a

total of I = LK support points. The assumption that each µk, k ∈ K, accommodates the same number L of

support points simplifies notation but can be imposed without loss of generality. Indeed, the probability of
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any unneeded support point can be set to zero. The other discrete multivariate distribution ν =
∑

j∈J νjδyj

has no special structure. Assume for the moment that all components of the support points as well as all

probabilities of µk, k ∈ K, and ν are rational numbers and thus representable as ratios of two integers,

and denote by U the maximum absolute numerical value among all these integers, which can be encoded

using O(log2 U) bits. Thus, the total number of bits needed to represent the discrete distributions µ

and ν is bounded above by O(max{KL, J} log2 U). Note that this encoding does not require an explicit

enumeration of the locations and probabilities of the I = LK atoms of the distribution µ. It is well

known that the linear program (1) can be solved in polynomial time by the ellipsoid method, for instance,

if µ is encoded by such an inefficient exhaustive enumeration, which requires up to O(max{I, J} log2 U)

input bits. Thus, the runtime of the ellipsoid method scales at most polynomially with I, J and log2 U .

As I = LK grows exponentially with K, however, this does not imply tractability of the optimal transport

problem at hand, which admits an efficient encoding that scales only linearly with K. In the remainder of

this paper we will prove that the optimal transport problem with independent maringals is #P-hard, and

we will identify special problem instances that can be solved efficiently.

In order to prove #P-hardness, we focus on the following subclass of optimal transport problems with

independent marginals, where µ is the uniform distribution on {0, 1}K , and ν has only two support points.

#Optimal Transport (for p ≥ 1 fixed)

Instance. Two support points y1,y2 ∈ R
K , y1 6= y2, and a probability t ∈ [0, 1].

Goal. For µ denoting the uniform distribution on {0, 1}K and ν = tδy1
+ (1 − t)δy2

, compute an

approximation W̃c(µ, ν) of Wc(µ, ν) for c(x,y) = ‖x− y‖p such that the following hold.

(i) The bit length of W̃c(µ, ν) is polynomially bounded in the bit length of the input (y1,y2, t).

(ii) We have |W̃c(µ, ν)−Wc(µ, ν)| ≤ ε, where

ε =
1
4I

min
{
|‖xi − y1‖p − ‖xi − y2‖p| : i ∈ I, ‖xi − y1‖p − ‖xi − y2‖p 6= 0

}

with I = 2K and xi, i ∈ I, representing the different binary vectors in {0, 1}K .

We first need to show that the #Optimal Transport problem is well-posed, that is, we need to ascertain

the existence of a sufficiently accurate approximation that can be encoded in a polynomial number of bits.

To this end, we first prove that the maximal tolerable approximation error ε is not too small.

Lemma 3.1. There exists ε ∈ (0, ε] whose bit length is polynomially bounded in the bit length of (y1,y2, t).

Proof. Note first that encoding an instance of the #Optimal Transport problem requires at least K bits

because the K coordinates of y1 and y2 need to be enumerated. Note also that, by the definition of ε, there

exists an index i⋆ ∈ I with ε = 1
4I |‖xi⋆−y1‖p−‖xi⋆−y2‖p|. As p ∈ [1,∞), ‖xi⋆−y1‖p and ‖xi⋆−y2‖p may

be irrational numbers that cannot be encoded with any finite number of bits even if the vectors y1 and y2

have only rational entries. Thus, ε is generically irrational, in which case we need to construct ε ∈ (0, ε).

To simplify notation, we henceforth use the shorthands a = ‖xi⋆ − y1‖2 and b = ‖xi⋆ − y2‖2, which can

be computed in polynomial time using O(K) additions and multiplications. Without loss of generality, we

may assume throughout the rest of the proof that a ≥ b. If a ≥ b ≥ 1, then we have

ε=
1

2K+2

∣∣∣ap/2 − bp/2
∣∣∣ =

1
2K+2

∣∣∣∣
ap − bp

ap/2 + bp/2

∣∣∣∣ ≥
1

2K+2

∣∣∣∣∣
a⌊p⌋ − b⌊p⌋

a⌈p/2⌉ + b⌈p/2⌉

∣∣∣∣∣ , ε > 0.
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Here, the first (weak) inequality holds because ap−⌊p⌋ ≥ 1 and (b/a)p−⌊p⌋ ≤ 1, which guarantees that

|ap − bp| = ap−⌊p⌋
∣∣∣a⌊p⌋ − (b/a)p−⌊p⌋ b⌊p⌋

∣∣∣ >
∣∣∣a⌊p⌋ − b⌊p⌋

∣∣∣ ,

whereas the second (strict) inequality follows from the construction of ε as a strictly positive number, which

implies that a 6= b. The tolerance ε constructed in this way can be computed via O(K) additions and

multiplications, and as p is not part of the input, its bit length is thus polynomially bounded. If a ≥ 1 ≥ b
or a, b ≤ 1, then ε can be constructed in a similar manner. Details are omitted for brevity.

Lemma 3.1 readily implies that for any instance of the #Optimal Transport problem there exists

an approximate optimal transport distance W̃c(µ, ν) that satisfies both conditions (i) as well as (ii). For

example, we could construct W̃c(µ, ν) by rounding the exact optimal transport distance Wc(µ, ν) to the

nearest multiple of ε. By construction, this approximation differs from Wc(µ, ν) at most by ε, which is

itself not larger than ε. In addition, this approximation trivially inherits the polynomial bit length from ε.

We emphasize that, in general, W̃c(µ, ν) cannot be set to the exact optimal transport distance Wc(µ, ν),

because Wc(µ, ν) may be irrational and thus have infinite bit length. However, Corollary 3.5 below implies

that if p is even, then W̃c(µ, ν) = Wc(µ, ν) satisfies both conditions (i) as well as (ii).

Note that the #Optimal Transport problem is parametrized by p. The following example shows

that if p was treated as an input parameter, then the problem would have exponential time complexity.

Example 3.2. Consider an instance of the #Optimal Transport problem with K = 1, y1 = 1, y2 = 2

and t = 0. In this case we have µ = 1
2δ0 + 1

2δ1, ν = δ2 and ε = 1
8 . An elementary analytical calculation

reveals that Wc(µ, ν) = 1
2(1 + 2p). The bit length of any ε-approximation W̃c(µ, ν) of Wc(µ, ν) is therefore

bounded below by log2(1
2 (1 + 2p)− 1

8) ≥ p− 1, which grows exponentially with the bit length log2(p) of p.

Note that the time needed for computing W̃c(µ, ν) is at least as large as its own bit length irrespective

of the algorithm that is used. If p was an input parameter of the #Optimal Transport problem, the

problem’s worst-case time complexity would therefore grow at least exponentially with its input size.

The following main theorem shows that the #Optimal Transport problem is hard even if p = 2.

Theorem 3.3 (Hardness of #Optimal Transport). #Optimal Transport is #P-hard for any p ≥ 1.

We prove Theorem 3.3 by reducing the #Knapsack problem to the #Optimal Transport problem

via a polynomial-time Turing reduction. To this end, we fix an instance of the #Knapsack problem with

input w ∈ Z
K
+ and b ∈ Z+, and we denote by νt = tδy1

+ (1− t)δy2
the two-point distribution with support

points y1 = 0 and y2 = 2bw/‖w‖2, whose probabilities are parameterized by t ∈ [0, 1]. Recall also that µ

is the uniform distribution on {0, 1}K , that is, µ = 1
I

∑
i∈I δxi

, where I = 2K and {xi : i ∈ I} = {0, 1}K .

Without loss of generality, we may assume that the support points of µ are ordered so as to satisfy

‖x1 − y1‖p − ‖x1 − y2‖p ≤ ‖x2 − y1‖p − ‖x2 − y2‖p ≤ · · · ≤ ‖xI − y1‖p − ‖xI − y2‖p.

