
ar
X

iv
:2

10
5.

14
83

5v
5

 [
cs

.L
G

]
 1

7
Ju

l 2
02

4

Towards Lower Bounds on the Depth

of ReLU Neural Networks ∗

Christoph Hertrich1, Amitabh Basu2, Marco Di Summa3, and Martin Skutella4

1London School of Economics and Political Science, London, UK,
c.hertrich@lse.ac.uk

2Johns Hopkins University, Baltimore, USA,
basu.amitabh@jhu.edu

3Università degli Studi di Padova, Padua, Italy,
disumma@math.unipd.it

4Technische Universität Berlin, Berlin, Germany,
martin.skutella@tu-berlin.de

Abstract

We contribute to a better understanding of the class of functions that can be represented
by a neural network with ReLU activations and a given architecture. Using techniques from
mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathemati-
cal counterbalance to the universal approximation theorems which suggest that a single hidden
layer is sufficient for learning any function. In particular, we investigate whether the class of
exactly representable functions strictly increases by adding more layers (with no restrictions on
size). As a by-product of our investigations, we settle an old conjecture about piecewise linear
functions by Wang and Sun [74] in the affirmative. We also present upper bounds on the sizes
of neural networks required to represent functions with logarithmic depth.

1 Introduction

A core problem in machine learning and statistics is the estimation of an unknown data distribution
with access to independent and identically distributed samples from the distribution. It is well-
known that there is a tension between the expressivity of the model chosen to approximate the
distribution and the number of samples needed to solve the problem with high confidence (or
equivalently, the variance one has in one’s estimate). This is referred to as the bias-variance trade-
off or the bias-complexity trade-off. Neural networks provide a way to turn this bias-complexity

∗Authors’ accepted manuscript; to appear in the SIAM Journal on Discrete Mathematics. A preliminary conference
version appeared in the proceedings of the NeurIPS 2021 conference. We thank the anonymous referees of both the
journal and the conference version for their insightful comments which helped to improve the presentation and clarity.

Christoph Hertrich gratefully acknowledges funding by DFG-GRK 2434 “Facets of Complexity”. Amitabh Basu
gratefully acknowledges support from AFOSR Grant FA95502010341 and NSF Grant CCF2006587. Martin Skutella
gratefully acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy — The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID:
390685689).

1

http://arxiv.org/abs/2105.14835v5

knob in a controlled manner that has been studied for decades going back to the idea of a perceptron
by Rosenblatt [62]. This is done by modifying the architecture of a neural network class of functions,
in particular its size in terms of depth and width. As one increases these parameters, the class of
functions becomes more expressive. In terms of the bias-variance trade-off, the “bias” decreases as
the class of functions becomes more expressive, but the “variance” or “complexity” increases.

So-called universal approximation theorems [5,18,40] show that even with a single hidden layer,
that is, when the depth of the architecture achieves its smallest possible value, one can essentially
reduce the “bias” as much as one desires, by increasing the width. Nevertheless, it can be advan-
tageous both theoretically and empirically to increase the depth because a substantial reduction
in the size can be achieved by this [6, 21, 46, 63, 69, 70, 75]. To get a better quantitative handle on
these trade-offs, it is important to understand what classes of functions are exactly representable
by neural networks with a certain architecture. The precise mathematical statements of universal
approximation theorems show that single layer networks can arbitrarily well approximate any con-
tinuous function (under some additional mild hypotheses). While this suggests that single layer
networks are good enough from a learning perspective, from a mathematical perspective, one can
ask the question if the class of functions represented by single layer networks is a strict subset of the
class of functions represented by networks with two or more hidden layers. On the question of size,
one can ask for precise bounds on the required width of a network with given depth to represent
a certain class of functions. A better understanding of the function classes exactly represented by
different architectures has implications not just for mathematical foundations, but also algorithmic
and statistical learning aspects of neural networks, as recent advances on the training complexity
show [6, 11, 23, 28, 42]. The task of searching for the “best” function in a class can only benefit
from a better understanding of the nature of functions in that class. A motivating question behind
the results in this paper is to understand the hierarchy of function classes exactly represented by
neural networks of increasing depth.

We now introduce more precise notation and terminology to set the stage for our investigations.

1.1 Notation and Definitions

We write [n] := {1, 2, . . . , n} for the set of natural numbers up to n (without zero) and [n]0 :=
[n] ∪ {0} for the same set including zero. For any n ∈ N, let σ : Rn → Rn be the component-wise
rectifier function

σ(x) = (max{0, x1},max{0, x2}, . . . ,max{0, xn}).

For any number of hidden layers k ∈ N, a (k+1)-layer feedforward neural network with rectified
linear units (ReLU NN or simply NN) is given by k affine transformations T (ℓ) : Rnℓ−1 → Rnℓ ,
x 7→ A(ℓ)x+ b(ℓ), for ℓ ∈ [k], and a linear transformation T (k+1) : Rnk → Rnk+1, x 7→ A(k+1)x. It is
said to compute or represent the function f : Rn0 → Rnk+1 given by

f = T (k+1) ◦ σ ◦ T (k) ◦ σ ◦ · · · ◦ T (2) ◦ σ ◦ T (1).

The matrices A(ℓ) ∈ Rnℓ×nℓ−1 are called the weights and the vectors b(ℓ) ∈ Rnℓ are the biases of
the ℓ-th layer. The number nℓ ∈ N is called the width of the ℓ-th layer. The maximum width of
all hidden layers maxℓ∈[k] nℓ is called the width of the NN. Further, we say that the NN has depth

k + 1 and size
∑k

ℓ=1 nℓ.
Often, NNs are represented as layered, directed, acyclic graphs where each dimension of each

layer (including input layer ℓ = 0 and output layer ℓ = k + 1) is one vertex, weights are arc labels,
and biases are node labels. Then, the vertices are called neurons.

2

x1

x2

y

1
1

-1
1

-1
1

-1

Figure 1: An NN with two input neurons, labeled x1 and x2, three hidden neurons, labeled with the
shape of the rectifier function, and one output neuron, labeled y. The arcs are labeled with their
weights and all biases are zero. The NN has depth 2, width 3, and size 3. It computes the function
x 7→ y = max{0, x1 − x2}+max{0, x2} −max{0,−x2} = max{0, x1 − x2}+ x2 = max{x1, x2}.

For a given input x = x(0) ∈ Rn0 , let y(ℓ) := T (ℓ)(x(ℓ−1)) ∈ Rnℓ be the activation vector and
x(ℓ) := σ(yℓ) ∈ Rnℓ the output vector of the ℓ-th layer. Further, let y := y(k+1) = f(x) be the output
of the NN. We also say that the i-th component of each of these vectors is the activation or the
output of the i-th neuron in the ℓ-th layer.

To illustrate the definition of NNs and how they compute functions, Figure 1 shows an NN with
one hidden layer computing the maximum of two numbers.

For k ∈ N, we define

ReLUn(k) := {f : Rn → R | f can be represented by a (k + 1)-layer NN},

CPWLn := {f : Rn → R | f is continuous and piecewise linear}.

By definition, a continuous function f : Rn → R is piecewise linear in case there is a finite set of
polyhedra whose union is Rn, and f is affine linear over each such polyhedron.

In order to analyze ReLUn(k), we use another function class defined as follows. We call a
function g a p-term max function if it can be expressed as maximum of p affine terms, that is,
g(x) = max{ℓ1(x), . . . , ℓp(x)} where ℓi : R

n → R is affine linear for i ∈ [p]. Note that this also
includes max functions with less than p terms, as some functions ℓi may coincide. Based on that,
we define

MAXn(p) := {f : Rn → R | f is a linear combination of p-term max functions}.

Note that Wang and Sun [74] call p-term max functions (p−1)-order hinges and linear combinations
of those (p − 1)-order hinging hyperplanes.

If the input dimension n is not important for the context, we sometimes drop the index and use
ReLU(k) :=

⋃
n∈N ReLUn(k) and MAX(p) :=

⋃
n∈NMAXn(p) instead.

We will use the standard notations convA and coneA for the convex and conic hulls of a set
A ⊆ Rn. For an in-depth treatment of polyhedra and (mixed-integer) optimization, we refer to the
book by Schrijver [64].

1.2 Representing Piecewise Linear Functions with ReLU Networks

It is not hard to see that every function expressed by a ReLU network is continuous and piecewise
linear (CPWL) because it is composed of affine transformations and ReLU functions, which are
both CPWL. Based on a result by Wang and Sun [74], Arora et al. [6] prove that the converse is
true as well by showing that any CPWL function can be represented with logarithmic depth.

3

x1

x2

x3

x4

y

1

1

-1

1

1

-1

1

1

-1

1

-1

1

-1 1

-1

1

-11

-1

1

-1

Figure 2: An NN to compute the maximum of four numbers that consists of three copies of the
NN in Figure 1. Note that no activiation function is applied at the two unlabeled middle vertices
(representing max{x1, x2} and max{x3, x4}). Therefore, the linear transformations directly before
and after these vertices can be combined into a single one. Thus, the network has total depth three
(two hidden layers).

Theorem 1.1 (Arora et al. [6]). If n ∈ N and k∗ := ⌈log2(n+ 1)⌉, then CPWLn = ReLUn(k
∗).

Since this result is the starting point for our paper, let us briefly sketch its proof. For this
purpose, we start with a simple special case of a CPWL function: the maximum of n numbers.
Recall that one hidden layer suffices to compute the maximum of two numbers, see Figure 1. Now
one can easily stack this operation: in order to compute the maximum of four numbers, we divide
them into two pairs with two numbers each, compute the maximum of each pair and then the
maximum of the two results. This idea results in the NN depicted in Figure 2, which has two
hidden layers. Repeating this procedure, one can compute the maximum of eight numbers with
three hidden layers, and, in general, the maximum of 2k numbers with k hidden layers. Phrasing
this the other way around, we obtain that the maximum of n numbers can be computed with
⌈log2(n)⌉ hidden layers. Since NNs can easily form affine combinations, this implies the following
lemma.

Lemma 1.2 (Arora et al. [6]). If n, k ∈ N, then MAXn(2
k) ⊆ ReLUn(k).

The question whether the depth of this construction is best possible is one of the central open
questions we attack in this paper.

In fact, the maximum function is not just a nice toy example, it is, in some sense, the most
difficult one of all CPWL function to represent for a ReLU NN. This is due to a result by Wang
and Sun [74] stating that every CPWL function defined on Rn can be written as linear combination
of (n+ 1)-term max functions.

Theorem 1.3 (Wang and Sun [74]). If n ∈ N, then CPWLn = MAXn(n+ 1).

The proof given by Wang and Sun [74] is technically involved and we do not go into details
here. However, in Section 4 we provide an alternative proof yielding a slightly stronger result. This
will be useful to bound the width of NNs representing arbitrary CPWL functions.

4

Theorem 1.1 by Arora et al. [6] can now be deduced from combining Lemma 1.2 and Theo-
rem 1.3: In fact, for k∗ = ⌈log2(n+ 1)⌉, one obtains

CPWLn = MAXn(n+ 1) ⊆ ReLUn(k
∗) ⊆ CPWLn

and thus equality in the whole chain of subset relations.

1.3 Our Main Conjecture

We wish to understand whether the logarithmic depth bound in Theorem 1.1 by Arora et al. [6]
is best possible or whether one can do better. We believe it is indeed best possible and pose the
following conjecture to better understand the importance of depth in neural networks.

Conjecture 1.4. For every n ∈ N, let k∗ := ⌈log2(n+ 1)⌉. Then it holds that

ReLUn(0) (ReLUn(1) (· · · (ReLUn(k
∗ − 1) (ReLUn(k

∗) = CPWLn . (1)

Conjecture 1.4 claims that any additional layer up to k∗ hidden layers strictly increases the set
of representable functions. This would imply that the construction by Arora et al. [6] is actually
depth-minimal.

Observe that, in order to prove Conjecture 1.4, it is sufficient to find, for every k∗ ∈ N, one
function f ∈ ReLUn(k

∗) \ ReLUn(k
∗ − 1) with n = 2k

∗−1. This also implies all other strict inclu-
sions ReLUn(i− 1) (ReLUn(i) for i < k∗ because ReLUn(i− 1) = ReLUn(i) immediately implies
that ReLUn(i− 1) = ReLUn(i

′) for all i′ ≥ i− 1.
In fact, thanks to Theorem 1.3 by Wang and Sun [74], there is a canonical candidate for such

a function, allowing us to reformulate the conjecture as follows.

Conjecture 1.5. For k ∈ N, n = 2k, the function fn(x) = max{0, x1, . . . , xn} cannot be represented
with k hidden layers, that is, fn /∈ ReLUn(k).

Proposition 1.6. Conjecture 1.4 and Conjecture 1.5 are equivalent.

Proof. We argued above that Conjecture 1.5 implies Conjecture 1.4. For the other direction, we
prove the contraposition, that is, assuming that Conjecture 1.5 is violated, we show that Con-
jecture 1.4 is violated as well. To this end, suppose there is a k ∈ N, n = 2k, such that fn is
representable with k hidden layers. We argue that under this hypothesis, any (n + 1)-term max
function can be represented with k hidden layers. To see this, observe that

max{ℓ1(x), . . . , ℓn+1(x)} = max{0, ℓ1(x)− ℓn+1(x), . . . , ℓn(x)− ℓn+1(x)}+ ℓn+1(x).

