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Abstract. This paper studies the communication complexity of convex risk-averse optimization over a network. The
problem generalizes the well-studied risk-neutral finite-sum distributed optimization problem and its importance stems from the
need to handle risk in an uncertain environment. For algorithms in the literature, a gap exists in communication complexities
for solving risk-averse and risk-neutral problems. We propose two distributed algorithms, namely the distributed risk-averse
optimization (DRAO) method and the distributed risk-averse optimization with sliding (DRAO-S) method, to close the gap.
Specifically, the DRAO method achieves optimal communication complexity by assuming a certain saddle point subproblem can
be easily solved in the server node. The DRAO-S method removes the strong assumption by introducing a novel saddle point
sliding subroutine which only requires the projection over the ambiguity set P . We observe that the number of P -projections
performed by DRAO-S is optimal. Moreover, we develop matching lower complexity bounds to show the communication
complexities of both DRAO and DRAO-S to be unimprovable. Numerical experiments are conducted to demonstrate the
encouraging empirical performance of the DRAO-S method.
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1. Introduction. Consider the following risk-averse optimization problem over a star-shape (worker-
server) communication network [7]:

min
x∈X
{f(x) := max

p∈P

∑m
i=1 pifi(x)− ρ∗(p) + u(x)}, (1.1)

eq:orig_probeq:orig_prob

where P ⊆ ∆m
+ := {p ∈ Rm|

∑m
i=1 pi = 1, pi ≥ 0} and X ⊆ Rn and Πi ⊆ Rmi are closed and convex,

and functions fi(x), u(x), and ρ∗(p) are proper closed and convex. We assume the scenario (or local) cost
function fi to be only available to worker node i and focus on the situation where fi’s are either all smooth
or all structured non-smooth. We use the following generic representation for both types of fi’s:

fi(x) = max
πi∈Πi

〈Aix, πi〉 − f∗i (πi),

where Πi is a closed convex set and f∗i is a proper, closed and convex function. Specifically, if fi is smooth,
Ai is the identity matrix, I ∈ Rn×n, f∗i is the Fenchel conjugate to fi, and Πi = dom(f∗i )¬. If fi is structured
non-smooth [28], then Ai ∈ Rmi×n is a linear operator, Πi is bounded, and the f∗i -prox mapping can be
solved efficiently [16]. This type of structured non-smooth function has found a wide range of applications,
including total variation regularization in image processing [31], low-rank tensor [12, 37], overlapped group
lasso [21, 35], and graph regularization [9, 35]. Additionally, we assume the (strongly) convex regularization
term u(x) and the risk measure (ρ∗, P ) are available to the server node.

If the ambiguity set P consists of only a fixed probability vector p̄, say the empirical distribution, (1.1)
is called risk-neutral, and it can be written as a finite-sum problem (see Chapter 5 of [16]):

min
x∈X

∑m
i=1 p̄ifi(x) + u(x). (1.2)

eq:finite_sumeq:finite_sum

However, if the costs among workers are imbalanced (different importance, limited availability of data, etc.),
taking an average over the costs across workers might be meaningless or operationally wrong. In such
cases, non-trivial ρ∗ and P in (1.1) generalizes risk-neutral optimization to risk-averse optimization and
distributionally robust optimization (DRO). Specifically, if fff := (f1, . . . , fm) denotes the scenario costs and
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¬dom(f∗i ) := {πi ∈ Rn : f∗i (πi) <∞}.
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ρ is a convex risk measure, it can be formulated as (1.1) using Fenchel conjugates (see Definition 6.4 and
Theorem 6.5 of [34]):

ρ(fff) := arg max
p∈P

〈p,fff〉 − ρ∗(p). (1.3)
eq:rho-defeq:rho-def

For example, if we denote the (reference) probability mass function by p̄, some widely used risk measures
and their conjugates are given as follows.

• Mean semideviation of order r:

ρ(fff) =
∑m
i=1 p̄ifi + c(

∑m
i=1 p̄i[fi − Efff ]r+)1/r = maxp∈P 〈p,fff〉,

where the ambiguity set P := {p ∈ ∆m
+ : ∃ζi ≥ 0 s.t. pi = p̄i(1 + ζi−〈ζ, p̄〉), ‖ζ‖s ≤ c}, c ∈ [0, 1] and

‖·‖s is the conjugate norm to ‖·‖r, i.e., 1/s+ 1/r = 1.
• Entropic risk:

ρ(fff) = τ−1 log
∑m
i=1 p̄i exp(τfi) = maxp∈∆+

m
〈p,fff〉 − τ−1

∑m
i=1 pi log(pi/p̄i).

• Distributionally robust objective: ρ(fff) := supp∈P 〈fff, p〉 for some uncertainty set P .

The incorporation of all the above risk measures makes our problem (1.1) more challenging than the
finite-sum problem (1.2). We note that (1.1) also covers a popular risk measure CV@R with ρ(fff) =
maxp∈∆m

+ ,pi∈[0,p̄i/α]〈p,fff〉, where the parameter α > 0 captures the degree of risk aversion. The risk mea-

sure admits a finite-sum reformulation, ρ(fff) = inft
∑m
i=1 p̄i{[fi − t]+/α + t}, but the function f̃i(x, t) :=

[fi(x) − t]+/α + t is nonsmooth with a very large Lipschitz-continuity constant, even if the original fi is
smooth. In contrast, our conjugate formulation avoids the situation.

As alluded to earlier, we assume the communication network to have a star-topology where a computa-
tionally powerful central server node is connected directly to many worker nodes. During a communication
round, all the worker nodes send their local information to the server, and the server node broadcasts pro-
cessed information to all worker nodes. This type of distributed optimization framework is very popular in
machine learning, such as federated learning [11], where the data are held privately in each worker (device)
and the central server learns a global model by communicating with the workers. Since communication in
a network tends to be slower than computation inside a single node by orders of magnitude, and less com-
munication implies better protection of privacy, one of the main goals of this paper is to study the system’s
communication complexity, i.e., the number of communication rounds required to find a quality solution
x̄ ∈ X s.t. f(x̄)− f(x∗) ≤ ε, where x∗ denotes an optimal solution of (1.1).

Risk-averse optimization problems of form (1.1) have a wide range of applications in portfolio selection
[22], renewable energy [23], power security [10], telecommunication [19] and climate change planning [36].
As a concrete example, consider the massive multiple-input multiple-output (MIMO) system in the 5G
communication network consisting of multiple active antennas and terminal devices [19, 30]. The multiple
active antennas at the base station should be configured to ensure stable connections for all the terminal
devices in its service area, rather than a high connection speed when averaged over all devices. Such an
objective can be formulated as (1.1) with fi being the negative data speed at the ith terminal device and
(P, ρ∗) being the conjugate to the mean-semideviation risk measure. To gather information for the downlink
and uplink channels, the base station needs to communicate with terminal devices. So in a highly mobile
environment, finding a quality antenna connection quickly, i.e., with a only few rounds of communication,
is crucial. A second example is motivated by climate change. The state government may wish to invest
in infrastructure to prepare for it. Each scenario cost function fi may denote the long-term economic cost
estimated by a certain climate model and a certain impact model [36]. To avoid downside risk, (P, ρ∗)
could be chosen as the conjugate to some risk measures mentioned above, say the entropic risk measure.
Because these models involve large amounts of data and costly simulation runs, we might need to store fi’s
on separate computing nodes and use a communication network to find the optimal policy. In this case, a
small number of communication rounds is crucial for efficiency.

Our formulation is also applicable to the computationally demanding distributionally robust optimization
(DRO). DRO provides a powerful framework for learning from limited data [13] and data-driven decision-
making [2, 38]. Under the assumption of finite scenario support Ξ = [ξ1, . . . , ξm], we could use fi(x) :=
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f(x, ξi) to denote the cost under scenario ξi and choose ρ to be the risk measure induced by the corresponding
probability uncertainty set [34]. When implemented on a distributed communication network with the
evaluation of f(x, ξi)’s performed in parallel on different machines, a small number of communication rounds
is essential for fast computation.

Additionally, the risk-averse formulation in (1.1) could also be useful for federated learning between
organizations, i.e., the cross-silo federated learning [11]. Cross-silo federated learning has found applications
in finance risk prediction in reinsurance [39], drug discovery [5], electronic health record mining [6] and smart
manufacturing [24]. If the workers represent demographically partitioned organizations or geographically
partitioned data centers, we could choose ρ to be the mean-semideviation risk measure to ensure that the
trained model offers consistent performance across different populations. Risk measures may also provide
incentives for competing organizations to cooperate. For example, consider the operations of competing
airlines. When fi(x) is the expected relative operation cost of ith airline, choosing ρ(fff(x)) := maxi∈[m] fi(x)
ensures the new policy x benefits every participant. In both cases, a smaller number of communication
rounds implies better protection of privacy.

Despite the importance of problem (1.1), however, the study of its communication complexity and the
development of efficient algorithms are rather limited. Since (1.1) can be viewed as a trilinear saddle point
problem, we can potentially apply some recently developed first-order algorithms (e.g. [40, 41]) for solving
it. However, these methods are designed without special consideration for communication burden. The
most related algorithm is perhaps the sequential dual (SD) method, which was first proposed in [40] for the
structured non-smooth problem and later extended in [41] to the smooth problem. The method is single-
loop, so a direct implementation on a communication network requires one communication round in each
iteration, leading to communication complexities of O(

√
LfDX0/

√
ε+DPDΠMADX0/ε) and O(DΠDX0/ε+

DPDΠMADX0/ε) for the smooth and the structured non-smooth problems, respectively. Here Lf , DΠ, MA,
DP , and DX0 correspond to the overall smoothness constant, the dual radius, the operator norm of Ai,
the radius of P , and the distance to the optimal solution (see Tables 1.1 and 1.2, and Section 3 for their
precise definitions). On the other hand, for the risk-neutral problem (1.2) with P := {p̄}, direct distributed
implementations of the Nesterov accelerated gradient method [26] and the primal-dual algorithm [3] can
achieve communication complexities of O(

√
LfDX0/

√
ε) and O(DΠMADX0/ε) for the smooth and the

structured non-smooth problems, respectively, which were shown to be tight (see, e.g., [33]). Clearly, there
exists a significant gap in communication complexities, especially for smooth problems where the O(1/ε)
communication complexity for the risk-averse setting is much larger than the O(1/

√
ε) complexity for the

risk-neutral setting. Therefore we pose the following research question:

Can we solve the risk-averse problem over a star-shape network with the

same communication complexity as the finite-sum problem?

This paper intends to provide a positive answer to this question in three steps.

First, we propose a conceptual distributed risk-averse optimization (DRAO) method. It is inspired by
works of Nesterov (Section 2.3.1 of [27]) and Lan [14] on composite optimization of the form minx ρ(fff(x))
for a smooth vector function fff . While Nesterov [27] considers the problem with ρ(fff(x)) = maxi=1,...,m fi(x),
Lan [14] generalizes ρ to any monotone convex function. They can achieve an O(1/

√
ε) first-order (FO)

oracle complexity of fff by incorporating the following inner-linearization prox-mapping into the accelerated
gradient descent (AGD) method or into the accelerated prox-level (APL) method:

xt ← arg minx∈X ρ
(
f1(xt) + 〈∇f1(xt), x− xt〉, . . . , fm(xt) + 〈∇fm(xt), x− xt〉

)
+ η

2

∥∥x− xt−1
∥∥2
. (1.4)

eq:prox-subproblemeq:prox-subproblem

Such an update is a simplified version of (1.1) with fi(x
t) + 〈∇fi(xt), x− xt〉 denoting some (iterative)

linearization of fi at xt and η
2

∥∥x− xt−1
∥∥2

being the proximal term. Similarly, we modify the SD method
by combining the p and x-prox updates into a single (x, p)-prox update given by

xt ← arg min
x∈X

max
p∈P

∑m
i=1 pi[〈x,Aiπti〉 − f∗i (πti)]− ρ∗(p) + u(x) + η

2

∥∥x− xt−1
∥∥2
, (1.5)

eq:joint_p_xeq:joint_p_x
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where 〈x,Aiπti〉− f∗i (πti) also represents some (iterative) linearization of fi specified by the dual variable πti .
In fact, rewriting ρ in its primal form (1.3) shows (1.5) to be equivalent to

xt ← arg min
x∈X

ρ
(
〈x,A1π

t
1〉 − f∗1 (πt1), . . . , 〈x,Amπtm〉 − f∗m(πtm)

)
+ u(x) + η

2

∥∥x− xt−1
∥∥2
,

which matches (1.4) if πti is selected to be ∇fi(xt) for smooth fi’s. Such a modification of the SD method
leads to the DRAO method. As shown in Table 1.1, it achieves the optimal FO oracle complexities for fff (or
Πi-projection complexities) for both the smooth and the structured non-smooth problems. Since (ρ∗, P ) is
available to the server, (1.5) can be performed entirely on the server, so the communication complexities are
the same (shown in Table 1.1). However, this approach requires ρ to be simple so that (1.5) can be efficiently
solved. This assumption might be too strong in practice. For example, if m is large, the (x, p)-prox update
in (1.5) with either the mean-semideviation risk measure ρ or the Kantorovich ambiguity set P is known to
be computationally challenging.

Table 1.1: Communication Complexity and FO Oracle Complexity of fff for DRAO and DRAO-S¬

Convex (α = 0) strongly convex (α > 0)

Smooth O(
√
Lf‖x0 − x∗‖/

√
ε) O(

√
Lf/α log(1/ε))

Structured Non-smooth O(MADΠ

∥∥x0 − x∗
∥∥ /ε) O(MADΠ/

√
εα)

Table 1.2: P -projection and X-projection Complexity of DRAO-S ­

convex (α = 0) strongly convex (α > 0)

Smooth O(DP M̃‖x0 − x∗‖/ε) O((Lf/α)1/4M̃DP /α
√
ε)®

Structured Non-smooth O(DP M̄AΠ‖x0 − x∗‖/ε) O(DP M̄AΠ/
√
εα)

¬MA = maxi∈[m] ‖Ai‖, DΠ = maxi∈[m] maxπi,π̄i∈Πi
‖πi − π̄i‖.

­DP denotes P ’s radius. M̃ denotes the operator norm of ‖∇f1(x), . . . ,∇fm(x)‖ over some bounded ball around x∗ and M̄AΠ

denotes the operator norm of ‖A1π1, . . . , Amπm‖ over the whole feasible region Π.
®Number of P-projections required to generate an ε-close solution, i.e.,

∥∥∥xN − x∗∥∥∥2
≤ ε.