Below we will demonstrate that computing Wc(µ, νt) approximately is at least as hard as solving the

#Knapsack problem, which amounts to evaluating the cardinality of I(w, b) = {x ∈ {0, 1}K : w⊤x ≤ b}.
Lemma 3.4. If c(x,y) = ‖x − y‖p for some p ≥ 1, then the optimal transport distance Wc(µ, νt) is

continuous, piecewise affine and convex in t ∈ [0, 1]. Moreover, it admits the closed-form formula

Wc(µ, νt) =
1
I

⌊tI⌋∑

i=1

‖xi − y1‖p +
1
I

I∑

i=⌊tI⌋+1

‖xi − y2‖p

+
(tI − ⌊tI⌋)

I

(
‖x⌊tI⌋+1 − y1‖p − ‖x⌊tI⌋+1 − y2‖p

)
.

(2)
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Proof. For any fixed t ∈ [0, 1], the discrete optimal transport problem (1) satisfies

Wc(µ, νt) = min
π∈Π(µ,νt)

∑

i∈I

∑

j∈J

‖xi − yj‖pπij

=





min
q1,q2∈RI

+

t
∑

i∈I

‖xi − y1‖pq1,i + (1− t)
∑

i∈I

‖xi − y2‖pq2,i

s.t. tq1 + (1− t)q2 = 1/I, 1⊤q1 = 1, 1⊤q2 = 1.

The second equality holds because the transportation plan can be expressed as

π =
∑

i∈I

∑

j∈J

πijδ(xi,yj) = t · q1 ⊗ δy1
+ (1− t) · q2 ⊗ δy2

,

with qj =
∑

i∈I qj,iδxi
representing the conditional distribution of x given y = yj under π for every j = 1, 2.

This is a direct consequence of the law of total probability. By applying the variable transformations

q1 ← tIq1 and q2 ← (1− t)Iq2 to eliminate all bilinear terms, we then find

Wc(µ, νt) =





min
q1,q2∈RI

+

1
I

∑

i∈I

‖xi − y1‖pq1,i +
1
I

∑

i∈I

‖xi − y2‖p q2,i

s.t. 1⊤q1 = tI, 1⊤q2 = (1− t)I, q1 + q2 = 1.

(3)

Observe that (3) can be viewed as a parametric linear program. By [Dantzig and Thapa, 2003, Theo-

rem 6.6], its optimal value Wc(µ, νt) thus constitutes a continuous, piecewise affine and convex function

of t. It remains to be shown that Wc(µ, νt) admits the analytical expression (2). To this end, note that

the decision variable q2 and the constraint q1 + q2 = 1 in problem (3) can be eliminated by applying the

substitution q2 ← 1− q1. Renaming q1 as q to reduce clutter, problem (3) then simplifies to

min
q∈RI

1
I

∑

i∈I

(‖xi − y1‖p − ‖xi − y2‖p) qi +
1
I

∑

i∈I

‖xi − y2‖p

s.t. 1⊤q = tI, 0 ≤ q ≤ 1.

(4)

Recalling that the atoms of µ are ordered such that ‖x1−y1‖p−‖x1−y2‖p ≤ · · · ≤ ‖xI−y1‖p−‖xI−y2‖p,

one readily verifies that problem (4) is solved analytically by

q⋆
i =





1 if i ≤ ⌊tI⌋
tI − ⌊tI⌋ if i = ⌊tI⌋+ 1

0 if i > ⌊tI⌋+ 1.

Substituting q⋆ into (4) yields (2), and thus the claim follows.

Lemma 3.4 immediately implies that the bit length of Wc(µ, νt) is polynomially bounded.

Corollary 3.5. If c(x,y) = ‖x − y‖p and p is even, then the bit length of the optimal transport dis-

tance Wc(µ, νt) grows at most polynomially with the bit length of (y1,y2, t).

Proof. The bit length of (y1,y2, t) is finite if and only if all of its components are rational and thus

representable as ratios of two integers. We denote by U ∈ N the maximum absolute value of these integers.

For ease of exposition, we assume first that p = 2 and t = 1. In addition, we use D ∈ N to denote the

least common multiple of the denominators of the K components of y1. It is easy to see that D ≤ UK .

By Lemma 3.4, the optimal transport distance Wc(µ, νt) can thus be expressed as the average of the I
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quadratic terms ‖xi − y1‖2 = x⊤
i xi + 2x⊤

i y1 + y⊤
1 y1 for i ∈ I. Each such term is equivalent to a rational

number with denominator D2 and a numerator that is bounded above by K(1 + 2U + U2)D2. Indeed,

each component of xi is binary, whereas each component of y1 can be expressed as a rational number

with denominator D and a numerator with absolute value at most UD. By Lemma 3.4, Wc(µ, νt) is

thus representable as a rational number with denominator ID2 and a numerator with absolute value at

most IK(1 + U)2D2. Therefore, the number of bits needed to encode Wc(µ, νt) is at most of the order

O
(
log2(IKU2D2))

)
≤ O

(
log2(2KKU2U2K)

)
= O (K log2(U)) ,

where the inequality holds because I = 2K and D ≤ UK . As both K and log2(U) represent lower bounds

on the bit length of (y1,y2, t), we have thus shown that the bit length of Wc(µ, νt) is indeed polynomially

bounded in the bit length of (y1,y2, t). If p is any even number and t any rational probability, then the

claim can be proved using similar—yet more tedious—arguments. Details are omitted for brevity.

Corollary 3.5 implies that the optimal transport distance Wc(µ, νt) is rational whenever p is an even

integer and t is rational. Otherwise, Wc(µ, νt) is generically irrational because the Euclidean norm of a

vector v = (v1, . . . , vK) is irrational unless (v1, . . . , vK , ‖v‖) is proportional to a Pythagorean (K+1)-tuple,

where the inverse proportionality factor is itself equal to the square of an integer. We will now show that

the cardinality of the set I(w, b) can be computed by solving the univariate minimization problem

min
t∈[0,1]

Wc(µ, νt). (5)

Lemma 3.6. If c(x,y) = ‖x − y‖p for some p ≥ 1, then t⋆ = |I(w, b)|/I is an optimal solution of

problem (5). If in addition each component of w is even and b is odd, then t⋆ is unique.

Proof. From the proof of Lemma 3.4 we know that the optimal transport distance Wc(µ, νt) coincides with

the optimal value of (3). Thus, problem (5) can be reformulated as

min
t∈[0,1]

q1,q2∈R
I
+

1
I

∑

i∈I

‖xi − y1‖pq1,i +
1
I

∑

i∈I

‖xi − y2‖p q2,i

s.t. 1⊤q1 = tI, 1⊤q2 = (1− t)I, q1 + q2 = 1.

(6)

Note that the decision variable t as well as the two normalization constraints for q1 and q2 are redundant

and can thus be removed without affecting the optimal value of (6). In other words, there always exists

t ∈ [0, 1] such that 1⊤q1 = tI and 1⊤q2 = (1− t)I. Hence, (6) simplifies to

min
q1,q2∈RI

+

1
I

∑

i∈I

‖xi − y1‖pq1,i +
1
I

∑

i∈I

‖xi − y2‖p q2,i

s.t. q1 + q2 = 1.

(7)

Next, introduce the disjoint index sets

I0 = {i ∈ I : ‖xi − y1‖ = ‖xi − y2‖}
I1 = {i ∈ I : ‖xi − y1‖ < ‖xi − y2‖}
I2 = {i ∈ I : ‖xi − y1‖ > ‖xi − y2‖},
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which form a partition of I. Using these sets, optimal solution of problem (7) can be expressed as

q⋆
1,i =





θi if i ∈ I0

1 if i ∈ I1

0 if i ∈ I2

and q⋆
2,i =





1− θi if i ∈ I0

0 if i ∈ I1

1 if i ∈ I2

(8)

Therefore, we have

min
t∈[0,1]

Wc(µ, νt) =
1
I

∑

i∈I

min
{
‖xi − y1‖p, ‖xi − y2‖p

}
.

