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Abstract. We establish an algebraic rate of convergence in the large number of particles limit
of the value functions of N-particle stochastic control problems towards the value function of the
corresponding McKean-Vlasov problem, also known as mean field control. The rate is obtained in
the presence of both idiosyncratic and common noises and in a setting where the value function
for the McKean-Vlasov problem need not be smooth. Our approach relies crucially on uniform in
N Lipschitz and semi-concavity estimates for the N-particle value functions as well as a certain
concentration inequality.

1. Introduction

We consider an optimal control problem with a large number of particles. The value function for
this optimization problem reads

VN (t0,x0) := inf
α∈AN

E

[ˆ T

t0

(
1

N

N∑

k=1

L(Xk
t , α

k
t ) + F(mN

Xt
))dt+ G(mN

XT
)
]
, (1.1)

where T > 0 is a finite horizon, t0 ∈ [0, T ] is the initial time, and x0 = (x10, . . . , x
N
0 ) ∈ (Rd)N is the

initial position of the N particles. The infimum is taken over the set AN of progressively measurable
(Rd)N -valued processes α = (αk)Nk=1 in L2([0, T ] × Ω; (Rd)N ) and X = (X1, . . . , XN) satisfies, for
each k ∈ {1, . . . , N},

Xk
t = xk0 +

ˆ t

t0

αk
sds+

√
2(Bk

t −Bk
t0) +

√
2a0(B

0
t −B0

t0) t ∈ [t0, T ]. (1.2)

The (Bk)k≥0 are independent d-dimensional Brownian motions defined on the fixed filtered prob-

ability space (Ω,F,F,P) satisfying the usual conditions, and L2([0, T ] × Ω; (Rd)N ) denotes the set
of square-integrable and progressively measurable processes taking values in (Rd)N , and mN

Xt
is the

empirical measure of Xt. The cost function L : Rd×Rd → R is supposed to be convex in the second
variable and smooth while the maps F,G : P1(R

d) → R are assumed to be smooth and bounded
over the space P1(R

d) of Borel measures on Rd with a finite first-moment (precise assumptions will
be given in section 2). The constant a0 ≥ 0 is the level of the common noise, and the (Bk)k≥1 are
viewed as independent or idiosyncratic noises.

1.1. Our results. To describe our result we need to introduce the map U : [0, T ]× P2(R
d) → R,

where P2(R
d) is the space of Borel measures on Rd with a finite second-moment, given, for (t0,m0) ∈

[0, T ]× P2(R
d), by

U(t0,m0) := inf
α∈A

E[

ˆ T

t0

(
L(Xt, αt(Xt)) + F(L(Xt|FB0

t ))
)
+ G(L(XT |FB0

T ))], (1.3)

where the infimum is taken over an appropriate set A of admissible controls (this will be made

precise later), FB0

= (FB0

t )0≤t≤T denotes the filtration generated by B0, L(Xt|FB0

t ) is the law of
1
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Xt conditioned upon FB0

t , and

Xt = Xt0 +

ˆ t

t0

αs(Xs)ds+
√
2(Bt −Bt0) +

√
2a0(B

0
t −B0

t0), (1.4)

with B another Brownian motion, Xt0 a random initial condition with law m0 and B0, B and Xt0

mutually independent.

Although it is known that, as N tends to infinity, VN converges to U, the existing convergence
results come without any rate

Our main result is the following algebraic convergence rate: there exists β ∈ (0, 1], depending
only on the dimension d, and C > 0, depending on the data (F,G, H), such that, for any (t,x) ∈
[0, T ]× (Rd)N , ∣∣VN (t,x)− U(t,mN

x )
∣∣ ≤ CN−β(1 +M2(m

N
x )), (1.5)

where M2(m
N
x ) = N−1

∑N
i=1 |xi|2 is the second-order moment of the measure mN

x .

Although the exact value of β could be traced back through the computation, it is clearly not
optimal. In particular, it is very far from the one obtained for a standard particle system. Similarly,
even if some dependence with respect to a moment of the measure mN

x is expected, the dependence
given here is probably far from sharp.

1.2. Background and related literature. The convergence of VN to U was shown by Lacker [22]
in a general framework and for suitable initial data but without common noise, that is, with a0 = 0
in (1.2). Recently, the results of [22] were extended in Djete, Possamäı and Tan [14] to problems
with a common noise and interaction through the controls. Beside [14, 22] several other papers have
studied the question of the mean field limit of optimal control problems, for example, Cavagnari,
Lisini, Orrieri and Savaré [9] and Fornasier, Lisini, Orrieri and Savaré [15] investigate the problem
without noise using Γ−convergence techniques. The recent contribution of Gangbo, Mayorga and
Swiech [17] studies the mean field limit without idiosyncratic but with common noise using partial
differential equations (PDE for short) techniques. This is possible thanks to the fact that VN solves
the Hamilton-Jacobi (HJ for short) equation





−∂tVN (t,x)−
N∑

j=1

∆xjVN (t,x)− a0

N∑

i,j=1

tr(D2
ijV

N (t,x))

+
1

N

N∑

j=1

H(xj , NDxjVN (t,x)) = F(mN
x ) in (0, T )× (Rd)N ,

VN (T,x) = G(mN
x ) in (Rd)N ,

(1.6)

where H(x, p) = supα∈Rd [−p · α− L(x, α)], while U is expected to solve (in some sense) the infinite
dimensional HJ equation





−∂tU(t,m)− (1 + a0)

ˆ

Rd

divy(DmU(t,m, y))m(dy)

−a0
ˆ

R2d

tr(D2
mmU(t, x,m, y, y′))m(dy)m(dy′)

+

ˆ

Rd

H(y,DmU(t,m, y))m(dy) = F(m) in (0, T )× P2(R
d),

U(T,m) = G(m) in P2(R
d).

(1.7)

For the definition of the derivatives DmU and D2
mmU we refer to the books of Cardaliaguet, Delarue,

Lasry and Lions [5] and Carmona and Delarue [8].
One of the reasons for introducing the value functions is that they provide optimal feedbacks for
the optimization problems. For the particle system, this optimal feedback is given (rigorously) by
α∗
i (t,x) = −DpH(xi, NDxiV

N (t,x)), while for the limit system it takes the form (at least formally)
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α∗
t (x,m) = −DpH(x,DmU(t,m, x)). The difficulty in the PDE analysis of [17] is that, in the absence

of the idiosyncratic noise, the value function VN is not smooth in general, and, thus, (1.6) has to be
interpreted in the viscosity sense. A suitable notion of viscosity solution for the infinite dimensional
HJ equation (1.7) without idiosyncratic noise is introduced in [17] , and then is proven that VN

converges to this viscosity solution. In the presence of idiosyncratic noise the notion of viscosity
solution to (1.7) is not understood yet and we will not try to use this approach.
This being said, we believe that our technique of proof applies when the idiosyncratic noise is
degenerate. Indeed, none of the estimate on VN that we need relies on its C2 regularity. Although
the non-degeneracy of the idiosyncratic noise is regularizing at the level of the N-particle system, it
does not facilitate the analysis of the limit problem for which the value function is not necessarily
smooth. We emphasise that the presence of the idiosyncratic noise is the main difficulty that we
want to address in this paper. In particular it prevents any use of viscosity solutions techniques in
Hilbert spaces as in [17].

1.3. More about our results. While the existing results mentioned above demonstrate the con-
vergence of VN to U under many different technical hypotheses and using a variety of techniques,
none provides a rate of convergence. Our main result fills this gap in the literature, by providing a
rate of convergence of VN to U in the presence of both idiosyncratic and common noise.
We emphasise that quantitative information about the convergence toward the mean-field limit is
particularly important for numerical applications. Obtaining a convergence of the value functions
with a rate also happens to be a useful starting point in order to prove finer propagation of chaos
results, as illustrated in [7] which is based on the results of the present paper.
The primary challenge we face is related to the (lack of) regularity of U. Indeed, if U is a smooth
solution solution to (1.7), then the projections UN : [0, T ]×(Rd)N → R given by UN (t,x) = U(t,mN

x )
are smooth solutions of the HJ equation





−∂tUN (t,x)−
N∑

j=1

∆xjU
N (t,x)− a0

N∑

i,j=1

tr(D2
ijV

N (t,x))

+
1

N

N∑

j=1

H(xj , NDxjUN (t,x)) = F(mN
x ) + EN (t,x) in (0, T )× (Rd)N ,

UN (T,x) = G(mN
x ) in (Rd)N ,

(1.8)

with EN (t,x) = −N−2
∑N

j=1 tr(DmmU(t,mN
x , xi, xi)).

If DmmU is bounded, then it is immediate that |En| = O(1/N). Thus, UN solves the same equation
as VN up to a term of order O(1/N). By a comparison argument, we conclude that |U−V| = O(1/N),
that is, there exists a constant C such that, for all t ∈ [0, T ] and x ∈ (Rd)N , |VN (t,x)−U(t,mN

x )| ≤
C/N. See also [18] for more on what convergence results can be obtained once (1.7) has a sufficiently
smooth solution. This argument is similar to the approach taken in [5, 8] to study the convergence
problem in the context of mean field games (see Lasry and Lions [26]) in situations where a classical
solution to the so-called master equation is known to exist; also see Bayraktar and Cohen [1] and
Cecchin and Pelino [11] for related results. In this setting, convergence is related to the propagation
of chaos for the optimal trajectories of the game.
Of course, the simple argument outlined above works only when the value function U is smooth.
For instance, this would is the case if the maps F and G are convex and sufficiently smooth (see the
discussion in Chap. 3.7 of [5]). However, we do not assume such a convexity property and the map
U is expected to present discontinuities in its first-order derivative, as can be seen in, for instance,
Briani and Cardaliaguet [3]. Because of this, the techniques in [5, 8] break down.
When the value function is not smooth, the convergence rate has been studied primarily in the case
of finite state space; see Kolokoltsov [20] and Cecchin [10]. In this finite state space setting, the

convergence rate is of order 1/
√
N . Indeed, as explained in [10], the particle system is then a kind

of discretization of the continuous McKean-Vlasov equation.
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The situation is different and much more difficult in the continuous state space setting. This might
come as a surprise since the convergence rate for particle systems is very well understood; see, for
instance, Fournier and Guillin, [16]. The main difficulty, however, is that, even though the optimal
feedback in the particle system remains bounded independently of N (see Lemma 3.1), it cannot be
expected to be uniformly continuous as a function of the empirical measure. Indeed, this uniform
continuity would imply the C1−regularity of the limit U, which does not hold in general. So it is
necessary to find a way to show that, despite the fact that the controls played by each particle might
be very different, a kind of concentration of measure takes place.
Finally, we mention that a result similar to the one we prove here in the context of Mean-Field
Control, remains an open question in the context of Mean-Field Games. The difficulty is that the
N -player game is described this time by a system of N coupled HJB equations, instead of just one
HJB equation in the present case. And it proves difficult to obtain estimates on the PDE system
which are uniform in the number of players.