Second, we overcome the restrictive assumption of ρ being simple by developing a saddle point sliding
(SPS) subroutine. It replaces (1.5) in the DRAO method by performing only a finite number of P -projections
and X-projections to solve the saddle point subproblem inexactly. The new method, called distributed risk-
averse optimization with sliding (DRAO-S), maintains the same communication complexities as DRAO while
improving on its computation efficiency. Since each inner iteration of the sliding subroutine requires one
P -projection and one X-projection, the total numbers of these projections are optimal in most cases ­.
As shown in Table 1.2, they match the lower bounds [29] for solving a single (x, p) bi-linear saddle point
problem, i.e., (1.5) with a fixed πt and ηt = 0. Such a result is similar to that of the gradient sliding (GS)
method [15] for solving an additive composite problem,

min
x∈X

f(x) + g(x). (1.6)
eq:composite-addeq:composite-add

The GS method can achieve both optimal f -oracle and optimal g-oracle complexities. However, our nested
composite problem appears to be more challenging. This is because for a fixed x, the optimal dual variables
p and π in (1.1) are dependent, while the optimal dual variables πf and πg (associated with the saddle point
reformulation of (1.6) through bi-conjugation [1]) are independent. In fact, (1.6) can always be rewritten
as a nested composite problem (see the discussion in Example 3 of [14]). Additionally, the SPS subroutine
in the DRAO-S method is initialized differently from the usual sliding subroutines in [15] and [17]. Such a
modification simplifies both the outer loop algorithm and the convergence analysis. This simplification could
motivate the application of the sliding technique to a wider range of problems. Furthermore, an interesting
feature of the DRAO-S method is that its inner loop, the SPS subroutine, can adjust dynamically to the

­Except for the strongly convex smooth problem which is worse off by a factor of (Lf/α)1/4.
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varying levels of difficulty, characterized by ‖πt‖, of the saddle point subproblem (1.5). This allows us to
remove the assumption of the smooth fi’s being Lipschitz continuous, which is required by the SD method
in [41], but may not hold if the domain X is unbounded.

Third, we show that the communication complexities of both DRAO and DRAO-S are not improvable by
constructing lower complexity bounds. Previous developments are restricted to a trivial P and the smooth
problem [32]. We propose a more general computation model which includes both the fi-gradient oracle
and the f∗i -prox mapping oracle, and introduce a different set of problem parameters appropriate for the
risk-averse problem. They allow us to develop, for a non-trivial P and for both the smooth and the structured
non-smooth problems, new lower complexity bounds matching the upper communication complexity bounds
possessed by DRAO and DRAO-S.

The rest of the paper is organized as follows. Preliminary Section 2 reviews a gap function in [40] which
will guide the algorithm design. Section 3 and Section 4 propose and analyze the DRAO and DRAO-S
methods, respectively. Section 5 provides lower communication complexity bounds and Section 6 provides
some encouraging numerical results. Finally, some concluding remarks are made in Section 7.

1.1. Notation & Assumptions. The following assumptions and notations will be used throughout
the paper.

• The set of optimal solutions to (1.1), X∗, is nonempty. x∗ denotes an arbitrary optimal solution,
and f∗ denotes the optimal objective, f(x∗). R0 represents an estimate of the distance from the
initial point to x∗, i.e., R0 ≥

∥∥x0 − x∗
∥∥ .

• DP denotes the radius of P , i.e., DP := maxp,p̄∈P
√

2U(p, p̄) where U is the chosen Bregman distance
function [16].

• fff : Rn → Rm denotes a vector of scenario cost functions, [f1; ...; fm], and ∇fff(x) : Rn → Rm×n
denotes the Jacobian matrix function.

• We refer to the following computation as either a prox mapping or a projection:

ŵ ← arg min
w∈W

〈g, w〉+ h(w) + τV (w; w̄), (1.7)
eq:prox-defeq:prox-def

where the vector g represents some “descent direction” (the gradient for example), and h(w) denotes
a simple convex function [16]. V denotes the Bregman distance function, w̄ is a prox center, and τ
is a stepsize parameter. Together they ensure the output ŵ is close to w̄. In particular, we call
it an x, a πi or a p-prox mapping (an X, a Πi or a P -projection) if W = X and h ≡ 0, W = Πi

and h = f∗i , or W = P and h = ρ∗, respectively. Sometimes, the term prox update also is used to
emphasize that the prox mapping is performed to update wt = ŵ from w̄ = wt−1.

2. Preliminary: Q-gap function. We introduce a gap function [40] which will guide our algorithmic
development throughout the paper. For notation convenience, we denote π ≡ (π1, . . . , πm) and Π ≡
Π1 ×Π2 × . . .×Πm so that (1.1) can be written as

min
x∈X

max
p∈P

max
π∈Π
{L(x; p, π) :=

∑m
i=1 pi (〈Aix, πi〉 − f∗i (πi))− ρ∗(p) + u(x)}. (2.1)

eq:probeq:prob

The following duality relation between the reformulation and the original problem (1.1) is valid (see Propo-
sition 2.1 of [40]).

Lemma 2.1. Let f and L be defined in (1.1) and (2.1), then the following statements hold for all x ∈ X.

a) Weak Duality: f(x) ≥ L(x, p, π) for all p ∈ P, π ∈ Π.
b) Strong Duality: f(x) = L(x, p̂, π̂) for any π̂i ∈ arg maxπi∈Πi〈πi, Aix〉 − f

∗
i (πi), i = 1, . . . ,m, and

any p̂ ∈ arg maxp∈P
∑m
i=1 pifi(x)− ρ∗(p).

We measure the quality of a feasible solution z = (x, p, π) by a gap function Q associated with some
feasible reference point ẑ := (x̂; p̂, π̂):

Q(z; ẑ) := L(x; p̂, π̂)− L(x̂; p, π). (2.2)
eq:Q_funceq:Q_func

The Q function provides a bound on the function optimality gap from above.
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Lemma 2.2. Let Q be defined in (2.2), then

f(x)− f(x∗) ≤ max
p̂∈P,π̂∈Π

Q((x; p, π); (x∗; p̂, π̂)). (2.3)
eq:optimality_gapeq:optimality_gap

Moreover, the optimal solution x∗ of (1.1), together with some π∗i ∈ arg maxπi∈Πi〈πi, Aix
∗〉 − f∗i (πi), i =

1, . . . ,m, and some p∗ ∈ arg maxp∈P
∑m
i=1 pifi(x

∗)− ρ∗(p) forms a saddle point z∗ := (x∗; p∗, π∗) of (2.1),
i.e.,

Q(z; z∗) ≥ 0, ∀z ≡ (x; p, π) ∈ X × P ×Π. (2.4)
eq:saddle_pointeq:saddle_point

Proof. Let p̂ and π̂ by defined in Lemma 2.1.b). By Lemma 2.1, we have f(x) − f(x∗) ≤ L(x, p̂, π̂) −
L(x∗, p, π) = Q((x; p, π); (x∗; p̂, π̂)), from which (2.3) follows immediately. Next, the first-order optimality
condition of (1.1) implies that there exist some π∗i ∈ arg maxπi∈Πi〈πi, Aix

∗〉− f∗i (πi), g
∗ ∈ ∂u(x∗) and some

p∗ ∈ arg maxp∈P
∑m
i=1 pifi(x

∗)− ρ∗(p) such that 〈
∑m
i=1 p

∗
iA
>
i π
∗
i , x− x∗〉+ u(x)− u(x∗) ≥ 〈

∑m
i=1 p

∗
iA
>
i π
∗
i +

g∗, x− x∗〉 ≥ 0 for any x ∈ X. This observation together with the definition of L in (2.1) then imply that

L(x; p∗, π∗) ≥ L(x∗; p∗, π∗),∀x ∈ X.

Moreover, due to our choice of (p∗, π∗), Lemma 2.1 also implies that

f(x∗) = L(x∗; p∗, π∗) ≥ L(x∗; p, π),∀(p, π) ∈ P ×Π.

(2.4) then follows from combining the preceding two inequalities.

In view of Lemma 2.2, we can use Q to guide our search for an ε-optimal solution. In particular, we
decompose Q into three sub-gap functions given by

Q(z̄; ẑ) = Qx(z̄; ẑ) +Qp(z̄; ẑ) +Qπ(z̄; ẑ)

with

Qπ(z̄; ẑ) := L(x̄; p̂, π̂)− L(x̄; p̂, π̄) =
∑m
i=1 p̂i [〈Aix̄, π̂i − π̄i〉 − f∗i (π̂i) + f∗i (π̄i)] .

Qp(z̄; ẑ) := L(x̄; p̂, π̄)− L(x̄; p̄, π̄) =
∑m
i=1(p̂i − p̄i)[〈Aix̄, π̄i〉 − f∗i (π̄i)]− (ρ∗(p̂)− ρ∗(p̄)).

Qx(z̄; ẑ) := L(x̄; p̄, π̄)− L(x̂; p̄, π̄) = 〈
∑m
i=1 p̄iA

>
i π̄i, x̄− x̂〉+ u(x̄)− u(x̂) .

(2.5)
eq:Q-decompeq:Q-decomp

3. Upper Bounds for Communication Complexity. We propose the distributed risk-averse opti-
mization (DRAO) method to provide upper bounds on communication complexity. The algorithm and its
convergence properties are presented in Subsection 3.1 and the convergence analysis is presented in Subsec-
tion 3.2.

3.1. The DRAO method. The DRAO method is designed for solving the min-max-max trilinear
saddle point problem in (2.1). It is inspired by two algorithms for optimizing nested composite problems.
First, the sequential dual (SD) algorithm, proposed in [40, 41], performs sequential proximal updates to
the dual variables π and p before updating the primal variable x. The DRAO method is built on similar
sequential proximal updates for π, p, and x. Second, the accelerated prox-level (APL) algorithm, proposed in
[14], can reduce the number of outer iterations further by solving a more complicated proximal sub-problem
(1.4). The DRAO method exploits this property by combining the separate p and x proximal updates into
a single (x, p) prox update step in the server node to save communication.

Algorithm 1 describes a generic DRAO method which will be later specialized for solving the smooth
and the structured nonsmooth problems. As shown in Algorithm 1, the server first sends an extrapolated
point x̃t to the workers for them to perform dual proximal updates in Line 3. The only goal is to reduce
the sub-gap function Qπi (c.f. (2.5)). Here we intentionally leave the prox-function Vi in an abstract form
because its selection and the resulting implementation will depend on the smoothness properties of fi. Next,
the server collects the newly generated Aiπ

t
i in Line 4 to solve the (x, p) prox update problem in Line 5 to

reduce both Qx and Qp.
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Algorithm 1 A Generic Distributed Risk Averse Optimization (DRAO) Method

Input: x0 = x−1 ∈ X, π0
i ∈ Πi in every node, stepsizes {θt}, {ηt}, {τt}, and weights {ωt}.

1: for t = 1, 2, 3...N do
2: Server computes x̃t ← xt−1 + θt(x

t−1 − xt−2). Broadcast it to all workers.

3: Every worker computes πti ← arg maxπi∈Πi〈Aix̃
t, πi〉−f∗i (πi)−τtVi(πi;πt−1

i ), and evaluates

vti ← A>i π
t
i and f∗i (πti).

4: All workers send their (vti , f
∗
i (πti)) to the server.

5: Server updates

xt ← arg minx∈X maxp∈P
∑m
i=1 pi(〈x, vti〉 − f∗i (πti))− ρ∗(p) + u(x) + ηt

2

∥∥x− xt−1
∥∥2
.

6: end for
7: return x̄N :=

∑N
t=1 ωtx

t/(
∑N
t=1 ωt).

In the generic DRAO algorithm, we assume subproblems in Lines 3 and 5 to be solved exactly by
the workers and server, respectively. Line 3 reduces to local gradient evaluations in the smooth case, while
requiring a prox mapping for the structured nonsmooth case. Line 5 requires us to solve a structured bilinear
saddle point problem. We will discuss in detail how to solve these problems approximately in the next section
while focusing on the communication complexity now.

First, we consider the smooth problem where all Ai’s are identity matrices and all fi’s are smooth such
that ‖∇fi(x1) − ∇fi(x2)‖ ≤ Li‖x1 − x2‖,∀x1, x2 ∈ Rn. Since the Fenchel conjugate to a smooth convex
function is strongly convex [8], a natural choice of the prox-function Vi in DRAO would be the Bregman
distance function generated by f∗i given by

Wf∗i
(πi; π̄i) := f∗i (πi)− f∗i (π̄i)− 〈(f∗i )′(π̄i), πi − π̄i〉. (3.1)

eq:dual_bregmaneq:dual_bregman

It has been shown in [18, 16, 41] that the πi proximal update in Line 3 of Algorithm 1 is equivalent to a
gradient evaluation. Specifically, with x0 = x0 and π0

i = ∇fi(x0), Line 3 reduces to the following steps:

xt ← (x̃t + τtx
t−1)/(1 + τt), (3.2)

eq:smooth_alg1eq:smooth_alg1

πti ← ∇fi(xt), (3.3)
eq:smooth_alg2eq:smooth_alg2

f∗i (πti)← 〈xt, πti〉 − fi(xt). (3.4)
eq:smooth_alg3eq:smooth_alg3

Plugging f∗i (πti) defined in (3.4) into Line 5 of Algorithm 1, we can completely remove the information about
the conjugate function f∗i . Therefore, DRAO is a purely primal algorithm for the smooth problem.

To discuss the convergence properties of DRAO, we need to properly define some Lipschitz smoothness
constants. For a given p ∈ P , let us denote fp(x) :=

∑m
i=1 pifi(x). Clearly, fp is a smooth convex function

with Lipschitz continuous gradients, i.e., ‖∇fp(x1) − ∇fp(x2)‖ ≤ Lp‖x1 − x2‖,∀x1, x2 ∈ X. Moreover,
Lp ≤

∑m
i=1 piLi. We define an aggregate smoothness constant Lf to characterize the overall smoothness

property of the risk-averse problem (2.1):

Lf = max
p∈P

Lp. (3.5)
eq:smo_csteq:smo_cst

Observe that in the risk neutral case with P = {(1/m, . . . , 1/m)}, Lf is the global smoothness constant
of f [33], which is upper bounded by 1

m

∑m
i=1 Li. In the robust case when P = ∆+

m, Lf = maxi Li.
Theorem 3.1 and 3.2 below show the convergence rates of the DRAO method applied to the aforementioned
smooth problems, for a non-strongly convex u(x) and a strongly convex u(x) respectively. Their proofs are
given in Section 3.2.