Any minimizer (q⋆
1 ,q

⋆
2) of (7) gives thus rise to a minimizer (t⋆,q⋆

1 ,q
⋆
2) of (6), where t⋆ = (1⊤q⋆

1)/I.

Moreover, the minimizers of (5) are exactly all numbers of the form t⋆ = (1⊤q⋆
1)/I corresponding to the

minimizer (q⋆
1 ,q

⋆
2) of (7). In view of (8), this observation allows us to conclude that

argmin
t∈[0,1]

Wc(µ, νt) = [|I1|/I, |I0 ∪ I1|/I] . (9)

By the definitions of I(w, b), y1 and y2, it is further evident that

|I(w, b)| =
∣∣∣
{
i ∈ I : w⊤xi ≤ b

}∣∣∣ =
∣∣∣
{
i ∈ I : ‖xi − y1‖2 ≤ ‖xi − y2‖2

}∣∣∣ = |I1 ∪ I0|.

Therefore, we may finally conclude that

|I(w, b)|/I ∈ argmin
t∈[0,1]

Wc(µ, νt).

Assume now that each component of w is even and b is odd. In this case, there exists no x ∈ {0, 1}K
that satisfies x⊤w = b and consequentially I0 is empty. Consequently, the interval of minimizers in (9)

collapses to the singleton |I1|/I = |I(w, b)|/I. This observation completes the proof.

Armed with Lemmas 3.4 and 3.6, we are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Select an instance of the #Knapsack problem with input w ∈ Z
K
+ and b ∈ Z+.

Throughout this proof we will assume without loss of generality that each component of w is even and

that b is odd. Indeed, if this was not the case, we could replace w with w′ = 2w and b with b′ = 2b+ 1.

It is easy to verify that the two instances of the #Knapsack problem with inputs (w, b) and (w′, b′) have

the same solution. In addition, the bit length of (w′, b′) is polynomially bounded in the bit length of (w, b).

Given w and b, define the distributions µ and νt for t ∈ [0, 1] as well as the set I(w, b) in the usual way.

From Lemma 3.4 we know that Wc(µ, νt) is continuous, piecewise affine and convex in t. The analytical

formula (2) further implies that Wc(µ, νt) is affine on the interval [(i − 1)/I, i/I] with slope ai · I, where

ai = Wc(µ, νi/I)−Wc(µ, ν(i−1)/I) ∀i ∈ I. (10)

Thus, (5) constitutes a univariate convex optimization problem with a continuous piecewise affine objective

function. As each component of w is even and b is odd, Lemma 3.6 implies that t⋆ = |I(w, b)|/I is the

unique minimizer of (5). Therefore, the given instance of the #Knapsack problem can be solved by

solving (5) and multiplying its unique minimizer t⋆ with I.

In the following we will first show that if we had access to an oracle that computes Wc(µ, νt) exactly,

then we could construct an algorithm that finds t⋆ and the solution t⋆I of the #Knapsack problem by
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calling the oracle 2K times (Step 1). Next, we will prove that if we had access to an oracle that solves

the #Optimal Transport problem and thus outputs only approximations of Wc(µ, νt), then we could

extend the algorithm from Step 1 to a polynomial-time Turing reduction from the #Knapsack problem to

the #Optimal Transport problem (Step 2). Step 2 implies that #Optimal Transport is #P-hard.

Step 1. Assume now that we have access to an oracle that computes Wc(µ, νt) exactly. In addition,

introduce an array a = (a0, a1, . . . , aI) with entries ai, i ∈ I, defined as in (10) and with a0 = −∞.

Thus, each element of a can be evaluated with at most two oracle calls. The array a is useful because

it contains all the information that is needed to solve the univariate convex optimization problem (5).

Indeed, as Wc(µ, νt) is a convex piecewise linear function with slope ai · I on the interval [i/I, (i − 1)/I],

the array a is sorted in ascending order, and the unique minimizer t⋆ of (5) satisfies

|I(w, b)| = t⋆I = max
{
i ∈ I ∪ {0} : ai ≤ 0

}
. (11)

In other words, counting all elements of the set I(w, b) and thereby solving the #Knapsack problem is

equivalent to finding the maximum index i ∈ I ∪ {0} that meets the condition ai ≤ 0. The binary search

method detailed in Algorithm 1 efficiently finds this index. Binary search methods are also referred to as

half-interval search or bisection algorithms, and they represent iterative methods for finding the largest

number within a sorted array that is smaller or equal to a given threshold (0 in our case). Algorithm 1 first

checks whether the number in the middle of the array is non-positive. Depending on the outcome, either

the part of the array to the left or to the right of the middle element may be discarded because the array

is sorted. This procedure is repeated until the array collapses to the single element corresponding to the

sought number. As the length of the array is halved in each iteration, the binary search method applied

to an array of length I returns the solution in log2 I = K iterations [Cormen et al., 2009, § 12].

Algorithm 1 Binary search method

Input: An array a ∈ R
I with I = 2K sorted in ascending order

1: Initialize n = 0 and n = I

2: for k = 1, . . . ,K do

3: Set n← (n+ n)/2

4: if an ≤ 0 then n← n else n← n

5: end for

6: if an ≤ 0 then n← n else n← n

Output: n

One can use induction to show that, in any iteration k of Algorithm 1, n is given by a multiple of 2K−k

and represents indeed an eligible index. Similarly, in any iteration k we have n− n = 2K−k+1.

Step 2. Assume now that we have only access to an oracle that solves the #Optimal Transport

problem, which merely returns an approximation W̃c(µ, νt) of Wc(µ, νt). Setting ã0 = −∞ and

ãi = W̃c(µ, νi/I)− W̃c(µ, ν(i−1)/I) ∀i ∈ I, (12)

we can then introduce a perturbed array ã = (ã0, ã1, . . . , ãI) which provides an approximation for a. In

the following we will prove that, even though ã is no longer necessarily sorted in ascending order, the sign

of ãi coincides with the sign of ai for every i ∈ I. Algorithm 1 therefore outputs the exact solution |I(w, b)|
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of the #Knapsack problem even if its input a is replaced with ã. To see this, we first note that

ai =
1
I

(‖xi − y1‖p − ‖xi − y2‖p) ∀i ∈ I, (13)

which is an immediate consequence of the analytical formula (2) for Wc(µ, νt). We emphasize that (13) has

only theoretical relevance but cannot be used to evaluate ai in practice because it relies on our assumption

that the support points xi, i ∈ I, are ordered such that ‖xi − y1‖p − ‖xi − y2‖p is non-decreasing in i.

Indeed, there is no efficient algorithm for ordering these 2K points in practice. Using (13), we then find

ε =
1
4

min
i∈I
{|ai| : ai 6= 0} =

1
4

min
i∈I
|ai|,

where the first equality follows from the definition of ε, and the second equality holds because each com-

ponent of w is even and b is odd, which implies that ‖xi − y1‖ 6= ‖xi − y2‖ and thus ai 6= 0 for all i ∈ I.

The last formula for ε immediately implies that |ai| ≥ 4ε for all i ∈ I. Together with the estimate

|ãi − ai| ≤
∣∣∣W̃c(µ, νi/I)−Wc(µ, νi/I)

∣∣∣+
∣∣∣W̃c(µ, ν(i−1)/I)−Wc(µ, ν(i−1)/I )

∣∣∣ ≤ 2ε,

this implies that ãi has indeed the same sign as ai for every i ∈ I. As the execution of Algorithm 1 depends

on the input array only through the signs of its components, Algorithm 1 with input ã computes indeed

the exact solution |I(w, b)| of the #Knapsack problem. If the perturbed slope ãn in line 4 of Algorithm 1

is evaluated via (12) by calling the #Optimal Transport oracle twice, then Algorithm 1 constitutes a

Turing reduction from the #P-hard #Knapsack problem to the #Optimal Transport problem.