1.4. Strategy of the proof. We discuss briefly the strategy of the proof. We first point out that
we do not rely on a propagation of chaos, which we cannot prove at this stage. Indeed, as for a given
initial condition there might be several optimal trajectories for the limit problem, a propagation
of chaos is not expected to hold without additional assumptions on the initial data. The main
ingredients for the proof are, uniform in N , Lipschitz and semiconcavity estimates for VN , and a
concentration inequality. To bound from above VN by U is relatively easy, because VN can be
transformed into an approximate subsolution for the Hamilton-Jacobi equation (1.7). The opposite
inequality is much trickier, because it seems impossible to transform an optimal control for the VN ,
in which the control depends on each particle, into a feedback for U. We overcome this difficulty
by dividing the particles into subgroups in such a way that the optimal controls for the particles in
each subgroup are close and show a propagation of chaos, based on a concentration inequality, for
each subgroup. The proof being technical, we first show the result when there is no common noise,
and, in a second step, extend the result to problems with common noise.

1.5. Organization of the paper. In the rest of the introduction we fix notation. We state the
assumptions and the main result in section 2. As the proof of the convergence rate is technical, we
start in section 3 with the problem without common noise. Indeed this case contains the main ideas
without the extra technicalities due to the common noise. We first give some estimates on VN and
U (subsection 3.1), then show the relatively easy bound from above for VN in subsection 3.2. The
main part of the proof, that is, the bound from below, which is the aim of subsection 3.3 requires
a concentration inequality proved in subsection 3.4. We explain the adaptation of the proof to the
case with common noise in section 4.

1.6. Notation. We work on Rd, write Id for the identity matrix in Rd, and BR for the ball in Rd

centered at the origin with radius R. For x = (x1, ..., xN ) ∈ (Rd)N , mN
x ∈ P(Rd) stands for the

empirical measure of x, that is, mN
x = 1

N

∑N
i=1 δxi . If ϕ : [0, T ]×Rd → Rd is smooth enough, we write

Dϕ, ∆ϕ and D2ϕ for the derivatives with respect to space and ∂tϕ and ∂ttϕ the derivatives with
respect to time. Similarly, for V = V(t, x1, ..., xN ) : [0, T ] × (Rd)N → R, we define the derivatives
DxkV, ∆xkV, ∂tV. We denote by P(Rd) the set of Borel probability measures on Rd and note
that, if m ∈ P(Rd) has a density, for simplicity of notation, m is also used to denote the density.
Given m ∈ P(Rd) and p ≥ 1, Mp(m) is the pth−moment of m, that is, Mp(m) =

´

Rd |x|pdm, and

Pp(R
d) the set of m ∈ P(Rd) such that Mp(R

d) < ∞. We endow Pp(R
d) with the Wasserstein

metric dp, defined by dp
p(m,m

′) := infπ∈Π(m,m′)

´

Rd |x − y|pdπ(x, y), where Π(m,m′) is the set of

all π ∈ P(Rd × Rd) with marginals m and m′. Let L be the set of all 1-Lipschitz functions from
Rd to R. We recall the duality formula d1(m,m

′) = supφ∈L

´

Rd φd(m −m′). For U : P1(R
d) → R

smooth enough,
δU

δm
: P1(R

d)× R → R denotes the linear functional derivative, which satisfies, for

all m,m′ ∈ P1(R
d) and all h ∈ (0, 1),
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U(m′) − U(m) =
´ 1

0

´

Rd
δU
δm ((1 − h)m + hm′, x)(m′ − m)(dx)dh. We use the standard convention

´

Rd

δU

δm
(m,x)m(dx) = 0 for all m ∈ P1(R

d). If
δU

δm
is differentiable with respect to the space

variable, we define the L-derivative of U by DmU(m,x) = Dx
δU

δm
(m,x). Higher order derivatives

are defined similarly.
We refer to [5] Chapter 2 and [8] Book 1, Chapter 5 for the properties of the L-derivatives.
Finally, throughout the paper we use C for positive constants that depend, unless otherwise noted,
on the data and may change from line to line with this being made explicit.

2. Assumptions and main result

2.1. Assumptions. We now state our standing assumptions on the maps H,F and G, which con-
stitute the data of our problem. We keep in mind that L : Rd ×R

d → R is a Legendre transform of
H with respect to the last variable, that is, L(x, a) = supp∈Rd [−a · p−H(x, p)]. We assume that

{
H ∈ C2(Rd × Rd;R) and for some c, C > 0 and all (x, p) ∈ Rd × Rd,

−C + c|p|2 ≤ H(x, p) ≤ C + 1
c |p|2 and |DxH(x, p)| ≤ C(|p|+ 1).

(2.1)





H is locally strictly convex with respect to the last variable,

that is, for any R > 0, there exists cR > 0 such that

D2
ppH(x, p) ≥ cRId for all (x, p) ∈ Rd ×BR,

(2.2)

{
for any R > 0, there exists CR > 0 such that

|D2
xxH(x, p)|+ |D2

xpH(x, p)| ≤ CR for all (x, p) ∈ Rd ×BR,
(2.3)

F ∈ C2(P1(R
d);R) with F, DmF, D2

ymF and D2
mmF uniformly bounded, (2.4)

and, finally,

G ∈ C4(P1(R
d);R) with all derivatives up to order 4 uniformly bounded. (2.5)

For simplicity, in what follows we put together all the assumptions above in

assume that (2.1), (2.2), (2.3), (2.4) and (2.5) hold, (2.6)

Remark 2.1. We make the following comments regarding (2.6).
(i) The strict convexity of H with respect to the gradient variable is standard in optimal control. In
particular, it implies that L has the same regularity as H .
(ii) Although the at most linear growth in p of DxH , which is used to obtain, independent of N ,
Lipschitz estimates on the value function VN (see Lemma 3.1), is somehow restrictive, we do not
know if it is possible to avoid it. It is, however, satisfied by, for instance, a Hamiltonian of the form
H(x, p) = |p|2+V (x) ·p for some smooth and globally Lipschitz continuous vector field V : Rd → Rd.
(iii) The fact that the “full” Hamiltonian (x, p,m) → H(x, p) − F(m) has a separate form is not
completely necessary. In particular, our method allows to handle dynamics of the form

dXt = b(Xt,L(Xt|FB0

t ))dt+ αtdt+
√
2dBt +

√
2a0dB

0
t

for some bounded nonlinear drift b : Rd × P2(R
d) → Rd with bounded derivatives. However this

leads to much heavier computations that we decided to avoid to keep the paper as clear as possible.
(iv) The uniform bounds on DmF and DmG imply that both maps are Lipschitz continuous in
P1(R

d). The additional smoothness is used to obtain, independent of N , semiconcavity estimates
on the value function VN (see Lemma 3.4).
(v) As L is the Legendre transform of H , (2.2) implies, after a simple calculation, that, for any
R > 0, there exists CR > 0 such that

|DaL(x, a)| ≤ CR for all (x, a) ∈ R
d ×BR. (2.7)
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2.2. The formulation of the problem. For concreteness, we fix throughout the paper a filtered
probability space (Ω,F,F = (F)t≥0,P) satisfying the usual conditions and hosting independent d-
dimensional Brownian motions B0 and (Bk)k∈N.

2.2.1. The definition of VN . The definition of VN and the relevant quantities/functions were given
and discussed in the introduction–see (1.1) and (1.2),where it was also explained that, assuming (2.6),
VN is the unique classical solution to the Hamilton-Jacobi equation (1.6) and that the infimum in
(1.1) is achieved (in feedback form) by the function α = (αk)Nk=1 : [0, T ]× (Rd)N → RN given by

αk(t,x) = −DpH(xk, NDxkVN (t,x)). (2.8)

2.2.2. The definition of U without common noise. Suppose now that a0 = 0. To define U, it is more
intuitive to work with closed-loop controls, and to view the problem in terms of deterministic control
of the associated Fokker-Planck equation.
For fixed (t0,m0) ∈ [t0, T ]×P2(R

d), let A(t0,m0) be the set of pairs (m,α) with m = (mt)t∈[t0,T ] =

(m(t, ·))t∈[t0,T ] ∈ C0([t0, T ];P2(R
d)), α : [t0, T ]×Rd → Rd measurable such that

´ T

t0

´

Rd |α(t, x)|2m(t, dx)dt <

∞ and m solves (in the sense of distributions) the Fokker-Planck equation

∂tm = ∆m− div(mα) in (t0, T ]× R
d and m(t0, ·) = m0.

Then we define U : [0, T ]× P2(R
d) → R by

U(t0,m0) =

inf
(m,α)∈A(t0,m0)

{ˆ T

t0

( ˆ

Rd

L(x, α(t, x))m(t, dx) + F(mt))dt+ G(mT )
}
.

(2.9)

Notice that it is not restrictive to consider feedback controls which are only function of the time and
space variables instead of controls which depend as well on the probability measure m(t). Indeed, if
α̃ : [0, T ]×Rd × P2(R

d) is such control with corresponding trajectory m̃ ∈ C([0, T ],P2(R
d)), we can

obtain the curve t 7→ m̃(t) with the same cost by considering the control α(t, x) = α̃(t, x, m̃(t)).
One advantage to using this deterministic formulation of the McKean-Vlasov control problem is that,
at least in the absence of common noise, the dynamic programming principle is straightforward. In
particular, we can assert the following, which will be useful in what follows.

Proposition 2.2. Assume (2.6). Then, for any 0 ≤ t0 ≤ t1 ≤ T ,

U(t0,m0) = inf
(m,α)∈A(t0,m0)

{ˆ t1

t0

( ˆ

Rd

L(x, α(t, x))mt(dx) + F(mt))dt+ U(t1,mt1)
}
.

2.2.3. The definition of U with common noise. To define U when a0 > 0, we use again a form of
closed-loop formulation, but this time the relevant Fokker-Planck equation becomes stochastic and
we work with a notion of weak solution.

For fixed (t0,m0) ∈ [0, T ] × P2(R
d), we define a control rule R ∈ A(t0,m0) to be a tuple R =

(Ω,F,F,P,W,m, α), where (Ω,F,F) = (Ft)0≤t≤T ,P) is a filtered probability space supporting the
d-dimensional Brownian motion W , α = (αt)t0≤t≤T is a F-progressively measurable process taking
values in L∞(Rd;Rd) and such that α is uniformly bounded, in the sense that

‖ sup
t∈[t0,T ]

‖αt‖L∞(Rd;Rd)‖L∞(Ω) <∞. (2.10)

and m satisfies the stochastic partial differential equation

dmt(x) = [(1 + a0)∆mt(x) − div(mtαt(x))] dt

+
√
2a0Dmt(x) · dWt in (t0, T ]× R

d with mt0 = m0 in R
d.