Modifying the first-layer weights of the NN computing fn such that input xi is replaced by
the affine expression ℓi(x) − ℓn+1(x), one obtains a k-hidden-layer NN computing the function
max{0, ℓ1(x)− ℓn+1(x), . . . , ℓn(x)− ℓn+1(x)}. Moreover, since affine functions, in particular also
ℓn+1(x), can easily be represented by k-hidden-layer NNs, we obtain that any (n+1)-term maximum
is in ReLUn(k). Using Theorem 1.3 by Wang and Sun [74], it follows that ReLUn(k) = CPWLn.
In particular, since k∗ := ⌈log2(n+ 1)⌉ = k + 1, we obtain that Conjecture 1.4 must be violated as
well.

5

x1
0

x2
x1

x2

··
· y

Figure 3: Set of breakpoints of the function max{0, x1, x2} (left). This function cannot be computed
by a 2-layer NN (middle), since the set of breakpoints of any function computed by such an NN is
always a union of lines (right).

It is known that Conjecture 1.5 holds for k = 1 [56], that is, the CPWL function max{0, x1, x2}
cannot be computed by a 2-layer NN. The reason for this is that the set of breakpoints of a CPWL
function computed by a 2-layer NN is always a union of lines, while the set of breakpoints of
max{0, x1, x2} is a union of three half-lines; compare Figure 3 and the detailed proof by Mukherjee
and Basu [56]. Moreover, in subsequent work to the first version of this article, it was shown that
the conjecture is true for all k ∈ N if one only allows integer weights in the neural network [31].
However, this proof does not easily generalize to arbitrary, real-valued weights. Thus, the conjecture
remains open for all k ≥ 2.

1.4 Contribution and Outline

In this paper, we present the following results as partial progress towards resolving this conjecture.
In Section 2, we resolve Conjecture 1.5 for k = 2, under a natural assumption on the breakpoints

of the function represented by any intermediate neuron. Intuitively, the assumption states that no
neuron introduces unexpected breakpoints compared to the final function we want to represent.
We call such neural networks H-conforming, see Section 2 for a formal definition. We then provide
a computer-based proof leveraging techniques from mixed-integer programming for the following
theorem.

Theorem 1.7. There does not exist an H-conforming 3-layer ReLU NN computing the function
max{0, x1, x2, x3, x4}.

In the light of Lemma 1.2, stating that MAX(2k) ⊆ ReLU(k) for all k ∈ N, one might ask
whether the converse is true as well, that is, whether the classes MAX(2k) and ReLU(k) are
actually equal. This would not only provide a neat characterization of ReLU(k), but also prove
Conjecture 1.5 without any additional assumption since one can show that max{0, x1, . . . , x2k} is
not contained in MAX(2k).

In fact, for k = 1, it is true that ReLU(1) = MAX(2), that is, a function is computable with
one hidden layer if and only if it is a linear combination of 2-term max functions. However, in
Section 3, we show the following theorem.

Theorem 1.8. For every k ≥ 2, the set ReLU(k) is a strict superset of MAX(2k).

To achieve this result, the key technical ingredient is the theory of polyhedral complexes asso-
ciated with CPWL functions. This way, we provide important insights concerning the richness of
the class ReLU(k). As a by-product, the results in Section 3 imply that MAXn(n) is a strict subset

6

of CPWLn = MAXn(n + 1), which was conjectured by Wang and Sun [74] in 2005, but has been
open since then.

So far, we have focused on understanding the smallest depth needed to express CPWL functions
using neural networks with ReLU activations. In Section 4, we complement these results by upper
bounds on the sizes of the networks needed for expressing arbitrary CPWL functions. In particular,
we show the following theorem.

Theorem 1.9. Let f : Rn → R be a CPWL function with p affine pieces. Then f can be represented
by a ReLU NN with depth ⌈log2(n + 1)⌉ + 1 and width O(p2n

2+3n+1).

We arrive at this result by introducing a novel application of recently established interrelations
between neural networks and tropical geometry.

Theorem 1.9 improves upon a previous bound by He et al. [35] because it is polynomial in p if
n is regarded as fixed constant, while the bounds in [35] are exponential in p. In subsequent work
to the first version of our article, it was shown that the width of the network can be drastically
decreased if one allows more depth (in the order of log(p) instead of log(n)) [16].

Let us remark that there are different definitions of the number of pieces p of a CPWL function
f in the literature, compare the discussions in [16,35] about pieces versus linear components. Our
bounds work with any of these definitions since they apply to the smallest possible way to define
p, called linear components in [16]: for our purposes, p can be defined as the smallest number of
affine functions such that, at each point, f is equal to one of these affine functions. Since all other
definitions of the number of pieces are at least that large, our bounds are valid for these definitions
as well.

Finally, in Section 5, we provide an outlook how these interactions between tropical geometry
and NNs could possibly also be useful to provide a full, unconditional proof of Conjecture 1.4
by means of polytope theory. This yields another equivalent rephrasing of Conjecture 1.4 which is
stated purely in the language of basic operations on polytopes and does not involve neural networks
any more.

We conclude in Section 6 with a discussion of further open research questions.

1.5 Further Related Work

Depth versus size Soon after the original universal approximation theorems [18, 40], concrete
bounds were obtained on the number of neurons needed in the hidden layer to achieve a certain level
of accuracy. The literature on this is vast and we refer to a small representative sample here [8,9,51–
53,60]. More recent research has focused on how deeper networks can have exponentially or super
exponentially smaller size compared to shallower networks [6, 21, 32, 33, 46, 57, 61, 63, 69, 70, 72, 75].
See also [29] for another perspective on the relationship between expressivity and architecture, and
the references therein.

Mixed-integer optimization and machine learning Over the past decade, a growing body
of work has emerged that explores the interplay between mixed-integer optimization and machine
learning. On the one hand, researchers have attempted to improve mixed-integer optimization
algorithms by exploiting novel techniques from machine learning [3,13,24,34,43–45,47]; see also [10]
for a recent survey. On the flip side, mixed-integer optimization techniques have been used to
analyze function classes represented by neural networks [4,22,65–67]. In Section 2 below, we show

7

another new use of mixed-integer optimization tools for understanding function classes represented
by neural networks.

Design of training algorithms We believe that a better understanding of the function classes
represented exactly by a neural architecture also has benefits in terms of understanding the com-
plexity of the training problem. For instance, in work by Arora et al. [6], an understanding of single
layer ReLU networks enables the design of a globally optimal algorithm for solving the empirical
risk minimization (ERM) problem, that runs in polynomial time in the number of data points in
fixed dimension. See also [1, 11,12,14,17,19,23,25–28,42] for similar lines of work.

Neural Networks and Tropical Geometry A recent stream of research involves the inter-
play between neural networks and tropical geometry. The piecewise linear functions computed
by neural networks can be seen as (tropical quotients of) tropical polynomials. Linear regions of
these functions correspond to vertices of so-called Newton polytopes associated with these tropical
polynomials. Applications of this correspondence include bounding the number of linear regions of
a neural network [15, 54, 76] and understanding decision boundaries [2]. In Section 4 we present a
novel application of tropical concepts to understand neural networks. We refer to [50] for a recent
survey of connections between machine learning and tropical geometry, as well as to the textbooks
by Maclagan and Sturmfels [49] and Joswig [41] for in-depth introductions to tropical geometry
and tropical combinatorics.

2 Conditional Lower Depth Bounds via Mixed-Integer Program-

ming

In this section, we provide a computer-aided proof that, under a natural, yet unproven assumption,
the function f(x) := max{0, x1, x2, x3, x4} cannot be represented by a 3-layer NN. It is worth to
note that, to the best of our knowledge, no CPWL function is known for which the non-existence of
a 3-layer NN can be proven without additional assumptions. For ease of notation, we write x0 := 0.

We first prove that we may restrict ourselves to NNs without biases. This holds true independent
of our assumption, which we introduce afterwards.

Definition 2.1. A function g : Rn → Rm is called positively homogeneous if it satisfies g(λx) =
λg(x) for all λ ≥ 0.

Definition 2.2. For an NN given by transformations T (ℓ)(x) = A(ℓ)x + b(ℓ), we define the corre-
sponding homogenized NN to be the NN given by T̃ (ℓ)(x) = A(ℓ)x with all biases set to zero.

Proposition 2.3. If an NN computes a positively homogeneous function, then the corresponding
homogenized NN computes the same function.

Proof. Let g : Rn0 → Rnk+1 be the function computed by the original NN and g̃ the one computed
by the homogenized NN. Further, for any 0 ≤ ℓ ≤ k, let

g(ℓ) = T (ℓ+1) ◦ σ ◦ T (ℓ) ◦ · · · ◦ T (2) ◦ σ ◦ T (1)

be the function computed by the sub-NN consisting of the first (ℓ + 1)-layers and let g̃(ℓ) be the
function computed by the corresponding homogenized sub-NN. We first show by induction on ℓ

8

that the norm of ‖g(ℓ)(x) − g̃(ℓ)(x)‖ is bounded by a global constant that only depends on the
parameters of the NN but not on x.

For ℓ = 0, we have ‖g(0)(x) − g̃(0)(x)‖ = ‖b(1)‖ =: C0, settling the induction base. For the
induction step, let ℓ ≥ 1 and assume that ‖g(ℓ−1)(x)− g̃(ℓ−1)(x)‖ ≤ Cℓ−1, where Cℓ−1 only depends
on the parameters of the NN. Since a component-wise application of the ReLU activation function
has Lipschitz constant 1, this implies ‖(σ ◦ g(ℓ−1))(x) − (σ ◦ g̃(ℓ−1))(x)‖ ≤ Cℓ−1. Using the spectral
matrix norm ‖A‖ of a matrix A, we obtain:

‖g(ℓ)(x)− g̃(ℓ)(x)‖ = ‖b(ℓ+1) +A(ℓ+1)((σ ◦ g(ℓ−1))(x)− (σ ◦ g̃(ℓ−1))(x))‖

≤ ‖b(ℓ+1)‖+ ‖A(ℓ+1)‖ · Cℓ−1 =: Cℓ

Since the right-hand side only depends on NN parameters, the induction is completed.
Finally, we show that g = g̃. For the sake of contradiction, suppose that there is an x ∈ Rn0

with ‖g(x) − g̃(x)‖ = δ > 0. Let x′ := Ck+1
δ x; then, by positive homogeneity of g (by assumption)

and g̃ (by construction and because the ReLU function is positively homogeneous), it follows that
‖g(x′)− g̃(x′)‖ = Ck + 1 > Ck, contradicting the property shown above. Thus, we have g = g̃.

Since f = max{0, x1, x2, x3, x4} is positively homogeneous, Proposition 2.3 implies that, if there
is a 3-layer NN computing f , then there also is one that has no biases. Therefore, in the remainder
of this section, we only consider NNs without biases and assume implicitly that all considered
CPWL functions are positively homogeneous. In particular, any piece of such a CPWL function is
linear and not only affine linear.

Observe that, for the function f , the only points of non-differentiability (a.k.a. breakpoints) are
at places where at least two of the five numbers x0 = 0, x1, x2, x3, and x4 are equal. Hence, if
some neuron of an NN computing f introduces breakpoints at other places, these breakpoints must
be canceled out by other neurons. Therefore, we find it natural to work under the assumption that
such breakpoints need not be introduced at all in the first place.

To make this assumption formal, let Hij = {x ∈ R4 | xi = xj}, for 0 ≤ i < j ≤ 4, be ten
hyperplanes in R4 andH =

⋃
0≤i<j≤4Hij be the corresponding hyperplane arrangement. This is the

intersection of the so-called braid arrangement in five dimensions with the hyperplane x0 = 0 [68].
The regions or cells of H are defined to be the closures of the connected components of R4 \H. It
is easy to see that these regions are in one-to-one correspondence to the 5! = 120 possible orderings
of the five numbers x0 = 0, x1, x2, x3, and x4. More precisely, for a permutation π of the five
indices [4]0 = {0, 1, 2, 3, 4}, the corresponding region is the polyhedron

Cπ := {x ∈ R4 | xπ(0) ≤ xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4)}.

Definition 2.4. We say that a (positively homogeneous) CPWL function g is H-conforming, if it is
linear within any of these regions of H, that is, if it only has breakpoints where the relative ordering
of the five values x0 = 0, x1, x2, x3, x4 changes. Moreover, an NN is said to be H-conforming if
the output of each neuron contained in the NN is H-conforming.

See Figure 4 for an illustration of the definition in the (simpler) two-dimensional case. Note
that, by the definition, an NN is H-conforming if and only if, for all layers ℓ ∈ [k], the intermediate
function σ ◦ T (ℓ) ◦ σ ◦ T (ℓ−1) ◦ · · · ◦ σ ◦ T (1) is H-conforming.