To prove that the #Optimal Transport problem is #P-hard, it remains to be shown that if any

oracle call requires unit time, then the Turing reduction constructed above runs in polynomial time in the

bit length of (w, b). This is indeed the case because Algorithm 1 calls the #Optimal Transport oracle

only 2K times in total and because all other operations can be carried out efficiently. In particular, the

time needed for reading the oracle outputs is polynomially bounded in the size of (w, b). Indeed, the bit

length of W̃c(µ, νi/I) is polynomially bounded in the bit length of (y1,y2, i/I) thanks to the definition of

the #Optimal Transport problem, and the time needed for computing (y1,y2, i/I) is trivially bounded

by a polynomial in the bit length of (w, b) for any i ∈ I. These observations complete the proof.

We emphasize that the Turing reduction derived in the proof of Theorem 3.3 can be implemented

without knowing the accuracy level ε of the #Optimal Transport oracle. This is essential because ε is

defined as the minimum of exponentially many terms, and we are not aware of any method to compute it

efficiently. Without such a method, a Turing reduction relying on ε could not run in polynomial time.

Remark 3.7 (Polynomial-Time Turing Reductions). Recall that a polynomial-time Turing reduction from

problem A to problem B is a Turing reduction that runs in polynomial time in the input size of A under the

hypothetical assumption that there is an oracle for solving B in unit time. The time needed for computing

oracle inputs and reading oracle outputs is attributed to the Turing reduction and is not absorbed in the

oracle. Thus, a Turing reduction can run in polynomial time only if the oracle’s output size is guaranteed to

be polynomially bounded. The existence of a polynomial-time Turing reduction from A to B implies that if

there was an efficient algorithm for solving B, then we could solve A in polynomial time (this operationalizes

the assertion that “A is not harder than B”). One could use this implication as an alternative definition,

that is, one could define a polynomial-time Turing reduction as a Turing reduction that runs in polyonomial

time provided that the oracle runs in polynomial time. In our opinion, this alternative definition would
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be perfectly reasonable. However, it is not equivalent to the original definition by Valiant [1979b], which

compels us to ascertain that the oracle output has polynomial size irrespective of the oracle’s actual runtime.

Instead, the alternative definition directly refers to the oracle’s actual runtime. In that it conditions on

oracles that run in polynomial time, it immediately guarantees that their outputs have polynomial size.

In short, the original definition requires the bit length of the oracle’s output to be polynonmially bounded

for every oracle that solves B (which requires a proof), whereas the alternative definition requires such a

bound only for oracles that solve B in polynomial time (which requires no proof). As Theorem 3.3 relies

on the original definition of a polynomial-time Turing reduction, we had to introduce condition (ii) in the

definition of the #Optimal Transport problem. We consider the differences between the original and

alternative definitions of polynomial-time Turing reductions as pure technicalities, but discussing them

here seems relevant for motivating our formulation of the #Optimal Transport problem.

Assume now that p is an even number, and consider any instance of the #Optimal Transport

problem. In this case, all coefficients of the linear program (1) are rational, and thus Wc(µ, νt) is a rational

number that can be computed in finite time (e.g., via the simplex algorithm). From Corollary 3.5 we

further know that Wc(µ, νt) has polynomially bounded bit length. Thus, W̃c(µ, νt) = Wc(µ, νt) satisfies

both properties (i) and (ii) that are required of an admissible approximation of the optimal transport

distance. Nevertheless, Theorem 3.3 asserts that computing Wc(µ, νt) approximately is already #P-hard.

This trivially implies that computing Wc(µ, νt) exactly is also #P-hard.

4. Dynamic Programming-Type Solution Methods

We now return to the generic optimal transport problem with independent marginals, where µ is repre-

sentable as ⊗k∈Kµk, the marginals of µ constitute arbitrary univariate distributions supported on L points,

and ν constitutes an arbitrary multivariate distribution supported on J points. This problem class covers

all instances of the #Optimal Transport problem, and by Theorem 3.3 it is therefore #P-hard even if

only approximate solutions are sought. In fact, any problem class that is rich enough to contain all instances

of the #Optimal Transport problem is #P-hard. We will now demonstrate that, for p = 2, particular

instances of the optimal transport problem with independent marginals can be solved in polynomial or

pseudo-polynomial time by a dynamic programming-type algorithm even though the distribution µ involves

exponentially many atoms and the linear program (1) has exponential size. Throughout this discussion

we call N ⊆ R a one-dimensional regular grid with cardinality N if there exist ŝ1, . . . , ŝN ∈ R and a grid

spacing constant d > 0 such that ŝi+1 = ŝi + d for all i = 1, . . . , N − 1 and N = {ŝ1, . . . , ŝN}. We say that

a setM⊆ R spans the one-dimensional regular grid N ifM⊆ N , minM = minN and maxM = maxN .

Theorem 4.1 (Dynamic Programming-Type Algorithm for Optimal Transport Problems with Independent

Marginals). Suppose that µ = ⊗k∈Kµk is a product of K independent univariate distributions of the form

µk =
∑

l∈L µ
l
kδxl

k
and that νt = tδy1

+ (1 − t)δy2
is a two-point distribution. If c(x,y) = ‖x − y‖2 and

ifM = {xl
k(y1,k−y2,k) : k ∈ K, l ∈ L} spans a regular one-dimensional grid N with (known) cardinality N ,

then the optimal transport distance between µ and νt can be computed exactly by a dynamic programming-

type algorithm using O(KL log2(KL) +KLN +K2N2) arithmetic operations. If all problem parameters

are rational and representable as ratios of two integers with absolute values at most U , then the bit lengths

of all numbers computed by this algorithm are polynomially bounded in K, L, N and log2(U).
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Assuming thatM spans some regular one-dimensional grid N , Theorem 4.1 establishes an upper bound

on the number of arithmetic operations needed to solve the optimal transport problem with independent

marginals. We will see that the proof of Theorem 4.1 is constructive in that it develops a concrete dynamic

programming-type algorithm that attains the indicated upper bound (see Algorithm 2). However, this

bound depends on the cardinality N of the grid N , and Theorem 4.1 does not relate N to K, L or U .

More importantly, it provides no guidelines for constructing N or even proving its existence.

Remark 4.2 (Existence of N ). If all support points of µ and ν have rational components, then a regular

one-dimensional grid N satisfying the assumptions of Theorem 4.1 is guaranteed to exist. In general,

however, its cardinality scales exponentially with K and L, implying that the dynamic programming-type

algorithm of Theorem 4.1 is inefficient. To see this, assume that for all k ∈ K, l ∈ L and j ∈ {1, 2} there

exist integers ak,l, cj,k ∈ Z and bk,l, dj,k ∈ N such that xl
k = ak,l/bk,l and yj,k = cj,k/dj,k. Thus, we have

xl
k(y1,k − y2,k) =

al
k(c1,kd2,k − c2,kd1,k)

bk,ld1,kd2,k
k ∈ K, ∀l ∈ L,

which implies that all elements of M can be expressed as rational numbers with common denominator

D =
∏

k∈K,l∈L bk,ld1,kd2,k. Clearly, M therefore spans a regular one-dimensional grid N with grid spacing

constant d = D−1 and cardinality N = D(maxM−minM) + 1. If U denotes as usual an upper bound

on the absolute values of the integers ak,l, bk,l, cj,k and dj,k for all k ∈ K, l ∈ L and j ∈ {1, 2}, then

we have D ≤ U3KL, and all elements of M have absolute values of at most 2U3. The cardinality of N
therefore satisfies N ≤ 4U3(KL+1) + 1. This reasoning suggests that, in the worst case, the dynamic

programming-type algorithm of Theorem 4.1 may require up to O(K2U3(KL+1)) arithmetic operations.

Remark 4.2 guarantees that a regular one-dimensional gridN satisfying the assumptions of Theorem 4.1

exists whenever the input bit length of the optimal transport problem with independent marginals is finite.