(2.11)
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The last condition means that, P−a.s., for any smooth test function φ ∈ C∞([0, T ] × Rd) with a
compact support and for any t ∈ [t0, T ],

ˆ

Rd

φt(x)mt(dx) =

ˆ

Rd

φ0(x)m0(dx) +

ˆ t

t0

ˆ

Rd

(∂tφs(x) + αs(x) ·Dφs(x)

+ (1 + a0)∆φs(x))ms(dx)ds+

ˆ t

t0

√
2a0
ˆ

Rd

Dφs(x)ms(dx) · dWs.

Now we define

U(t0,m0) =

inf
R∈A(t0,m0)

E
P

[ˆ T

t0

( ˆ

Rd

L(x, αt(x))mt(dx) + F(mt))dt + G(mT )
]
.

(2.12)

The connection to the informal description (1.3) of U is that, if α is a bounded L∞(Rd;Rd)-valued
process defined on some filtered probability space probability space (Ω,F,F = (Ft)0≤t≤T ,P) sup-
porting independent Brownian motions B and W , α is a adapted to the filtration of W and X is a
strong solution to the McKean-Vlasov equation

Xt = Xt0 +

ˆ t

t0

αs(Xs)ds+
√
2(Bt −Bt0) +

√
2a0(Wt −Wt0), (2.13)

then (Ω,F,FW ,W,m, α) ∈ A(t0,m0), where mt = L(Xt|W ), that is, m is the conditional law of X
given the filtration of the Brownian motion W .
As in the case a0 = 0, we have the following dynamic programming principle.

Proposition 2.3. Assume (2.6). Then, for any 0 ≤ t0 < t1 ≤ T , for U defined by (2.12), we have

U(t0,m0) = inf
(m,α)∈A(t0,m0)

E
P

[
ˆ t1

t0

(

ˆ

Rd

L(x, αt(x))mt(dx) + F(mt))dt+ U(t1,mt1)

]
.

Unlike in the case without common noise, where the control problem is deterministic and thus the
dynamic programming principle is straightforward, in the common noise case we will need to use
some machinery from Djete, Possamäı and Tan [13] and Lacker, Sholnikov and Zhang [23] to verify
that the dynamic programming principle holds. To streamline the presentation, we present the proof
of Proposition 2.3 as well as of some other technical results from [13, 14, 23] in the Appendix.

Remark 2.4. We could have defined U using (2.12) when a0 = 0 as well, and, in the end, it
would be possible, thanks in part to Lemma 3.3 below, to prove that this is equivalent to (2.9). We
chose to define things separately with and without common noise mostly to avoid some unnecessary
technicalities and to simplify the presentation for the reader interested in the case without common
noise. The only mathematical reason for splitting up the definitions is that, for technical reasons,
it is convenient to work with L∞−feedback controls in the case of common noise, whereas without
common noise we have no difficulty working with square-integrable controls.

2.3. The main result. With VN defined by (1.1), U defined by (2.9), if a0 = 0, or (2.12), if a0 > 0,
we have the following result.

Theorem 2.5. Assume (2.6). Then there exists β ∈ (0, 1] depending only on d and C > 0 depending
on the data (F,G, H) such that, for any (t,x) ∈ [0, T ]× (Rd)N ,∣∣VN (t,x) − U(t,mN

x )
∣∣ ≤ CN−β(1 +M2(m

N
x )).

For the convenience of the reader we repeat here the strategy of the proof. We detail in section 3
the proof of Theorem 2.5 when a0 = 0, the adaptation to the case a0 > 0 being the aim of section 4.
The proof of Theorem 2.5 requires several steps: We first obtain uniform in N regularity (Lipschitz
and semiconcavity) estimates on VN in Lemma 3.1 and Lemma 3.4 respectively. Then we show
how to bound from above VN by U plus an error term (Proposition 3.7). This estimate is relatively
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easy and boils down to transforming the map VN into a subsolution of the HJ equation (1.7). The
converse estimate, which is more involved, is the aim of Proposition 3.8. The technical reason is
that we found no way to embed U into the equation for VN as a subsolution. Actually, since U is
semiconcave, it is naturally a supersolution of that equation and the remaining term is a priori large.
We overcome this issue by using locally optimal feedback of the N−problem for the continuous one,
the main difficulty being to compare the empirical measure in the N−problem to the solution of the
Fokker-Planck equation. This step, which is difficult, relies on a key concentration inequality, which
we prove in section 3.4.

3. The proof of Theorem 2.5 without common noise

We assume that a0 = 0 and, throughout the proof, we use the fact that VN is the unique solution
of the uniformly parabolic backward PDE (1.6) and, therefore, is smooth.

3.1. Some regularity estimates. We first establish the, uniform in N , regularity estimates for
VN .

Lemma 3.1. Assume (2.6). There exists a constant C > 0 such that, for any N ≥ 1, ‖VN‖∞ +
N supj ‖DxjVN‖∞ + ‖∂tVN‖∞ ≤ C.

Remark 3.2. The estimate on DxjVN implies that the optimal feedback of the problem, given by
αk(t, x) = −DpH(xi, NDxjVN (t,x)) remains uniformly bounded.

Proof. The bound on VN is obvious.
We note that wi = DxiVN satisfies





−∂twi(t,x)−
N∑

k=1

∆xkwi(t,x) +
1

N
DxH(xi, NDxiVN (t,x))

+

N∑

k=1

DpH(xk, NDxkVN (t,x)) ·Dxkwi(t,x)

=
1

N
DmF(mN

x , x
i) in (0, T )× (Rd)N ,

wi(T,x) =
1

N
DmG(mN

x , x
i) in (Rd)N ,

(3.1)

and observe that the maximum principle for linear parabolic equations (see e.g. Theorem 8.1.4 of
[21]) together with the condition |DxH(x, p)| ≤ C(1 + |p|) from (2.1) gives

|wi(t,x)| ≤
ˆ T

t

( 1
N

∥∥DxH(·, NDxiV(s, ·)N )
∥∥
L∞

+
1

N

‖DmF‖L∞

N

)
ds+

‖DmG‖L∞

N

≤ C

N
+ C

ˆ T

t

∥∥wi(s, ·)
∥∥
L∞

ds

Taking a supremum in x and then applying Gronwall’s inequality gives

|DxiVN (t,x)| ≤ C

N
,

as required.
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Similarly wt = ∂tV
N satisfies





−∂twt(t,x)−
N∑

k=1

∆xkwt(t,x)+

+

N∑

k=1

DpH(xk, NDxkVN (t,x)) ·Dxkwt(t,x) = 0 in (0, T )× (Rd)N ,

wt(T,x) = − 1

N

N∑

k=1

tr

[
D2

y,mG(mN
x , x

k) +
1

N
[D2

m,mG(mN
x , x

k, xk)

]

+
1

N

∑

k

H(xk, DmG(mN
x , x

k)− F(mN
x ) in (Rd)N ,

(3.2)

and the uniform bound on ‖∂tVN‖∞ this time follows directly from the maximum principle. �

Lemma 3.3. Assume (2.6). There is C > 0 such that, for all t0, s0 ∈ [0, T ] and m0,m0 ∈ P2(R
d),

|U(t0,m0) − U(s0,m0)| ≤ C
(
|t0 − s0|1/2 + d1(m,m)

)
. Moreover, if (t0,m0) ∈ [0, T ]× P1(R

d) and

(m,α) is optimal in the definition of U(t0,m0) in (1.3), then ‖α‖∞ ≤ C.

Proof. The result is standard so we only sketch the argument and refer to [3] and [12] for more
details. Fix (t0,m0) ∈ [0, T ]× P1(R

d). It follows from (2.6) that there exists at least a pair (m,α)
optimal in the definition of U(t0,m0). Moreover, for such optimal pair (m,α), there exists a map

u ∈ C
1,2
b ((t0, T )× Rd) with αt(x) = −DpH(x,Du(t, x)) and such that (u,m) solves the system





−∂tu(t, x)−∆u(t, x) +H(x,Du(t, x)) =
δF

δm
(mt, x) in (t0, T )× R

d

∂tmt(x) −∆mt(x) − div(DpH(x,Du(t, x))mt(s)) = 0 in (t0, T )× R
d,

mt0 = m0, u(T, x) =
δG

δm
(mT , x) in R

d.

Arguing as for the Lipschitz estimate in Lemma 3.1, one can check that ‖Du‖∞ ≤ C for some
constant C > 0 and, since α = −DpH(x,Du), ‖α‖∞ ≤ C. The standard parabolic regularity theory
then implies that ‖Dα‖∞ = ‖D[DpH(·, Du(·, ·))]‖∞ ≤ C.

Fix m1 ∈ P1(R
d) and let µ be the solution to ∂tµ−∆µ+div(µα) = 0 in (t0, T )×Rd with µ(t0) =

m1. It is easy to check that there exists C = C(‖Dα‖∞, T ) such that supt∈[t0,T ] d1(µ(t),m(t)) ≤
Cd1(m1,m0). Thus, for some C depending on T , on the regularity of L, F and G and ‖Dα‖∞,

U(t0,m1) ≤
ˆ T

t0

(

ˆ

Rd

L(x, αt(x))µ(t, dx) + F(µ(t)))dt + G(µ(T ))

≤
ˆ T

t0

[

ˆ

Rd

L(x, αt(x))m(t, dx) + F(m(t))]dt + G(m(T )) + C sup
t∈[t0,T ]

d1(µ(t),m(t))

≤ U(t0,m0) + Cd1(m1,m0).

This establishes the estimate

|U(t0,m0)− U(t0,m0)| ≤ Cd1(m0,m0). (3.3)

Finally, we fix s0 < t0, and we choose (m,α) optimal in the definition of U(s0,m0). By the dynamic
programming (Proposition 2.2), we have

U(s0,m0) =
´ t0
s0

(
´

Rd L(x, α(t, x))mt(dx) + F(mt)
)
dt+ U(t0,mt0), and, thus,
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|U(s0,m0)− U(t0,m0)| ≤ |
ˆ t0

s0

( ˆ

Rd

L(x, α(t, x))mt(dx) + F(mt)
)
dt|

+ |U(t0,mt0)− U(t0,m0)| ≤ C(t0 − s0) + Cd1(mt0 ,m0)

≤ C(t0 − s0) + C(t0 − s0)
1/2,

where we have used (3.3) and the boundedness of α, together with the fact that (2.2) implies a
similar inequality for L. This completes the proof. �

The key estimate on VN is discussed next.

Lemma 3.4. Assume (2.6). There exists an independent of N constant C, such that, for any
N ≥ 1, ξ = (ξi) ∈ (Rd)N and ξ0 ∈ R,

N∑

i,j=1

D2
xixjV

N (t,x)ξi · ξj+2

N∑

i=1

D2
xitV

N (t,x) · ξiξ0 +D2
ttV

N (t,x)(ξ0)2

≤ C

N

N∑

i=1

|ξi|2 + C(ξ0)2.