Theorem 3.1. Let Lf be defined in (3.5). If {xt}Nt=1 are generated by the DRAO method applied to a
smooth problem with

ωt = t, θt = (t− 1)/t, τt = (t− 1)/2, ηt = 2Lf/t.
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Then for a reference point ẑ := (x̂; p̂, π̂) in which π̂i = ∇fi(x̄) for some x̄ ∈ X, we have∑N
t=1 ωtQ(zt; ẑ) + Lf

∥∥xN − x̂∥∥2 ≤ Lf
∥∥x0 − x̂

∥∥2
. (3.6)

eq:smooth_Q_conveq:smooth_Q_conv

In particular, the ergodic solution x̄N satisfies

f(x̄N )− f(x∗) ≤ 2Lf
∥∥x0 − x∗

∥∥2
/N(N + 1),∀N ≥ 1. (3.7)

eq:smooth_f_conveq:smooth_f_conv

Theorem 3.2. Let Lf be defined in (3.5). Assume, in addition, that u(x) is α-strongly convex for some
α > 0. Let κ := Lf/α denote the condition number. If {xt}Nt=1 are generated by the DRAO method applied
to smooth problems with

θt = θ :=
√

4κ+1−1√
4κ+1+1

, ωt = ( 1
θ )t−1, τt = τ :=

√
4κ+1−1

2 , ηt = η := α(
√

4κ+1−1)
2 . (3.8)

stp:central_sm_strstp:central_sm_str

Then for a reference point ẑ := (x̂; p̂, π̂) in which π̂i = ∇fi(x̄) for some x̄ ∈ X, we have∑N
t=1 ωtQ(zt; ẑ) + α(

√
4κ+1−1)
4θN

∥∥xN − x̂∥∥2 ≤ (
√

4κ+1−1)
4 (α

∥∥x0 − x̂
∥∥2

+ Lf
∥∥x0 − x̄

∥∥2
). (3.9)

eq:smooth_Q_str_conveq:smooth_Q_str_conv

In particular, the last iterate xN converges geometrically:∥∥xN − x∗∥∥2 ≤ θN (1 + κ)
∥∥x0 − x∗

∥∥2
,∀N ≥ 1. (3.10)

eq:smooth_x_str_conveq:smooth_x_str_conv

We make two remarks regarding the above convergence results. First, selecting the saddle point z∗

defined in Lemma 2.2 as ẑ, Theorem 3.1 (c.f. (3.6)) and 3.2 (c.f. (3.9)) imply that all generated iterates,
{xt}t≥1, are inside some ball around x∗:∥∥xt − x∗∥∥ ≤ ∥∥x0 − x∗

∥∥ if α = 0,∥∥xt − x∗∥∥ ≤ (1 + Lf/α)
∥∥x0 − x∗

∥∥ if α > 0.

This shows that the search space for xt is essentially bounded. Such a property will become useful when we
solve the saddle point subproblem in Line 5 of DRAO approximately in the next section. Second, Theorem
3.1 and 3.2 imply, respectively, O(

√
Lf
∥∥x0 − x∗

∥∥ /√ε) and O(
√
Lf/α log(1/ε)) communication complexities

to find ε-optimal solutions. It is interesting to note that with Lf defined in (3.5), these results are valid even
if P is larger than the probability simplex, i.e., ∆m

+ ( P ⊂ Rm+ , which could be useful if the risk measure ρ
is not positive homogeneous. We will show later in Section 5 that these communication complexity bounds
are not improvable in general.

Next, let us consider the structured non-smooth problem. Because f∗i may not be strongly convex, the
Bregman distance function Wf∗i

(c.f. (3.1)) is no longer suitable for πi prox update. Instead, we choose

Vi(πi; π̄i) := 1
2 ‖πi − π̄i‖

2
, so that the πi proximal update is given by:

πti ← arg max
πi∈Πi

〈Aix̃t, πi〉 − f∗i (πi)− τt
2

∥∥πi − πt−1
i

∥∥2
. (3.11)

eq:drao_ns_pi_dualproxeq:drao_ns_pi_dualprox

Theorem 3.3 below states the convergence properties of Algorithm 1 applied to the structured nonsmooth
problem and its proof is provided in Section 3.2. We need to define the maximum linear operator norm MA

and the maximum dual radius DΠ as

MA := max
i∈[m]

‖Ai‖2,2 , DΠ := max
i∈[m]

max
πi,π̄i∈Πi

‖πi − π̄i‖ . (3.12)
eq:MA_defeq:MA_def

Note that MADΠ provides an estimate of the Lipschitz continuity constant of
∑
i pifi(x).

Theorem 3.3. Let a structured non-smooth risk-averse problem (1.1) be given. Let MA and DΠ be
defined above in (3.12) and let R0 ≥

∥∥x0 − x∗
∥∥.

a) If α = 0 and the stepsizes satisfy

ωt = 1, θt = 1, ηt = MADΠ/ R0, τt = MAR0/DΠ,
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the following convergence rate holds for the solution x̄N returned by the DRAO algorithm

f(x̄N )− f(x∗) ≤MADΠR0/N. (3.13)
eq:nonsmooth_f_conveq:nonsmooth_f_conv

b) If α > 0 and the stepsizes satisfy

ωt = t, θt = (t− 1)/t, ηt = tα/3, τt = 3M2
A/tα,

the following convergence rate holds for the solution x̄N returned by the DRAO algorithm

f(x̄N )− f(x∗) ≤
(
α
∥∥x0 − x∗

∥∥2
/3 + 3M2

AD
2
Π/α

)
/N2. (3.14)

eq:nonsmooth_f_conv_streq:nonsmooth_f_conv_str

The preceding theorem gives us O(R0DΠMA/ε) and O(MADΠ/
√
εα)® communication complexities for

solving the structured nonsmooth problem under the non-strongly convex and the strongly convex settings,
respectively. These complexity bounds are worse than those of the smooth problem by an order of magnitude.
It is interesting to note that the smoothness properties of the scenario cost functions have a significant impact
on communication complexity, even under the assumption that the workers are equipped with the capability
to solve the πi proximal update in (3.11).

3.2. Convergence analysis. Our main goal in this subsection is to establish the convergence rates
associated with the DRAO method stated in Theorems 3.1, 3.2, and 3.3.

We will first show some general convergence properties about the generic DRAO method in Algorithm 1.
Since this result holds regardless of the strong convexity of f∗i (i.e., µ = 0 is allowed in (3.15)) and the strong
convexity of u (i.e., α = 0 is allowed), it will be applied to both smooth and nonsmooth problems under
either convex or strongly convex settings.

Proposition 3.4. Let {zt ≡ (xt; pt, πt)}Nt=1 be generated by Algorithm 1 for some pt ∈
arg maxp∈P

∑m
i=1 pi(〈xt, πti〉 − f∗i (πti)) − ρ∗(p). Fix a reference point ẑ := (x̂; p̂, π̂) ∈ X × P × Π (c.f.

(2.2)). Assume µ is a non-negative constant satisfying

f∗i (πi)− f∗i (π̄i)− 〈g′i(π̄i), πi − π̄i〉 ≥ µVi(πi; π̄i), ∀πi, π̄i ∈ Πi,∀i ∈ [m]. (3.15)
eq:strong_convex_dualeq:strong_convex_dual

If there exists a positive constant q satisfying∑m
i=1 piVi(π

t
i ;π

t−1
i ) ≥ 1

2q

∥∥∑m
i=1 piA

>
i (πti − π

t−1
i )

∥∥2
,∀t ≥ 2,∀p ∈ P,∑m

i=1 piVi(π̂i;π
N
i ) ≥ 1

2q

∥∥∑m
i=1 piA

>
i (π̂i − πNi )

∥∥2
,∀p ∈ P,

(3.16)
eq:aggregate_stx_cvxit_csteq:aggregate_stx_cvxit_cst

and the stepsizes satisfy the following conditions for all t ≥ 2 :

ωt−1 = ωtθt,

ηt−1τt ≥ θtq, (τN + µ)ηN ≥ q,
ωtηt ≤ ωt−1(ηt−1 + α), ωtτt ≤ ωt−1(τt−1 + µ),

(3.17)
req:DRAOreq:DRAO

then the next bound is valid for all ẑ := (x̂; p̂, π̂) ∈ X × P ×Π and N ≥ 1:∑N
t=1 ωtQ(zt; ẑ) + ωN (ηN+α)

2

∥∥xN − x̂∥∥2 ≤ ω1η1

2

∥∥x0 − x̂
∥∥2

+ ω1τ1
∑m
i=1 p̂iVi(π̂i;π

0
i ). (3.18)
eq:central_Qeq:central_Q

Proof. Let Qπ, Qp and Qx be defined in (2.5). We begin by analyzing the convergence of Qπ. It follows
from the definition of x̃t that

〈π̂i − πti , Ai(x̃t − xt)〉 =− 〈π̂i − πti , Ai(xt − xt−1)〉+ θt〈π̂i − πt−1
i , Ai(x

t−1 − xt−2)〉

®We assume the strong convexity modulus α to be small such that the M2
AD

2
Π/α term dominates in (3.14).
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+ θt〈πt−1
i − πti , Ai(xt−1 − xt−2)〉.

The optimality condition for the dual update in Line 3 of Algorithm 1 (see Lemma 3.1 of [16]) implies

〈π̂i − πti , Aixt〉+ f∗i (πti)− f∗i (π̂i) + 〈π̂i − πti , Ai(x̃t − xt)〉
≤ τtVi(π̂i;πt−1

i )− (τt + µ)Vi(π̂i;π
t
i)− τtVi(πti ;πt−1

i ).

So, combining the above two relations, taking the ωt weighted sum of the resulting inequalities and using
the conditions that ωt−1 = ωtθt and ωtτt ≤ ωt−1(τt−1 + µ), we obtain∑N

t=1 ωt(〈π̂i − π
t
i , Aix

t〉+ f∗i (πti)− f∗i (π̂i))

≤− (ωN (τN + µ)Vi(π̂i;π
N
i )− ωN 〈π̂i − πNi , Ai(xN − xN−1)〉)

−
∑N
t=2[ωtτtVi(π

t
i ;π

t−1
i ) + ωt−1〈πt−1

i − πti , Ai(xt−1 − xt−2)〉]
+ ω1τ1Vi(π̂i;π

0
i ).

A p̂i-weighted sum of the above inequality leads to the desired Qπ convergence bound given by∑N
t=1 ωtQπ(zt; ẑ)

≤− (ωN (τN + µ)
∑m
i=1 p̂iVi(π̂i;π

N
i )− ωN 〈

∑m
i=1 p̂iA

>
i (π̂i − πNi ), xN − xN−1〉)

−
∑N
t=2[ωtτt

∑m
i=1 p̂iVi(π

t
i ;π

t−1
i ) + ωt−1〈

∑m
i=1 p̂iA

>
i (πt−1

i − πti), xt−1 − xt−2〉]
+ ω1τ1

∑m
i=1 p̂iVi(π̂i;π

0
i ).

(3.19)
eq:central_Qpii_boundeq:central_Qpii_bound

Next, we consider xt and pt generated by Line 5 in Algorithm 1. Let F (x;πt) := maxp∈P
∑m
i=1 pi[〈x, vti〉−

f∗i (πti)] − ρ∗(p) + u(x) + η
2

∥∥x− xt−1
∥∥2
. Since xt ∈ arg minx∈X F (x;πt), the first-order necessity condition

implies the existence of some maximizer pt and some subgradient u′(xt) ∈ ∂u(xt) such that∑m
i=1 p

t
iv
t
i+η(xt−xt−1)+u′(xt) ∈ −∂δX(xt)⇒ 〈

∑m
i=1 p

t
iA
>
i π

t
i , x

t − x̂〉+〈ηt(xt − xt−1) + u′(xt), xt − x̂〉 ≤ 0.

Since α-strong convexity of u implies that u(xt) +α‖xt− x̂‖2/2−u(x̂) ≤ 〈u′(xt), xt − x̂〉, and ηt
2 ‖x

t − x̂‖2 +
ηt
2

∥∥xt − xt−1
∥∥2 − ηt

2

∥∥xt−1 − x̂
∥∥2

= 〈ηt(xt − xt−1), xt − x̂〉 , we get

Qx(zt; ẑ) + ηt+α
2

∥∥xt − x̂∥∥2 ≤ ηt
2

∥∥xt−1 − x̂
∥∥2 − ηt

2

∥∥xt − xt−1
∥∥2
. (3.20)

pr1:Qxpr1:Qx

Additionally, being a maximizer, pt satisfies

pt ∈ arg max
p∈P

∑m
i=1 pi(〈xt, Aiπti〉 − f∗i (πti))− ρ∗(p)

⇒
∑m
i=1(p̂i − pt)(〈xt, Aiπti〉 − f∗i (πti)) + ρ∗(pt)− ρ∗(p̂) ≤ 0⇒ Qp(z

t; ẑ) ≤ 0, (3.21)
pr1:Qppr1:Qp

So, combining (3.21) and (3.20), taking a ωt-weighted sum of the resulting inequality and using ωtηt ≤
ωt−1(ηt−1 + α), we obtain∑N

t=1 ωt(Qx(zt; ẑ) +Qp(z
t; ẑ)) + ωN (ηN+α)

2

∥∥xN − x̂∥∥2 ≤ ω1η1

2

∥∥x0 − x̂
∥∥2 −

∑N
t=1

ωtηt
2

∥∥xt − xt−1
∥∥2
. (3.22)

eq:central_Qx_Qpeq:central_Qx_Qp

Then utilizing (3.16) and the Young’s inequality, (3.18) follows immediately by adding (3.22) to (3.19).

We now apply the result in Proposition 3.4 to the smooth problem. Observe that the gradient evaluation
point xt is common for all workers. This allows us to easily characterize the strong convexity modulus of
the aggregate prox-penalty function

∑m
i=1 p̂iWf∗i

(·; ·) (c.f. (3.16)) in the next lemma.
Lemma 3.5. Let p̂ ∈ P be given. If πi = ∇fi(x) and π̄i = ∇fi(x̄) for some x and x̄, then∑m

i=1 p̂iWf∗i
(πi; π̄i) ≥ 1

2Lf

∥∥∑m
i=1 p̂iA

>
i (πi − π̄i)

∥∥2
. (3.23)
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Proof. Let fp̂(x) := (
∑m
i=1 p̂ifi(x)). Then by the definition of Lf in (3.5), fp̂ is Lf -smooth and its

conjugate (fp̂)
∗ is 1/Lf strongly convex. Next, we relate W(fp̂)∗ to

∑m
i=1 p̂iWf∗i

to calculate its strong
convexity modulus. Since

∑m
i=1 p̂iπi = ∇fp̂(x) and

∑m
i=1 p̂iπ̄i = ∇fp̂(x̄), we have by Fenchel duality that∑m

i=1 p̂i〈πi − π̄i,∇f∗i (π̄i)〉 = 〈
∑m
i=1 p̂i(πi − π̄i), x̄〉 = 〈

∑m
i=1 p̂i(πi − π̄i),∇(fp̂)

∗(
∑m
i=1 p̂iπ̄i)〉,∑m

i=1 p̂if
∗
i (πi) =

∑m
i=1 p̂i(〈πi, x〉 − fi(x)) = 〈

∑m
i=1 p̂iπi, x〉 − (

∑m
i=1 p̂ifi)(x) = (fp̂)

∗(
∑m
i=1 p̂iπi),

and, similarly,
∑m
i=1 p̂if

∗
i (π̄i) = (fp̂)

∗(
∑m
i=1 p̂iπ̄i). Thus∑m

i=1 p̂iWf∗i
(πi; π̄i) = (fp̂)

∗(
∑m
i=1 p̂iπi)− (fp̂)

∗(
∑m
i=1 p̂iπ̄i)− 〈

∑m
i=1 p̂i(πi − π̄i),∇(fp̂)

∗(
∑m
i=1 p̂iπ̄i)〉

= W(fp̂)∗(
∑m
i=1 p̂iπi;

∑m
i=1 p̂iπ̄i) ≥

1
2Lf
‖
∑m
i=1 p̂i(πi − π̄i)‖

2
= 1

2Lf

∥∥∑m
i=1 p̂iA

>
i (πi − π̄i)

∥∥2
,

where the last inequality follows from A>i = I in smooth problems.