However, Remark 4.2 also reveals that the algorithm of Theorem 4.1 may be highly inefficient in general.

Remark 4.3 below discusses special conditions under which this algorithm is of practical interest.

Remark 4.3 (Efficiency of the Dynamic Programming-Type Algorithm). The algorithm of Theorem 4.1

is efficient on problem instances that display the following properties.

(i) If M spans a regular one-dimensional grid whose cardinality N grows only polynomially with K

and L but is independent of U , then the number of arithmetic operations required by the algorithm

of Theorem 4.1 grows polynomially with K and L but is independent of U , and the bit lengths of

all numbers computed by this algorithm are polynomially bounded in K, L and log2(U). Hence, the

algorithm runs in strongly polynomial time on a Turing machine.

(ii) If M spans a regular one-dimensional grid whose cardinality N grows polynomially with K, L

and log2(U), then the number of arithmetic operations required by the algorithm of Theorem 4.1 as

well as the bit lengths of all numbers computed by this algorithm are polynomially bounded in K, L

and log2(U). Hence, the algorithm runs in weakly polynomial time on a Turing machine.

(iii) If M spans a regular one-dimensional grid whose cardinality grows polynomially with K, L and U

(but exponentially with log2(U)), then the number of arithmetic operations required by the algorithm

of Theorem 4.1 grows polyonomially with K, L and U , and the bit lengths of all numbers computed

by this algorithm are polynomially bounded in K, L and log2(U). Hence, the algorithm runs in

pseudo-polynomial time on a Turing machine.
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Before proving Theorem 4.1, we recall the definition of the Conditional Value-at-Risk (CVaR) by Rock-

afellar and Uryasev [2002]. Specifically, if the random vector x is governed by the probability distribution µ,

then the CVaR at level t ∈ (0, 1) of any Borel measurable loss function ℓ(x) is defined as

CVaRt[ℓ(x)] = inf
β∈R

β +
1
t
Ex∼µ [max{ℓ(x)− β, 0}] .

Here, the minimization problem over β is solved by the Value-at-Risk (VaR) at level t [Rockafellar and

Uryasev, 2002, Theorem 10], which is defined as the left (1− t)-quantile of the loss distribution, that is,

VaRt[ℓ(x)] = inf {τ ∈ R : µ[ℓ(x) ≤ τ ] ≥ 1− t} .

The proof of Theorem 4.1 also relies on the following lemma.

Lemma 4.4 (Minkowski sums of regular one-dimensional grids). If N is a one-dimensional regular grid

with cardinality N and grid spacing constant d > 0, then the k-fold Minkowski sum
∑k

i=1N of N is

another one-dimensional regular grid with cardinality k(N − 1) + 1 and the same grid spacing constant d.

Proof. Any regular one-dimensional grid with cardinality N and grid spacing constant d > 0 is representable

as the image of {1, . . . , N} under the affine transformation f(s) = ŝ1−d+ds, where ŝ1 denotes the smallest

element of N . It is immediate to see that the k-fold Minkowski sum of N is another one-dimensional regular

grid with grid spacing constant d. In addition, the cardinality of this Minkowski sum satisfies
∣∣∣∣∣

k∑

i=1

N
∣∣∣∣∣ =

∣∣∣∣∣

k∑

i=1

f({1, . . . , N})
∣∣∣∣∣ =

∣∣∣∣∣f
(

k∑

i=1

{1, . . . , N}
)∣∣∣∣∣ = |f({k, . . . , kN})| = |{k, . . . , kN}| = k(N − 1) + 1,

where the second equality holds because f is affine and because the cardinality of any set is invariant under

translations. Thus, the claim follows.

Proof of Theorem 4.1. Throughout this proof we exceptionally assume that each arithmetic operation can

be performed in unit time irrespective of the bit lengths of the involved operands. We emphasize that

everywhere else in the paper, however, time is measured in the standard Turing machine model of com-

putation. Throughout this proof we further set I = LK and denote as usual by xi, i ∈ I, the I different

support points of µ. Then, the optimal transport distance between µ and νt can be expressed as

Wc(µ, νt) = min
π∈Π(µ,νt)

∑

i∈I

∑

j∈J

(
‖xi‖2 + ‖yj‖2 − 2x⊤

i yj

)
πij

= Ex∼µ

[
‖x‖2

]
+ Ey∼νt

[
‖y‖2

]
− 2 max

π∈Π(µ,νt)

∑

i∈I

∑

j∈J

x⊤
i yjπij. (14)

The two expectations in (14) can be evaluated in O(KL) arithmetic operations because

Ex∼µ

[
‖x‖2

]
=
∑

k∈K

Exk∼µk

[
(xk)2

]
=
∑

k∈K

∑

l∈L

µl
k(xl

k)2 and Ey∼νt

[
‖y‖2

]
= t‖y1‖2 + (1− t)‖y2‖2,

and it is easy to verify that their bit lengths are polynomially bounded in K, L and log2(U). Moreover, as

in the proof of Lemma 3.6, the maximization problem in (14) simplifies to

max
π∈Π(µ,νt)

∑

i∈I

∑

j∈J

x⊤
i yjπij =





max
q1,q2∈RI

+

t
∑

i∈I

x⊤
i y1q1,i + (1− t)

∑

i∈I

x⊤
i y2q2,i

s.t. 1⊤q1 = 1, 1⊤q2 = 1

tq1,i + (1− t)q2,i = µ[x = xi] ∀i ∈ I.

15



=
∑

i∈I

x⊤
i y2 µ[x=xi] +





max
q∈RI

+

∑

i∈I

x⊤
i (y1 − y2)qi

s.t. 1⊤q = t

qi ≤ µ[x=xi] ∀i ∈ I,

(15)

where the second equality follows from the variable substitution q ← tq1 and the subsequent elimination

of q2 by using the equations (1 − t)q2,i = µ[x = xi] − qi for all i ∈ I. Observe next that the first sum

in (15) can again be evaluated using O(KL) arithmetic operations because

∑

i∈I

x⊤
i y2 µ[x = xi] = Ex∼µ

[
x⊤y2

]
=
∑

k∈K

Exk∼µk
[xky2,k] =

∑

k∈K

∑

l∈L

xl
kµ

l
ky2,k,

and the bit length of this sum is polynomially bounded in K, L and log2(U). For t = 0, the optimal

value of the maximization problem in (15) vanishes. For t = 1, on the other hand, the problem’s optimal

solution satisfies qi = µ[x = xi] for all i ∈ I. By using now standard arguments, one readily verifies that

the corresponding optimal value can once again be computed in O(KL) arithmetic operations and has

polynomially bounded bit length in K, L and log2(U). In the remainder of the proof we may thus assume

that t ∈ (0, 1). To solve the maximization problem in (15) in this generic case, we first reformulate it as

t ·max

{
∑

i∈I

ℓ(xi)µ[x = xi] qi : 0 ≤ q ≤ t · 1,
∑

i∈I

µ[x = xi] qi = 1

}
(16)

by applying the variable substitution qi ← qi/(t · µ[x = xi]) and defining ℓ(x) = x⊤(y1 − y2). The

maximization problem in (16) is then readily recognized as the dual representation of the CVaR of ℓ(x) at

level t; see, e.g., [Shapiro et al., 2021, Example 6.16]. The expression (16) thus equals t · CVaRt(ℓ(x)).

By assumption, there exists a one-dimensional regular grid N with cardinality N such that xl
k(y1,k −

y2,k) ∈ N for every k ∈ K and l ∈ L. This readily implies that ℓ(xi) = x⊤
i (y1 − y2) ∈ NK =

∑K
k=1N .