(3.4)

Remark 3.5. Inequality (3.4) plays a crucial role in the proof of Lemma 3.12 below. Since

VN converges to U, it follows that (3.4) implies the semi-concavity of the extension Ũ : [0, T ] ×
L2((Ω̃, F̃, P̃);Rd) → R defined, for X ∈ L2(Ω̃,Rd), by Ũ(t,X) := U(t,L(X)), where (Ω̃, F̃, P̃) is a
fixed atomless probability space and L(X) is the law of the random variable X .

Proof. For 1 ≤ i, j, k ≤ N , let

ωi = DxiVN · ξi, ωi,j = D2
xixjV

N ξi · ξj , ω0 = ∂tV
Nξ0, ω0,0 = ∂ttV

N (ξ0)2

ω0,i = ωi,0 = ∂tDxiVN · ξ0ξi ω̃ =
∑N

i,j=0 ω
i,j and σk =

∑N
i=0Dxkωi.

A straightforward computation gives

− ∂tω̃ −
N∑

k=1

∆xk ω̃ +

N∑

k=1

Dxk ω̃.DpH(xk, NDxkVN (t,x))

= −N
N∑

k=1

D2
ppH(xk, NDxkV

N (t,x))σk · σk − 2

N∑

k=1

D2
xpH(xk, NDxkV

N (t,x))ξk.σk

− 1

N

N∑

i=1

D2
xxH(xi, nDxiVN (t,x))ξi.ξi

+
1

N2

N∑

i,j=1

D2
mmF(mN

x , x
i, xj)ξi.ξj +

1

N

N∑

i=1

DyDmF(mN
x , x

i)ξi.ξi

Denote by γ the right-hand-side of the equality above. Recalling that H is strictly convex in
the p variable and that N∂xkVN is bounded, we have, for all 1 ≤ k ≤ N , −ND2

ppHσk · σk −
2D2

xpHξ
k.σk ≤ C

N |ξk|2. We can use again the Lipschitz bounds on VN and (2.3) to deduce that



CONVERGENCE RATE FOR THE OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS 11

γ(t,x) ≤ C
N

∑N
k=1 |ξi|2. Next, fix (t0,x0) and consider the weak solution mN to

∂tm
N (t,x)−

N∑

k=1

∆xkmN (t,x)

−
N∑

k=1

div(DpH(xk, NDxkV
N (t,x))mN ) = 0 in (t0, T )× (Rd)N ,

mN (t0, ·) = δx0
in (Rd)N .

Integrating the ω̃−equation against mN , we find that, for all (t0,x0) ∈ [0, T ]× (Rd)N , ω̃(t0,x0) ≤
supx ‖ω̃(T,x)‖∞ + C

N

∑N
k=1 |ξk|2. In order to bound the right-hand side of the inequality above, we

first note that, by the equation satisfied by VN , we have

∂tV
N (T,x) = −

∑N
k=1 ∆xkGN (x) + 1

N

∑N
k=1H(xk, NDxkGN (x))− FN (x), where

FN (x) := F(mN
x ) and GN (x) := G(mN

x ), and, similarly,

∂2ttV
N (T,x) = − ∑N

k=1 ∆xk∂tV
N (T,x) +

∑N
k=1DpH(xk, NDxkGN (x)) · Dxk∂tV

N (T,x). Recalling
the expressions of the derivatives of FN and GN in function of the derivatives of F and G in Propo-
sition 5.35 of [8], we find, after a tedious but straightforward computation that, under our standing

assumptions on F and G, for some C, supx ‖ω̃(T,x)‖∞ ≤ C
N

∑N
i=1 |ξi|2 + C(ξ0)2. �

3.2. The easy estimate. The second step in the proof of Theorem 2.5 is an upper bound of VN

in terms of U. Our strategy will be to first compare U to V̂N , where

V̂N (t,m) :=

ˆ

(Rd)N
VN (t,x)

N∏

j=1

m(dxj). (3.5)

We start with a Lemma, whose proof is a straightforward computation which is essentially the same
as the one carried out in the proof of Proposition 3.1 in Cardaliaguet and Masoero [6]. Hence, we
omit the details.

Lemma 3.6. Let V̂N be given by (3.5). Then V̂N is smooth and satisfies the inequality




−∂tV̂N (t,m)−
ˆ

Rd

div(DmV̂N (t,m, y))m(dy)

+

ˆ

Rd

H(y,DmV̂
N (t,m, y))m(dy) ≤ F̂

N (m) in (0, T )× P1(R
d),

V̂N (T,m) = ĜN (m) in P1(R
d),

where F̂N (m) =
´

(Rd)N F(mN
x )
∏N

j=1 m(dxj) and ĜN (m) =
´

(Rd)N G(mN
x )
∏N

j=1m(dxj).

Next we prove the easier inequality in Theorem (2.5).

Proposition 3.7. There exist constants C depending on the data and β depending only on d such
that, for all (t,x0) ∈ [0, T ]× (Rd)N ,

VN (t,mN
x0
) ≤ U(t,mN

x0
) +

C

Nβ
(1 +M

1/2
2 (mN

x0
)). (3.6)

Proof. Theorem 1 in [16] gives constants C and β depending only on d such that, for anym ∈ P2(R
d)

and for all N ∈ N,
´

(Rd)N d1(m
N
x ,m)

∏N
i=1m(dxi) ≤ C

Nβ
M

1/2
2 (m).

Fix (t0,m0) ∈ [0, T ) × P2(R
d) and let α∗ be optimal in the definition of U(t0,m0). Using Lemma

(3.6) together with a standard verification argument, for example, using Itô’s formula in Theorem
5.99 of [8], we see that

V̂N (t0,m0) ≤ inf
α∈A(t0,m0)

{ˆ T

t0

( ˆ

Rd

L(x, α(t, x))mt(dx) + F̂N (mt)
)
dt+ ĜN (mT )

}
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and, hence,

V̂N (t0,m0) ≤
ˆ T

t0

( ˆ

Rd

L(x, α∗(t, x)) + F̂N (mt)
)
dt+ ĜN (mT ). (3.7)

Since, in view of Lemma 3.3, α∗ is uniformly bounded by a constant independent of N , an easy
computation shows that the corresponding state process satisfies
supt∈[t0,T ]

´

Rd |x|2m(t, dx) ≤ (1 + CT )
´

Rd |x|2m0(dx) + CT. It then follows from the Lipschitz con-
tinuity of F with respect to d1 that

∣∣∣F̂N (m(t))− F(m(t))
∣∣∣ ≤ C

ˆ

(Rd)N
d1(m

N
x ,m(t))

N∏

j=1

m(t, dxj)

≤ C

Nβ
(1 +M

1/2
2 (m0))

and, similarly
∣∣∣ĜN (m(T ))− G(m(T ))

∣∣∣ ≤ C

Nβ
(1 +M

1/2
2 (m0)).

Using the optimality of α∗, (3.7) and the estimates above

V̂N (t0,m0) ≤ E[

ˆ T

t0

(
L(Xt, α

∗
t ) + F(L(Xt))

)
dt+ G(L(XT ))] +

C

Nβ
(1 +M

1/2
2 (m0))

≤ U(t0,m0) +
C

Nβ
(1 +M

1/2
2 (m0)).

Fix now x0 ∈ (Rd)N . Then the Lipschitz estimate on VN and the same argument as above yield∣∣∣VN (t0,x0)− V̂N (t0,m
N
x0
)
∣∣∣ ≤ C

Nβ
(1 +M

1/2
2 (mN

x0
)). Putting together the last two estimates gives

(3.6). �

3.3. The main estimate. The aim of this section is to prove the opposite inequality.

Proposition 3.8. Assume (2.6). There exists β ∈ (0, 1] depending only on the dimension and
C > 0 depending on the data, such that, for any N ≥ 1 and any (t,x) ∈ [0, T ]× (Rd)N ,

U(t,mN
x )− VN (t,x) ≤ C

Nβ
(1 +

1

N

N∑

i=1

|xi|2). (3.8)

As pointed out in the introduction, the main difficulty is that it does not seem possible, at least to
us, how to transform an optimal control for the VN which depends on each particle into a feedback
for U. We overcome this difficulty by dividing the players into subgroups in such a way that the
optimal controls for the agents in each subgroup are close and showing a propagation of chaos-type
result for each subgroup using a concentration inequality.
We begin explaining how to create the subgroups based on an appropriate partition of {1, . . . , N}.

Lemma 3.9. For each δ > 0 there exist a constant C depending only on the data (F,G, H)), a
partition (Cj)j∈{1,...,J} of {1, . . . , N} such that J ≤ Cδ−d and, for j = 1, . . . , J , controls αj ∈ Rd

such that, for all k ∈ Cj ,
∣∣H(xk0 , NDxkVN (t0,x0)) + αj · (NDxkVN (t0,x0)) + L(xk0 , α

j)
∣∣ ≤ Cδ. (3.9)

Proof. Let α̂k(t,x) = −DpH(xk, NDxkVN (t,x)) be the optimal feedback for particle k, and recall
(see Remark 3.2), that there exists R depending only on the data such that |α̂k(t,x)| ≤ R.
Given δ > 0, we can find a δ-covering of BR ⊂ Rd consisting of J ≤ Cδ−d balls of radius δ centered
at (αj)j∈{1,...,J} ⊂ BR.
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Then, we choose the partition (Cj)j∈1,...J so that, for each k ∈ Cj , |α̂k(t,x) − αj | ≤ δ. It follows
using (2.7) that, for each k ∈ Cj ,

|H(xk0 , NDxkVN (t0,x0)) + αj · (NDxkVN (t0,x0)) + L(xk0 , α
j)|

= |
(
αj − α̂k(t0,x0)

)
· (NDxkVN (t0,x0)) + L(xk0 , α

j)− L(xk0 , α̂(t0,x0))|
≤
(
NDxkVN (t0,x0)) + ‖DaL‖L∞(Rd×BR)

)
|α̂k(t0,x0)− αj | ≤ Cδ.

�

For δ > 0 we consider such a partition (Cj)j∈{1,...,J} of {1, . . . , N} with associated controls α1, . . . αJ

satisfying the conditions of Lemma 3.9 and we define nj .
= |Cj | for all j ∈ {1, . . . , J}. Fix j ∈

{1, . . . , J}, set αk = αj if k ∈ Cj , let, for t0, s0 ∈ [0, T ] and x0,y0 ∈ (Rd)N,

Xk
t0+τ = xk0 + ταk +

√
2Bk

τ and Y k
s0+τ = yk0 + ταk +

√
2Bk

τ ,

mj
Xt0+τ

=
1

nj

∑

k∈Cj

δXk
t0+τ

and mj
Ys0+τ

=
1

nj

∑

k∈Cj

δY k
s0+τ

, (3.10)

consider the solution mj to

∂tm
j −∆mj + αj ·Dmj = 0 in (s0, T )× R

d and mj(s0, ·) = mj
y0

in R
d, (3.11)

and, finally, set m(s) =
1

N

∑
j∈J n

jmj(s).