As argued above, it is plausible that considering H-conforming NNs is enough to prove Conjec-
ture 1.4. In other words, we conjecture that, if there exists a 3-layer NN computing the function

9

x1 ≥

x2 ≥ 0

0 ≥ x2

≥ x1

x1 ≥ 0
≥ x2

x2 ≥

0 ≥ x1

x2 ≥ x1

≥ 0

0 ≥

x1 ≥ x2

Figure 4: A function is H-conforming if the set of breakpoints is a subset of the hyperplane
arrangement H. The arrangement H consists of all hyperplanes where two of the coordinates
(possibly including x0 = 0) are equal. Here, H is illustrated for the (simpler) two-dimensional case,
where it consists of three hyperplanes that divide the space into six cells.

f(x) = max{0, x1, x2, x3, x4}, then there also exists one that is H-conforming. This motivates the
following theorem, which we prove computer-aided by means of mixed-integer programming.

Theorem 1.7. There does not exist an H-conforming 3-layer ReLU NN computing the function
max{0, x1, x2, x3, x4}.

The remainder of this section is devoted to proving this theorem. The rough outline of the
proof is as follows. We first study some geometric properties of the hyperplane arrangement H.
This will show that each of the 120 cells of H is a simplicial polyhedral cone spanned by 4 extreme
rays. In total, there are 30 such rays (because rays are used multiple times to span different
cones). This implies that each H-conforming function is uniquely determined by its values on the
30 rays and, therefore, the set of H-conforming functions of type R4 → R is a 30-dimensional vector
space. We then use linear algebra to show that the space of functions generated by H-conforming
two-layer NNs is a 14-dimensional subspace. Moreover, with two hidden layers, at least 29 of
the 30 dimensions can be generated and f is not contained in this 29-dimensional subspace. So
the remaining question is whether the 14 dimensions producible with the first hidden layer can
be combined in such a way that after applying a ReLU activation in the second hidden layer, we
do not end up within the 29-dimensional subspace. We model this question as a mixed-integer
program (MIP). Solving the MIP yields that we always end up within the 29-dimensional subspace,
implying that f cannot be represented by a 3-layer NN. This provides a computational proof of
Theorem 1.7.

Let us start with investigating the structure of the hyperplane arrangement H. For readers
familiar with the interplay between hyperplane arrangements and polytopes, it is worth noting
that H is dual to a combinatorial equivalent of the 4-dimensional permutahedron. Hence, what we
are studying in the following are some combinatorial properties of the permutahedron.

Recall that the regions of H are given by the 120 polyhedra

Cπ := {x ∈ R4 | xπ(0) ≤ xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4)} ⊆ R4

for each permutation π of [4]0, where x0 is used as a replacement for 0. With this representation,
one can see that Cπ is a pointed polyhedral cone (with the origin as its only vertex) spanned by
the four half-lines (a.k.a. rays)

10

R{π(0)} := {x ∈ R4 | xπ(0) ≤ xπ(1) = xπ(2) = xπ(3) = xπ(4)},

R{π(0),π(1)} := {x ∈ R4 | xπ(0) = xπ(1) ≤ xπ(2) = xπ(3) = xπ(4)},

R{π(0),π(1),π(2)} := {x ∈ R4 | xπ(0) = xπ(1) = xπ(2) ≤ xπ(3) = xπ(4)},

R{π(0),π(1),π(2),π(3)} := {x ∈ R4 | xπ(0) = xπ(1) = xπ(2) = xπ(3) ≤ xπ(4)}.

Observe that these objects are indeed rays anchored at the origin because the three equalities
define a one-dimensional subspace of R4 and the inequality cuts away one of the two directions.

With that notation, we see that each of the 120 cells of H is a simplicial cone spanned by four
out of the 30 rays RS with ∅ (S ([4]0. For each such set S, denote its complement by S̄ := [4]0\S.
Let us use a generating vector rS ∈ R4 for each of these rays such that RS = cone rS as follows: If
0 ∈ S, then rS := 1S̄ ∈ R4, otherwise rS := −1S ∈ R4, where for each S ⊆ [4], the vector 1S ∈ R4

contains entries 1 at precisely those index positions that are contained in S and entries 0 elsewhere.
For example, r{0,2,3} = (1, 0, 0, 1) ∈ R4 and r{1,4} = (−1, 0, 0,−1) ∈ R4. Then, the set R containing
conic generators of all the 30 rays of H consists of the 30 vectors R = ({0, 1}4 ∪ {0,−1}4) \ {0}4.

Let S30 be the space of all H-conforming CPWL functions of type R4 → R. We show that S30

is a 30-dimensional vector space.

Lemma 2.5. The map g 7→ (g(r))r∈R that evaluates a function g ∈ S30 at the 30 rays in R is an
isomorphism between S30 and R30. In particular, S30 is a 30-dimensional vector space.

Proof. First note that S30 is closed under addition and scalar multiplication. Therefore, it is a
subspace of the vector space of continuous functions of type R4 → R, and thus, in particular, a
vector space. We show that the map g 7→ (g(r))r∈R is in fact a vector space isomorphism. The
map is obviously linear, so we only need to show that it is a bijection. In order to do so, remember
that R4 is the union of the 5! = 120 simplicial cones Cπ. In particular, given the function values on
the extreme rays of these cones, there is a unique positively homogeneous, continuous continuation
that is linear within each of the 120 cones. This implies that the considered map is a bijection
between S30 and R30.

The previous lemma also provides a canonical basis of the vector space S30: the one consisting
of all CPWL functions attaining value 1 at one ray r ∈ R and value 0 at all other rays. However,
it turns out that for our purposes it is more convenient to work with a different basis. To this end,
let gM (x) = maxi∈M xi for each M ⊆ [4]0 with M /∈ {∅, {0}}. These 30 functions contain, among
other functions, the four (linear) coordinate projections g{i}(x) = xi, i ∈ [4], and the function
f(x) = g[4]0(x) = max{0, x1, x2, x3, x4}.

Lemma 2.6. The 30 functions gM (x) = maxi∈M xi with {∅, {0}} 6∋M ⊆ [4]0 form a basis of S30.

Proof. Evaluating the 30 functions gM at all 30 rays r ∈ R yields 30 vectors in R30. It can be
easily verified (e.g., using a computer) that these vectors form a basis of R30. Thus, due to the
isomorphism of Lemma 2.5, the functions gM form a basis of S30.

Next, we focus on particular subspaces of S30 generated by only some of the 30 functions gM .
We prove that they correspond to the spaces of functions computable by H-conforming 2- and
3-layer NNs, respectively.

11

To do so, let B14 be the set of the 14 basis functions gM with {∅, {0}} 6∋M ⊆ [4]0 and |M | ≤ 2.
Let S14 be the 14-dimensional subspace spanned by B14. Similarly, let B29 be the set of the 29
basis functions gM with {∅, {0}} 6∋M ([4]0 (all but [4]0). Let S

29 be the 29-dimensional subspace
spanned by B29.

Lemma 2.7. The space S14 consists of all functions computable by H-conforming 2-layer NNs.

Proof. Each function in S14 is a linear combination of 2-term max functions by definition. Hence,
by Lemma 1.2, it can be represented by a 2-layer NN.

Conversely, we show that any function representable by a 2-layer NN is indeed contained in S14.
It suffices to show that the output of every neuron in the first (and only) hidden layer of an H-
conforming ReLU NN is in S14 because the output of a 2-layer NN is a linear combination of
such outputs. Let a ∈ R4 be the first-layer weights of such a neuron, computing the function
ga(x) := max{aTx, 0}, which has the hyperplane {x ∈ R4 | aTx = 0} as breakpoints (or is constantly
zero). Since the NN must be H-conforming, this must be one of the ten hyperplanes xi = xj ,
0 ≤ i < j ≤ 4. Thus, ga(x) = max{λ(xi − xj), 0} for some λ ∈ R. If λ ≥ 0, it follows that
ga = λg{i,j} − λg{j} ∈ S14, and if λ ≤ 0, we obtain ga = −λg{i,j} + λg{i} ∈ S14. This concludes the
proof.

For 3-layer NNs, an analogous statement can be made. However, only one direction can be
easily seen.

Lemma 2.8. Any function in S29 can be represented by an H-conforming 3-layer NN.

Proof. As in the previous lemma, each function in S29 is a linear combination of 4-term max
functions by definition. Hence, by Lemma 1.2, it can be represented by a 3-layer NN.

Our goal is to prove the converse as well: any H-conforming function represented by a 3-layer
NN is in S29. Since f(x) = max{0, x1, x2, x3, x4} is the 30th basis function, which is linearly
independent from B29 and thus not contained in S29, this implies Theorem 1.7. To achieve this
goal, we first provide another characterization of S29, which can be seen as an orthogonal direction
to S29 in S30. For a function g ∈ S30, let

φ(g) :=
∑

∅(S([4]0

(−1)|S|g(rS)

be a linear map from S30 to R.

Lemma 2.9. A function g ∈ S30 is contained in S29 if and only if φ(g) = 0.

Proof. Any g ∈ S30 can be represented as a unique linear combination of the 30 basis functions gM
and is contained in S29 if and only if the coefficient of f = g[4]0 is zero. One can easily check (with
a computer) that φ maps all functions in B29 to 0, but not the 30th basis function f . Thus, g is
contained in S29 if and only if it satisfies φ(g) = 0.

In order to make use of our assumption that the NN is H-conforming, we need the follow-
ing insight about when the property of being H-conforming is preserved after applying a ReLU
activation.

12

Lemma 2.10. Let g ∈ S30. The function h = σ ◦ g is H-conforming (and thus in S30 as well)
if and only if there is no pair of sets ∅ (S (S′ ([4]0 with g(rS) and g(rS′) being nonzero and
having different signs.

Proof. The key observation to prove this lemma is the following: for two rays rS and rS′ , there
exists a cell C of the hyperplane arrangement H for which both rS and rS′ are extreme rays if and
only if S (S′ or S′ (S.

Hence, if there exists a pair of sets ∅ (S (S′ ([4]0 with g(rS) and g(rS′) being nonzero and
having different signs, then the function g restricted to C is a linear function with both strictly
positive and strictly negative values. Therefore, after applying the ReLU activation, the resulting
function h has breakpoints within C and is not H-conforming.

Conversely, if for each pair of sets ∅ (S (S′ ([4]0, both g(rS) and g(rS′) are either nonpositive
or nonnegative, then g restricted to any cell C of H is either nonpositive or nonnegative everywhere.
In the first case, h restricted to that cell C is the zero function, while in the second case, h coincides
with g in C. In both cases, h is linear within all cells and, thus, H-conforming.

Having collected all these lemmas, we are finally able to construct an MIP whose solution
proves that any function computed by an H-conforming 3-layer NN is in S29. As in the proof of
Lemma 2.7, it suffices to focus on the output of a single neuron in the second hidden layer. Let
h = σ ◦ g be the output of such a neuron with g being its input. Observe that, by construction, g
is a function computed by a 2-layer NN, and thus, by Lemma 2.7, a linear combination of the 14
functions in B14. The MIP contains three types of variables, which we denote in bold to distinguish
them from constants:

• 14 continuous variables aM ∈ [−1, 1], being the coefficients of the linear combination of the
basis of S14 forming g, that is, g =

∑
gM∈B14 aMgM (since multiplying g and h with a nonzero

scalar does not alter the containment of h in S29, we may restrict the variables to [−1, 1]),

• 30 binary variables zS ∈ {0, 1} for ∅ (S ([4]0, determining whether the considered neuron
is strictly active at ray rS, that is, whether g(rS) > 0,

• 30 continuous variables yS ∈ R for ∅ (S ([4]0, representing the output of the considered
neuron at all rays, that is, yS = h(rS).

To ensure that these variables interact as expected, we need two types of constraints:

• For each of the 30 rays rS , ∅ (S ([4]0, the following constraints ensure that zS and output
yS are correctly calculated from the variables aM , that is, zS = 1 if and only if g(rS) =∑

gM∈B14 aMgM (rS) is positive, and yS = max{0, g(rS)}. Also compare the references given
in Section 1.5 concerning MIP models for ReLU units. Note that the restriction of the
coefficients aM to [−1, 1] ensures that the absolute value of g(rS) is always bounded by 14,
allowing us to use 15 as a replacement for +∞:

yS ≥ 0

yS ≥
∑

gM∈B14

aMgM (rS)

yS ≤ 15zS

yS ≤
∑

gM∈B14

aMgM (rS) + 15(1 − zS)

(2)

13

Observe that these constraints ensure that one of the following two cases occurs: If zS = 0,
then the first and third line imply yS = 0 and the second line implies that the incoming
activation is in fact nonpositive. The fourth line is always satisfied in that case. Otherwise, if
zS = 1, then the second and fourth line imply that yS equals the incoming activation, and, in
combination with the first line, this has to be nonnegative. The third line is always satisfied
in that case. Hence, the set of constraints (2) correctly models the ReLU activation function.

• For each of the 150 pairs of sets ∅ (S (S′ ([4]0, the following constraints ensure that the
property in Lemma 2.10 is satisfied. More precisely, if one of the variables zS or zS′ equals
1, then the ray of the other set has nonnegative activation, that is, g(rS′) ≥ 0 or g(rS) ≥ 0,
respectively:

∑

gM∈B14

aMgM (rS) ≥ 15(zS′ − 1)

∑

gM∈B14

aMgM (rS′) ≥ 15(zS − 1)
(3)

Observe that these constraints successfully prevent that the two rays rS and rS′ have nonzero
activations with different signs. Conversely, if this is not the case, then we can always satisfy
constraints (3) by setting only those variables zS to value 1 where the activation of ray rS
is strictly positive. (Note that, if the incoming activation is precisely zero, constraints (2)
make it possible to choose both values 0 or 1 for zS .) Hence, these constraints are in fact
appropriate to model H-conformity.