We are now ready to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1: We apply Proposition 3.4 to obtain the convergence result in (3.7). Since f∗i is
1-strongly convex with respect to Wf∗i

, µ = 1 satisfies condition (3.15). Since πti = ∇fi(xt) and π̂i = ∇fi(x̄)
for some x̄, q = Lf satisfies condition (3.16) (c.f. Lemma 3.5). Moreover, since stepsizes proposed in Theorem
3.1 verifies (3.17), all the requirements in Proposition 3.4 are met. Thus Proposition 3.4 leads to (3.6), i.e.,∑N

t=1 ωtL(xt; p̂, π̂)−
∑N
t=1 ωtL(x∗; pt, πt) + Lf

∥∥xN − x∗∥∥2 ≤ Lf
∥∥x0 − x∗

∥∥2
.

In particular, with π̂Ni = ∇fi(x̄N ) and p̂N ∈ arg maxp∈P
∑m
i=1 pifi(x̄

N ) such that f(x̄N ) = L(x̄N ; p̂N , π̂N )

(see Lemma 2.1), we have∑N
t=1 ωtL(xt; p̂N , π̂N )−

∑N
t=1 ωtL(x∗; pt, πt) ≤ Lf

∥∥xN − x∗∥∥2
.

Because L(·; p̂N , π̂N ) is convex with respect to x, the first term satisfies∑N
t=1 ωtL(xt; p̂N , π̂N ) ≥ N(N+1)

2 L(x̄N ; p̂N , π̂N ) = N(N+1)
2 f(x̄N ).

Due to the weak duality in Lemma 2.1, the second term is upper bounded by∑N
t=1 ωtL(x∗; pt, πt) ≤

∑N
t=1 ωtf(x∗) = N(N+1)

2 f(x∗).

Then the desired inequality in (3.7) follows immediately.

Proof of Theorem 3.2: Similar to the preceding proof, the proposed stepsizes (c.f. (3.8)), together with
µ = 1 and q = Lf , verify the requirements in Proposition 3.4, thus∑N

t=1 ωt(L(xt; p̂, π̂)− L(x∗; pt, πt)) + ωN (η + α)
∥∥xN − x∗∥∥2 ≤ ω1(η

∥∥x0 − x∗
∥∥2

+ τ
∑m
i=1 p̂iWf∗i

(π̂i;π
0
i )).

Using the relation of conjugate Bregman distance functions and the identity ∇(
∑m
i=1 p̂ifi)(x̄) =∑m

i=1 p̂i∇fi(x̄), the last term can be upper bounded by∑m
i=1p̂iWf∗i

(π̂i;π
0
i ) =

∑m
i=1 p̂i(Wfi(x

0; x̄))

= (
∑m
i=1 p̂ifi)(x

0)− (
∑m
i=1 p̂ifi)(x̄)− 〈∇(

∑m
i=1 p̂ifi)(x̄), x0 − x̄〉

≤ Lf
2

∥∥x0 − x̄
∥∥2
.

Thus the Q convergence bound in (3.9) follows immediately from∑N
t=1 ωtQ(zt; ẑ) + α(

√
4κ+1−1)
4θN

∥∥xN − x̂∥∥2 ≤ (
√

4κ+1−1)
4 (α

∥∥x0 − x̂
∥∥2

+ Lf
∥∥x0 − x̄

∥∥2
).
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Additionally, setting the preceding ẑ to the saddle point z∗ defined in Lemma (2.2) (c.f. (2.4)) such that

Q(zt; z∗) ≥ 0 ∀t and dividing both sides by α(
√

4κ+1−1)
4θN

, the geometric convergence of xN to x∗ in (3.10) can
be deduced.

Now we move on to present convergence proofs for structured non-smooth problems.

Proof of Theorem 3.3 First, we consider part a) with a non-strongly convex u(x). The result is also

a consequence of Proposition 3.4. Since Vi(πi; π̄i) := 1
2 ‖πi − π̄i‖

2 ≥ 1
2M2

A

∥∥A>i (πi − π̄i)
∥∥2

, the Jensen’s

inequality implies the condition (3.16) is satisfied with q = M2
A. Since f∗i is convex, the condition (3.15) is

satisfied with µ = 0. Additionally, since the chosen stepsizes in Theorem 3.3 satisfy the condition (3.17), all
the requirements for Proposition 3.4 are met. Thus for any feasible ẑ := (x̂; p̂, π̂), we have∑N

t=1 ωtQ(zt; ẑ) + ωNηN
2

∥∥xN − x̂∥∥2 ≤ ω1η1

2

∥∥x0 − x̂
∥∥2

+ ω1τ1
2

∑m
i=1 p̂i

∥∥π̂i − π0
i

∥∥2
.

Let π̂Ni ∈ arg maxπi∈Πi〈πi, Aix̄
N 〉 − f∗i (πi) and p̂N ∈ arg maxp∈P

∑m
i=1 pifi(x̄

N ) such that f(x̄N ) =

L(x̄N ; p̂Ni , π̂
N
i ) (c.f. Lemma 2.1). Setting ẑ to ẑN := (x∗; p̂N , π̂N ) leads to∑N

t=1 ωtQ(zt; ẑN ) ≤ η1

2 R
2
0 + τ1

2 D
2
Π = R0MADΠ.

Then the resulting convergence bound in (3.13) can be deduced from the fact (
∑N
t=1 ωt)f(x̄N ) − f(x∗) ≤∑N

t=1 ωtQ(zt; ẑN ).
As for part b), the derivation is the same except for the different stepsize choice to take advantage of

the α-strong convexity of u(x).

4. The DRAO-S method. The practical application of the DRAO method is limited by the exact
computation to the following saddle point problem in Line 5 of Algorithm 1:

xt ← arg min
x∈X

max
p∈P

∑m
i=1 pi[〈x, vti〉 − f∗i (πti)]− ρ∗(p) + u(x) + ηt

2

∥∥x− xt−1
∥∥2
. (4.1)

eq:saddle_subproblemeq:saddle_subproblem

We relax it by assuming only the ability to efficiently compute the p-prox mapping defined in (1.7).
In the DRO setting, the efficient implementations for risk measures induced by several probability un-
certainty sets are described in [40]. For the entropic risk measure, if we select prox-function to be
U(p; p̄) :=

∑m
i=1 pi log(pi/p̄i), the computation amounts to a softmax evaluation. For the mean semi-

deviation risk of order two, the computation can be implemented as a quadratically constrained quadratic
program (QCQP).

In this section, we design a novel saddle point sliding (SPS) subroutine to solve (4.1) inexactly in the
DRAO method and call the resulting method distributed risk-averse optimization with sliding (DRAO-S).
We show the DRAO-S method maintains the same order of communication complexity as the DRAO method.
Moreover, the total number of P -projections required by the DRAO-S method will be mostly optimal, in
the sense that it is equivalent to the optimal one required for solving problem (1.1) with linear local cost
functions fi’s.

4.1. The Algorithm and Convergence Results. The SPS subroutine for solving (4.1) inexactly is
presented in Algorithm 2. It is closely related to the classic primal dual (PD) algorithm (see [3, 16]) for
solving a structured bilinear saddle point problem given by

min
y∈X

max
p∈P
〈vty, p〉 − ρ∗(p),

where the matrix vt is obtained from stacking (vt1)>, (vt2)>, . . . , (vtm)> from Line 3 of Algorithm 1 vertically.
In iteration s, the subroutine computes an extrapolated prediction of

∑m
i=1 p

s
iv
t
i in Line 2, a y-prox update in

Line 3, and then a p-prox update in Line 4. The p-prox update utilizes a general Bregman distance function
U to allow a suitable choice to take advantage of the geometry of P . At the end of St iterations, the SPS
subroutine returns a weighted ergodic average of {ys} as an approximate solution to (4.1).
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Algorithm 2 Saddle Point Sliding (SPS) Subroutine

Input: Initial points xt−1, y0 ∈ X, p0, p−1 ∈ P , and gradients {vti}, {v
t−1
i }. Non-negative step-

sizes ηt, {δs}, {γs} and {βs}, averaging weights {qs}, and iteration number St.
1: for s = 1, 2, 3...St do

2: ṽs ←

{∑m
i=1 p

0
i v
t
i + δ1

∑m
i=1(p0

i − p
−1
i )vt−1

i if s = 1,∑m
i=1 p

s−1
i vti + δs

∑m
i=1(ps−1

i − ps−2
i )vti if s ≥ 2.

3: ys ← arg miny∈X〈y, ṽs〉+ u(y) + βs
2

∥∥y − ys−1
∥∥2

+ ηt
2

∥∥y − xt−1
∥∥2
.

4: ps ← arg maxp∈P
∑m
i=1 pi(〈vti , ys〉 − f∗i (πti))− ρ∗(p)− γsU(p; ps−1).

5: end for
6: return xt :=

∑St
s=1 qsy

s/(
∑St
s=1 qs), y

t := ySt , p̄t :=
∑St
s=1 qsp

s/(
∑St
s=1 qs), p̃

t := pSt and
≈
pt := pSt−1.

The DRAO-S method is obtained by making the following two modifications to DRAO. First, we require
additional initial points (y0, p̃0,

≈
p0) ∈ X × P × P . For simplicity, we set y0 = x0 and p̃0 =

≈
p0. Second, we

replace the definition of xt in Line 5 of DRAO with the output solution of the SPS subroutine according to:

(xt, yt, p̄t, p̃t,
≈
pt) = SPS(xt−1, yt−1, p̃t−1,

≈
pt−1, {vti}, {vt−1

i } | ηt, {δts}, {γts}, {βts}, {qts}, St) ∀t ≥ 1. (4.2)
subroutine:SPS_smsubroutine:SPS_sm

At the beginning, i.e., t = 1, we set v0
i = v1

i ∀i ∈ [m]. Due to its similarity to the DRAO method, we call
the outer loop of the DRAO-S method (Algorithm 1 with modification (4.2)) the outer DRAO loop and say
a phase of the DRAO-S method happens if t is increased by 1. Accordingly, we call the inner loop of the
DRAO-S method (Algorithm 2) the inner SPS loop and say an (inner) iteration happens if s is incremented
by 1. Intuitively, if the inner iteration limits St were large enough, xt obtained from the inner SPS loop
would be a good approximate solution of (4.1). However, the P -projection complexity, i.e., the total number
of inner iterations given by

∑
t St, might be too large. In addition, notice that the computation burdens of

the server subproblem and the worker subproblem during each communication round are still different: the
server requires several rounds of P and X-projections for the SPS subroutine, while the worker needs just
one πi-prox mapping. However, since the server is often more powerful, e.g. the cloud-edge system, this
asymmetry may have a limited impact on the overall computation performance of the system.

We note here that the DRAO-S method is related to the Primal Dual Sliding (PDS) method in [17],
where the sliding subroutine is also a primal dual type algorithm. However, since we are dealing with
a nested trilinear saddle point problem, rather than the sum of two bilinear saddle point problems, the
DRAO-S method differs from the PDS method in two important ways. First, the linear operator vt for the
saddle point subproblem (c.f. (4.1)) changes in every phase. To coordinate consecutive inner SPS loops, we
construct a special momentum term from both the current vt and the previous vt−1 when transitioning into
a new phase, i.e., Line 2 of Algorithm 2. This construction is inspired by the novel momentum term in the
SD method [40]. Second, as opposed to the single initialization in both the PDS method and the gradient
sliding method [15], the y prox update in Line 3 of Algorithm 2 utilizes two distinct initialization points, the
ergodic average xt−1 and the last iterate obtained in the last phase, y0. Even though both are approximate
solutions to (4.1), ys is used only in the inner SPS loop while the ergodic average xt is used in both the
outer loop and the inner loop. As will be discussed in the next subsection, the additional initialization point
appears to significantly simplify the convergence analysis and the selection of stepsizes in comparison to
[15, 17].

Now, let us consider the smooth problem. The stepsizes associated with the inner SPS loop need to
adapt dynamically in two aspects. First, the inner iteration limit St needs to be an increasing function of
t to maintain the same communication complexity as the DRAO method. Second, as a primal dual type
algorithm, the inner SPS loop stepsizes, γts, δ

t
s and βts, need to satisfy a certain condition related to the

operator norm of vt, i.e., γts−1β
t
s ≥ δts ‖vt‖

2
, to ensure convergence. Specifically, if the Bregman distance

function U in Line 4 of Algorithm 2 is 1-strongly convex with respect to ‖·‖U , the operator norm of interest
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is given by

Mt :=
∥∥vt∥∥

2,U∗
:= max
‖p‖U≤1,‖y‖≤1

∑m
i=1 pi(v

t
i)
>y. (4.3)

def:Mt-defdef:Mt-def

Since a uniform bound on Mt may not exist if X is unbounded under the smooth setting, we choose γts and
βts to adjust dynamically to Mt in each phase. In particular, the next theorem presents the stepsize choice
and the convergence result under the non-strongly convex setting.

Theorem 4.1. Let a smooth risk-averse problem (c.f. (1.1)) be given. Let Mt and Lf be defined in
(4.3) and (3.5), and let R0 and DP be defined in Subsection 1.1. If {xt}Nt=1 are generated by the DRAO-S
method (4.2) with the following stepsizes:

ωt = t, θt = (t− 1)/(t), τt = (t− 1)/2, ηt = 2Lf/t,

∆ > 0, St = dt∆Mte, M̄t = St
t∆ , β

t
s = βt = DP M̄t

R0
, γts = γt = R0M̄t

DP
,

qts = 1, δt1 =

{
M̄t/M̄t−1 if t ≥ 2

1 if t = 1
, and δts = 1 ∀ s ≥ 2,

(4.4)
stp:sps_smstp:sps_sm

then the solution x̄N returned by the outer DRAO loop satisfies

f(x̄N )− f(x∗) ≤ 2LfR
2
0

N(N+1) + 2DPR0

N(N+1)∆ ,∀N ≥ 1, (4.5)
eq:f_SPS_smeq:f_SPS_sm

and there exists an uniform upper bound M̃ for Mt, i.e., M̃ ≥Mt, ∀t ≥ 1. In addition, if ∆ = DP /(LfR0),
the convergence bound can be simplified to

f(x̄N )− f(x∗) ≤ 4LfR
2
0

N(N+1) ,∀N ≥ 1. (4.6)
eq:f_SPS_sm1eq:f_SPS_sm1

A few remarks are in place regarding the above result. First, the stepsizes in the outer DRAO loop are
exactly the same as that of Theorem 3.1. Since each phase requires only two rounds of communication, the
DRAO-S method has a communication complexity of O(

√
LfR0/

√
ε). Second, M̄t defined in (4.4) is the

smallest upper bound of Mt needed to make the inner iteration limit St an integer. The factor ∆ in (4.4)
represents the conversion factor between the P -projection complexity and the communication complexity
(Π projection complexity). A communication complexity of the order O(1/

√
ε) can be maintained for any

∆ > 0 and the specific choice in (4.4) is needed only for optimal constant dependence. Third, since the
number of phases needed to find an ε-optimal solution is bounded by Nε := 2

√
LfR0/

√
ε, the total number

of P -projections is given by ∑Nε
t=1dt∆Mte ≤ ∆M̃N2

ε +Nε = O(DP M̃R0/ε).