We state next the concentration inequality we need for the proof of Proposition 3.8.

Lemma 3.10. There exist a positive constant β ∈ (0, 1/2), depending on d and a positive constant
C, which depends only on supj |αj |, d and T , such that, for all h ≥ 0,

E

[
d1(m

j(s0 + h),mj
Ys0+h

)
]
≤ C(1 +M

1/2
2 (mj(s0)))(h/n

j)β , (3.12)

E

[
d1(m

j(s0 + h),mj
Xt0+h

)
]
≤ (nj)

−1 ∑

k∈Cj

|xk0 − yk0 |+ C(1 +M
1/2
2 (mj(s0)))(h/n

j)β , (3.13)

and, as a consequence,

E

[
d1(m(s0 + h),mN

Ys0+h
)
]
≤ Cδ−dβ(1 +M2(m(s0))

1
2 )(h/N)β (3.14)

E

[
d1(m(s0 + h),mN

Xt0+h
)
]
≤ 1

N

N∑

k=1

|xk0 − yk0 |+ Cδ−dβ(1 +M2(m(s0))
1
2 )(h/N)β . (3.15)

Proof. Inequality (3.12) is precisely the concentration inequality (3.24) that we treat separately in
Proposition 3.13 of Section 3.4 because it is interesting in its own. Being Y k

s0+h −Xk
t0+h = yk0 − xk0

for all h ≥ 0 and all k ∈ {1, . . .N}, inequality (3.13) follows in a straightforward way from (3.12).
Similarly (3.15) follows from (3.14). It remains to prove estimate (3.14).
Using (3.12) as well as the Cauchy-Schwarz inequality, the concavity of the maps n → n1−β and
n→ n1−2β, the fact that

∑
j n

j = N , and the assumption that β ∈ (0, 1/2), we obtain the following
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string of inequalities

E

[
d1(m(s0 + h),mN

Ys0+h
)
]
≤
∑

j∈J

nj

N
E

[
d1(m

j(s0 + h),mj
Ys0+h

)
]

≤ C
∑

j∈J

nj

N
(1 +M

1/2
2 (mj(s0)))

hβ

(nj)β

≤ Chβ
[∑

j∈J

(nj)1−β

N
+ (
∑

j∈J

nj

N
M2(m

j(s0)))
1/2(

∑

j∈J

nj

N(nj)2β
)1/2

]

≤ Chβ
[ J
N


∑

j∈J

nj

J




1−β

+M
1/2
2 (m(s0))

√
J

N
(
∑

j∈J

1

J
(nj)1−2β)1/2

]

≤ C(
Jh

N
)β
(
1 +M

1/2
2 (m(s0))

)
.

Recalling that J ≤ Cδ−d is enough to conclude.
�

We are now ready, using the above construction, to prove Proposition 3.8.

Proof of Proposition 3.8. Following a viscosity solutions-type argument, we double the variables
and, for θ, λ ∈ (0, 1), we set

M := max
(t,x),(s,y)∈[0,T ]×(Rd)N

es(U(s,mN
y )− VN (t,x))

− 1

2θN

N∑

i=1

|xi − yi|2 − 1

2θ
|s− t|2 − λ

2N

N∑

i=1

|yi|2.
(3.16)

We denote by ((t0,x0), (s0,y0)) a maximum point in the expression above. Using the uniform bound
on U and VN and the Lipschitz estimate for VN we can estimate the error related to the penalization.
We find that there exists C > 0 such that,

1

N

N∑

i=1

|xi0 − yi0|2 + |s0 − t0|2 ≤ Cθ2 and
1

N

N∑

i=1

|yi0|2 ≤ C

λ
. (3.17)

Now we fix δ > 0 and we define (Xt)t≥t0 , (Ys)s≥s0 , m
j and m according to (3.10) and (3.11)

for some partition (Cj)j∈{1,...,J} of {1, . . . , N} with associated controls α1, . . . αJ satisfying the

conditions of Lemma 3.9. By estimate (3.17) it holds, in particular, 1
N

∑N
i=1 |xi0 − yi0| ≤ Cθ and

M2(m(s0)) ≤ Cλ−1.
The Lipschitz regularity of U in Lemma 3.3 and the definition of Xt and Yt give, by definition of
M,

M ≥ E

[
es0+h(U(s0 + h,mN

Ys0+h
)− VN (t0 + h,Xt0+h))

− 1

2θ

(
1

N

N∑

k=1

|Y k
s0+h −Xk

t0+h|2 + (t0 − s0)
2

)
− λ

2N

N∑

i=1

|Y i
s0+h|2

]

≥ E

[
es0+h(U(s0 + h,m(s0 + h))− VN (t0 + h,Xt0+h))

]
− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ

− 1

2θ

(
1

N

N∑

k=1

|yk0 − xk0 |2 + (s0 − t0)
2

)
− λ

2N

N∑

i=1

(|yi0|+ Ch1/2)2.
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To continue, we need a dynamic programming-type argument, which is stated next. Its proof is
postponed for later in the paper.

Lemma 3.11. With the notation above, we have

U(s0 + h,m(s0 + h)) ≥ U(s0,myN
0
)

−
ˆ s0+h

s0

(

J∑

j=1

ˆ

Rd

1

N
njL(x, αj)mj(s, x)dx + F(m(s)))ds.

Using Itô’s formula for VN we find

M ≥ es0+hU(s0,m
N
y0
)− es0+h

ˆ s0+h

s0

(

ˆ

Rd

J∑

j=1

1

N
njL(x, αj)mj(s, x)dx + F(m(s)))ds

− es0+h
E

[
VN (t0,x0) +

ˆ t0+h

t0

(
∂t +

N∑

k=1

[∆xk
+ αk ·Dxk

]
)
V N (t,Xt)dt

]
−

Cδ−dβ(1 + λ−
1
2 )
hβ

Nβ
− 1

2θ

( 1
N

N∑

k=1

|yk0 − xk0 |2 + (s0 − t0)
2
)
− λ

2N

N∑

i=1

(|yi0|+ Ch1/2)2.

Since the αj are uniformly bounded, the map L(·, αj) is uniformly Lipschitz independently of j.
Hence, using Lemma 3.10 and Lemma 3.17, we find

ˆ s0+h

s0

ˆ

Rd

J∑

j=1

1

N
njL(x, αj)mj(s, x)dxds

≤ E



ˆ s0+h

s0

J∑

j=1

(
∑

k∈Cj

1

N
L(Xk

t0−s0+s, α
j) + C

1

N
njd1(m

j(s),mj
Xt0−s0+s

))ds




≤ E

[
ˆ t0+h

t0

N∑

k=1

1

N
L(Xk

s , α
k)ds

]
+ Cθh+ C

J∑

j=1

1

N
nj(1 +M

1/2
2 (mj

s0))
hβ

(nj)β

≤ E

[
ˆ t0+h

t0

N∑

k=1

1

N
L(Xk

s , α
k)ds

]
+ Cθh+ Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
.

Note that in the last inequality we used exactly the same argument as for the proof given above for
the third inequality of Lemma 3.10.

Hence, recalling the optimality of (x0,y0) in (3.16) and employing the equation for VN , we get

0 ≥ (es0+h − es0)(U(s0,m
N
y0
)− VN (t0,x0))− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ

− Cλh1/2N−1
N∑

i=1

|yi0| − Cθh− es0+h
E

[
ˆ s0+h

s0

(F(m(s)) − F(mN
Xs0−t0+s

))ds

]

− es0+h
E
[ 1
N

ˆ t0+h

t0

N∑

k=1

(L(Xk
s , α

k) + αk · (NDxkV(s,Xs))

+H(Xk
s , NDxkV(s,Xs)))ds

]
.
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Using the Lipschitz regularity of F and Lemma 3.10 to deal with the difference of the F and (3.17)
to deal with the term in

∑
i |yi0|, we find

0 ≥ es0h(U(s0,m
N
y0
)− V

N (t0,x0))− Cδ−dβ(1 + λ−
1
2 )
hβ

Nβ
− Cλ1/2h1/2 − Cθh− Ch2

− es0+h
E
[ 1
N

ˆ t0+h

t0

N∑

k=1

(L(Xk
s , α

k) + αk · (NDxkV(s,Xs))

+H(Xk
s , NDxkV(s,Xs))ds)ds

]
.

The regularity of L and H and the uniform boundedness of the αk and of NDxkVN allow to infer
that

0 ≥ es0h(U(s0,m
N
y0
)− VN (t0,x0))− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
− Cλ1/2h1/2 − Cθh

− Ch2 − es0+h
E
[ 1
N

ˆ t0+h

t0

N∑

k=1

(L(xk0 , α
k)ds+ αk · (NDxkV(s,Xs))

+H(xk0 , NDxkV(s,Xs)))ds
]
− Ch3/2.

and, in view of (3.9),

0 ≥ es0h(U(s0,m
N
y0
)− VN (t0,x0))− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
− Cλ1/2h1/2

−−CE
[
1

N

ˆ t0+h

t0

N∑

k=1

|NDxkV
N (s,Xs))−NDxkV

N (s,x0))|ds
]

− Cθh− Ch3/2 − Chδ.

(3.18)

The semiconcavity of VN and the penalization by the term in θ give the next lemma. The proof is
postponed to end of the section.

Lemma 3.12. For any (t,x) ∈ [0, T ]× (Rd)N ,

N∑

k=1

|DxkVN (t,x)−DxkVN (t0,x0)|

≤ C

N

N∑

k=1

|xk − xk0 |+
(
C

Nθ

N∑

k=1

(|xk − xk0 |+ |xk − xk0 |2)
)1/2

+
C

θ1/2
|t− t0|1/2.
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We continue with the ongoing proof. Inserting the estimate of Lemma 3.12 in (3.18), we obtain

0 ≥ es0h(U(s0,m
N
y0
)− VN (t0,x0))− C

(
δ−dβ(1 + λ−

1
2 )
hβ

Nβ
+ λ1/2h1/2

+ (θ + δ)h+ h3/2
)

− CE

ˆ t

t0

(
1

N

N∑

k=1

|Xk
s − xk0 |+

( 1

Nθ

N∑

k=1

(|Xk
s − xk0 |+ |Xk

s − xk0 |2)
)1/2

+
C

θ1/2
|s− t0|1/2)ds

≥ es0h(U(s0,m
N
y0
)− V

N (t0,x0))− Cδ−dβ(1 + λ−
1
2 )
hβ

Nβ

− C(θ + δ)h− Cλ1/2h1/2 − Cθ−1/2h(h1/2 + h)1/2.