In the light of Lemma 2.9, the objective function of our MIP is to maximize φ(h), that is, the
expression ∑

∅(S([4]0

(−1)|S|yS .

The MIP has a total of 30 binary and 44 continuous variables, as well as 420 inequality con-
straints. The next proposition formalizes how this MIP can be used to check whether a 3-layer NN
function can exist outside S29.

Proposition 2.11. There exists an H-conforming 3-layer NN computing a function not contained
in S29 if and only if the objective value of the MIP defined above is strictly positive.

Proof. For the first direction, assume that such an NN exists. Since its final output is a linear
combination of the outputs of the neurons in the second hidden layer, one of these neurons must
compute a function h̃ = σ ◦ g̃ /∈ S29, with g̃ being the input to that neuron. By Lemma 2.9, it
follows that φ(h̃) 6= 0. Moreover, we can even assume without loss of generality that φ(h̃) > 0, as
we argue now. If this is not the case, multiply all first-layer weights of the NN by −1 to obtain
a new NN computing function ĥ instead of h̃. Observing that rS = −r[4]0\S for all rS ∈ R, we

obtain ĥ(rS) = h̃(−rS) = h̃(r[4]0\S) for all rS ∈ R. Plugging this into the definition of φ and

using that the cardinalities of S and [4]0 \S have different parity, we further obtain φ(ĥ) = −φ(h̃).
Therefore, we can assume that φ(h̃) was already positive in the first place.

Using Lemma 2.7, the function g̃ can be represented as a linear combination g̃ =
∑

gM∈B14 ãMgM
of the functions in B14. Let α := maxM |ãM |. Note that α > 0 because otherwise g̃ would

14

be the zero function. Let us define modified functions g and h from g̃ and h̃ as follows. Let
aM := ãM/α ∈ [−1, 1], g :=

∑
gM∈B14 aMgM , and h := σ ◦ g. Moreover, for all rays rS ∈ R, let

yS := h(rS), as well as zS := 1 if yS > 0, and zS := 0 otherwise.
It is easy to verify that the variables aM , yS , and zS defined that way satisfy (2). Moreover,

since the NN is H-conforming, they also satisfy (3). Finally, they also yield a strictly positive
objective function value since φ(h) = φ(h̃)/α > 0.

For the reverse direction, assume that there exists an MIP solution consisting of aM , yS ,
and zS , satisfying (2) and (3), and having a strictly positive objective function value. Define
the functions g :=

∑
gM∈B14 aMgM and h := σ ◦ g. One concludes from (2) that h(rS) = yS for

all rays rS ∈ R. Lemma 2.7 implies that g can be represented by a 2-layer NN. Thus, h can be
represented by a 3-layer NN. Moreover, constraints (3) guarantee that this NN is H-conforming.
Finally, since the MIP solution has strictly positive objective function value, we obtain φ(h) > 0,
implying that h /∈ S29.

In order to use the MIP as part of a mathematical proof, we employed an MIP solver that uses
exact rational arithmetics without numerical errors, namely the solver by the Parma Polyhedral
Library (PPL) [7]. We called the solver from a SageMath (Version 9.0) [71] script on a machine with
an Intel Core i7-8700 6-Core 64-bit CPU and 15.5 GB RAM, using the openSUSE Leap 15.2 Linux
distribution. SageMath, which natively includes the PPL solver, is published under the GPLv3
license. After a total running time of almost 7 days (153 hours), we obtained optimal objective
function value zero. This makes it possible to prove Theorem 1.7.

Proof of Theorem 1.7. Since the MIP has optimal objective function value zero, Proposition 2.11
implies that any function computed by an H-conforming 3-layer NN is contained in S29. In partic-
ular, it is not possible to compute the function f(x) = max{0, x1, x2, x3, x4} with an H-conforming
3-layer NN.

We remark that state-of-the-art MIP solver Gurobi (version 9.1.1) [30], which is commercial but
offers free academic licenses, is able to solve the same MIP within less than a second, providing the
same result. However, Gurobi does not employ exact arithmetics, making it impossible to exclude
numerical errors and use it as a mathematical proof.

The SageMath code can be found on GitHub at

https://github.com/ChristophHertrich/relu-mip-depth-bound.

Additionally, the MIP can be found there as .mps file, a standard format to represent MIPs. This
allows one to use any solver of choice to reproduce our result.

3 Going Beyond Linear Combinations of Max Functions

In this section we prove the following result, showing that NNs with k hidden layers can compute
more functions than only linear combinations of 2k-term max functions.

Theorem 1.8. For every k ≥ 2, the set ReLU(k) is a strict superset of MAX(2k).

In order to prove this theorem, for each number of hidden layers k ≥ 2, we provide a specific
function in ReLU(k) \MAX(2k). The challenging part is to show that the function is in fact not
contained in MAX(2k).

15

https://github.com/ChristophHertrich/relu-mip-depth-bound

Proposition 3.1. For any n ≥ 3, the function f : Rn → R defined by

f(x) = max{0, x1, x2, . . . , xn−3, max{xn−2, xn−1}+max{0, xn}} (4)

is not contained in MAX(n).

This means that f cannot be written as a linear combination of n-term max functions, which
proves a conjecture by [74] that MAXn(n) (CPWLn, which has been open since 2005. Previously,
it was only known that linear combinations of (n − 1)-term maxes are not sufficient to represent
any CPWL function defined on Rn, that is, MAXn(n − 1) (CPWLn. Lu [48] provides a short
analytical argument for this fact.

Before we prove Proposition 3.1, we show that it implies Theorem 1.8.

Proof of Theorem 1.8. For k ≥ 2, let n := 2k. By Proposition 3.1, function f defined in (4) is
not contained in MAX(2k). It remains to show that it can be represented using a ReLU NN
with k hidden layers. To see this, first observe that any of the n/2 = 2k−1 terms max{0, x1},
max{x2i, x2i+1} for i ∈ [n/2 − 2], and max{xn−2, xn−1} +max{0, xn} can be expressed by a one-
hidden-layer NN since all these are (linear combinations of) 2-term max functions. Since f is the
maximum of these 2k−1 terms, and since the maximum of 2k−1 numbers can be computed with
k − 1 hidden layers (Lemma 1.2), this implies that f is in ReLU(k).

In order to prove Proposition 3.1, we need the concept of polyhedral complexes. A polyhedral
complex P is a finite set of polyhedra such that each face of a polyhedron in P is also in P, and
for two polyhedra P,Q ∈ P, their intersection P ∩ Q is a common face of P and Q (possibly the
empty face). Given a polyhedral complex P in Rn and an integer m ∈ [n], we let Pm denote the
collection of all m-dimensional polyhedra in P.

For a convex CPWL function f , we define its underlying polyhedral complex as follows: it is the
unique polyhedral complex covering Rn (i.e., each point in Rn belongs to some polyhedron in P)
whose n-dimensional polyhedra coincide with the domains of the (maximal) affine pieces of f . In
particular, f is affine linear within each P ∈ P, but not within any strict superset of a polyhedron
in Pn.

Exploiting properties of polyhedral complexes associated with CPWL functions, we prove the
following proposition below.

Proposition 3.2. Let f0 : R
n → R be a convex CPWL function and let P0 be the underlying

polyhedral complex. If there exists a hyperplane H ⊆ Rn such that the set

T :=
⋃{

F ∈ Pn−1
0

∣∣ F ⊆ H
}

is nonempty and contains no line, then f0 cannot be expressed as a linear combination of n-term
maxima of affine linear functions.

Again, before we proceed to the proof of Proposition 3.2, we show that it implies Proposition 3.1.

Proof of Proposition 3.1. Observe that f (defined in (4)) has the alternate representation

f(x) = max{0, x1, x2, . . . , xn−3, xn−2, xn−1, xn−2 + xn, xn−1 + xn}

as a maximum of n+2 terms. Let P be its underlying polyhedral complex. Let the hyperplane H
be defined by x1 = 0.

16

Observe that any facet in Pn−1 is a polyhedron defined by two of the n+2 terms that are equal
and at least as large as each of the remaining n terms. Hence, the only facet that could possibly
be contained in H is

F := {x ∈ Rn | x1 = 0 ≥ x2, . . . , xn−3, xn−2, xn−1, xn−2 + xn, xn−1 + xn}.

Note that F is indeed an (n− 1)-dimensional facet in Pn−1, because, for example, a small ball
around (0,−1, . . . ,−1) ∈ Rn intersected with H is contained in F .

Finally, we need to show that F is pointed, that is, it contains no line. A well-known fact from
polyhedral theory says if there is any line in F with direction d ∈ Rn \ {0}, then d must satisfy
the defining inequalities with equality. However, only the zero vector does this. Hence, F cannot
contain a line.

Therefore, when applying Proposition 3.2 to f with underlying polyhedral complex P and
hyperplane H, we have T = F , which is nonempty and contains no line. Hence, f cannot be
written as linear combination of n-term maxima.

The remainder of this section is devoted to proving Proposition 3.2. In order to exploit properties
of the underlying polyhedral complex of the considered CPWL functions, we will first introduce
some terminology, notation, and results related to polyhedral complexes in Rn for any n ≥ 1.

Definition 3.3. Given an abelian group (G,+), we define Fn(G) as the family of all functions φ
of the form φ : Pn → G, where P is a polyhedral complex that covers Rn. We say that P is the
underlying polyhedral complex, or the polyhedral complex associated with φ.

Just to give an intuition of the reason for this definition, let us mention that later we will choose
(G,+) to be the set of affine linear maps Rn → R with respect to the standard operation of sum
of functions. Moreover, given a convex CPWL function f : Rn → R with underlying polyhedral
complex P, we will consider the following function φ ∈ Fn(G): for every P ∈ Pn, φ(P) will be the
affine linear map that coincides with f over P . It can be helpful, though not necessary, to keep
this in mind when reading the next definitions and observations.

It is useful to observe that the functions in Fn(G) can also be described in a different way.
Before explaining this, we need to define an ordering between the two elements of each pair of
opposite halfspaces. More precisely, let H be a hyperplane in Rn and let H ′,H ′′ be the two closed
halfspaces delimited by H. We choose an arbitrary rule to say that H ′ “precedes” H ′′, which we
write as H ′ ≺ H ′′.1 We can then extend this ordering rule to those pairs of n-dimensional polyhedra
of a polyhedral complex in Rn that share a facet. Specifically, given a polyhedral complex P in
Rn, let P ′, P ′′ ∈ Pn be such that F := P ′ ∩ P ′′ ∈ Pn−1. Further, let H be the unique hyperplane
containing F . We say that P ′ ≺ P ′′ if the halfspace delimited by H and containing P ′ precedes the
halfspace delimited by H and containing P ′′.

We can now explain the alternate description of the functions in Fn(G), which is based on the
following notion.

Definition 3.4. Let φ ∈ Fn(G), with associated polyhedral complex P. The facet-function associ-
ated with φ is the function ψ : Pn−1 → G defined as follows: given F ∈ Pn−1, let P ′, P ′′ be the two
polyhedra in Pn such that F = P ′ ∩ P ′′, where P ′ ≺ P ′′; then we set ψ(F) := φ(P ′)− φ(P ′′).

1In case one wants to see such a rule explicitly, this is a possible way: Fix an arbitrary x̄ ∈ H . We can say that
H ′ ≺ H ′′ if and only if x̄ + ei ∈ H ′, where ei is the first vector in the standard basis of Rd that does not lie on H
(i.e., e1, . . . , ei−1 ∈ H and ei /∈ H). Note that this definition does not depend on the choice of x̄.

17

Although it will not be used, we observe that knowing ψ is sufficient to reconstruct φ up to an
additive constant. This means that a function φ′ ∈ Fn(G) associated with the same polyhedral
complex P has the same facet-function ψ if and only if there exists g ∈ G such that φ(P)−φ′(P) = g
for every P ∈ Pn. (However, it is not true that every function ψ : Pn−1 → G is the facet-function
of some function in Fn(G).)

We now introduce a sum operation over Fn(G).

Definition 3.5. For functions φ1, . . . , φp ∈ Fn(G) with associated polyhedral complexes P1, . . . ,Pp,
the sum φ := φ1 + · · ·+ φp is the function in Fn(G) defined as follows:

• the polyhedral complex associated with φ is

P := {P1 ∩ · · · ∩ Pp | Pi ∈ Pi for every i};

• given P ∈ Pn, P can be uniquely obtained as P1 ∩ · · · ∩ Pp, where Pi ∈ Pn
i for every i; we

then define

φ(P) =

p∑

i=1

φi(Pi).

The term “sum” is justified by the fact that when P1 = · · · = Pp (and thus φ1, . . . , φp have the
same domain) we obtain the standard notion of the sum of functions.

The next results shows how to compute the facet-function of a sum of functions in Fn(G).