Fourth, both the inner SPS loop stepsizes, βts, γ
t
s and δts, and the inner iteration limit St adjust dynamically

to the varying operator norm Mt characterizing the difficulty of the saddle point problem (4.1) of each phase.
Specifically, when the saddle point problem is easy, i.e., Mt is small, γts, β

t
s, and St become small so that a

small number of inner iterations is performed, and vice versa. Thus, when most Mt’s are significantly smaller
than the upper bound M̃ , the total number of P -projections can be much smaller than O(DP M̃R0/ε). Such
a saving is possible because St can compensate for the changing βts and γts such that the the effective proximal
penalty parameter, ωtγ

t
s/St and ωtβ

t
s/St, remains constant across phases. In contrast, it is difficult for single

loop primal dual type algorithms, such as the SD method [41], to adjust dynamically to the varying operator
norm of vt in each iteration.

The following theorem presents the stepsize choice and the convergence result under the strongly convex
setting.

Theorem 4.2. Let a smooth problem f (c.f. (1.1)) with α > 0 be given. Let R0 and DP be defined in
Subsection 1.1. Let the smoothness constant Lf be defined in (3.5) such that κ := Lf/α denotes the condition
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number. If {xt}Nt=1 are generated by the DRAO-S method (4.2) with the following stepsize:

θt = θ :=
√

8κ+1−1√
8κ+1+1

, ωt = ( 1
θ )t−1, τt = τ :=

√
8κ+1−1

2 , ηt = η := α(
√

8κ+1−1)
4 ,

βts = α(s−1)
4 , γts = 2St(St+1)

ωtαs∆
, δts = (s− 1)/s,

qts = s, St = d(2ωt∆)1/2Mte, ∆ > 0,

(4.7)
stp:sps_sm_strstp:sps_sm_str

the last iterate xN converges geometrically:∥∥xN − x∗∥∥2 ≤ θN
(

(1 + 2κ)
∥∥x0 − x∗

∥∥2
+

4D2
P

αη∆

)
,∀N ≥ 1, (4.8)

eq:sps_x_sm_str_conveq:sps_x_sm_str_conv

and there exist an M̃ such that Mt ≤ M̃ ∀t ≥ 1. If ∆ = 2D2
P /ηLfR

2
0 and κ ≥ 1, the total number of P -

projections required to find an ε-close solution, i.e.,
∥∥xN − x∗∥∥ ≤ ε, is bounded by O(κ

1/4M̃DP
α
√
ε

+
√
κ log( 1

ε )).

Note that the strong convexity modulus α is split into two to accelerate both the outer DRAO loop and
the inner SPS loop. For the outer DRAO loop, the proposed stepsize is the same as that of Theorem 3.2 if
α/2 is viewed as the strong convexity modulus. This allows the DRAO-S method to maintain the same order
of communication complexity, i.e., O(

√
κ log(1/ε)). For the inner SPS loop, the stepsizes are similar to that

of the accelerated primal-dual method (see [16]) with a strong convexity modulus of α/2. Moreover, similar
to Theorem 4.1, the stepsize γts and the inner iteration limit St adjust dynamically to the varying operator
norm M̄t in each phase. It is also worth noting that the constant dependence of the P -projection complexity
on κ in Theorem 4.2 is larger than the optimal by a factor of κ1/4. This complexity can be further improved
to O(M̃DP /α

√
ε+
√
κ log(1/ε)) if some stepsize choice similar to Theorem 6 of [42] is utilized.

Next, let us move on to the structured non-smooth problem. Since Π is assumed be bounded, the
following uniform upper bound of Mt (c.f. (4.3)) is useful for convergence analysis,

M̃AΠ = max
π∈Π
{
∥∥[A>1 π

t
1; . . . ;A>mπ

t
m]
∥∥

2,U∗
:= max

π∈Π
max

‖y‖2≤1,‖p‖U≤1

∑m
i=1 pi〈A>i πi, y〉}. (4.9)

def:Mpibardef:Mpibar

Specifically, the stepsize choices and the convergence properties of the DRAO-S method, applied to both
non-strongly and strongly convex settings, are presented in the next theorem.

Theorem 4.3. Let a structured non-smooth problem f (1.1) be given. Suppose DΠ, MA, Mt, and M̃AΠ

are defined in (3.12), (4.3) and (4.9), and suppose DP and R0 are defined in Subsection 1.1.
a) If α = 0 and the stepsizes are given by

ωt = 1, θt = 1, ηt = MADΠ/2R0, τt = MAR0/2DΠ,

∆ > 0, St = dMt∆e, M̄t := St
∆ , β

t
s = β = DP M̄t

R0
, γts = γ = R0M̄t

DP
,

qts = 1, δt1 =

{
M̄t/M̄t−1 if t ≥ 2

1 if t = 1
, and δts = 1 ∀ s ≥ 2,

(4.10)
stp:drao-s-nsstp:drao-s-ns

the solution x̄N returned by the DRAO-S method satisfies

f(x̄N )− f(x∗) ≤ MADΠR0

N + DPR0

∆N ,∀N ≥ 1. (4.11)
eq:sps-f-nseq:sps-f-ns

In particular, if ∆ = DP
MADΠ

, the convergence bound can be simplified to

f(x̄N )− f(x∗) ≤ 2MADΠR0

N ∀N ≥ 1. (4.12)
eq:sps-f-ns1eq:sps-f-ns1

b) If α > 0 and the stepsizes are given by

ωt = t, θt = (t− 1)/t, ηt = tα/6, τt = 6/tα,

∆ > 0 , St = d∆M̃2
AΠe, γts = γt := 4M̃2

AΠ/αt,

βts =

{
α
4

(t− 1) if s = 1
α
4
t ∀ s ≥ 2

, δts =

{
t−1
t

if s = 1

1 ∀ s ≥ 2
, qts = 1,

(4.13)
stp:drao-sps-ns-strstp:drao-sps-ns-str
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the solution x̄N returned by the DRAO-S method satisfies

f(x̄N )− f(x∗) ≤ 1
N(N+1) (α6R

2
0 +

6M2
AD

2
Π

α +
4M̃2

AΠD
2
P

α∆ ). (4.14)
eq:sps-f-ns-streq:sps-f-ns-str

In particular, if ∆ = D2
P /(M

2
AD

2
Π + α2R2

0/6), the convergence bound can be simplified to

f(x̄N )− f(x∗) ≤ 1
N(N+1) (αR2

0 +
10M2

AD
2
Π

α ). (4.15)
eq:sps-f-ns-str1eq:sps-f-ns-str1

A few remarks are in place. First, observe the above inner iteration limit St adjust dynamically to
the operator norm Mt for the non-strongly convex case (4.10), but not for the strongly convex case (4.13).
This shortcoming is an artifact of the order of prox updates in Algorithm 2. If a p-prox update, utilizing a
y-momentum prediction, is performed before the y-prox update, St can be chosen to be d∆M2

t e to achieve
the same effect. Moreover, since two communication rounds is required for each phase, the preceding result
implies an O(1/ε) (O(1/

√
ε)) communication complexity when α = 0 (resp. α > 0). Since the inner iteration

limit St is bounded, it also implies an O(1/ε) (resp. O(1/
√
ε)) P -projection complexity. In particular, with

the specific choices of ∆ shown above, the DRAO-S method can achieve the optimal constant dependence on
problem parameters, that is, O(R0MADΠ/ε) communication andO(M̃AΠDPR0/ε) P -projection complexities
when α = 0, and O(MADΠ/

√
εα) communication and O(M̃AΠDP /

√
εα) P -projection complexities when

α > 0.

4.2. Convergence Analysis. Our goal in this subsection is to establish the convergence rates of the
DRAO-S method stated in Theorem 4.1, 4.2 and 4.3.
First, we present a recursive bound to characterize the convergence property of each inner SPS loop under
both the non-strongly convex (α = 0) and the strongly convex (α > 0) settings.

Proposition 4.4. Fix a t ≥ 1. Let Mt := ‖vt‖2,U∗ and Mt−1 := ‖vt−1‖2,U∗ . If the SPS stepsizes in
Algorithm 2 satisfy:

δs = qs/qs−1, βsγs−1 ≥ δsM2
t ,∀s ≥ 2,

qs−1(βs−1 + α/2) ≥ qsβs, qs−1γs−1 ≥ qsγs,∀s ≥ 2,
(4.16)

req:SPS_phasereq:SPS_phase

the generated iterates, {(ys, ps)} and (xt, p̄t), satisfy the following relation for all x ∈ X, p ∈ P and S ≥ 1:

(
∑S
s=1 qs)[L(xt; p, πt)− L(x; p̄t, πt)] + δ1q1〈y0 − x,

∑m
i=1 v

t−1
i (p0

i − p
−1
i )〉 − qS〈yS − x,

∑m
i=1 v

t
i(p

S
i − p

S−1
i )〉

+
(
∑S
s=1 qs)

2 [ηt
∥∥xt − xt−1

∥∥2
+ (ηt + α/2)

∥∥xt − x∥∥2 − ηt
∥∥xt−1 − x

∥∥2
]

≤q1γ1U(p; p0)− qSγS [U(p; pS) + 1
2

∥∥pS − pS−1
∥∥2

U
] +

q1δ
2
1M

2
t−1

2β1

∥∥p0 − p−1
∥∥2

U

− 1
2 [qS(βS + α/2)

∥∥yS − x∥∥2 − q1β1

∥∥y0 − x
∥∥2

].

(4.17)
eq:SPS_phase_boundeq:SPS_phase_bound

Proof. Fix points x ∈ X and p ∈ P . First, consider the convergence of ys. Since u(y)+ηt
∥∥y − xt−1

∥∥2
/2

has a strong convexity modulus of α+ηt, the y-proximal update in Line 3 of Algorithm 2 leads a three-point
inequality (see Lemma 3.1 of [16]):

〈ys − x, ṽs〉+ u(ys)− u(x) + 1
2 [(βs + α+ ηt) ‖x− ys‖2 + βs

∥∥ys − ys−1
∥∥2 − βs

∥∥ys−1 − x
∥∥2

]

+ ηt
2 (
∥∥ys − xt−1

∥∥2 −
∥∥x− xt−1

∥∥2
) ≤ 0.

Equivalently, we have

〈ys − x, ṽs〉+ u(ys)− u(x) + 1
2 [(βs + α/2) ‖y − ys‖2 + βs

∥∥ys − ys−1
∥∥2 − βs

∥∥ys−1 − x
∥∥2

]

+ 1
2 [ηt

∥∥ys − xt−1
∥∥2

+ (ηt + α/2) ‖ys − x‖2 − ηt
∥∥x− xt−1

∥∥2
] ≤ 0. (4.18)

p2:Q_Xp2:Q_X
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In particular, the definition of ṽs in Line 2 of Algorithm 2 implies

〈ys − x, ṽs〉 =〈ys − x,
∑m
i=1 p

svti〉 − 〈ys − x,
∑m
i=1(psi − p

s−1
i )vti〉

+ δs〈ys−1 − x,
∑m
i=1(ps−1

i − ps−2
i )vti〉+ δs〈ys − ys−1,

∑m
i=1(ps−1

i − ps−2
i )vti〉,∀s ≥ 2,

〈y1 − x, ṽ1〉 =〈y1 − x,
∑m
i=1 p

1vti〉 − 〈y1 − x,
∑m
i=1(p1

i − p0
i )v

t
i〉

+ δ1〈y0 − x,
∑m
i=1(p0

i − p
−1
i )vt−1

i 〉+ δ1〈y1 − y0,
∑m
i=1(p0

i − p
−1
i )vt−1

i 〉.

So, substituting them into (4.18), summing up the resulting inequality with weight qs, noting the step-sizes
conditions in (4.16), and utilizing Young’s inequality, we get∑St

s=1qs

(
L(ys; ps, πt)− L(x; ps, πt) + 1

2 [ηt
∥∥ys − xt−1

∥∥2
+ (ηt + α/2) ‖ys − x‖2 − ηt

∥∥x− xt−1
∥∥2

]
)

+ q1δ1〈y0 − x,
∑m
i=1(p0

i − p
−1
i )vt−1

i 〉 − qS〈yS − x,
∑m
i=1(pSi − p

S−1
i )vti〉

≤
∑S
s=2

qs−1γs−1

2

∥∥ps−1 − ps−2
∥∥2

U
+

q1δ
2
1M

2
t−1

2β1

∥∥p0 − p−1
∥∥2

U

− 1
2 [qS(βS + α/2)

∥∥yS − x∥∥2 − q1β1

∥∥y0 − x
∥∥2

].

(4.19)
p2:y_convp2:y_conv

Next, consider the convergence of ps. The p-proximal update in Line 4 of Algorithm 2 implies

L(ys; p, πt)− L(ys; ps, πt) + γs[U(p; ps) + U(ps; ps−1)− U(p; ps−1)] ≤ 0.

Observing the strong convexity of U with respect to ‖·‖U and the stepsize conditions in (4.16), the qs
weighted sum satisfies∑St

s=1 qs[L(ys; p, πt)− L(ys; ps, πt)] + γSqSU(p; pS) +
∑St
s=1

qsγs
2

∥∥ps − ps−1
∥∥2

U
≤ q1γ1U(p; p0).

Then, combining it with the y convergence bound in (4.19), we get∑St
s=1qs

(
L(ys; p, πt)− L(x; ps, πt) + 1

2 [ηt
∥∥ys − xt−1

∥∥2
+ (ηt + α/2) ‖ys − x‖2 − ηt

∥∥xt−1 − x
∥∥2

]
)

+ q1δ1〈y0 − x,
∑m
i=1 v

t−1
i (p0

i − p
−1
i )〉 − qS〈yS − x,

∑m
i=1 v

t
i(p

S
i − p

S−1
i )〉

≤q1γ1U(p; p0)− qSγS [U(p; pS) + 1
2

∥∥pS − pS−1
∥∥2

U
] +

q1δ
2
1M

2
t−1

2β1

∥∥p0 − p−1
∥∥2

U

− 1
2 [qS(βS + α/2)

∥∥yS − x∥∥2 − q1β1

∥∥y0 − x
∥∥2

].

Moreover, since L(ys; p, πt),
∥∥ys − xt−1

∥∥2
and ‖ys − x‖2 are convex with respect to ys and L(x; ps, πt) is

linear with respect to ps, the desired convergence bound (4.17) can be derived using the Jensen’s inequality.

In the above proposition, an ωt-weighted sum of the terms related to the outer DRAO loop, xt and p̄t, in
(4.17) is the same¯ as the Qx and Qp convergence bound in the proof of Proposition 3.4, (c.f. (3.22)). So a
convergence bound of Q in the DRAO-S method can be deduced by plugging it into the proof of Proposition
3.4, i.e, the analysis for the Q convergence in the DRAO method.