Dividing by h we find, for each choice of θ, λ, δ > 0 and 0 < h ≤ (T − s0) ∧ (T − t0),

es0(U(s0,m
N
y0
)− VN (t0,x0)) ≤ C

hβ−1

Nβδdβ
(1 + λ−1/2) + C(θ + δ) + Cλ1/2h−1/2

+ Ch1/4θ−1/2.

We take θ = hα1 , δ = (λ
−1/2hβ−1

Nβ )α2 , λ = N−α3 and h = N−α4 .
Making appropriate choices of α1, α2, α3 and α4 we deduce

es0(U(s0,m
N
y0
)− VN (t0,x0)) ≤ CN−β̃ (3.19)

for some β̃ = β̃(β) ∈ (0, 1/2) and for N such that h = N−α4 ≤ (T − s0) ∧ (T − t0).
For N such that h = N−α4 ≥ (T −s0)∧(T − t0), we have by (3.17) that (T −s0)∨(T −s0) ≤ h+Cθ,
and, so, using Lemma 3.1 and Lemma 3.3, we find

|U(s0,mN
y0
)− VN (t0,x0)| ≤ |U(s0,mN

y0
)− G(mN

y0
)|+ |G(mN

y0
)− G(mN

x0
)|

+ |G(mN
x0
)− VN (t0,x0)| ≤ C(h+ θ)1/2 + Cθ + C(h+ θ) ≤ CN−β̃,

where in the last line we choose β̃ even smaller if necessary. With this choice of β̃, we have now
established that (3.19) holds for all values of N .
Finally, we conclude that, for all (t,x) ∈ [0, T ]× (Rd)N ,

et(U(t,mN
x )− V

N (t,x)) ≤ es0(U(s0,m
N
y0
)− V

N (t0,x0)) +
λ

2N

N∑

i=1

|xi|2

≤ CN−min(β̃,α3)(1 +
1

N

N∑

i=1

|xi|2).

�

Before proving the various lemmas used in the proof of Proposition 3.8, we complete the proof of
the main result.

Proof of Theorem 2.5. Combining Proposition 3.7 and Proposition 3.8 we know that there exist
β ∈ (0, 1] depending on dimension and C > 0 depending on the data such that, for any (t,x) ∈
[0, T ]× (Rd)N ,

∣∣U(t,mN
x )− V

N (t,x))
∣∣ ≤ CN−β(1 +M

1/2
2 (mN

x ) +M2(m
N
x )) ≤ CN−β(1 +M2(m

N
x )).

�

We continue with the proofs of the several auxiliary results sated earlier.
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Proof of Lemma 3.11. For K ∈ N and any nonnegative integrable functions

m1
0, . . . ,m

K
0 on Rd such that

∑K
k=1m

k
0 ∈ P(Rd), let

UK(t0,m
1
0, . . . ,m

K
0 ) := inf

(m1,β1),...,(mK ,βK)

ˆ T

t0

(

ˆ

Rd

K∑

k=1

L(x,
βk(t, x)

mk(t, dx)
)mk(t, x)dx

+ F(

K∑

k=1

mk(t)))dt + G(

K∑

k=1

mk(T )),

where the infimum is taken over the tuple of measures (mk, βk) (the βk being a vector measure)
with βk << mk such that (mk, βk) solve in the sense of distributions,

∂tm
k −∆mk + div(βk) = 0 in (t0, T ]× R

d and mk(t0) = mk
0 in R

d.

We establish next that UK(t0,m
1
0, . . . ,m

K
0 ) = U(t0,m

1
0 + · · ·+mK

0 ), and the result will then follow
from Proposition 2.2.
Since obviously UK(t0,m

1
0, . . . ,m

K
0 ) ≤ U(t0,m

1
0 + · · · + mK

0 ), next we concentrate on the reverse
inequality.

Fix ε > 0, let (m1, β1, . . . ,mK , βK) be ε−optimal for UK(t0,m
1
0, . . . ,m

K
0 ), and set β =

∑N
k=1 β

K

and m(t) =
∑N

k=1m
k(t). Then (m,β) solves

∂tm−∆m+ div(β) = 0 in (t0, T ]× R
d and m(t0) = m0 in R

d.

and we have

ε+ UK(t0,m
1
0, . . . ,m

K
0 )

≥
ˆ T

t0

(

ˆ

Rd

K∑

k=1

L(x,
βk(t, x)

mk(t, x)
)
mk(t, x)

m(t, x)
m(t, x)dx + F(

K∑

k=1

mk(t)))dt + G(

K∑

k=1

mk(T ))

≥
ˆ T

t0

(

ˆ

Rd

L(x,

∑K
k=1 β

k(t, x)

m(t, x)
)m(t, x)dx + F(m(t)))dt + G(m(T ))

≥ U(t0,m0),

where the second inequality follows from the convexity of the map (β,m) → mL(x,
β

m
) and the

third one by the definition of U. �

Proof of Lemma 3.12. Set pk = DxkV(t0,x0) and p
t = ∂tV(t0,x0). Then, in view of Lemma 3.4, we

have, for any (t,x), (t0,x0) ∈ [0, T ]× (Rd)N ,

VN (t,x)− VN (t0,x0)−
N∑

k=1

pk · (xk − xk0)− pt(t− t0) ≤
C

N

N∑

k=1

|xk − xk0 |2 + C(t− t0)
2.

The optimality of (t0,x0, s0,y0) also gives, for any (t,x),

1

2θN

N∑

i=1

|xi − yi0|2 +
1

2θ
(t− s0)

2 + VN (t,x)

≥ 1

2θN

N∑

i=1

|xi0 − yi0|2 +
1

2θ
(t0 − s0)

2 + VN (t0,x0).

(3.20)

From (3.20), we conclude that pk =
yk0 − xk0
θN

and pt =
s0 − t0
θ

.
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Furthermore, rearranging (3.20) yields

VN (t, x)− VN (t0, x0) ≥
1

2θN

N∑

k=1

|xk0 − yk0 |2 −
1

2θN

N∑

k=1

|xk − yk0 |2 +
1

2θN
|t0 − s0|2

− 1

2θN
|t− s0|2 =

1

2θN

N∑

k=1

|xk0 − yk0 |2 −
1

2θN
−

N∑

k=1

|(xk − xk0) + (xk0 − yk0 )|2

+
1

2θN
|t0 − s0|2 −

1

2θN
|(t− t0) + (t0 − s0)|2

=

N∑

k=1

pk · (xk − xk0) + pt(t− t0)−
N∑

k=1

1

2θN
|xk − xk0 |2 −

1

2θ
(t− t0)

2.

and, after some elementary manipulations,

VN (t,x)− VN (t0,x0)−
N∑

k=1

pk · (xk − xk0)− pt(t− t0) ≥ − 1

2θN

N∑

k=1

|xk − xk0 |2 −
1

2θ
(t− t0)

2.

Assuming that θ ≤ (2C)−1, it follows that

w(t,x) = VN (t0,x0)− VN (t,x)

+

N∑

k=1

pk · (xk − xk0) + pt(t− t0) +
C

N

N∑

k=1

|xk − xk0 |2 + C(t− t0)
2

is convex and satisfies 0 ≤ w(t,x) ≤ 1
θN

∑N
k=1 |xk − xk0 |2 + 1

θ (t − t0)
2. Thus, for any (t,x) and any

(s,y), we have

N∑

k=1

Dxkw(t,x) · (yk − xk) + ∂tw(t,x)(s − t) ≤ w(t,x)

+

N∑

k=1

Dxkw(t,x) · (yk − xk) + ∂tw(t,x)(s − t)

≤ w(s,y) ≤ 1

θN

N∑

k=1

|yk − xk0 |2 +
1

θ
(s− t0)

2.

Letting yk = xk0 +
1
2θNDxkw(t,x) and s = t0 +

1
2θ∂tw(t, x) in the inequality above, we obtain

θN

4

N∑

k=1

|Dxkw(t,x)|2 ≤
N∑

k=1

Dxkw(t,x) · (xk − xk0) + ∂tw(t, x)(t − t0), (3.21)

and, after using the Cauchy-Schwarz inequality,

N∑

k=1

|Dxkw(t,x)| ≤ N1/2

(
N∑

k=1

|Dxkw(t,x)|2
)1/2

(3.22)

≤ N1/2

(
4

Nθ

N∑

k=1

|xk0 − xk||Dxkw(t,x)| + 4

Nθ
|∂tw(t, x)||t − t0|

)1/2

.

Recalling the definition of w and that |DxkVN | ≤ C/N and |∂tVN | ≤ C, we find

|Dxkw(t,x)| = | −DxkV
N (t,x) + pk +

2C

N
(xk − xk0)| ≤ CN−1 +

2C

N
|xk − xk0 |

and
|∂tw(t, x)| = | − ∂tV

N (t0,x0) + 2C(t− t0)| ≤ C.
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Returning to (3.22), we have

N∑

k=1

| −DxkV
N (t,x) + pk +

2C

N
(xk − xk0)|

≤
(
C

Nθ

N∑

k=1

|xk0 − xk|+ C

Nθ

N∑

k=1

|xk0 − xk|2 + C

θ
|t− t0|

)1/2

,

from which we deduce the result by the definition of pk. �

3.4. A concentration inequality. This section is devoted to the proof of the following concentra-
tion inequality.

Proposition 3.13. Take a constant drift α in Rd, initial position y10, . . . , y
N
0 in Rd for some N ≥ 1

and consider (Y 1
t )t≥0, . . . (Y

N
t )t≥0 defined, for all 1 ≤ k ≤ N and t ≥ 0 by

Y k
t = αt+

√
2Bk

t ,

where (B1
t )t≥0, . . . (B

n
t )t≥0 are N independent d-dimensional standard Brownian motions defined

on some probability space (Ω,F,P). Define as well the empirical measure mN
Yt

:=
1

N

N∑

k=1

δY k
t

and

m ∈ C([0, T ],P2(R
d)) to be the solution to

{
∂tm+ α.Dm−∆m = 0 in (0,+∞)× Rd

m(0) = mN
Y0
.

(3.23)

Then, there exists a positive constant β ∈ (0, 1/2) depending on the dimension d and a positive
constant C, depending on |α|, d and T such that, for all h ∈ [0, T ] it holds

E
[
d1(m(h),mN

Yh
)
]
≤ C(1 +M

1/2
2 (mN

Y0
))(h/N)β . (3.24)

To prove Proposition 3.13, it is convenient to introduce first a few facts and notations.
We denote by L denote the set of all 1-Lipschitz functions from Rd to R, and let LR be the set of

all 1-Lipschitz functions φ : BR ⊂ Rd → [−R,R]. For any φ ∈ LR, we denote by φ̃ the extension

φ̃ : Rd → [−R,R] given by

φ̃(x) =





φ(x) |x| ≤ R,
2R−|x|

R φ( R
|x|x) R < |x| < 2R,

0 |x| ≥ 2R.