Observation 3.6. With the notation of Definition 3.5, let ψ1, . . . , ψp be the facet-functions asso-
ciated with φ1, . . . , φp, and let ψ be the facet-function associated with φ. Given F ∈ Pn−1, let I be
the set of indices i ∈ {1, . . . , p} such that Pn−1

i contains a (unique) element Fi with F ⊆ Fi. Then

ψ(F) =
∑

i∈I

ψi(Fi). (5)

Proof. Let P ′, P ′′ be the two polyhedra in Pn such that F = P ′ ∩ P ′′, with P ′ ≺ P ′′. We have
P ′ = P ′

1 ∩ · · · ∩ P ′
p and P ′′ = P ′′

1 ∩ · · · ∩ P ′′
p for a unique choice of P ′

i , P
′′
i ∈ Pn

i for every i. Then

ψ(F) = φ(P ′)− φ(P ′′) =

p∑

i=1

(φi(P
′
i)− φi(P

′′
i)). (6)

Now fix i ∈ [p]. Since F ⊆ P ′
i ∩ P ′′

i , dim(P ′
i ∩ P ′′

i) ≥ n − 1. If dim(P ′
i ∩ P ′′

i) = n − 1, then
Fi := P ′

i ∩P
′′
i ∈ Pn−1

i and φi(P
′
i)−φi(P

′′
i) = ψi(Fi). Furthermore, i ∈ I because F ⊆ Fi. If, on the

contrary, dim(P ′
i ∩ P

′′
i) = n, the fact that Pi is a polyhedral complex implies that P ′

i = P ′′
i , and

thus φi(P
′
i)− φi(P

′′
i) = 0. Moreover, in this case i /∈ I: this is because P ′ ∪P ′′ ⊆ P ′

i , which implies
that the relative interior of F is contained in the relative interior of P ′

i . With these observations,
from (6) we obtain (5).

Definition 3.7. Fix φ ∈ Fn(G), with associated polyhedral complex P. Let H be a hyperplane in
Rn, and let H ′,H ′′ be the closed halfspaces delimited by H. Define the polyhedral complex

P̂ = {P ∩H | P ∈ P} ∪ {P ∩H ′ | P ∈ P} ∪ {P ∩H ′′ | P ∈ P}.

The refinement of φ with respect to H is the function φ̂ ∈ Fn(G) with associated polyhedral complex
P̂ defined as follows: given P̂ ∈ P̂n, φ̂(P̂) := φ(P), where P is the unique polyhedron in P that
contains P̂ .

18

The next results shows how to compute the facet-function of a refinement.

Observation 3.8. With the notation of Definition 3.7, let ψ be the facet-function associated with φ.
Then, the facet-function ψ̂ associated with φ̂ is given by

ψ̂(F̂) =

{
ψ(F) if there exists a (unique) F ∈ Pn−1 containing F̂

0 otherwise,

for every F̂ ∈ P̂n−1.

Proof. Let P̂ ′, P̂ ′′ be the polyhedra in P̂n such that F̂ = P̂ ′∩ P̂ ′′, with P̂ ′ ≺ P̂ ′′. Further, let P ′, P ′′

be the unique polyhedra in Pn that contain P̂ ′, P̂ ′′ (respectively). It might happen that P ′ = P ′′.
If there is F ∈ Pn−1 containing F̂ , then the fact that P is a polyhedral complex implies that

F = P ′ ∩ P ′′. Note that P ′ 6= P ′′ and P ′ ≺ P ′′ in this case. Thus ψ̂(F̂) = φ̂(P̂ ′) − φ̂(P̂ ′′) =
φ(P ′)− φ(P ′′) = ψ(F).

Assume now that no element of Pn−1 contains F̂ . Then there exists P ∈ Pn such that F̂ = P∩H
and H intersects the interior of P . Note that P = P ′ = P ′′ in this case. Then P̂ ′ = P ∩H ′ and
P̂ ′′ = P ∩H ′′ (or vice versa). It follows that ψ̂(F̂) = φ̂(P̂ ′)− φ̂(P̂ ′′) = φ(P)− φ(P) = 0.

We now prove that the operations of sum and refinement commute: the refinement of a sum is
the sum of the refinements.

Observation 3.9. Let φ1, . . . , φp ∈ Fn(G) be p functions with associated polyhedral complexes
P1, . . . ,Pp. Define φ := φ1 + · · · + φp. Let H be a hyperplane in Rn, and let H ′,H ′′ be the closed

halfspaces delimited by H. Then φ̂ = φ̂1 + · · · + φ̂p.

Proof. Define φ̃ := φ̂1 + · · ·+ φ̂p. It can be verified that φ̂ and φ̃ are defined on the same poyhedral

complex, which we denote by P̂ . We now fix P̂ ∈ P̂n and show that φ̂(P̂) = φ̃(P̂).
Since P̂ ∈ P̂n, it is n-dimensional and either contained in H ′ or H ′′. Since both cases are

symmetric, let us focus on P̂ ⊆ H ′. This means, we can write it as P̂ = P1 ∩ · · · ∩ Pp ∩H
′, where

Pi ∈ Pn
i for every i. Then

φ̂(P̂) = φ(P1 ∩ · · · ∩ Pp) =

p∑

i=1

φi(Pi) =

p∑

i=1

φ̂i(Pi ∩H
′) = φ̃(P1 ∩ · · · ∩ Pp ∩H

′) = φ̃(P),

where the first and third equations follow from the definition of refinement, while the second and
fourth equations follow from the definition of the sum.

The lineality space of a (nonempty) polyhedron P = {x ∈ Rn | Ax ≤ b} is the null space of the
constraint matrix A. In other words, it is the set of vectors y ∈ Rn such that for every x ∈ P the
whole line {x + λy | λ ∈ R} is a subset of P . We say that the lineality space of P is trivial, if it
contains only the zero vector, and nontrivial otherwise.

Given a polyhedron P , it is well-known that all nonempty faces of P share the same lineality
space. Therefore, given a polyhedral complex P that covers Rn, all the nonempty polyhedra in P
share the same lineality space L. We will call L the lineality space of P.

19

Lemma 3.10. Given an abelian group (G,+), pick φ1, . . . , φp ∈ Fn(G), with associated polyhedral
complexes P1, . . . ,Pp. Assume that for every i ∈ [p] the lineality space of Pi is nontrivial. Define
φ := φ1 + · · ·+ φp, P as the underlying polyhedral complex, and ψ as the facet-function of φ. Then
for every hyperplane H ⊆ Rn, the set

S :=
⋃{

F ∈ Pn−1 | F ⊆ H, ψ(F) 6= 0
}

is either empty or contains a line.

Proof. The proof is by induction on n. For n = 1, the assumptions imply that all Pi are equal to P,
and each of these polyhedral complexes has R as its only nonempty face. Since Pn−1 is empty, no
hyperplane H such that S 6= ∅ can exist.

Now fix n ≥ 2. Assume by contradiction that there exists a hyperplane H such that S is
nonempty and contains no line. Let φ̂ be the refinement of φ with respect to H, P̂ be the underlying
polyhedral complex, and ψ̂ be the associated facet-function. Further, we define Q := {P ∩H | P ∈
P̂}, which is a polyhedral complex that covers H. Note that if H is identified with Rn−1 then we
can think of Q as a polyhedral complex that covers Rn−1, and the restriction of ψ̂ to Qn−1, which
we denote by φ′, can be seen as a function in Fn−1(G). We will prove that φ′ does not satisfy the
lemma, contradicting the inductive hypothesis.

Since φ = φ1 + · · · + φp, by Observation 3.9 we have φ̂ = φ̂1 + · · · + φ̂p. Note that for

every i ∈ [p] the hyperplane H is covered by the elements of P̂n−1. This implies that for every
F̂ ∈ P̂n−1 and i ∈ [p] there exists F̂i ∈ P̂n−1

i such that F̂ ⊆ F̂i. Then, by Observation 3.6,

ψ̂(F̂) = ψ̂1(F̂1) + · · ·+ ψ̂p(F̂p).

Now, additionally suppose that F̂ is contained in H, that is, F̂ ∈ Qn−1. Let i ∈ [p] be such that
the lineality space of Pi is not a subset of the linear space parallel to H. Then no element of Pn−1

i

contains F̂i. By Observation 3.8, ψ̂i(F̂i) = 0. We then conclude that

ψ̂(F̂) =
∑

i∈J

ψ̂i(F̂i) for every F̂ ∈ Qn−1,

where J is the set of indices i such that the lineality space of Pi is a subset of the linear space
parallel to H. This means that

φ′ =
∑

i∈J

φ′i,

where φ′i is the restriction of ψ̂i to Qn−1
i , with Qi := {P ∩H | P ∈ P̂i}. Note that for every i ∈ J

the lineality space of Qi is clearly nontrivial, as it coincides with the lineality space of Pi.
Now pick any F̂ ∈ Qn−1. Note that if there exists F ∈ Pn−1 such that F̂ ⊆ F , then F̂ = F . It

then follows from Observation 3.8 that

⋃{
F̂ ∈ Qn−1

∣∣∣ ψ̂(F̂) 6= 0
}
= S.

In other words, ⋃{
F ∈ Qn−1

∣∣ φ′(F) 6= 0
}
= S. (7)

Since S 6= H (as S contains no line), there exists a polyhedron F ∈ Qn−1 such that F ⊆ S and
F has a facet F0 which does not belong to any other polyhedron in Qn−1 contained in S. Then the

20

facet-function ψ′ associated with φ′ satisfies ψ′(F0) 6= 0. Let H ′ be the (n − 2)-dimensional affine
space containing F0. Then the set

S′ :=
⋃{

F ∈ Qn−2
∣∣ F ⊆ H ′, ψ′(F) 6= 0

}

is nonempty, as F0 ⊆ S′. Furthermore, we claim that S′ contains no line. To see why this is true,
take any F ∈ Qn−2 such that F ⊆ H ′ and ψ′(F) 6= 0, and let F ′, F ′′ be the two polyhedra in
Qn−1 having F as facet. Then φ′(F ′) 6= φ′(F ′′), and thus at least one of these values (say φ′(F ′))
is nonzero. Then, by (7), F ′ ⊆ S, and thus also F ⊆ S. This shows that S′ ⊆ S and therefore S′

contains no line.
We have shown that φ′ does not satisfy the lemma. This contradicts the inductive assumption

that the lemma holds in dimension n− 1.

Finally, we can use this lemma to prove Proposition 3.2.

Proof of Proposition 3.2. Assume for the sake of a contradiction that

f0(x) =

p∑

i=1

λimax{ℓi1(x), . . . , ℓin(x)} for every x ∈ Rn,

where p ∈ N, λ1, . . . , λp ∈ R and ℓij : R
n → R is an affine linear function for every i ∈ [p] and j ∈ [n].

Define fi(x) := λi max{ℓi1(x), . . . , ℓin(x)} for every i ∈ [p], which is a CPWL function.
Fix any i ∈ [p] such that λi ≥ 0. Then fi is convex. Note that its epigraph

Ei := {(x, z) ∈ Rn × R | z ≥ ℓij(x) for j ∈ [n]}

is a polyhedron in Rn+1 defined by n inequalities, and thus has nontrivial lineality space. Fur-
thermore, no line orthogonal to the x-space is contained in Ei. Since the underlying polyhedral
complex Pi of fi consists of the orthogonal projections of the faces of Ei (excluding Ei itself) onto
the x-space, this implies that Pi has also nontrivial lineality space. (More precisely, the lineality
space of Pi is the projection of the lineality space of Ei.)

If λi < 0, then fi is concave. By arguing as above on the convex function −fi, one obtains
that the underlying polyhedral complex Pi has again nontrivial lineality space. Thus this property
holds for every i ∈ [p].

The set of affine linear functions Rn → R forms an abelian group (with respect to the standard
operation of sum of functions), which we denote by (G,+). For every i ∈ [p]0, let φi be the function
in Fn(G) with underlying polyhedral complex Pi defined as follows: for every P ∈ Pn

i , φi(P) is
the affine linear function that coincides with fi over P . Define φ := φ1 + · · ·+ φp and let P be the
underlying polyhedral complex.

Note that for every P ∈ Pn, φ(P) is precisely the affine linear function that coincides with f0
within P . However, P may not coincide with P0, as there might exist P ′, P ′′ ∈ Pd sharing a facet
such that φ(P ′) = φ(P ′′); when this happens, f0 is affine linear over P ′ ∪ P ′′ and therefore P ′ and
P ′′ are merged together in P0. Nonetheless, P is a refinement of P0, i.e., for every P ∈ Pn

0 there
exist P1, . . . , Pk ∈ Pn (for some k ≥ 1) such that P = P1 ∪ · · · ∪ Pk. Moreover, φ0(P) = φ(P1) =
· · · = φ(Pk). Denoting by ψ the facet-function associated with φ, this implies for a facet F ∈ Pn−1

that ψ(F) = 0 if and only if F is not subset of any facet F ′ ∈ Pn−1
0 .

21

Let H be a hyperplane as in the statement of the proposition. The above discussion shows that

T =
⋃{

F ∈ Pn−1
0

∣∣ F ⊆ H
}
=

⋃{
F ∈ Pn−1

∣∣ F ⊆ H, ψ(F) 6= 0
}
.

Using S := T , we obtain a contradiction to Lemma 3.10.