Assume from now on without loss of generality that NK = {ŝK,1, . . . , ŝK,|NK |} and that the elements of NK

are sorted in ascending order, that is, ŝK,1 < · · · < ŝK,|NK |. Also, denote by nt the unique index satisfying

nt∑

n=1

µ[ℓ(x) = ŝK,n] ≥ 1− t >
nt−1∑

n=1

µ[ℓ(x) = ŝK,n]. (17)

By [Rockafellar and Uryasev, 2002, Proposition 8], the expression (16) can therefore be reformulated as

t · CVaRt[ℓ(x)] =

(
nt∑

n=1

µ[ℓ(x) = ŝK,n]− (1− t)
)
ŝK,nt +

|NK |∑

n=nt+1

µ[ℓ(x) = ŝK,n]ŝK,n. (18)

Computing (18) thus amounts to evaluating a sum of O(|NK |) terms. We will now prove that evaluating

this sum requires O(KL log2(KL) + KLN + K2N2) arithmetic operations. To this end, we first show

that the grid points ŝK,n, n = 1, . . . , |NK |, can be computed in time O(KL log2(KL) + KN) (Step 1),

then we show that the probabilities µ[ℓ(x) = ŝK,n], n = 1, . . . , |NK |, can be computed recursively in

time O(KLN + K2N2) (Step 2), and finally we use these ingredients to compute the right hand side

of (18) in time O(KN) (Step 3).

Step 1. By assumption, the regular grid N has known cardinality N and is spanned byM = {xl
k(y1,k−

y2,k) : k ∈ K, l ∈ L}. To compute all elements of N , we first compute all elements of M in time O(KL)

and sort them in non-decreasing order in time O(KL log2(KL)) using merge sort, for example. As M
spans N , the minimum and the maximum of M coincide with the minimum ŝ1 and the maximum ŝN
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of N , respectively. Given ŝ1 and ŝN , we can then compute the grid spacing constant d = (ŝN − ŝ1)/(N −1)

as well as the elements ŝn = ŝ1 +d(n−1), n = 1, . . . , N , of N , which requires O(N) arithmetic operations.

The bit lengths of all numbers computed so far are bounded by a polynomial in log2(U) and log2(N).

It is easy to see that NK =
∑K

k=1N is also a one-dimensional regular grid that has the same grid spacing

constant as N and whose minimum ŝK,1 = Kŝ1 can be computed in constant time. The elements of NK

are then obtained by computing ŝK,n = ŝK,1 +d(n−1) for all n = 1, . . . , |NK |, where |NK | = K(N −1)+ 1

thanks to Lemma 4.4. This computation requires O(KN) arithmetic operations, and the bit lengths of all

involved numbers are still bounded by a polynomial in log2(U) and log2(N). This completes Step 1.

Step 2. We now show that the probabilities µ[ℓ(x) = ŝK,n] for n = 1, . . . , |NK | can be calculated

recursively in time O(K2N2). To this end, we introduce the partial sums ℓk(x) =
∑k

m=1 xm(y1,m − y2,m)

for every k ∈ K and note that ℓK(x) = ℓ(x). For every k ∈ K, the range of the function ℓk(x) is a subset

of the one-dimensional regular grid Nk =
∑k

k′=1N . The law of total probability then implies that

µ[ℓk(x) = ŝ] =
∑

ŝ′∈N

µ
[
ℓk−1(x) = ŝ− ŝ′, xk(y1,k − y2,k) = ŝ′] ∀k ∈ K\{1}, ∀ŝ ∈ Nk,

where ŝ1, . . . , ŝN denote as usual the elements of N , and where µ[ℓ1(x) = ŝ] = µ1[x1(y1,1 − y2,1) = ŝ] for

all ŝ ∈ N1. As ℓk(x) = ℓk−1(x) + xk(y1,k − y2,k), ℓk−1(x) is constant in xk, . . . , xK and the components

of x are mutually independent under the product distribution µ = ⊗k∈Kµk, we thus have

µ[ℓk(x) = ŝ] =
∑

ŝ′∈N

µ
[
ℓk−1(x) = ŝ− ŝ′]× µk

[
xk(y1,k − y2,k) = ŝ′] ∀k ∈ K\{1}, ∀ŝ ∈ Nk. (19)

The marginal probabilities µk[xk(y1,k − y2,k) = ŝ′] for all k ∈ K and ŝ′ ∈ N can be pre-computed in

time O(KLN). Given µ[ℓk−1(x) = ŝ], ŝ ∈ Nk−1, each probability µ[ℓk(x) = ŝ], ŝ ∈ Nk, can then be

computed in time O(N) by using (19). As |Nk| = O(kN) for every k ∈ K thanks to Lemma 4.4, each

iteration k ∈ K of the the dynamic programming-type recursion (19) requires at most O(KN2) arithmetic

operations. Finally, as there are O(K) iterations in total, the sought probabilities µ[ℓK(x) = ŝ], ŝ ∈ NK ,

can be computed in time O(K2N2). An elementary calculation further shows that the bit lengths of these

probabilities are bounded by a polynomial in K, N and log2(U). This completes Step 2.

Step 3. As all terms appearing in the sum on the right hand side of (18) have been pre-computed in

Steps 1 and 2, the sum itself can now be evaluated in time O(KN) thanks to Lemma 4.4. Note that the

critical index nt defined in (17) can also be computed in time O(KN). The bit lengths of all numbers

involved in these calculations are bounded by a polynomial in K, N and log2(U). This completes Step 3.

In summary, the time required for evaluating the CVaR in (18) totals O(KL log2(KL)+KLN+K2N2),

which matches the overall time required for all calculations described in Steps 1, 2 and 3. This computation

time dominates the time O(KL) spent on all preprocessing steps, and thus the claim follows.

The dynamic programming-type procedure developed in the proof of Theorem 3.3 is summarized in

Algorithm 2. This procedure outputs the optimal transport distance between µ and νt (denoted by Wc).

In addition, Algorithm 2 can be used for constructing the optimal transportation plan from µ to νt.
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Algorithm 2 Optimal Transport with Independent Marginals

Input: {µl
k}k∈K,l∈L, {xl

k}k∈K,l∈L, y1,y2 ∈ R
K , t, N

1: Initialize ŝ1 = min
k∈K,l∈L

xl
k(y1,k − y2,k) and ŝN = max

k∈K,l∈K
xl

k(y1,k − y2,k)

2: Set d = (ŝN − ŝ1)/(N − 1) and ŝn = ŝ1 + d(n − 1) ∀n = 1, . . . , N

3: Compute µk[xk(y1,k − y2,k) = ŝn] ∀k ∈ K and n ∈ N
4: Set µ[ℓ1(x) = ŝn] = µ1[x1(y1,1 − y2,1) = ŝn] ∀n = 1, . . . , N

5: for k = 2, . . . ,K do

6: for n = 1, . . . , k(N − 1) + 1 do

7: ŝk,n = kŝ1 + d(n− 1)

8: µ[ℓk(x) = ŝk,n] =
∑

ŝ′∈N
µ[ℓk−1(x) = ŝk,n − ŝ′]× µk[xk(y1,k − y2,k) = ŝ′]

9: end for

10: end for

11: Find the index nt ∈ {1, . . . ,K(N − 1) + 1} satisfying (17)

12: Set

CVaR =
1
t



(

nt∑

n=1

µ[ℓK(x)= ŝK,n]−1+t

)
ŝK,nt−2

K(N−1)+1∑

n=nt+1

µ[ℓK(x)= ŝK,n]ŝK,n




13: Set

Wc =
∑

k∈K

∑

l∈L

µl
k(xl

k)2+t
∑

k∈K

y2
1,k+(1−t)

∑

k∈K

y2
2,k − 2

∑

k∈K

∑

l∈L

xl
kµ

l
ky2,k − 2t · CVaR

Output: Wc

Remark 4.5 (Optimal Transportation Plan). The critical index nt computed by Algorithm 2 allows us to

construct an optimal transportation plan π⋆ ∈ R
I×J
+ that solves the linear program (1), where π⋆

i,j denotes

the probability mass moved from xi to yj for every i ∈ I and j ∈ J . To see this, note that the defining

properties of nt in (17) imply that VaRt[ℓ(x)] = ŝK,nt and µ[ℓ(x) = ŝK,nt] > 0. We may thus define π⋆ via