Note that φ̃ is also 1-Lipschitz.
Let L(ǫ, R) be the ǫ-covering number of LR with respect to the L∞-distance, that is,

L(ǫ, R) = inf{k ∈ N : there exist φ1, ..., φk ∈ LR such that for all

φ ∈ LR, ‖φ− φj‖L∞ < ǫ for some j}.
It is known (see, for example, [19]) that

L(ǫ, 1) ≤ exp{Cǫ−d}, (3.25)

and, after a rescaling argument,

L(ǫ, R) ≤ exp{C
(R
ǫ

)d}. (3.26)

Indeed, if {φ1, ..., φn} ∈ L is ǫ/R-dense in L, then {φ̃1, ..., φ̃n} is ǫ-dense in LR, where φ̃i(x) =
Rφ(x/R). Thus (3.26) follows from (3.25).
To prove Proposition 3.13 we need two preliminary estimates.
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we recall the notation after Lemma 3.17.

Lemma 3.14. There exists a constant C > 0 such that, for any φ ∈ L, P[
´

Rd φ(m(h) − mN
Yh
) >

x] ≤ exp
{
−Nx2

Ch

}
.

Proof. Let u be the solution of

−∂tu−∆u − α ·Du = 0 in (0, h)× R
d and u(h) = φ in R

d,

and note that, since ‖Dφ‖ ≤ 1, ‖Du‖∞ ≤ 1.
Using Itô’s formula and the equation for m, we get

ˆ

Rd

φ(m(h)−mN
Yh
) = −

√
2
1

N

N∑

k=1

ˆ h

0

Du(s, Y k
s ).dB

k
s .

The random variables h−1/2
´ h

0
Du(s, Y k

s )dB
k
s are independent and sub-Gaussian, uniformly in k.

Indeed, viewing h−1/2
´ ·
0 Du(·, Y k)dBk as a time-changed Brownian motion, we have that Bτ =

h−1/2
´ h

0
Du(t, Y k

t )dB
k
t , where B is a standard Brownian motion and τ ≤ 1 is a stopping time (we

use here that ‖Du‖∞ ≤ 1). In particular, P[
´ h

0
Du(s, Y k

s )dB
k
s > x] ≤ P[sup0≤t≤1 |Bt| > h1/2x], from

which the claim follows easily.
We now apply Hoeffding’s inequality (see, for example, Proposition 2.5 in [28]) to complete the
proof. �

Lemma 3.15. There exists a constant C such that, for any R > 0,

E[ sup
φ∈LR

ˆ

Rd

φ̃
(
m(h)−mN

Yh

)
] ≤ C(1 +R

d
d+2 )N

−1

d+2h
1

d+2 .

Proof. We fix ǫ > 0 and use the estimate on L(ǫ, R) to choose K ≤ exp{C
(
R
ǫ

)d} and φ1, ..., φK in
LR such that, for each φ ∈ LR, there exists k ∈ {1, ...,K} such that ‖φ− φk‖L∞(BR) < ǫ, and hence∥∥∥φ̃− φ̃k

∥∥∥
L∞(Rd)

≤ ǫ.

Then, using Lemma 3.14 and the upper bound on K, for any x > ǫ, we have

P[ sup
φ∈LR

ˆ

Rd

φ̃(m(h)−mN
Yh
) > x] ≤ P[ ∃k such that

ˆ

Rd

φ̃k(m(h)−mN
Yh
) > x− ǫ]

≤
K∑

k=1

P[

ˆ

Rd

φ̃k(m(h)−mN
Yh
) > x− ǫ] ≤ exp

{
C
(R
ǫ

)d − N(x− ǫ)2

Ch

}
. (3.27)

We fix a small positive parameter γ, and note that, if ǫ = γ−
1
dRh1/dx−2/dN−1/d, then

R exp

{
C
(R
ǫ

)d − Nx2

Ch

}
= R exp

{
Cγ

Nx2

h
− N(x− ǫ)2

Ch

}
. (3.28)

Further computations reveal that there is a constant C such that x > 2ǫ as soon as

x ≥ C
R

d
d+2h

1
d+2

γ
1

d+2N
1

d+2

. (3.29)

By choosing γ even smaller, we deduce, in view of (3.27) and (3.28), that, for some constant C and

all R, x as in (3.29), P [supφ∈LR

´

Rd φ̃(m(h)−mYh
) > x] ≤ exp

{
−Nx2

Ch

}
. It follows that

E[ sup
φ∈LR

ˆ

Rd

φ̃(m(h)−mN
Yh
)] ≤
ˆ C(Rdh

N )
1

d+2

0

1dx+

ˆ ∞

C(Rdh
N )

1
d+2

exp{−Nx
2

Ch
}dx

≤ C(1 +R
d

d+2 )N
−1

d+2h
1

d+2 .
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�

Finally, we give the proof of the concentration inequality.

Proof of Proposition 3.13. Throughout, C is a positive constant which, although changing from line
to line, depends only on d, T , and |α|.
We fix R > 0, and note that, any ψ ∈ L normalized with ψ(0) = 0, can be written as ψ = φ̃ + ϕ,
with φ ∈ LR and |ϕ| ≤ |x|1Bc

R
.

Thus, for any h ∈ (0, 1], we get

E[d1(m(h),mN
Yh

)] = E[sup
φ∈L

ˆ

Rd

φ(m(h)−mN
Yh

)]

≤ E[ sup
φ∈LR

ˆ

Rd

φ̃(m(h)−mN
Yh

)] +

ˆ

Rd

|x|1Bc
R
m(h) + E[

ˆ

Rd

|x|1Bc
R
mN

Yh
]

≤ E[ sup
φ∈LR

ˆ

Rd

φ̃(m(h)−mN
Yh

)] +
M2(m(h))

R
+

E[M2(m
N
Yh

)]

R

≤ E[ sup
φ∈LR

ˆ

Rd

φ̃(m(h)−mN
Yh

)] + C
(1 +M2(m(0)))

R
.

Using Lemma 3.15, we find that

E[d1(m(h),mN
Yh
)] ≤ C(1 +R

d
d+2 )N

−1

d+2h
1

d+2 + C
(1 +M2(m(0)))

R

≤ C(1 +R)N
−1

d+2h
1

d+2 + C
(1 +M2(m(0)))

R
.

Optimizing in R, that is, taking R = N
1

2d+4h−
1

2d+4

√
1 +M2(m(0)), gives the result with β =

1
2d+4 . �

4. The proof of Theorem 2.5 with a common noise

We now show that the method developed above can be adapted to problems with a common noise,
that is, for a0 > 0. Recall that VN and U are defined by (1.1) and (2.12) respectively.

Proof of Theorem 2.5 when a0 > 0. Since the proof follows closely the one in the case a0 = 0, here
we emphasize and explain the main differences.
We first note that the estimates of Lemma 3.1 and 3.4 remain valid (with the same proof), that is,
there exists C > 0 such that ‖VN‖∞ + N supj ‖DxjVN‖∞ + ‖∂tVN‖∞ ≤ C, and, for any (t,x) ∈
[0, T ]× (Rd)N , (ξi)i=1,...,N ∈ (Rd)N and ξ0 ∈ R,

N∑

i,j=1

D2
xixjV

N (t,x)ξi · ξj + 2

N∑

i=1

D2
xitV

N (t,x)ξiξ0 +D2
ttV

N (t,x)(ξ0)2

≤ C

N

N∑

i=1

|ξi|2 + C(ξ0)2.

We note for later use that the observation above implies that the conclusion of Lemma 3.12 still
holds, because its proof relies only on the above estimates.
However, the proof of Lemma 3.3 does not adapt to the case a0 > 0. Hence, we need a new argument
which relies on some results of [14].
In particular, we have the following analogue of Lemma 3.3.

Lemma 4.1. Assume (2.6). There exists a constant C > 0 depending only on the data such that,

for all s, t ∈ [0, T ], all r > 2 and all m,m′ ∈ Pr(R
d) |U(s,m)− U(t,m′)| ≤ C

(
d1(m,m

′) + |t− s|
)
,
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and, moreover, for any ǫ > 0 and (t0,m0) ∈ [0, T ]× P2(R
d), there exists an ǫ-optimal control rule

R = (Ω,F,F,P,W,m, α) ∈ A(t0,m0) for U(t0,m0) such that ‖α‖∞ ≤ C.

Proof. Fix R > 0 and let VN,R and UR denote the values of the problems defining VN and U when
controls are restricted to the ball BR ⊂ R

d.
More precisely, define AN,R to be the set of α = (αk)Nk=1’s such that |αk| ≤ R for each R, and
AR(t0,m0) to be the set of (Ω,F,F,P,W,m, α) ∈ A(t0,m0) such that |α| ≤ R. Then define VN,R

exactly as in (1.1) but with AN,R replacing A and define UR exactly as in (2.12) but with AR(t0,m0)
replacing AR.
Then Proposition 5.1 and Theorem 3.6 of [14] give limN→∞ VN,R(t,xN ) = UR(t,m) where xN =
(x1, ..., xN ), m ∈ Pr(R

d) and x1, ..., xN ∈ Rd are such that

sup
N

1

N

N∑

i=1

|xi|r <∞ and
1

N

N∑

i=1

δxi →
N→∞

m ∈ P2(R
d).

It follows from Lemma 3.1 and Lemma 5.2, that there is R0 > 0 such that VN,R0 = VN and UR0 = U,
and so we infer that, for all xi and m as above, limN→∞ VN (t,xN ) = U(t,m). Hence, the uniform
regularity on VN established in (3.3), which, as noted above, holds equally well when a0 > 0, is
enough to conclude that, for some C > 0,
|U(s,m) − U(t,m′)| ≤ C

(
d1(m,m

′) + |t − s|
)

for all m,m′ ∈ Pr(R
d). Finally, for any ǫ > 0 and

(t0,m0), we can choose an ǫ-optimal pair (m,α) for UR0 , and that this control is also ǫ-optimal for
U. This completes the proof. �

Let V̂N be defined in Lemma 3.7. Then it is easily checked that V̂N is smooth and satisfies, with

F̂N and ĜN as in Lemma 3.7,




−∂tV̂N (t,m)− (1 + a0)

ˆ

Rd

divy(DmV̂N (t,m, y))m(dy)

−a0
ˆ

R2d

tr(D2
mmV̂

N (t, x,m, y, y′))m(dy)m(dy′)

+

ˆ

Rd

H(y,DmV̂N (t,m, y))m(dy) ≤ F̂(m) in (0, T )× P1(R
d),

V̂N (T,m) = Ĝ(m) in P1(R
d),

Then, as in the proof of Lemma 3.7, it is possible to use Itô’s formula for conditional measures (see,
for example, [8] Book 2, Chapter 4) to infer that, for any solution (m,α) to (2.11),

V̂N (t0,m0) ≤ E

[
ˆ T

t0

(

ˆ

Rd

L(x, αt(x))mt(x)dx + F̂N (mt))dt+ ĜN (mT )

]
.