Proposition 4.5. Let zt := {xt, p̄t, πt} be generated by the DRAO-S method with the outer DRAO
loop stepsize satisfying (3.15), (3.16) and (3.17), and the inner SPS loop stepsize satisfying (4.16). Let

ω̃t := ωt/
∑St
s=1 q

t
s denote the effective summation weight for the inner SPS loops and let Mt be defined in

(4.3). Suppose the following inter-phase stepsize requirements for inner SPS loop hold for t ≥ 2:

ω̃tqt1(δt1)2M2
t−1 ≤ ω̃t−1βt1q

t−1
St−1

γt−1
St−1

, M2
N ≤ γNSN (βNSN + α/2),

ω̃tqt1β
t
1 ≤ ω̃t−1qt−1

St−1
(βt−1
St−1

+ α/2), ω̃tqt1γ
t
1 ≤ ω̃t−1qt−1

St−1
γt−1
St−1

,

ω̃tδt1q
t
1 = ω̃t−1qt−1

St−1
.

(4.20)
req:Q-sliding-reqreq:Q-sliding-req

¯Except that α/2, instead of α, is regarded as the strong convexity modulus for the outer DRAO loop.

17



Then the following Q-convergence bound holds for any reference point z := (x∗, p, π) and for all N ≥ 1∑N
t=1 ωtQ (zt, z) + ωN (ηN + α/2)

∥∥xN − x∗∥∥2
/2

≤ ω1τ1
∑m
i=1 piWf∗i

(πi;π
0
i ) + (ω1η1 + ω̃1q1

1β
1
1)
∥∥x0 − x∗

∥∥2
/2 + ω̃1q1

1γ
1
1D

2
P /2.

(4.21)
eq:central-sliding-Qeq:central-sliding-Q

The above bound also holds if the last condition in (4.20) is replaced by

γtSt(β
t
St + α/2) ≥M2

t , β
t
1 = 0, and δt1 = 0 ∀t ≥ 1. (4.22)

req:Q-sliding-altreq:Q-sliding-alt

Proof. As pointed out above the proposition, dividing both sides of (4.17) by
∑St
s=1 q

t
s, taking its ωt-

weighted sum, and noting the choice of initialization points in (4.2) and the telescope cancellation resulting
from the stepsize requirements (4.20), we get a convergence bound of Qx and Qp given by∑N

t=1ωt[Qx(zt; z) +Qp(z
t; z)] +

∑N
t=1

ωt
2 ηt

∥∥xt − xt−1
∥∥2

+ ωN (ηN + α/2)
∥∥xN − x∗∥∥2

≤ ω̃1q1
1(γ1

1U(p; p̃0) + β1
1

∥∥y0 − x∗
∥∥2
/2) + ω1η1

2

∥∥x0 − x∗
∥∥2
.

(4.23)
eq:sliding-QxQpeq:sliding-QxQp

The preceding bound is almost the same as its counterpart in Proposition 3.4, i.e., (3.22). Moreover, since
the generation of πt in the outer DRAO loop of the DRAO-S method is also the same as that of the DRAO
method, the Qπ convergence bound in Proposition 3.4 (c.f. (3.19)) is also valid. The desired Q convergence
bound in (4.21) then follows from combining (3.19) with (4.23), and noting U(p; p̃0) ≤ D2

P /2 and y0 = x0.
In addition, if the alternative stepsize requirement (4.22) is satisfied, (4.17) can be simplified further to

(
∑St
s=1 qs)(L(xt; p, πt)− L(x; p̄t, πt)) +

(
∑St
s=1 qs)

2 (ηt
∥∥xt − xt−1

∥∥2
+ (ηt + α/2)

∥∥xt − x∥∥2 − ηt
∥∥xt−1 − x

∥∥2
)

≤q1γ1U(p; p0)− qStγStU(p; pSt).

Then a similar argument would lead to the Q convergence bound in (4.21) as well.

The next convergence proofs of the DRAO-S method for the smooth problem, i.e., Theorem 4.1 and
Theorem 4.2, are direct applications of Proposition 4.5.

Proof of Theorem 4.1 It is easy to verify that the stepsize choice in (4.4) satisfies the requirements in
Proposition 4.5, thus the following convergence bound is valid for any reference point z := (x∗; p, π) and for
all N ≥ 1, ∑N

t=1 ωtQ (zt, z) + Lf
∥∥xN − x∗∥∥2 ≤ LfR2

0 +DPR0/∆. (4.24)
thm-pf:sm-Qthm-pf:sm-Q

Let π̂Ni = ∇fi(x̄N ) and p̂N ∈ arg maxp∈P
∑m
i=1 pifi(x̄

N ) such that f(x̄N ) = L(x̄N ; p̂N , π̂N ) (see Lemma
2.1), then the desired convergence result in (4.5) can be deduced by choosing the reference point to be
(x∗; p̂N , π̂N ). Furthermore, the result in (4.6) can be deduced by substituting in the specific choice of ∆.

Next, we show the boundedness of Mt. Since πt = ∇fff(xt) (c.f. (3.3)), fff is smooth and xt is a convex
combination of x0 and {x̃t}, the boundedness of ‖πt‖2,U∗ follows from the boundedness of x̃t. Setting the
reference point to the saddle point (x∗, p∗, π∗) (c.f. Lemma 2.2), we get from (4.24)

Lf
∥∥xN − x∗∥∥2 ≤ 2LfR

2
0 ∀N ≥ 2.

This shows that xt’s are restricted to be a bounded ball around x∗. Since θt ≤ 1, the extrapolated sequence
x̃t’s are also restricted to a bounded ball around x∗, implying the boundedness of {Mt}∞t=1.

Proof of Theorem 4.2 We can verify that the stepsize choice in (4.7) satisfies the alternative requirements
in Proposition 4.5 (c.f. (4.22)). Setting the reference point z to the saddle point (x∗, p∗, π∗) (c.f. Lemma
2.2), we get from (4.21) the desired geometric convergence of xN (4.8), i.e.,∥∥xN − x∗∥∥2 ≤ θN [(1 + 2κ)

∥∥x0 − x∗
∥∥2

+
4D2

P

η∆α ],∀N ≥ 1. (4.25)
thm8:x_last_iterat_Nthm8:x_last_iterat_N
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Observe that the above convergence bound also implies the boundedness of {xt}. Thus the existence of an
uniform bound for Mt follows from an argument similar to that of the proof of Theorem 4.1.

Next, we establish an upper bound on the total of inner iterations when ∆ := 2D2
P /ηLf

∥∥x0 − x∗
∥∥2

and
κ is large. The specific choice of ∆ allows us to simplify (4.25) further to∥∥xN − x∗∥∥2 ≤ θN

(
5κR2

0

)
.

LetNε denotes the least number of phases required to satisfy
∥∥xNε − x∗∥∥2 ≤ ε. Clearly, Nε = O(

√
κ log(1/ε)).

Specifically, since κ ≥ 1 implies 1/θ ≤ 2, we have (1/θ)Nε ≤ 10κR0/ε.
For the total inner iteration number, a bound for St are provided by the stepsizes requirement (4.7).

Since Mt ≤ M̃ and St ≤ 1 +
√

2ωt∆M̃, the total number is upper bounded by∑Nε
t=1 St ≤ Nε +

∑Nε
t=1(

√
1
θ )t−1

√
∆M̃ = Nε + (1/θ)Nε/2−1√

1/θ−1

√
∆M̃

≤ Nε + 1√
1/θ−1

1√√
8κ+1−1

M̃DP√
LfR0

16
√
LfR0

α
√
ε
≤ Nε + 64κ1/4M̃DP

α
√
ε

.

The second last inequality follows from the algebraic fact
√

1 + l − 1 ≥ l/4 for l ≤ 1, and

1√
1/θ−1

1√√
8κ+1−1

= 1√
1+2/(

√
8κ+1−1)−1

1√√
8κ+1−1

≤ 2(
√

8κ+ 1− 1) 1√√
8κ+1−1

≤ 2

√√
8κ+ 1− 1 ≤ 4κ1/4.

Thus the number of inner iterations, and hence the P projection complexity, are upper bounded by

O(κ
1/4M̃DP
α
√
ε

+
√
κ log( 1

ε )).

Proof of Theorem 4.3 The proof is similar to that of Theorem 3.3. Let us first consider the non-strongly
convex case. Since M̄t ≥Mt,∀t, the stepsize choice in (4.10) satisfies all the requirements in Proposition 4.4
(c.f. (4.20)). So substituting the stepsize choice into (4.21), we obtain the following convergence bound of
the Q gap function for any reference point z := (x∗, p, π):∑N

t=1Q(zt; z) + η
2

∥∥xN − x∥∥2
+ γ

∆U(p; pN ) ≤ (η2 + β
2∆ )

∥∥x0 − x
∥∥2

+ γ
∆U(p; p0) + τ

∑m
i=1 piVi(πi;π

0
i ). (4.26)

The desired function value convergence bound (4.11) follows immediately by selecting the reference point to
be (x∗, p̂N , π̂N ), where π̂Ni = ∇fi(x̄N ) and p̂N ∈ arg maxp∈P

∑m
i=1 pifi(x̄

N ).
The convergence bound (4.14) for the strongly case also follows from substituting the stepsize choice in

(4.13) into (4.21).

5. Lower Communication Complexities. In this section, we establish theoretical lower bounds for
distributed risk-averse optimization to show the communication complexities of both DRAO and DRAO-S are
not improvable. Towards that end, we propose a distributed prox mapping (DPM) computing environment
consisting of the following requirements and propose uniform lower bounds for all algorithms satisfying the
requirement.

• Local memory: the server node has a finite local memory Ms and each worker node has a finite
primal memory and a finite dual memory, Mi and Mπ

i , respectively. In the beginning, the local
memories contain only the trivial vector 0, i.e.,

Mi,0 =Ms,0 := {0}, Mπ
i,0 := {0} ∀i ∈ [m].

In one communication round, these local memories can be updated by both local computation and
server-worker communication:

Ms,t+1 :=Mcp
s,t ∪Mcomm

s,t , Mi,t+1 :=Mcp
i,t ∪M

comm
i,t , Mπ

i,t+1 :=Mπ,cp
i,t , ∀i ∈ [m],

where Mcp
s,t and Mπ,cp

i,t represent results from the local computation, and Mcomm
s,t and Mcomm

i,t

denote the vector(s) communicated to the server and the ith worker node, respectively.
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• Server-worker communication: in one communication round, each worker can send one vector
from its local primal memory to the server:

Mcomm
s,t := {yi ∈ span(Mi,t−1), i ∈ [m]},

and the server can share one vector from its memory with the worker:

Mcomm
i,t ∈ span(Ms,t−1).

• Local computations: between communication rounds, each worker can query its dual prox map-
ping oracle and the Ai-multiplication oracle° for L ≥ 0 times.

Mcp
i,t :=Mcp,L

i,t , Mπ,cp
i,t :=Mπ,L

i,t where Mcp,0
i,t :=Mi,t−1,Mπ,0

i,t :=Mπ
i,t−1.

For l = 1, 2, 3, . . . , L :

Mcp,l
i,t =Mcp,l−1

i,t ∪ {A>i πt,li , A
>
i π̄i}, Mπ,l

i,t :=Mπ,l−1
i,t ∪ {πt,li , Aix̄},where x̄ ∈ span(Mcp,l−1

i,t ),

π̄i ∈ span(Mπ,l−1
i,t ), πt,li ∈ arg max

πi∈Πi

〈Aix̄, πi〉 − f∗i (πi)− τ
2
‖πi − π̄i‖2 , for some τ ≥ 0. (5.1)

lower:dual_proxlower:dual_prox

The server node can query its u(x) prox mapping oracle for L ≥ 0 times.

Mcp
s,t :=Mcp,L

s,t where Mcp,0
s,t :=Ms,t−1.

For l = 1, 2, 3, . . . , L :

Mcp,l
s,t :=Mcp,l−1

s,t ∪ {xls}, where xls := arg min
x∈X

u(x) + η
2
‖x− x̄‖2 , x̄ ∈ span(Mcp,l−1

s,t ) .

• Output solution: the output solution xt comes from local primal memories,

xt ∈ span((∪i∈[m]Mi,t) ∪Ms,t), t ≥ 1.

The only hard requirement for the DPM environment is that only one vector can be sent and received by
each worker during one communication round. Indeed, the computations supported by the DPM environment
are quite strong in several aspects. First, it allows gradient evaluation of fi since it is equivalent to the πi-prox
mapping (c.f. (5.1)) with τ = 0, i.e.,

π̄i = ∇fi(x̄)⇔ π̄i ∈ arg maxπi∈Πi〈πi, x̄〉 − f
∗
i (πi).

Second, it allows a possibly large number of local computation steps to be performed between communica-
tions. This assumption of generous computing resource at each node helps us to focus on the communication
bottleneck. Third, it allows the freedom to make an arbitrary selection from the span of the local memory
for communication, computation, and outputting solutions. For example, it might appear that the DRAO
method violates the requirement because of the (x, p)-prox mapping in Line 5 of Algorithm 1. However, if
we let (xt, p̂t) be an optimal pair of saddle point solutions in the (x, p)-prox mapping step (c.f. (4.1)), the
output xt can be written alternatively as

xt ← arg maxx∈Xηt ‖x− x‖
2
/2 + u(x),

where x := xt−1−
∑m
i=1 p̂

t
iv
t
i/ηt and x ∈ span(Ms,t). So the (x, p)-prox mapping actually satisfies the above

local computation requirement. Moreover, the computation and communication of f∗i (πti)’s are unnecessary
because they are only used for generating p̂t. Since all other steps are directly supported, the DRAO
method can be implemented on the DPM environment. Indeed, our setup implies that the desired p can be
obtained from any oracle when selecting x (from the span of local memory of the server). This renders all
communication and computation related to p unnecessary. So the DRAO-S method, and, more generally,
any distributed algorithm consisting of the x-prox mapping, the π-prox mapping, and some p update can
be implemented on the DPM environment. For simplicity, we will call an algorithm satisfying the DPM
requirement a DPM algorithm for the rest of this section.

°The oracle returns matrix vector multiplication result of the form Aix and A>i π.
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server

f1 f2

Fig. 5.1: Network topology of hard instances.

Now we present some hard instances, inspired by [25, 27, 33], for all DPM algorithms. We first describe
a network topology and a general result which will be used in all our constructions. As shown in Figure 5.1,
the problem has only two workers, node 1 and node 2. Let Ki denote the subspace with non-zero entries
only in the first i coordinates, Ki := {x ∈ Rn : xj = 0 ∀j > i}. We will construct f1 and f2 such that the
iterate xt generated in t communication rounds will be restricted to a certain Ki. Towards that end, we call
a hard problem odd-even preserving if the memories generated by any DPM algorithm satisfies

M1,0 ∪M2,0 ∪Ms,0 ⊂ K2,

M1,t−1 ⊂ Ki ⇒
{
Mcp

1,t ⊂ Ki i ≥ 2 even

Mcp
1,t ⊂ Ki+1 i ≥ 2 odd

, M2,t−1 ⊂ Ki ⇒
{
Mcp

2,t ⊂ Ki+1 i ≥ 2 even

Mcp
2,t ⊂ Ki i ≥ 2 odd

,

Ms,t−1 ⊂ Ki ⇒Mcp
s,t ⊂ Ki.

(5.2)
ls:odd-evenls:odd-even

This property stipulates that the progresses on the reachable subspace Ki are possible only on node 1 or 2
depending on if i is odd or even, so that a large number of communication rounds between node 1 and 2 are
necessary for a non-trivial solution. The next lemma formalizes such limited progress by a DPM algorithm.