π⋆
i,1 =





µ[x = xi] if ℓ(xi) > ŝK,nt

t− 1 +
∑nt

n=1 µ[ℓ(x) = ŝK,n]
µ[ℓ(x) = ŝK,nt]

× µ[x = xi] if ℓ(xi) = ŝK,nt

0 if ℓ(xi) < ŝK,nt

and π⋆
i,2 = µ[x = xi] − π⋆

i,1 for all i ∈ I. By the first inequality in (17), we have π⋆ ≥ 0. In addition, we

trivially find π⋆
i,1 + π⋆

i,2 = µ[x = xi] for all i ∈ I, and we have

∑

i∈I

π⋆
i,1 =

∑

i∈I:
ℓ(xi)>ŝK,nt

µ[x = xi] +
∑

i∈I:
ℓ(xi)=ŝK,nt

t− 1 +
∑nt

n=1 µ[ℓ(x) = ŝK,n]
µ[ℓ(x) = ŝK,nt]

× µ[x = xi]

=
|NK |∑

n=nt+1

µ[ℓ(x) = ŝK,n] + t− 1 +
nt∑

n=1

µ[ℓ(x) = ŝK,n] = t = 1−
∑

i∈I

π⋆
i,2.

In summary, this shows that π⋆ is feasible in the optimal transport problem (1). Finally, we have
∑

i∈I

∑

j∈J

π⋆
ij‖xi − yj‖2 = Ex∼µ

[
‖x‖2

]
+ Ey∼νt

[
‖y‖2

]
− 2

∑

i∈I

∑

j∈J

x⊤
i yjπ

⋆
ij
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= Ex∼µ

[
‖x‖2

]
+ Ey∼νt

[
‖y‖2

]
− 2 Ex∼µ

[
x⊤y2

]
− 2

∑

i∈I

ℓ(xi)π
⋆
i,1

= Ex∼µ

[
‖x‖2

]
+ Ey∼νt

[
‖y‖2

]
− 2 Ex∼µ

[
x⊤y2

]
− 2t · CVaRt[ℓ(x)],

where the first two equalities follow from (14) and (15), respectively, while the third equality exploits the

definitions of π⋆ and the CVaR. The last expression manifestly matches the output Wc of Algorithm 2.

Hence, we may conclude that π⋆ is indeed optimal in (1). Note that evaluating π⋆
ij for a fixed i ∈ I

and j ∈ J requires at most O(NK+KL) arithmetic operations provided that the critical index nt and the

probabilities µ[ℓ(x) = ŝK,n], n ∈ NK , are given. These quantities are indeed computed by Algorithm 2.

In the following we will identify special instances of the optimal transport problem with independent

marginals that can be solved efficiently. Assume first that both µ and ν are supported on {0, 1}K . This

implies that all marginals of µ represent independent Bernoulli distributions. Unlike in Theorem 3.3,

however, these Bernoulli distributions may be non-uniform. The following corollary shows that, in this

case, the optimal transport problem with independent marginals can be solved in strongly polynomial time.

Corollary 4.6 (Binary Support). Suppose that all assumptions of Theorem 4.1 hold. If in addition L = 2,

x1
k = 0 and x2

k = 1 for all k ∈ K, and y1,y2 ∈ {0, 1}K , then the optimal transport distance between µ

and νt can be computed in strongly polynomial time.

Proof. Under the given assumptions, we have M = {xl
k(y1,k − y2,k) : k ∈ K, l ∈ L} ⊆ {−1, 0, 1}. Hence,

Theorem 4.1 applies with N ⊆ {−1, 0, 1} and N ≤ 3, and therefore Algorithm 2 computes Wc(µ, νt)

using O(K2) arithmetic operations. As N is constant in K, L and log2(U), Remark 4.3 (i) implies

that Wc(µ, νt) can be computed in strongly polynomial time in the Turing machine model.

By generalizing the proof of Corollary 4.6 in the obvious way, one can show that the optimal trans-

port problem with independent marginals remains strongly polynomial-time solvable whenever µ and νt

are supported on a (fixed) bounded subset of the scaled integer lattice Z
K/M for some (fixed) scaling

factor M ∈ N. If µ and νt are supported on a subset of ZK/M that may grow with the problem’s input

size or if the scaling factor M may grow with the input size, then Algorithm 2 ceases to run in polynomial

time. We now show, however, that Algorithm 2 stills run in pseudo-polynomial time in these cases.

Corollary 4.7 (Lattice Support). Suppose that all assumptions of Theorem 4.1 hold. If there exists a

positive integer M ≤ U , such that xl
k ∈ Z/M for all k ∈ K and l ∈ L, while y1,y2 ∈ Z

K/M , then the

optimal transport distance between µ and νt can be computed in pseudo-polynomial time.

Proof. Under the given assumptions, we have M = {xl
k(y1,k − y2,k) : k ∈ K, l ∈ L} ⊆ Z/M2. Therefore,

M spans a one-dimensional regular grid N ⊆ Z/M2 with grid spacing constant d = 1/M2 and cardinality

N = (maxM−minM) /d

= max
k∈K, l∈L

{
Mxl

k(My1,k −My2,k)
}
− min

k∈K, l∈L

{
Mxl

k(My1,k −My2,k)
}
.

(20)

Recall that xl
k = al

k/b
l
k for some al

k ∈ Z and bl
k ∈ N with |al

k|, |bl
k| ≤ U and that M ≤ U . We may

thus conclude that |Mxl
k| ≤ U2 for all k ∈ K and l ∈ L. Similarly, one can show that |My1,k| ≤ U2

and |My2,k| ≤ U2 for all k ∈ K. By (20), we thus have N ≤ 4U2, which implies via Theorem 4.1 that

Algorithm 2 computes Wc(µ, νt) using O(KL log2(KL) + K2U4) arithmetic operations. We emphasize

that the number of arithmetic operations thus grows polynomially with K, L and U but exponentially

with log2(U). By Remark 4.3 (iii), Wc(µ, νt) can therefore be computed in pseudo-polynomial time.
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So far we have discussed methods to solve the optimal transport problem with independent marginals

exactly. In the remainder of this section we will show that approximate solutions can always be computed

in pseudo-polynomial time. The following lemma provides a key ingredient for this argument.

Lemma 4.8 (Approximating Optimal Transport Distances). Consider four discrete probability distri-

butions µ =
∑

i∈I µiδxi
, µ̃ =

∑
i∈I µiδx̃i

, ν =
∑

j∈J νjδyj
and ν̃ =

∑
j∈J νjδỹj

supported on a hyper-

cube [−U,U ]K for some U > 0. If c(x,y) = ‖x− y‖2 and there exists ε ≥ 0 such that ‖x̃i − xi‖∞ ≤ ε for

all i ∈ I and ‖ỹj − yj‖∞ ≤ ε for all j ∈ J , then we have

|Wc(µ, ν)−Wc(µ̃, ν̃)| ≤ 8KUε. (21)

We emphasize that Lemma 4.8 holds for arbitrary discrete distributions µ, µ̃, ν and ν̃ provided that µ̃

and ν̃ are obtained by perturbing only the support points of µ and ν, respectively, but not the corresponding

probabilities. In particular, the lemma holds even if µ and µ̃ fail to represent product distributions with

independent marginals, and even if ν and ν̃ fail to represent two-point distributions. Note also that, by

slight abuse of notation, µi, i ∈ I, represent here the probabilties of the support points of µ and should

not be confused with the univariate marginal distributions µk, k ∈ K, in the rest of the paper.