Using the same argument as in the proof of Lemma 3.7 with Lemma 4.1 replacing Lemma 3.10, we
arrive at

VN (t0,m
N
x0
) ≤ U(t0,m

N
x0
) + C(1 +M

1/2
2 (mN

x0
))N−β .

We now turn to the opposite inequality. As before, for θ, λ ∈ (0, 1), let

M : = max
(t,x),(s,y)∈[0,T ]×(Rd)N

(
es(U(s,mN

y )− V
N (t,x))

− 1

2θN

∑

i

|xi − yi|2 − 1

2θ
|s− t|2 − λ

2N

N∑

i=1

|yi|2,

and denote by ((t0,x0), (s0,y0)) a maximum point in the expression above.
As in (3.17) we have

1

N

N∑

i=1

|xi0 − yi0|2 + |t0 − s0|2 ≤ Cθ2
1

N

N∑

i=1

|yi0|2 ≤ Cλ−1. (4.1)
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Next, for δ > 0, we use the partition (Cj)j∈{1,...,J} of {1, . . . , N} constructed in Lemma 3.9.

We set αk = αj if k ∈ Cj , and let

Xk
s0+τ = xk0 + ταk +

√
2Bk

τ +
√
2a0B0

τ , Y k
s0+τ = yk0 + ταk +

√
2Bk

τ +
√
2a0B0

τ ,

and mj
Ys0+τ

=
1

nj

∑

k∈Cj

δY k
s0+τ

,

and mj the solution to
{

dmj
t =

[
(1 + a0)∆mj

t − αj ·Dmj
t

]
+
√
2a0Dm

j
t · dB0

t in (s0, T ]× Rd

mj
s0 = mj

y0
in R

d.

Finally, we set ms = N−1
∑

j∈J n
jmj

s, and claim that, for all h ≥ 0 and j ∈ {1, . . . , J},

E

[
d1(m

j
s0+h,m

j
Ys0+h

)
]
≤ C(1 +M

1/2
2 (mj

s0))h
β/(nj)β , (4.2)

and

E

[
d1(ms0+h,m

N
Xt0+h

)
]
≤ Cθ + Cδ−dβ(1 + λ−

1
2 )hβ/Nβ. (4.3)

The proof follows from Lemma 3.10 and estimate (4.1). Indeed, to establish (4.2), we first note that
the process (mt)t∈[s0,T ] solves (2.11) in the sense of distribution (with B0 replacing W ) if and only

if the process m̃t = (Id−
√
2a0(B0

t −Bt0))♯mt solves P−a.s. in the (classical) sense of distributions,

with α̃t(x) = αt(x+
√
2a0(B0

t −B0
t0), the equation

dm̃t(x) = [∆m̃t(x)− div(m̃tα̃t(x))] dt in (t0, T ]× R
d m̃t0 = m0 in R

d, (4.4)

Next, we consider

m̃j
t0+τ = (Id−

√
2a0B0

τ )♯m
j
t0+τ and Ỹk

t0+τ = Yk
t0+τ −

√
2a0B0

τ ,

and notice that m̃j and Ỹk solve the same equations as in Lemma 3.10, and, hence, (4.2) holds with

m̃j
t0+h replacing mj

t0+h and mj

Ỹt0+h
replacing mj

Yt0+h
.

Since

mj
t0+r = m̃j

t0+τ ∗ δ√2α0Bτ
,

and

mj
Yt0+τ

=
1

nj

∑

k∈Cj

δ
Ỹk

t0+τ+
√
2aoB0

τ
=
( 1

nj

∑

k∈Cj

δ
Ỹk

s0+τ

)
∗ δ√2aoB0

τ
= m̃j

Ys0+τ
∗ δ√2aoB0

τ
,

we can conclude that

E

[
d1(m

j
s0+h,m

j
Ys0+h

)
]
= E

[
d1(m

j
s0+h ∗ δ√2α0B0

h
, mj

Ys0+h
∗ δ√2α0B0

h
)
]

= E

[
d1(m̃

j
s0+h,m

j

Ỹs0+h
)

]
,

and so (4.2) holds. The proof for (4.3) is similar.
We proceed with the proof noticing that the dynamic programming principle in Lemma 3.11 still
holds but with an expectation, since now the measures are random, and with Proposition 2.3 re-
placing Proposition 2.2.
Moreover, since the conclusion of Lemma 3.12 also holds as already pointed out, we can argue as in
the proof of Proposition 3.8 (the time-regularity provided by Lemma 4.1 replacing that in Lemma

3.3) that U(t,mN
x ) − VN (t,x)) ≤ CN−β(1 + 1

N

∑N
i=1 |xi|2). The conclusion then follows as in the

proof of Theorem 2.5. �
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5. Appendix

We adapt some technical results from [13] and [14] to our setting. Most importantly, we infer
the dynamic programming principle (Proposition 2.3) in our setting from the dynamic program-
ming principle which is stated in Theorem 3.1 of [14]. Most of the arguments are straightforward
adaptations of the superposition and mimicking results achieved in [23], and so the proofs are only
sketched.
Following Definition 2.1 in [13] and Definition 2.3 [14] we define, for each (t0,m0) ∈ [0, T ]×P2(R

d),
the set of weak controls Aw(t0,m0) to be the set of tuples R = (Ω,F,P,F = (Ft)0≤t≤T ,G =
(G)0≤t≤T , X,B,W,m, α) such that

(1) (Ω,F,P) is a probability space equipped with filtrations G, F such that, for all 0 ≤ t ≤ T ,
Gt ⊂ Ft and Ft ∨ FB

T ⊥ GT |Gt.
(2) X = (Xt)0≤t≤T is a continuous, F-adapted Rd valued process.
(3) α = (αt)t0≤t≤T is a bounded, F-predictable process taking values in Rd.
(4) (B,W ) is a Rd×Rd-valued standard F Brownian motion, W is G-adapted, and Ft∨σ(B) ⊥

GT .
(5) m = (mt)t0≤t≤T is a G-predictable process taking values in P2(R

d) and such that mt =
L(Xt|Gt) for dP⊗ ds-a.e. (s, ω) ∈ [t, T ]× Ω.

(6) For all t0 ≤ t ≤ T

Xt = Xt0 +

ˆ t

t0

αsds+
√
2(Bt −Bt0) +

√
2a0(Wt −Wt0), L(Xt0) = m0.

We also let

Uw(t0,m0) := inf
R∈Aw(t0,m0)

E
P[

ˆ T

t0

(L(Xt, αt) + F(mt))dt+ G(mT )]

In our context, a superposition principle is a result asserting the following: given a control rule R =

(Ω,F,F,P,W,m, α) ∈ A ∈ R(t0,m0), we can find an extension (Ω̃, F̃,G) of (Ω,F,F) hosting another

Brownian motion B independent of F and a processX such that dXt = αt(Xt)dt+
√
2dBt+

√
2a0dWt

such that mt = L(Xt|Ft). We refer to [23] for details. The superposition results of [23] are useful to
us because we need to apply some technical results from [13, 14], and the superposition allows us to
check that our formulation is equivalent to the one used in [13, 14].

In what follows, for technical reasons, that is, to have the coercivity condition on the cost appearing
in Assumption 2.1 of [14], we will work with a truncated version of the weak formulation defined
here. Namely, we define AR

w(t0,m0) just as Aw(t0,m0), but with the controls α required to take
values in BR ⊂ Rd. Then, we write

UR
w(t0,m0) := inf

R∈AR
w(t0,m0)

E
P[

ˆ T

t0

(L(Xt, αt) + F(mt))dt + G(mT )]

We also truncate the original form of the problem, by defining UR just like U, but with controls α
required to take values in BR ⊂ Rd.
The following can be obtained using the superposition and following results of [23], as in the proof
of Theorem 8.3 of [23].

Proposition 5.1. For each R, UR
w = UR.

It is also useful to note that the regularity results of Lemma 3.1, which holds also in the case a0 > 0,
can be used to infer that UR = U for all R ≥ R0.

Lemma 5.2. There exists R0 depending on the data such that, for each R ≥ R0, U
R = U.

Proof. Theorem 3.1 and Theorem 3.6 in [14] together with Proposition 5.1 yield that,
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for all t ∈ [0, T ], all r > 2, all m ∈ Pr(R
d) and xi ∈ Rd such that, for some ǫ > 0,

sup
N

1

N

N∑

i=1

|xi|r <∞ and
1

N

N∑

i=1

δxi →
N→∞

m in P2(R
d),

we have, for xN = (x1, ..., xN ) ∈ (Rd)N ,

lim
N→∞

V
R,N (t,xN ) = U

R(t,m). (5.1)

Next, notice that, by (3.1) (see Remark 3.2), there is R0 depending only on the data such that, for
all R ≥ R0, V

N,R = VN . Thus (5.1) actually gives, for all R ≥ R0, limN→∞ VN (t,xN ) = UR(t,m).
It follows that U = UR0 . Indeed, clearly U ≤ UR0 .
For the other inequality, for any (t0,m0), we can choose R = (Ω,F,F,P,W,m, α) to be ǫ-optimal
in the definition of U(t0,m0). Since α is bounded by hypothesis, there exist R ≥ R0 such that
R ∈ AR(t0,m0), and, hence, UR0(t0,m0) = UR(t0,m0) ≤ U(t0,m0) + ǫ. Letting ǫ → 0 gives
U(t0,m0) = UR0(t0,m0). �

Now, we turn to the dynamic programming principle, that is, Proposition 2.3.

Proof of Proposition 2.3. We combine Theorem 3.1 of [13] with Proposition 5.1 to conclude that,
for all 0 ≤ t0 ≤ t1 ≤ T and any R ≥ R0,

U(t0,m0) = UR(t0,m0)

= UR
w(t0,m0) = inf

R∈AR
w(t0,m0)

E
P[

ˆ t1

t0

(L(Xt, αt) + F(mt))dt+ UR
W (t1,mt1)]

= inf
R∈AR

w(t0,m0)
E
P[

ˆ t1

t0

(L(Xt, αt) + F(mt))dt+ U
R(t1,mt1)]

= inf
R∈AR

w(t0,m0)
E
P[

ˆ t1

t0

(L(Xt, αt) + F(mt))dt+ U(t1,mt1)].

Since R can be arbitrarily large, it is easy to see that the above imply

U(t0,m0) = inf
R∈Aw(t0,m0)

E
P[

ˆ t1

t0

(L(Xt, αt) + F(mt))dt + U(t1,mt1)],

and, using the superposition and adapting arguments from [23], Proposition 2.3 follows. �
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[22] Lacker, D. (2017). Limit theory for controlled McKean–Vlasov dynamics. SIAM Journal on Control and Opti-

mization, 55(3), 1641-1672.
[23] Lacker, D., Sholnikov, M. and Zhang, J. (2020). Superposition and mimicking theorems for conditional McKean-

Vlasov equations. arXiv preprint. arXiv: 2004.00099
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