4 A Width Bound for Neural Networks with Small Depth

While the proof of Theorem 1.1 by Arora et al. [6] shows that

CPWLn = ReLUn(⌈log2(n+ 1)⌉),

it does not provide any bound on the width of the NN required to represent any particular CPWL
function. The purpose of this section is to prove that for fixed dimension n, the required width
for exact, depth-minimal representation of a CPWL function can be polynomially bounded in the
number p of affine pieces; specifically by pO(n2). This improves previous bounds by He et al. [35]
and is closely related to works that bound the number of linear pieces of an NN as a function of
the size [54,55,59,61]. It can also be seen as a counterpart, in the context of exact representations,
to quantitative universal approximation theorems that bound the number of neurons required to
achieve a certain approximation guarantee; see, e.g., [8, 9, 52,53,60].

4.1 The Convex Case

We first derive our result for the case of convex CPWL functions and then use this to also prove the
general nonconvex case. Our width bound is a consequence of the following theorem about convex
CPWL functions, for which we are going to provide a geometric proof later.

Theorem 4.1. Let f(x) = max{aTi x + bi | i ∈ [p]} be a convex CPWL function with p pieces
defined on Rn. Then f can be written as

f(x) =
∑

S⊆[p],
|S|≤n+1

cS max{aTi x+ bi | i ∈ S}

with coefficients cS ∈ Z.

For the convex case, this yields a stronger version of Theorem 1.3, stating that any (not nec-
essarily convex) CPWL function can be written as a linear combination of (n + 1)-term maxima.
Theorem 4.1 is stronger in the sense that it guarantees that all pieces of the (n+ 1)-term maxima
must be pieces of the original function. This makes it possible to bound the total number of these
(n + 1)-term maxima and, therefore, the size of an NN representing f , as we will see in the proof
of the following theorem.

Theorem 4.2. Let f : Rn → R be a convex CPWL function with p affine pieces. Then f can be
represented by a ReLU NN with depth ⌈log2(n+ 1)⌉ + 1 and width O(pn+1).

Proof. Using the representation of Theorem 4.1, we can construct an NN computing f by computing
all the (n + 1)-term max functions in parallel with the construction of Lemma 1.2 (similar to the
proof by Arora et al. [6] to show Theorem 1.1). This results in an NN with the claimed depth.

22

Moreover, the width is at most a constant times the number of these (n+ 1)-term max functions.
This number can be bounded in terms of the number of possible subsets S ⊆ [p] with |S| ≤ n+ 1,
which is at most pn+1.

Before we present the proof of Theorem 4.1, we show how we can generalize its consequences
to the nonconvex case.

4.2 The General (Nonconvex) Case

It is a well-known fact that every CPWL function can be expressed as a difference of two convex
CPWL functions, see, e.g., [73, Theorem 1]. This allows us to derive the general case from the
convex case. What we need, however, is to bound the number of affine pieces of the two convex
CPWL functions in terms of the number of pieces of the original function. Therefore, we consider
a specific decomposition for which such bounds can easily be achieved.

Proposition 4.3. Let f : Rn → R be a CPWL function with p affine pieces. Then, one can write f
as f = g − h where both g and h are convex CPWL functions with at most p2n+1 pieces.

Proof. Suppose the p affine pieces of f are given by x 7→ aTi x + bi, i ∈ [p]. Define the function
h(x) :=

∑
1≤i<j≤pmax{aTi x + bi, a

T
j x + bj} and let g := f + h. Then, obviously, f = g − h. It

remains to show that both g and h are convex CPWL functions with at most p2n+1 pieces.
The convexity of h is clear by definition. Consider the

(p
2

)
= p(p−1)

2 < p2 hyperplanes given by

aTi x + bi = aTj x + bj , 1 ≤ i < j ≤ p. They divide Rn into at most
(p2
n

)
+

(p2

n−1

)
+ · · ·+

(p2
0

)
≤ p2n

regions (compare [20, Theorem 1.3]) in each of which h is affine. In particular, h has at most
p2n ≤ p2n+1 pieces.

Next, we show that g = f + h is convex. Intuitively, this holds because each possible breaking
hyperplane of f is made convex by adding h. To make this formal, note that by the definition of
convexity, it suffices to show that g is convex along each affine line. For this purpose, consider an
arbitrary line x(t) = ta+ b, t ∈ R, given by a ∈ Rn and b ∈ R. Let f̃(t) := f(x(t)), g̃(t) := g(x(t)),
and h̃(t) := h(x(t)). We need to show that g̃ : R → R is a convex function. Observe that f̃ , g̃, and h̃
are clearly one-dimensional CPWL functions with the property g̃ = f̃+ h̃. Hence, it suffices to show
that g̃ is locally convex around each of its breakpoints. Let t ∈ R be an arbitrary breakpoint of g̃.
If f̃ is already locally convex around t, then the same holds for g̃ as well since h̃ inherits convexity
from h. Now suppose that t is a nonconvex breakpoint of f̃ . Then there exist two distinct pieces
of f , indexed by i, j ∈ [p] with i 6= j, such that f̃(t′) = min{aTi x(t

′) + bi, a
T
j x(t

′) + bj} for all t′

sufficiently close to t. By construction, h̃(t′) contains the summand max{aTi x(t
′)+ bi, a

T
j x(t

′)+ bj}.

Thus, adding this summand to f̃ linearizes the nonconvex breakpoint of f̃ , while adding all the
other summands preserves convexity. In total, g̃ is locally convex around t, which finishes the proof
that g is a convex function.

Finally, observe that pieces of g = f +h are always intersections of pieces of f and h, for which
we have only p · p2n = p2n+1 possibilities.

Having this, we may conclude the following.

Theorem 1.9. Let f : Rn → R be a CPWL function with p affine pieces. Then f can be represented
by a ReLU NN with depth ⌈log2(n + 1)⌉ + 1 and width O(p2n

2+3n+1).

23

Proof. Consider the decomposition f = g− h from Proposition 4.3. Using Theorem 4.2, we obtain
that both g and h can be represented with the required depth ⌈log2(n + 1)⌉ + 1 and with width
O((p2n+1)n+1) = O(p2n

2+3n+1). Thus, the same holds true for f .

4.3 Extended Newton Polyhedra of Convex CPWL Functions

For our proof of Theorem 4.1, we use a correspondence of convex CPWL functions with certain
polyhedra, which are known as (extended) Newton polyhedra in tropical geometry [49]. These
relations between tropical geometry and neural networks have previously been applied to investigate
expressivity of NNs; compare our references in Section 1.5.

In order to formalize this correspondence, let CCPWLn ⊆ CPWLn be the set of convex CPWL
functions of type Rn → R. For f(x) = max{aTi x+ bi | i ∈ [p]} in CCPWLn, we define its so-called
extended Newton polyhedron to be

N (f) := conv({(aTi , bi)
T ∈ Rn × R | i ∈ [p]}) + cone({−en+1}) ⊆ Rn+1,

where the “+” stands for Minkowski addition. We denote the set of all possible extended Newton
polyhedra in Rn+1 as Newtn. That is, Newtn is the set of (unbounded) polyhedra in Rn+1 that
emerge from a polytope by adding the negative of the (n + 1)-st unit vector −en+1 as an extreme
ray. Hence, a set P ⊆ Rn+1 is an element of Newtn if and only if P can be written as

P = conv({(aTi , bi)
T ∈ Rn × R | i ∈ [p]}) + cone({−en+1}).

Conversely, for a polyhedron P ∈ Newtn of this form, let F(P) ∈ CCPWLn be the function defined
by F(P)(x) = max{aTi x+ bi | i ∈ [p]}.

There is an intuitive way of thinking about the extended Newton polyhedron P of a convex
CPWL function f : it consists of all hyperplane coefficients (aT , b)T ∈ Rn ×R such that aTx+ b ≤
f(x) for all x ∈ Rn. This also explains why we add the extreme ray −en+1: decreasing b obviously
maintains the property of aTx+ b being a lower bound on the function f . Hence, if a point (aT , b)T

belongs to the extended Newton polyhedron P , then also all points (aT , b′)T with b′ < b should
belong to it. Thus, −en+1 should be contained in the recession cone of P .

In fact, there is a one-to-one correspondence between elements of CCPWLn and Newtn, which
is nicely compatible with some (functional and polyhedral) operations. This correspondence has
been studied before in tropical geometry [41,49], convex geometry2 [39], as well as neural network
literature [2, 15, 54, 76]. We summarize the key findings about this correspondence relevant to our
work in the following proposition:

Proposition 4.4. Let n ∈ N and f1, f2 ∈ CCPWLn. Then it holds that

(i) the functions N : CCPWLn → Newtn and F : Newtn → CCPWLn are well-defined, that
is, their output is independent from the representation of the input by pieces or vertices,
respectively,

(ii) N and F are bijections and inverse to each other,

(iii) N (max{f1, f2}) = conv(N (f1),N (f2)) := conv(N (f1) ∪ N (f2)),

2N (f) is the negative of the epigraph of the convex conjugate of f .

24

(iv) N (f1 + f2) = N (f1) +N (f2), where the + on the right-hand side is Minkowski addition.

An algebraic way of phrasing this proposition is as follows: N and F are isomorphisms between
the semirings (CCPWLn,max,+) and (Newtn, conv,+).

4.4 Proof of Theorem 4.1

The rough idea to prove Theorem 4.1 is as follows. Suppose we have a p-term max function f with
p ≥ n + 2. By Proposition 4.4, f corresponds to a polyhedron P ∈ Newtn with at least n + 2
vertices. Applying a classical result from discrete geometry known as Radon’s theorem allows us to
carefully decompose P into a “signed”3 Minkowski sum of polyhedra in Newtn whose vertices are
subsets of at most p− 1 out of the p vertices of P . Translating this back into the world of CPWL
functions by Proposition 4.4 yields that f can be written as linear combination of p′-term maxima
with p′ < p, where each of them involves a subset of the p affine terms of f . We can then obtain
Theorem 4.1 by iterating until every occurring maximum expression involves at most n+ 1 terms.

We start with a proposition that will be useful for our proof of Theorem 4.1. Although its
statement is well-known in the discrete geometry community, we include a proof for the sake of
completeness. To show the proposition, we make use of Radon’s theorem (compare [20, Theo-
rem 4.1]), stating that any set of at least n+2 points in Rn can be partitioned into two nonempty
subsets such that their convex hulls intersect.

Proposition 4.5. Given p > n+ 1 vectors zi = (aTi , bi)
T ∈ Rn+1, i ∈ [p], there exists a nonempty

subset U ([p] featuring the following property: there is no c ∈ Rn+1 with cn+1 ≥ 0 and γ ∈ R such
that

cT zi > γ for all i ∈ U , and

cT zi ≤ γ for all i ∈ [p] \ U .
(8)

Proof. Radon’s theorem applied to the at least n + 2 vectors ai, i ∈ [p], yields a nonempty sub-
set U ([p] and coefficients λi ∈ [0, 1] with

∑
i∈U λi =

∑
i∈[p]\U λi = 1 such that

∑
i∈U λiai =∑

i∈[p]\U λiai. Suppose that
∑

i∈U λibi ≤
∑

i∈[p]\U λibi without loss of generality (otherwise ex-
change the roles of U and [p] \ U).

For any c and γ that satisfy (8) and cn+1 ≥ 0 it follows that

γ < cT
∑

i∈U

λizi ≤ cT
∑

i∈[p]\U

λizi ≤ γ,

proving that no such c and γ can exist.

The following proposition is a crucial step in order to show that any convex CPWL function
with p > n+1 pieces can be expressed as an integer linear combination of convex CPWL functions
with at most p− 1 pieces.

3Some polyhedra may occur with “negative” coefficents in that sum, meaning that they are actually added to P
instead of the other polyhedra. The corresponding CPWL functions will then have negative coefficients in the linear
combination representing f .

25

Proposition 4.6. Let f(x) = max{aTi x+ bi | i ∈ [p]} be a convex CPWL function defined on Rn

with p > n+ 1. Then there exist a subset U ⊆ [p] such that
∑

W⊆U,
|W | even

max{aTi x+ bi | i ∈ [p] \W} =
∑

W⊆U,
|W | odd

max{aTi x+ bi | i ∈ [p] \W} (9)

Proof. Consider the p > n + 1 vectors zi := (aTi , bi)
T ∈ Rn+1, i ∈ [p]. Choose U according to

Proposition 4.5. We show that this choice of U guarantees equation (9).
For W ⊆ U , let fW (x) = max{aTi x + bi | i ∈ [p] \ W} and consider its extended Newton

polyhedron PW = N (fW) = conv({zi | i ∈ [p] \ W}) + cone({−en+1}). By Proposition 4.4,
equation (9) is equivalent to

Peven :=
∑

W⊆U,
|W | even

PW =
∑

W⊆U,
|W | odd

PW =: Podd,

where the sums are Minkowski sums.
We show this equation by showing that for all vectors c ∈ Rn+1 it holds that

max{cTx | x ∈ Peven} = max{cTx | x ∈ Podd}. (10)

Let c ∈ Rn+1 be an arbitrary vector. If cn+1 < 0, both sides of (10) are infinite. Hence, from
now on, assume that cn+1 ≥ 0. Then, both sides of (10) are finite since −en+1 is the only extreme
ray of all involved polyhedra.