Proof of Lemma 4.8. The elementary identity |a2 − b2| = (a+ b)|a− b| for any a, b ∈ R+ implies that

|Wc(µ, ν)−Wc(µ̃, ν̃)| =
(
Wc(µ, νt)

1

2 +Wc(µ̃, ν̃)
1

2

) ∣∣∣Wc(µ, ν)
1

2 −Wc(µ̃, ν̃)
1

2

∣∣∣ . (22)

By the definition of the optimal transport distance, the first term on the right-hand-side of (22) satisfies

Wc(µ, ν)
1

2 +Wc(µ̃, ν̃)
1

2 =


 min

π∈Π(µ,ν)

∑

i∈I

∑

j∈J

‖xi − yj‖2πij




1

2

+


 min

π̃∈Π(µ̃,ν̃)

∑

i∈I

∑

j∈J

‖x̃i − ỹj‖2π̃ij




1

2

≤ 4
√
KU,

where the inequality holds because π and π̃ are probability distributions and because

‖xi − yj‖2 ≤ K‖xi − yj‖2∞ ≤ 4KU2 and ‖x̃i − ỹj‖2 ≤ ‖x̃i − ỹj‖2∞ ≤ 4KU2

for all i ∈ I and j ∈ J , taking into account that all support points of the four probability distributions µ,

µ̃, ν and ν̃ fall into the hypercube [−U,U ]K . The second term on the right-hand-side of (22) satisfies
∣∣∣Wc(µ, ν)

1

2 −Wc(µ̃, ν̃)
1

2

∣∣∣ ≤
∣∣∣Wc(µ, ν)

1

2 −Wc(µ̃, ν)
1

2

∣∣∣+
∣∣∣Wc(µ̃, ν)

1

2 −Wc(µ̃, ν̃)
1

2

∣∣∣

≤Wc(µ, µ̃)
1

2 +Wc(ν, ν̃)
1

2

=


 min

πµ∈Π(µ,µ̃)

∑

i,i′∈I

‖xi − x̃i′‖2πµ
ii′




1

2

+


 min

πν∈Π(ν,ν̃)

∑

j,j′∈J

‖yj − ỹj′‖2πν
jj′




1

2

≤
(

1
I

∑

i∈I

‖xi − x̃i‖2
) 1

2

+


 1
J

∑

j∈J

‖yj − ỹj‖2



1

2

≤ 2
√
Kε,

where the second inequality holds because the 2-Wasserstein distance is a metric and thus obeys the triangle

inequality [Villani, 2008, § 6], whereas the third inequality holds because πµ and πν with πµ
ii′ = 1

I δii′ for

all i, i′ ∈ I and πν
jj′ = 1

J δjj′ for all j, j′ ∈ J , respectively, are feasible transportation plans. Finally, the

last inequality follows from our assumption that ‖xi − x̃i‖∞ ≤ ε and ‖yj − ỹj‖∞ ≤ ε, which implies that

‖xi − x̃i‖2 ≤ K‖xi − x̃i‖2∞ ≤ Kε2 and ‖yj − ỹj‖2 ≤ K‖yj − ỹj‖2∞ ≤ Kε2

for all i ∈ I and j ∈ J . Substituting the above estimates back into (22) finally yields (21).
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We now address the approximate solution of optimal transport problems with independent marginals.

Theorem 4.9 (Approximate Solutions of the Optimal Transport Problem with Independent Marginals).

Suppose that µ = ⊗k∈Kµk with µk =
∑

l∈L µ
l
kδxl

k
for every k ∈ K and that νt = tδy1

+ (1 − t)δy2
, and

let ε > 0 be an error tolerance. If c(x,y) = ‖x−y‖2 and if all probabilities and coordinates of the support

points of µ and νt are representable as fractions of two integers with absolute values of at most U , then the

optimal transport distance between µ and νt can be computed to within an absolute error of at most ε by

a dynamic programming-type algorithm using O(KL log2(KL)+K6U8/ε4) arithmetic operations. The bit

lengths of all numbers computed by this algorithm are polynomially bounded in K, L, log2(U) and log2(1
ε ).

Proof. In order to approximate Wc(µ, νt) to within an absolute accuracy of ε, we define M = ⌈8KU/ε⌉
and map all support points of µ and ν to the nearest lattice points in Z

K/M to construct perturbed

probability distributions µ̃ and ν̃t, respectively. Specifically, we construct x̃l
k by rounding xl

k to the nearest

point in Z/M for every k ∈ K and l ∈ L. This requires O(KL) arithmetic operations. We then define

the perturbed marginal distributions µ̃k =
∑

l∈L µ
l
kδx̃l

k
for all k ∈ K and set µ̃ = ⊗k∈Kµ̃k. In addition, we

denote by x̃i, i ∈ I, the I different support points of µ̃. Here, it is imperative to use the same orderings

for the support points of µ and µ̃, which implies that ‖xi − x̃i‖∞ ≤ 1
M ≤ ε

8KU for all i ∈ I thanks

to the construction of µ̃. We further construct ỹj,k by rounding yj,k to the nearest points in Z/M for

every j ∈ J = {1, 2} and k ∈ K, and we define ỹj = (ỹj,1, . . . , ỹj,K) for all j ∈ J . This construction

requires O(K) arithmetic operations and guarantees that ‖yj − ỹj‖∞ ≤ 1
M ≤ ε

8KU for all j ∈ J . Finally,

we introduce the perturbed two-point distribution ν̃t = tδỹ1
+(1− t)δỹ2

. All support points of µ and ν have

rational coordinates that are representable as fractions of two integers with absolute values at most U .

Therefore, µ and ν are supported on [−U,U ]K . Similarly, as U and M are integers, which implies that U

is an integer multiple of 1
M , and as all support points of µ̃ and ν̃ are obtained by mapping the support

points of µ and ν to the nearest lattice points in Z
K/M , respectively, the perturbed distributions µ̃ and ν̃

must also be supported on [−U,U ]K . Lemma 4.8 therefore guarantees that |Wc(µ, νt)−Wc(µ̃, ν̃t)| ≤ ε.
In the remainder of the proof we will estimate the number of arithmetic operations needed to com-

pute Wc(µ̃, ν̃t). Note first that the coordinates of all support points of µ̃ and ν̃t are fractions of integers

with absolute values of at most Ũ = MU . To see this, recall that xl
k = al

k/b
l
k for some al

k ∈ Z and bl
k ∈ N

with |al
k|, |bl

k| ≤ U . Using ‘round’ to denote the rounding operator that maps any real number to its nearest

integer, we can express x̃l
k as ãl

k/b̃
l
k with ãl

k = round(Mxl
k) ∈ Z and b̃l

k = M ∈ N. By construction, we

have |ãl
k| ≤MU = Ũ and b̃l

k = M ≤ Ũ for all k ∈ K and l ∈ L. Similarly, one can show that ỹj,k is repre-

sentable as a fraction of two integers with absolute values of at most Ũ for all j ∈ J and k ∈ K. As M ≤ Ũ ,

µ̃ and ν̃ thus satisfy all assumptions of Corollary 4.7 with Ũ instead of U , respectively. From the proof

of this corollary we may therefore conclude that Wc(µ̃, ν̃t) can be computed in O(KL log2(KL) + K2Ũ4)

arithmetic operations using Algorithm 2. As Ũ = MU = O(KU2/ε), this establishes the claim about the

number of arithmetic operations. From the definitions of Ũ and M and from the analysis of Algorithm 2

in Theorem 4.1, it is clear that the bit lengths of all numbers computed by the proposed procedure are

indeed polynomially bounded in K, L, log2(U) and log2(1
ε ). This observation completes the proof.

Theorem 4.9 shows that an ε-approximation of Wc(µ, νt) can be computed with a number of arithmetic

operations that grows only polynomially with K, L, U and 1
ε but exponentially with log2(U) and log2(1

ε ).

By Remark 4.3 (iii), approximations of Wc(µ, νt) can therefore be computed in pseudo-polynomial time.
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