Lemma 5.1. If the odd-even preserving property (5.2) holds, the output solution xt generated by a DPM
algorithm after t communication rounds satisfy xt ⊂ Kdt/2e+2.

Proof. Let Mt := span(M1,t ∪M2,t ∪Ms,t), and let t(i) := min{t ≥ 0 : ∃y ∈ Mt, j ≥ i s.t yj 6= 0}
denote the first time a vector with a non-zero j ≥ ith index is generated. We develop a lower bound for t(i).

Consider an even i > 2. By the definition of t(i), Mt(i)−1 ⊂ Ki−1. The odd-even preserving property
then implies Mcp

2,t(i) ⊂ Ki−1 and Mcp
s,t(i) ⊂ Ki−1, so M1,t(i) ⊂ Ki, Ms,t(i) ⊂ Ki−1, and M2,t(i) ⊂ Ki−1

after one communication round. Next, the odd-even preserving property again implies Mcp
1,t(i)+1 ⊂ Ki,

Mcp
2,t(i)+1 ⊂ Ki−1 and Mcp

s,t(i)+1 ⊂ Ki−1, so M1,t(i)+1 ⊂ Ki, Ms,t(i)+1 ⊂ Ki, and M2,t(i) ⊂ Ki−1 after

another communication round. Therefore, we have t(i + 1) > t(i) + 1, i.e., t(i + 1) ≥ t(i) + 2. The same
recursive bound can also be obtained for an odd i ≥ 2. In view of t(2) ≥ 0, the largest non-zero index i in
Mt satisfies t ≥ t(i) ≥ t(2) + 2i− 4 ≥ 2i− 4, thus i ≤ dt/2e+ 2.

We are now ready to provide lower bounds under different problem settings. The next two results
establish tight lower communication bounds for the smooth problem with a non-strongly convex u(x) and a
strongly convex u(x), respectively.

Theorem 5.2. Let Lf > 0, R0 ≥ 1 and ε > 0 be given. For a sufficiently large problem dimension, i.e.,
n > 2d

√
LfR0/8

√
εe, there exists a smooth hard problem of form (1.1) with an aggregate smoothness constant

Lf (c.f. (3.5)),
∥∥x0 − x∗

∥∥ ≤ R0 such that any DPM algorithm takes at least Ω(
√
LfR0/

√
ε) communication

rounds to find an ε-optimal solution.
Proof. Consider the following hard problem parameterized by β ≥ 0, γ ≥ 0 and k ≥ 4,

f(x) := maxp∈∆+
2
p1f1(x) + p2f2(x) + u(x) with X = R2k+1, u(x) = 0,

f1(x) := β
2 [2
∑k
i=1(x2i−1 − x2i)

2 + x2
1 + x2

2k+1 − 2γx1],

f2(x) := β
2 [2
∑k
i=1(x2i − x2i+1)2 + x2

1 + x2
2k+1 − 2γx1].

(5.3)
sm_l:probsm_l:prob

Its aggregate smoothness constant L̄f (c.f. (3.5)) satisfies L̄f ≤ 6β, and its optimal solution (x∗, p∗) satisfies

p∗ = [ 1
2 ,

1
2 ], x∗i = γ(1− i

2k+2 ) ∀i ≤ 2k + 1, s.t.
∥∥x0 − x∗

∥∥ ≤ γ√k + 1 and f∗ = −βγ
2

2 [1− 1
2k+2 ].

Their optimality can be verified with the first order conditions:

0 = ∇( 1
2f1 + 1

2f2)(x∗) and [1/2, 1/2] ∈ arg maxp∈∆+
2
p1f1(x∗) + p2f2(x∗).
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The even-odd preserving property holds for (5.3). To see this, consider the worker node f1. Let an even
i ≥ 2 be given and assume M1,t−1 ⊂ Ki, i.e., Mcp,0

1,t ⊂ Ki. Because Ai = I, the update rule in (5.1) imply

that Mπ,0
1,t ⊂ Ki. We show Mcp,l

1,t ∪M
π,l
1,t ⊂ Ki for all l ≥ 0 by induction. Clearly, the statement holds for

l = 0. If Mcp,l−1
1,t ∪Mπ,l−1

1,t ⊂ Ki, x̄ and π̄i chosen in (5.1) must be in Ki. As for the πi-prox mapping, if

τ = 0, πt,l1 := ∇f1(x̄) ⊂ Ki. If τ > 0, Lemma 8.1 in the appendix allows us to write πt,l1 as

πt,l1 = π̄1 + 1
τ (x̄− y), where y ← arg minyf1(y) + 1

2τ ‖x̄+ τ π̄1 − y‖2 .

In particular, y ∈ Ki because

y = arg minx∈R2k+1
β
2 [2
∑i/2
j=1(x2j−1 − x2j)

2 + x2
1 − 2γx1] + 1

2τ

∑i
j=1 ‖x̄j + τ π̄1,j − xj‖2

+ β
2x

2
2k+1 + 1

2τ

∑2k+1
j=i+1 ‖xj‖

2
.

So πt,l1 ∈ Ki also holds for τ > 0. Thus the principle of induction implies thatMcp,L
1,t ∪M

π,L
1,t ⊂ Ki,∀L ≥ 0,

i.e.,Mcp
1,t ⊂ Ki. In addition, when i ≥ 2 is odd andM1,t−1 ⊂ Ki, we haveM1,t−1 ⊂ Ki ⊂ Ki+1. Since i+ 1

is even, the preceding result implies that Mcp
1,t ⊂ Ki+1. A similar result can also be derived for the worker

f2 for both even and odd i ≥ 2. Therefore, problem (5.3) satisfies the even-odd preserving property.

Applying Lemma 5.1, the output solution xk from any DPM algorithm in k communication rounds must
satisfy xk ∈ Kk. In particular, let f̄ := (f1+f2)/2 denote a lower bound for f . Then f(xk) ≥ minx∈Kk f(x) ≥
minx∈Kk f̄(x) = −βγ

2

2 [1− 1
k+1 ].

Now we set the parameters in (5.3) to obtain the desired lower bound. If ε ≥ LfR
2
0/4096,

Ω(
√
LfR0/

√
ε) = Ω(1), so the lower bound clearly hold. Otherwise, we set β := Lf/6, γ := R0/

√
k + 1 and

k := d
√
LfR0/8

√
εe such that (5.3) is Lf -smooth (c.f (3.5)) with

∥∥x0 − x∗
∥∥ ≤ R0 and k ≥ 4. A solution

xk generated by any DPM algorithm in k communication rounds satisfy f(xk)− f∗ ≥ γ2β
4k+4 ≥ ε. Thus they

imply the desired Ω(
√
LfR0/

√
ε) lower communication complexity bound when the problem dimension is

2d
√
LfR0/8

√
εe+ 1.

We remark here that the above risk-averse lower bound is the same as the risk-neutral lower bound
of Ω(

√
Lf,p̄R0/

√
ε), developed in [33], if P is a singleton set of the empirical distribution, P = {p̄ :=

(1/m, ..., 1/m)}, and Lf,p̄ denotes the aggregate smoothness constant (c.f. (3.5)) associated with p̄. But,
other than the intuition that the risk-averse problem should be harder than the risk-neutral problem, the
latter bound offers limited insights. Our risk-averse lower bound can be larger than the risk-neutral lower
bound because the aggregate smoothness constant Lf (c.f. (3.5)) defined over a non-trivial P can be sig-
nificantly larger than Lf,p̄. For example, consider an expanded version of (5.3) constructed by adding
(m − 2) additional workers with constant local cost functions, fi(x) ≡ C for some C < f∗, and by setting
P to the m-dimensional simplex ∆+

m. The same argument as above will lead to the same lower bound of
Ω(
√
LfR0/

√
ε) for the expanded problem. However, because the smoothness constants of {fi}mi=3 are zero,

we have Lf,p̄ ≤ 2Lf/m << Lf .

Theorem 5.3. Let Lf > 8α > 0 and ε > 0 be given. There exists an infinite-dimensional smooth
problem of form (1.1) with an aggregate smoothness constant Lf (c.f. (3.5)) and a strong convexity modulus

α such that any DPM algorithm requires at least Ω(
√
Lf/α log(1/ε))± communication rounds to find an

ε-close solution, i.e., x such that ‖x− x∗‖2 ≤ ε.

Proof. Again we prove the result by construction. Consider the following infinite dimensional problem

±We ignore the problem parameter R0 inside the log.
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parameterized by β > 2α

f(x) := maxp∈∆+
2
p1f1(x) + p2f2(x) + u(x) where X := R∞

u(x) := α
2 ‖x‖

2
, f1(x) := β−α

4 [x>A1x− 2x1], f2(x) := β−α
4 [x>A2x− 2x1],

A1 :=


3+5γ
4+4γ −1

−1 1
1 −1
−1 1

1 −1
−1 1

. . .

 , A2 :=



5+3γ
4+4γ

1 −1
−1 1

1 −1
−1 1

. . .

. . .

 , γ = α
β .

(5.4)
smst_l:probsmst_l:prob

Clearly, the aggregate smoothness constant (c.f. (3.5)) of the problem is bounded by β − α and its strong

convexity modulus is α. The optimal solutions are given by p∗ = (1/2, 1/2) and x∗, with x∗i = (
1−√γ
1+
√
γ )i ∀i ≥ 1,

since they satisfy the first order optimality conditions:

∇( 1
2f1 + 1

2f2 + u)(x∗) = 0 and ( 1
2 ,

1
2 ) ∈ arg maxp∈∆+

2
p1f1(x∗) + p2f2(x∗).

Moreover, similar to Theorem 5.2, the alternating block diagonal structure of A1 and A2 implies the even-
odd preserving property, so xk generated by any DPM algorithm in k ≥ 4 communications rounds satisfy
xk ⊂ Kk, i.e.,∥∥xk − x∗∥∥2 ≥

∑∞
i=k+1(x∗i )

2 = (
1−√γ
1+
√
γ )2k(

1−√γ
1+
√
γ )2/(1− (

1−√γ
1+
√
γ )2) = (

1−√γ
1+
√
γ )2kR2

0

= (1− 2
√
γ

1+
√
γ )2kR2

0 ≥ (1− 2
√
γ)2kR2

0 = (1− 2
√
γ)2kR2

0 ≥ (1− 2
√
α/(β − α))2kR2

0,
(5.5)

lower-pflower-pf

where R2
0 := (

1−√γ
1+
√
γ )2/(1− (

1−√γ
1+
√
γ )2). Thus it takes at least Ω(

√
(β − α)/α log(1/ε)) communication rounds

to obtain an x with ‖x− x∗‖2 ≤ ε.
Now we select the parameter β to derive the lower complexity bound. If ε ≥ (1− 2

√
1/κ)8R2

0 such that

Ω(
√
Lf/α log(1/ε)) = Ω(1), the desired lower bound clearly holds. Otherwise, we can set β := Lf + α such

that the hard problem (5.4) is Lf -smooth, and the desired lower communication bound of Ω(
√
Lf/α log(1/ε))

follows from (5.5).

We remark here that a finite dimensional hard problem can also be obtained by modifying (5.4) according
to [18]. Next, we move on to consider the structured non-smooth problem.

Theorem 5.4. Let MA > 0, DΠ > 0 R0 ≥ 1 and ε > 0 be given. When the problem dimension
n is sufficiently large (specified below), there exists a structured non-smooth problem f of form (1.1) with
MA ≥ maxi∈[m] ‖Ai‖2,2, DΠ ≥ maxi∈[m] maxπi,π̄i∈Πi ‖πi − π̄i‖ (c.f. (3.12)) and R0 ≥

∥∥x0 − x∗
∥∥ such that

the following communication lower bounds hold.

a) When u(x) is convex and n > 2dDΠMAR0/96εe, any DPM algorithm requires at least Ω(MADΠR0/ε)
communication rounds to find an ε-optimal solution.

b) When u(x) is α > 0 strongly convex and n > 2dDΠMA/48
√
αεe, any DPM algorithm requires at

least Ω(MADΠ/
√
εα) communication rounds to find an ε-optimal solution.

Proof. We consider the following hard problem parameterized by k ≥ 4, α, γA and γπ:

f(x) := maxp∈∆+
2
p1f1(x) + p2f2(x) with X = R2k+1, u(x) = α

2 ‖x‖
2
,

f1(x) := γAγπ[2
∑k
i=1 |x2i−1 − x2i| − ( 3

2 + 1
k )x1],

f2(x) := γAγπ[2
∑k
i=1 |x2i − x2i+1| − ( 1

2 + 1
k )x1].

(5.6)
lb_nslb_ns

In particular, the scenario cost functions f1 and f2 are specified in the structured maximization form (c.f.
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(1.1)), fi(x) := maxπi∈Πi〈Aix, πi〉 − f∗i (π) with

A1 := γA


−( 3

2 + 1
k )

1 −1
1 −1

. . .

1 −1 0

 , Π1 := γπ({1} × [−2, 2]k) ⊂ Rk+1, f∗1 (π1) ≡ 0,

A2 := γA


−( 1

2 + 1
k )

1 −1
1 −1

. . .

1 −1

 ,Π2 := γπ({1} × [−2, 2]k) ⊂ Rk+1, f∗2 (π2) ≡ 0.

(5.7)
ls:ns_fistar_lowerls:ns_fistar_lower

Clearly, maxi∈[2] ‖Ai‖2,2 ≤ 2γA and maxi∈[m] maxπi,π̄i∈Πi ‖πi − π̄i‖ ≤ 5
√
kγπ. Furthermore, p∗ := [1/2, 1/2]

and x∗ := γπγA
2kα [2, 1, 1, . . . , 1] form the optimal solution since they satisfy the first order optimality conditions

given by:

0 ∈ ∂( 1
2f1 + 1

2f2 + u)(x∗) and (1
2 ,

1
2 ) ∈ arg maxp∈∆+

2
p1f1(x∗) + p2f2(x∗).

So f∗ = f(x∗) = −(
γ2
πγ

2
A

2k2α +
γ2
Aγ

2
π

4kα ),
∥∥x∗ − x0

∥∥2
=

γ2
Aγ

2
π

4k2α2 (2k + 4) ≤ γ2
Aγ

2
π

kα2 .

Now, let us verify (5.6) satisfies the even-odd preserving property. Consider the worker f1. Let an even
i ≥ 2 be given and assume M1,t−1 ⊂ Ki, i.e., Mcp,0

1,t ⊂ Ki. Let Sj denote a (dual) subspace with non-zero

entries only in the first j coordinates, Sj := {π ∈ Rk+1 : πl = 0 ∀l > j}. Because of the block structure of
A1, if the i + 1th coordinate of π1 is non-zero for any i ≥ 2, the 2i − 1th and the 2ith coordinates of A1π1

must be non-zero. So we have Mπ,0
1,t ⊂ Si/2+1; otherwise the update rule (5.1) in the DPM environment

would lead to M1,t−1 6⊂ Ki.
Next, we show Mcp,l

1,t ⊂ Ki and Mπ,l
1,t ⊂ Si/2+1 for all l ≥ 0 by induction. Clearly the statement holds

for l = 0. Moreover, if Mcp,l−1
1,t ⊂ Ki and Mπ,l−1

1,t ⊂ Si/2+1, A1x̄ and π̄1 must be in Si/2+1, so the dual
proximal in (5.1) can be written as

πt,l1 = arg maxπ1∈Π1

∑i/2+1
j=1 (A1x̄)jπ1,j − τ/2(π1,j − π̄1,j)

2 − τ/2
∑k+1
j=i/2+2(π1,j)

2.