Due to our choice of U according to Proposition 4.5, there exists an index u ∈ U such that

cT zu ≤ max
i∈[p]\U

cT zi. (11)

We define a bijection ϕu between the even and the odd subsets of U as follows:

ϕu(W) :=

{
W ∪ {u}, if u /∈W,
W \ {u}, if u ∈W.

That is, ϕu changes the parity of W by adding or removing u. Considering the corresponding
polyhedra PW and Pϕu(W), this means that ϕu adds or removes the extreme point zu to or from
PW . Due to (11) this does not change the optimal value of maximizing in c-direction over the
polyhedra, that is,

max{cTx | x ∈ PW} = max{cTx | x ∈ Pϕu(W)}.

Hence, we may conclude

max{cTx | x ∈ Peven} =
∑

W⊆U,
|W | even

max{cTx | x ∈ PW }

=
∑

W⊆U,
|W | even

max{cTx | x ∈ Pϕu(W)}

=
∑

W⊆U,
|W | odd

max{cTx | x ∈ PW }

= max{cTx | x ∈ Podd},

which proves (10). Thus, the claim follows.

26

With the help of this result, we can now prove Theorem 4.1.

Proof of Theorem 4.1. Let f(x) = max{aTi x+ bi | i ∈ [p]} be a convex CPWL function defined on
Rn. Having a closer look at the statement of Proposition 4.6, observe that only one term at the
left-hand side of (9) contains all p affine combinations aTi x+ bi. Putting all other maximum terms
on the other side, we may write f as an integer linear combination of maxima of at most p − 1
summands. Repeating this procedure until we have eliminated all maximum terms with more than
n+ 1 summands yields the desired representation.

4.5 Potential Approaches to Show Lower Bounds on the Width

In light of the upper width bounds shown in this section, a natural question to ask is whether
also meaningful lower bounds can be achieved. This would mean constructing a family of CPWL
functions with p pieces defined on Rn (with different values of p and n), for which we can prove
that a large width is required to represent these functions with NNs of depth ⌈log2(n+ 1)⌉+ 1.

A trivial and not very satisfying answer follows, e.g., from [61] or [67]: for fixed input dimension
n, they show that a function computed by an NN with k hidden layers and width w has at
most O(wkn) pieces. For our setting, this means that an NN with logarithmic depth needs a width
of at least O(p1/(n logn)) to represent a function with p pieces. This is, of course, very far away from
our upper bounds.

Similar upper bounds on the number of pieces have been proven by many other authors and
are often used to show depth-width trade-offs [6, 54, 55, 59, 70]. However, there is a good reason
why all these results only give rise to very trivial lower bounds for our setting: the focus is always
on functions with considerably many pieces, which then, consequently, need many neurons to be
represented (with small depth). However, since the lower bounds we strive for depend on the
number of pieces, we would need to construct a family of functions with comparably few pieces
that still need a lot of neurons to be represented. In general, it seems to be a tough task to argue
why such functions should exist.

A different approach could leverage methods from complexity theory, in particular from circuit
complexity. Neural networks are basically arithmetic circuits with very special operations allowed.
In fact, they can be seen as a tropical variant of arithmetic circuits. Showing circuit lower bounds
is a notoriously difficult task in complexity theory, but maybe some conditional result (based on
common conjectures similar to P 6= NP) could be established.

We think that the question whether our bounds are tight, or whether at least some non-trivial
lower bounds on the width for NNs with logarithmic depth can be shown, is an exciting question
for further research.

5 Understanding Expressivity via Newton Polytopes

In Section 2, we presented a mixed-integer programming approach towards proving that deep NNs
can strictly represent more functions than shallow ones. However, even if we could prove that
it is indeed enough to consider H-conforming NNs, this approach would not generalize to deeper
networks due to computational limitations. Therefore, different ideas are needed to prove Conjec-
ture 1.4 in its full generality. In this section, we point out that Newton polytopes of convex CPWL

27

functions (similar to what we used in the previous section) could also be a way of proving Conjec-
ture 1.4. Using a homogenized version of Proposition 4.4, we provide an equivalent formulation of
Conjecture 1.4 that is completely phrased in the language of discrete geometry.

Recall that, by Proposition 2.3, we may restrict ourselves to NNs without biases. In particular,
all CPWL functions represented by such NNs, or parts of it, are positively homogeneous. For the
associated extended Newton polyhedra (compare Proposition 4.4), this has the following conse-
quence: all vertices (a, b) ∈ Rn × R lie in the hyperplane b = 0, that is, their (n+ 1)-st coordinate
is 0. Therefore, the extended Newton polyhedron of a positively homogeneous, convex CPWL
function f(x) = max{aTi x | i ∈ [p]} is completely characterized by the so-called Newton polytope,
that is, the polytope conv({ai | i ∈ [p]}) ⊆ Rn.

To make this formal, let CCPWLn be the set of all positively homogeneous, convex CPWL
functions of type Rn → R and let Newtn be the set of all convex polytopes in Rn. Moreover, for
f(x) = max{aTi x | i ∈ [p]} in CCPWLn, let

N (f) := conv({ai | i ∈ [p]}) ∈ Newtn

be the associated Newton polytope of f and for P = conv({ai | i ∈ [p]}) ∈ Newtn let

F(P)(x) = max{aTi x | i ∈ [p]}

be the so-called associated support function [38] of P in CCPWLn. With this notation, we obtain
the following variant of Proposition 4.4.

Proposition 5.1. Let n ∈ N and f1, f2 ∈ CCPWLn. Then it holds that

(i) the functions N : CCPWLn → Newtn and F : Newtn → CCPWLn are well-defined, that
is, their output is independent from the representation of the input by pieces or vertices,
respectively,

(ii) N and F are bijections and inverse to each other,

(iii) N (max{f1, f2}) = conv(N (f1),N (f2)) := conv(N (f1) ∪N (f2)),

(iv) N (f1 + f2) = N (f1) +N (f2), where the + on the right-hand side is Minkowski addition.

In other words, N and F are isomorphisms between the semirings (CCPWLn,max,+) and
(Newtn, conv,+).

Next, we study which polytopes can appear as Newton polytopes of convex CPWL functions
computed by NNs with a certain depth; compare Zhang et al. [76].

Before we apply the first ReLU activation, any function computed by an NN is linear. Thus, the
corresponding Newton polytope is a single point. Starting from that, let us investigate a neuron
in the first hidden layer. Here, the ReLU activation function computes a maximum of a linear
function and 0. Therefore, the Newton polytope of the resulting function is the convex hull of two
points, that is, a line segment. After the first hidden layer, arbitrary many functions of this type
can be added up. For the corresponding Newton polytopes, this means that we take the Minkowski
sum of line segments, resulting in a so-called zonotope.

Now, this construction can be repeated layerwise, making use of Proposition 5.1: in each hidden
layer, we can compute the maximum of two functions computed by the previous layers, which
translates to obtaining the new Newton polytope as a convex hull of the union of the two original

28

x1

x2

y

Newt
(0)
n

points

line segments

Newt
(1)
n

zonotopes

conv(two zonotopes)

Newt
(2)
n

Figure 5: Set of polytopes that can arise as Newton polytopes of convex CPWL functions computed
by (parts of) a 2-hidden-layer NN.

Newton polytopes. In addition, the linear combinations between layers translate to scaling and
taking Minkowski sums of Newton polytopes.

This intuition motivates the following definition. Let Newt
(0)
n be the set of all polytopes in Rn

that consist only of a single point. Then, for each k ≥ 1, we recursively define

Newt(k)n :=

{
p∑

i=1

conv(Pi, Qi)

∣∣∣∣∣ Pi, Qi ∈ Newt(k−1)
n , p ∈ N

}
,

where the sum is a Minkowski sum of polytopes. A first, but not precisely accurate interpretation

is as follows: the set Newt
(k)
n contains the Newton polytopes of positively homogeneous, convex

CPWL functions representable with a k-hidden-layer NN. See Figure 5 for an illustration of the
case k = 2.

Unfortunately, this interpretation is not accurate for the following reason: our NNs are allowed
to have negative weights, which cannot be fully captured by Minkowski sums as introduced above.
Therefore, it might be possible that a k-hidden-layer NN can compute a convex function with

Newton polytope not in Newt
(k)
n . Luckily, one can remedy this shortcoming, and even extend the

interpretation to the non-convex case, by representing the computed function as difference of two
convex functions.

Theorem 5.2. A positively homogeneous (not necessarily convex) CPWL function can be com-
puted by a k-hidden-layer NN if and only if it can be written as the difference of two positively

homogeneous, convex CPWL functions with Newton polytopes in Newt
(k)
n .

Proof. We use induction on k. For k = 0, the statement is clear since it holds precisely for linear
functions. For the induction step, suppose that, for some k ≥ 1, the equivalence is valid up to k−1
hidden layers. We prove that it is also valid for k hidden layers.

We need to show two directions. For the first direction, assume that f is an arbitrary, positively

homogeneous CPWL function that can be written as f = g − h with N (g),N (h) ∈ Newt
(k)
n . We

need to show that a k-hidden-layer NN can compute f . We show that this is even true for g

and h, and hence, also for f . By definition of Newt
(k)
n , there exist a finite number p ∈ N and

polytopes Pi, Qi ∈ Newt
(k−1)
n , i ∈ [p], such that N (g) =

∑p
i=1 conv(Pi, Qi). By Proposition 5.1,

29

we have g =
∑p

i=1 max{F(Pi),F(Qi)}. By induction, F(Pi) and F(Qi) can be computed by NNs
with k − 1 hidden layers. Since the maximum terms can be computed with a single hidden layer,
in total a k-th hidden layer is sufficient to compute g. An analogous argument applies to h. Thus,
f is computable with k hidden layers, completing the first direction.

For the other direction, suppose that f is an arbitrary, positively homogeneous CPWL function
that can be computed by a k-hidden-layer NN. Let us separately consider the nk neurons in the
k-th hidden layer of the NN. Let ai, i ∈ [nk], be the weight of the connection from the i-th neuron
in that layer to the output. Without loss of generality, we have ai ∈ {±1}, because otherwise we
can normalize it and multiply the weights of the incoming connections to the i-th neuron with |ai|
instead. Moreover, let us assume that, by potential reordering, there is some m ≤ nk such that
ai = 1 for i ≤ m and ai = −1 for i > m. With these assumptions, we can write

f =

m∑

i=1

max{0, fi} −

nk∑

i=m+1

max{0, fi}, (12)

where each fi is computable by a (k−1)-hidden-layer NN, namely the sub-NN computing the input
to the i-th neuron in the k-th hidden layer.

By induction, we obtain fi = gi − hi for some positively homogeneous, convex functions gi, hi
with N (gi),N (hi) ∈ Newt

(k−1)
n . We then have

max{0, fi} = max{gi, hi} − hi. (13)

We define

g :=
m∑

i=1

max{gi, hi}+

nk∑

i=m+1

hi

and

h :=

m∑

i=1

hi +

nk∑

i=m+1

max{gi, hi}.

Note that g and h are convex by construction as a sum of convex functions and that (12) and
(13) imply f = g − h. Moreover, by Proposition 5.1,

N (g) =

m∑

i=1

conv(N (gi),N (hi)) +

nk∑

i=m+1

conv(N (hi),N (hi)) ∈ Newt(k)n

and

N (h) =
m∑

i=1

conv(N (hi),N (hi)) +

nk∑

i=m+1

conv(N (gi),N (hi)) ∈ Newt(k)n .

Hence, f can be represented as desired, completing also the other direction.

The power of Theorem 5.2 lies in the fact that it provides a purely geometric characterization

of the class ReLU(k). The classes of polytopes Newt
(k)
n are solely defined by the two simple

geometric operations Minkowski sum and convex hull of the union. Therefore, understanding
the class ReLU(k) is equivalent to understanding what polytopes one can generate by iterative
application of these geometric operations.

In particular, we can give yet another equivalent reformulation of our main conjecture. To this
end, let the simplex ∆n := conv{0, e1, . . . , en} ⊆ Rn denote the Newton polytope of the function
fn = max{0, x1, . . . , xn} for each n ∈ N.

30

Conjecture 5.3. For every k ∈ N, n = 2k, there does not exist a pair of polytopes P,Q ∈ Newt
(k)
n

with ∆n +Q = P (Minkowski sum).

Theorem 5.4. Conjecture 5.3 is equivalent to Conjecture 1.4 and Conjecture 1.5.

Proof. By Proposition 1.6, it suffices to show equivalence between Conjecture 5.3 and Conjec-
ture 1.5. By Theorem 5.2, fn can be represented with k hidden layers if and only if there are

functions g and h with Newton polytopes in Newt
(k)
n satisfying fn + h = g. By Proposition 5.1,

this happens if and only if there are polytopes P,Q ∈ Newt
(k)
n with ∆n +Q = P .

It is particularly interesting to look at special cases with small k. For k = 1, the set Newt
(1)
n

is the set of all zonotopes. Hence, the (known) statement that max{0, x1, x2} cannot be computed
with one hidden layer [56] is equivalent to the fact that the Minkowski sum of a zonotope and a
triangle can never be a zonotope.

The first open case is the case k = 2. An unconditional proof that two hidden layers do
not suffice to compute the maximum of five numbers is highly desired. In the regime of Newton

polytopes, this means to understand the class Newt
(2)
n . It consists of finite Minkowski sums of

polytopes that arise as the convex hull of the union of two zonotopes. Hence, the major open
question here is to classify this set of polytopes.

Finally, let us remark that there exists a generalization of the concept of polytopes, known as
virtual polytopes [58], that makes it possible to assign a Newton polytope also to non-convex CPWL
functions. This makes use of the fact that every (non-convex) CPWL function is a difference of
two convex ones. Consequently, a virtual polytope is a formal Minkowski difference of two ordinary
polytopes. Using this concept, Theorem 5.2 and Conjecture 5.3 can be phrased in a simpler way,
replacing the pair of polytopes with a single virtual polytope.

6 Future Research

The most obvious and, at the same time, most exciting open research question is to prove or
disprove Conjecture 1.4, or equivalently Conjecture 1.5 or Conjecture 5.3. The first step could be
to prove that it is indeed enough to consider H-conforming NNs. This is intuitive because every
breakpoint introduced at any place outside the hyperplanes Hij needs to be canceled out later.
Therefore, it is natural to assume that these breakpoints do not have to be introduced in the first
place. However, this intuition does not seem to be enough for a formal proof because it could occur
that additional breakpoints in intermediate steps, which are canceled out later, also influence the
behavior of the function at other places where we allow breakpoints in the end.

Another step towards resolving our conjecture may be to find an alternative proof of Theo-
rem 1.7, not using H-conforming NNs. This might also be beneficial for generalizing our tech-
niques to more hidden layers, since, while theoretically possible, a direct generalization of the MIP
approach is infeasible due to computational limitations. For example, it might be particularly
promising to use a tropical approach as described in Section 5 and apply methods from polytope
theory to prove Conjecture 5.3.

In light of our results from Section 3, it would be desirable to provide a complete character-
ization of the functions contained in ReLU(k). Another potential research goal is improving our
upper bounds on the width from Section 4 and/or proving matching lower bounds as discussed in
Section 4.5.

31

Some more interesting research directions are the following:

• establishing or strengthening our results for special classes of NNs like recurrent neural net-
works (RNNs) or convolutional neural networks (CNNs),

• using exact representation results to show more drastic depth-width trade-offs compared to
existing results in the literature,

• understanding how the class ReLU(k) changes when a polynomial upper bound is imposed
on the width of the NN; see related work by Vardi et al. [72].

• understanding which CPWL functions one can (exactly) represent with polynomial size at
all, without any restriction on the depth; see related work in the context of combinatorial
optimization [36,37].

References

[1] M. Abrahamsen, L. Kleist, and T. Miltzow. Training neural networks is ER-complete. Advances
in Neural Information Processing Systems (NeurIPS), 34, 2021.

[2] M. Alfarra, A. Bibi, H. Hammoud, M. Gaafar, and B. Ghanem. On the decision boundaries
of neural networks: A tropical geometry perspective. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[3] A. M. Alvarez, Q. Louveaux, and L. Wehenkel. A machine learning-based approximation of
strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.

[4] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P. Vielma. Strong mixed-
integer programming formulations for trained neural networks. Mathematical Programming,
pages 1–37, 2020.

[5] M. Anthony and P. L. Bartlett. Neural network learning: Theoretical foundations. Cambridge
University Press, 1999.

[6] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with
rectified linear units. In International Conference on Learning Representations, 2018.

[7] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1–2):3–21, 2008.

[8] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.

[9] A. R. Barron. Approximation and estimation bounds for artificial neural networks. Machine
learning, 14(1):115–133, 1994.

[10] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 2020.

32

[11] D. Bertschinger, C. Hertrich, P. Jungeblut, T. Miltzow, and S. Weber. Training fully connected
neural networks is ER-complete. arXiv:2204.01368, 2022.

[12] D. Bienstock, G. Muñoz, and S. Pokutta. Principled deep neural network training through
linear programming. arXiv:1810.03218, 2018.

[13] P. Bonami, A. Lodi, and G. Zarpellon. Learning a classification of mixed-integer quadratic
programming problems. In International Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research, pages 595–604. Springer, 2018.

[14] D. Boob, S. S. Dey, and G. Lan. Complexity of training relu neural network. Discrete Opti-
mization, 44, 2022.

[15] V. Charisopoulos and P. Maragos. A tropical approach to neural networks with piecewise
linear activations. arXiv preprint arXiv:1805.08749, 2018.

[16] K.-L. Chen, H. Garudadri, and B. D. Rao. Improved bounds on neural complexity for rep-
resenting piecewise linear functions. In Advances in Neural Information Processing Systems,
2022.

[17] S. Chen, A. R. Klivans, and R. Meka. Learning Deep ReLU Networks Is Fixed-Parameter
Tractable. In N. K. Vishnoi, editor, 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 696–707, 2022.

[18] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[19] S. S. Dey, G. Wang, and Y. Xie. Approximation algorithms for training one-node relu neural
networks. IEEE Transactions on Signal Processing, 68:6696–6706, 2020.

[20] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Science & Business Media,
1987.

[21] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference
on Learning Theory, pages 907–940, 2016.

[22] M. Fischetti and J. Jo. Deep neural networks as 0-1 mixed integer linear programs: A feasibility
study. arXiv preprint arXiv:1712.06174, 2017.

[23] V. Froese, C. Hertrich, and R. Niedermeier. The computational complexity of ReLU network
training parameterized by data dimensionality. Journal of Artificial Intelligence Research,
74:1775–1790, 2022.

[24] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization
with graph convolutional neural networks. Advances in neural information processing systems,
32, 2019.

[25] S. Goel, V. Kanade, A. Klivans, and J. Thaler. Reliably learning the relu in polynomial time.
In Conference on Learning Theory, pages 1004–1042. PMLR, 2017.

33

[26] S. Goel, A. Klivans, and R. Meka. Learning one convolutional layer with overlapping patches.
In International Conference on Machine Learning, pages 1783–1791. PMLR, 2018.

[27] S. Goel and A. R. Klivans. Learning neural networks with two nonlinear layers in polynomial
time. In Conference on Learning Theory, pages 1470–1499. PMLR, 2019.

[28] S. Goel, A. R. Klivans, P. Manurangsi, and D. Reichman. Tight hardness results for training
depth-2 ReLU networks. In 12th Innovations in Theoretical Computer Science Conference
(ITCS ’21), volume 185 of LIPIcs, pages 22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[29] R. Gribonval, G. Kutyniok, M. Nielsen, and F. Voigtlaender. Approximation spaces of deep
neural networks. Constructive Approximation, pages 1–109, 2021.

[30] Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2021.

[31] C. A. Haase, C. Hertrich, and G. Loho. Lower bounds on the depth of integral ReLU neu-
ral networks via lattice polytopes. In The Eleventh International Conference on Learning
Representations, 2023.

[32] B. Hanin. Universal function approximation by deep neural nets with bounded width and
ReLU activations. Mathematics, 7(10):992, 2019.

[33] B. Hanin and M. Sellke. Approximating continuous functions by ReLU nets of minimal width.
arXiv:1710.11278, 2017.

[34] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27:3293–3301, 2014.

[35] J. He, L. Li, J. Xu, and C. Zheng. Relu deep neural networks and linear finite elements.
Journal of Computational Mathematics, 38(3):502–527, 2020.

[36] C. Hertrich and L. Sering. ReLU neural networks of polynomial size for exact maximum
flow computation. In International Conference on Integer Programming and Combinatorial
Optimization, 2023.

[37] C. Hertrich and M. Skutella. Provably good solutions to the knapsack problem via neural
networks of bounded size. In AAAI Conference on Artificial Intelligence, 2021.

[38] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms I,
volume 305 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1993.

[39] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II,
volume 306 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1993.

[40] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

[41] M. Joswig. Essentials of tropical combinatorics. Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2022. To appear.

34

[42] S. Khalife and A. Basu. Neural networks with linear threshold activations: structure and algo-
rithms. In International Conference on Integer Programming and Combinatorial Optimization,
pages 347–360. Springer, 2022.

[43] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in
mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

[44] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao. Learning to run heuristics
in tree search. In IJCAI, pages 659–666, 2017.

[45] M. Kruber, M. E. Lübbecke, and A. Parmentier. Learning when to use a decomposition. In
International Conference on AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, pages 202–210. Springer, 2017.

[46] S. Liang and R. Srikant. Why deep neural networks for function approximation? In Interna-
tional Conference on Learning Representations, 2017.

[47] A. Lodi and G. Zarpellon. On learning and branching: a survey. TOP, 25(2):207–236, 2017.

[48] Z. Lu. A note on the representation power of GHHs. arXiv:2101.11286, 2021.

[49] D. Maclagan and B. Sturmfels. Introduction to tropical geometry, volume 161 of Graduate
Studies in Mathematics. American Mathematical Soc., 2015.

[50] P. Maragos, V. Charisopoulos, and E. Theodosis. Tropical geometry and machine learning.
Proceedings of the IEEE, 109(5):728–755, 2021.

[51] H. Mhaskar. Approximation of real functions using neural networks. In Proc. Intl. Conf. Comp.
Math., New Delhi, India, World Scientific Press, pages 267–278. World Scientific, 1993.

[52] H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions.
Neural computation, 8(1):164–177, 1996.

[53] H. N. Mhaskar and C. A. Micchelli. Degree of approximation by neural and translation net-
works with a single hidden layer. Advances in applied mathematics, 16(2):151–183, 1995.

[54] G. Montúfar, Y. Ren, and L. Zhang. Sharp bounds for the number of regions of maxout
networks and vertices of minkowski sums. SIAM Journal on Applied Algebra and Geometry,
6(4):618–649, 2022.

[55] G. F. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of
deep neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 2924–2932.
2014.

[56] A. Mukherjee and A. Basu. Lower bounds over boolean inputs for deep neural networks with
ReLU gates. arXiv:1711.03073, 2017.

[57] Q. Nguyen, M. C. Mukkamala, and M. Hein. Neural networks should be wide enough to
learn disconnected decision regions. In International Conference on Machine Learning, pages
3737–3746, 2018.

35

[58] G. Y. Panina and I. Strĕınu. Virtual polytopes. Uspekhi Mat. Nauk, 70(6(426)):139–202, 2015.

[59] R. Pascanu, G. Montúfar, and Y. Bengio. On the number of inference regions of deep feed
forward networks with piece-wise linear activations. In International Conference on Learning
Representations, 2014.

[60] A. Pinkus. Approximation theory of the mlp model. Acta Numerica 1999: Volume 8, 8:143–
195, 1999.

[61] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein. On the expressive power
of deep neural networks. In International Conference on Machine Learning, pages 2847–2854,
2017.

[62] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

[63] I. Safran and O. Shamir. Depth-width tradeoffs in approximating natural functions with neural
networks. In International Conference on Machine Learning, pages 2979–2987, 2017.

[64] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York,
1986.

[65] T. Serra, A. Kumar, and S. Ramalingam. Lossless compression of deep neural networks. In
International Conference on Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, pages 417–430. Springer, 2020.

[66] T. Serra and S. Ramalingam. Empirical bounds on linear regions of deep rectifier networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 5628–5635,
2020.

[67] T. Serra, C. Tjandraatmadja, and S. Ramalingam. Bounding and counting linear regions of
deep neural networks. In International Conference on Machine Learning, pages 4565–4573,
2018.

[68] R. P. Stanley. An introduction to hyperplane arrangements. In Lecture notes, IAS/Park City
Mathematics Institute, 2004.

[69] M. Telgarsky. Representation benefits of deep feedforward networks. arXiv:1509.08101, 2015.

[70] M. Telgarsky. Benefits of depth in neural networks. In Conference on Learning Theory, pages
1517–1539, 2016.

[71] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0), 2020.
https://www.sagemath.org.

[72] G. Vardi, D. Reichman, T. Pitassi, and O. Shamir. Size and depth separation in approximating
benign functions with neural networks. In Conference on Learning Theory, pages 4195–4223.
PMLR, 2021.

[73] S. Wang. General constructive representations for continuous piecewise-linear functions. IEEE
Transactions on Circuits and Systems I: Regular Papers, 51(9):1889–1896, 2004.

36

[74] S. Wang and X. Sun. Generalization of hinging hyperplanes. IEEE Transactions on Informa-
tion Theory, 51(12):4425–4431, 2005.

[75] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,
94:103–114, 2017.

[76] L. Zhang, G. Naitzat, and L.-H. Lim. Tropical geometry of deep neural networks. In Interna-
tional Conference on Machine Learning, pages 5819–5827, 2018.

37

	Introduction
	Notation and Definitions
	Representing Piecewise Linear Functions with ReLU Networks
	Our Main Conjecture
	Contribution and Outline
	Further Related Work

	Conditional Lower Depth Bounds via Mixed-Integer Programming
	Going Beyond Linear Combinations of Max Functions
	A Width Bound for Neural Networks with Small Depth
	The Convex Case
	The General (Nonconvex) Case
	Extended Newton Polyhedra of Convex CPWL Functions
	Proof of Thm:main
	Potential Approaches to Show Lower Bounds on the Width

	Understanding Expressivity via Newton Polytopes
	Future Research