This leads us to πt,l1 ∈ Si/2+1 and A>1 π
t,l
1 ∈ Ki, i.e., Mcp,l

1,t ⊂ Ki and Mπ,l
1,t ⊂ Si/2+1. Then the principle of

induction implies that the statement holds for all l ≥ 0, i.e., Mcp
1,t ⊂ Ki. In addition, when i ≥ 2 is odd and

M1,t−1 ⊂ Ki, we have M1,t−1 ⊂ Ki+1. Since i + 1 is even, the preceding result implies that Mcp
1,t ⊂ Ki+1.

The property (5.2) for the worker f2 for both even and odd i’s can also be deduced in a similar way. Therefore
we have shown that the even-odd preserving property holds for the hard problem (5.6).

Next, applying Lemma 5.1, the solution xk returned by any DPO algorithm in k ≥ 4 communication
rounds must satisfy xk ∈ Kk. We provide a lower bound of f on Kk. Let f̄ := 1

2 (f1 + f2) + u(x) denote a
uniform lower bound for f given by

f̄(x) := γπγA[
∑2k
i=1 |xi − xi+1| − (1 + 1

k )x1] + α
2 ‖x‖

2
.

In order to find the minimum of f̄ on Kk, observe that arranging {xi}ki=1 in a decreasing order decreases
f̄ . Moreover, if xk < 0, setting all negative coordinates to zero decreases f̄ , so we can focus on x1 ≥ x2... ≥
xk ≥ xk+1 = ... = x2k+1 = 0.

minx∈Kk f̄(x) = minx∈Kk −
γπγA
k x1 + α

2 x
2
1 + α

2

∑2k+1
i=2 x2

i ≥ −
γπγA
2k2α .

Thus, f(xk)− f∗ ≥ minx∈Kk f̄(x)− f∗ ≥ γ2
Aγ

2
π/4kα.

Finally, we choose appropriate problem parameters to establish the lower bounds. If ε ≥ DΠMAR0/400ε,
Ω(MADΠR0/ε) = Ω(1), so the lower bound in a) clearly holds. Otherwise, setting k := dDΠMAR0/96εe, n :=
2k+1, γπ := DΠ/5

√
k, γA := MA/2, and α := γAγπ/R0

√
k, the parameters of (5.6) satisfy maxi∈[2] ‖Ai‖2,2 ≤

MA, maxi∈[m]maxπi,π̄i∈Πi ‖πi − π̄i‖ ≤ DΠ, 4 ≤ k, and
∥∥x0 − x∗

∥∥ ≤ R0. Since the minimum optimality gap
attainable in k = Ω(MADΠR0/ε) communication rounds is lower bounded by ε, the result in a) follows.

Now consider u(x) being α-strongly convex for a fixed α > 0. If ε ≥ D2
ΠM

2
A/40000α, Ω(MADΠ/

√
αε) =
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Ω(1), so the lower bound in b) clearly holds. Otherwise, setting k := dDΠMA/48
√
αεe, n :=

2k + 1, γπ := DΠ/5
√
k, and γA := MA/2, the parameters of (5.6) satisfy maxi∈[2] ‖Ai‖2,2 ≤

MA, maxi∈[m]maxπi,π̄i∈Πi ‖πi − π̄i‖ ≤ DΠ, 4 ≤ k, and
∥∥x0 − x∗

∥∥ ≤ R0. Since the minimum optimality

gap attainable in k = Ω(MADΠ/
√
αε) communication rounds is lower bounded by ε, the result in b) follows.

6. Numerical Experiments. In this section, we present a few numerical experiments to verify the
theoretical convergence properties of the proposed DRAO-S method.

6.1. Implementation Details. The numerical experiments are implemented in MATLAB 2021b and
are tested on an Alienware Desktop with a 4.20 GHz Intel Core i7 processor and 16 GB of 2400MHz DDR4
memory. The stepsize of the DRAO-S method are chosen according to Theorem 4.1, 4.2 and 4.3. The
implementation details of the proximal mappings are deferred to the Appendix. Parameter tuning is used
to achieve better empirical performance. The DRAO-S method is first tested on a few trial stepsizes, each
running for only 20 phases. Next, the one achieving the lowest objective value during the trials is selected to
run till the desired accuracy, subject to a termination limit of 5000 phases. The trial stepsizes are calculated
according to (4.4), (4.7), (4.10) and (4.13). The trial stepsizes are calculated from conservative estimates of
DP ≥

∥∥p0 − p∗
∥∥ and R0 ≥

∥∥x0 − x∗
∥∥, and from a few scaled estimates of Lf , Mt, MA and M̃AΠ. Specifically,

for the smooth linear regression problem (6.1), the parameters Lf and Mt used for the calculations in (4.4)
and (4.7) are given by (refer to Subsection 6.2 for the definition of Hi)

Parameter Choices Conservative Estimate

Lf {L̂f , 0.3L̂f} L̂f := maxi∈[m]

∥∥H>i Hi

∥∥
Mt {M̂t, 0.3M̂t} M̂t := ‖[∇f1(xt); . . . ;∇fm(xt)]‖

.

So there are four sets of trial stepsizes. For the structured non-smooth two-stage stochastic program, the
parameters M̃AΠ and MA used for the calculations in (4.10) and (4.13) are given by (refer to Subsection 6.2
for the definition of Ti and ei)

Parameter Choices Conservative Estimate

MA {M̂A, 0.3M̂A, 0.1M̂A} M̂A := maxi∈[m] ‖Ti‖
M̃AΠ {M̂AΠ, 0.3M̂AΠ, 0.1M̂AΠ} M̂AΠ :=

∥∥[T>1 e1; . . . ;T>mem]
∥∥ .

So there are nine sets of trial stepsizes.

(a) figure: α = 0 (b) figure: α > 0

Fig. 6.1: Convergence of DRAO-S for a Randomly Generated Robust Linear Regression Problem

6.2. Risk Averse Linear Regression Problem. For the smooth case, the following risk-averse linear
regression problem of the form (1.1) is considered:

f(x) := CV@Rδ(f1(x), . . . , fm(x)) + α
2 ‖x‖

2
with fi(x) := 1

2‖Hix− bi‖2, X := Rn. (6.1)
eq:linear_regeq:linear_reg

Here fi denotes the loss function associated with the ith dataset. Such a problem is motivated by the need
for a single robust model under fairness or risk considerations. For example, the state education department
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#Scenarios Opt. Gap 10% Risk 5% Risk 1.25% Risk

Non-strongly Convex α = 0

#Comm #P -proj #Comm #P -proj #Comm #P -proj

10% 6 16 8 50 8 50
20 1% 31 529 38 1236 38 1236

0.1% 76 2858 85 6282 85 6282

10% 3 4 6 16 7 40
50 1% 16 126 20 199 34 1162

0.1% 63 1935 67 2206 68 4245

10% 3 4 3 4 5 14
200 1% 6 19 12 72 23 260

0.1% 30 516 51 1336 65 2113

Strongly Convex Condition Number κ = 10

1e-3 32 665 39 1254 39 1254
20 1e-4 43 1926 44 2139 44 2139

1e-5 48 2980 49 3603 49 3603

1e-3 19 159 29 485 39 1306
50 1e-4 36 854 38 1132 44 2051

1e-5 41 1538 43 2061 49 3754

1e-3 16 54 14 69 29 454
200 1e-4 28 205 32 437 42 1777

1e-5 40 660 44 1357 46 2934

Table 6.1: Communications Rounds and P -Projections Required by DRAO-S for Linear Regression under a CV@R
Risk

might wish to build a model to help teachers to identify students who need extra help. (Hi, bi) could represent
the data collected in the ith county and the CV@R risk measure could be used to ensure fairness among
counties.

In our experiments, we set n = 40, and generate matrices Hi ∈ R40×200, and bi ∈ R40 randomly. We
generate an estimate of f∗ by running the bundle level method [20] to an extremely high degree of accuracy.
We record the average number of communication rounds and P -projections steps needed, over five randomly
generated instances, to achieve the desired relative optimality gap, i.e., (f(xt) − f∗)/f∗ ≤ ε under different
settings. In particular, the DRAO-S method is tested on problems with different levels of risk and different
numbers of computing nodes to understand how the communication and the P -projection complexities vary
with DP and m in practice. The results are presented in Table 6.1. For the number of computing nodes m,
both the number of P -projections and the number of communication rounds scale well with it. In fact, they
seem to decrease slightly when m increases. For DP , recall that a lower risk level corresponds to a larger
ambiguity set P and hence a larger radius DP (c.f. Subsection 1.1). Both the number of P -projections and
the number of communication rounds increase with DP , but the number of communication rounds seems to
have a weaker dependence on it. Additionally, typical convergence curves of the DRAO-S method are plotted
in Figure 6.1 and they seem to verify the theoretical convergence guarantees. When α = 0, Table 6.1 and
the convergence curve in Figure 6.1a illustrate a communication complexity and a P -projection complexity
on the order of O(1/

√
ε) and O(1/ε), respectively. When α > 0, the convergence curves in Figure 6.1b and

Table 6.1 illustrate a communication complexity and a P -projection complexity on the order of O(log(1/ε))
and O(1/

√
ε), respectively. Thus, the DRAO-S method can find highly accurate solutions within a small

number of communication rounds.

6.3. Risk Averse Two-Stage Stochastic Programming. For the structured non-smooth case, we
compare the DRAO-S method with the SD method [40] using the same risk-averse two-stage stochastic linear
programming problem from [40]:

min
x∈Rn

cᵀx+ CV@Rδ(g1(x), . . . , gm(x)) + α
2 ‖x‖

2,

s.t. 0 ≤ xj ≤ U ∀j ∈ [n],

gi(x) := minyi∈Rl+{y
ᵀ
i ei, s.t. Ryi ≥ di − Tix}.

(6.2)
eq:n_testeq:n_test

The problem models the capacity expansion decision of an electricity company. Being the sole provider of
electricity, the company has to meet all demand profiles {di} using a combination of installed capacity, with
an availability factor of Ti, and electricity purchased from outside the grid, at a unit cost of ei. Being risk
averse, the company intends to find a decision that keeps the total cost low for roughly (1− δ) of all possible
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(a) figure: α = 0, 6 Inner Iterations (b) figure: α > 0, 36 Inner Iterations

Fig. 6.2: Convergence of DRAO-S for a Randomly Two-Stage Linear Problem

#Scenarios Opt. Gap 10% Risk 5% Risk 1.25% Risk

Non-strongly Convex α = 0

SD DRAO-S SD DRAO-S SD DRAO-S

20 10% 250 59 386 103 386 103
1% 2328 420 2834 597 2834 597

50 10% 357 83 520 79 733 94
1% 2699 511 2971 590 4292 543

200 10% 74 12 183 16 447 34
1% 1614 187 3354 275 NA 293

Strongly Convex α = 1

10% 43 13 41 14 41 14
20 1% 181 24 129 25 129 25

0.1% 494 41 321 47 321 47

10% 26 13 35 14 65 15
50 1% 98 21 131 23 183 24

0.1% 226 37 258 41 335 43

10% 11 10 20 12 44 14
200 1% 75 18 125 20 208 24

1% 320 25 508 31 438 41

NA : Algorithm has not reached specified accuracy after 5000 communication rounds.

Table 6.2: Communication Rounds Required by Two-Stage Stochastic Program under a CV@R Risk

scenarios.

In our experiments, we set n = 40 and l = 20, generate Ti ∈ R20×40, ei ∈ R20, di ∈ R20 and c ∈ R40

randomly, and choose R := I20,20 to be the simple complete recourse matrix. We record the average number
of communication rounds required to achieve the desired relative optimality gaps for both methods in Table
6.2. Clearly, DRAO-S enjoys significant savings compared to the SD method. The number of communications
rounds required by DRAO-S is also less sensitive to the risk level and DP . Moreover, typical convergence
curves are plotted in Figure 6.2a and 6.2b. They seem to verify the theoretical communication complexities
of DRAO-S on the orders of O(1/ε) and O(1/

√
ε), respectively, for the non-strongly convex and the strongly

convex problems.

6.4. Risk Measure induced by the χ2 Ambiguity Set. Next, we test these algorithms on a more
complicated quadratically constrained set P . Given a radius parameter r, the modified χ2 probability
uncertainty set respect to the empirical probability [1/m, . . . , 1/m] is given by

Pr = {p ∈ Rm+ :
∑m
i=1 pi = 1, ‖p− [1/m, . . . , 1/m]‖2 ≤ r}.

Inspired by the χ2 test, Pr is useful for distributionally robust optimization (DRO) [4]. We conduct our
experiments with the induced risk-measure ρ(g) = maxp∈Pr 〈p, g〉 on both the linear regression problem (6.1)
and the two-stage stochastic program (6.2). The average number of communication rounds required to reach
the desired sub-optimalities for various levels of r are recorded in Table 6.3 and 6.4. Since a larger r implies
a larger P , the results are consistent with our findings under the CV@R setting.
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#Scenarios Opt. Gap r = 0.05 r = 0.1 r = 0.2

Non-strongly Convex α = 0

#Comm #P -proj #Comm #P -proj #Comm #P -proj

10% 3 4 3 4 3 4
20 1% 14 93 17 134 20 188

0.1% 28 274 40 944 73 2710

10% 3 4 3 4 3 4
50 1% 8 33 13 83 19 162

0.1% 21 216 30 524 69 2369

10% 3 4 3 4 3 4
200 1% 7 22 14 95 19 164

0.1% 21 207 40 872 70 2426

Strongly Convex Condition Number κ = 10

1e-3 6 10 9 28 26 235
20 1e-4 32 216 33 343 35 605

1e-5 35 312 36 462 38 754

1e-3 6 10 15 67 26 244
50 1e-4 29 164 32 323 35 566

1e-5 34 266 35 409 37 690

1e-3 20 68 18 80 25 220
200 1e-4 28 163 34 356 36 676

1e-5 34 280 36 450 39 882

Table 6.3: Communications Rounds and P -Projections Required by DRAO-S for Linear Regression under a modified
χ2 Risk Measure

#Scenarios Opt. Gap r = 0.05 r = 0.1 r = 0.2

Non-strongly Convex α = 0

SD DRAO-S SD DRAO-S SD DRAO-S

20 10% 88 41 135 49 190 54
1% 703 292 1006 330 2032 343

50 10% 240 46 319 57 388 75
1% 1543 313 2146 377 2838 409

200 10% 194 16 273 32 332 43
1% 1747 270 2818 315 3191 335

Strongly Convex α = 1

10% 10 10 14 11 21 12
20 1% 41 17 68 19 83 21

0.1% 188 28 301 37 338 39

10% 9 10 15 12 46 14
50 1% 52 18 96 20 199 23

0.1% 231 29 348 36 605 42

10% 14 11 21 13 33 14
200 1% 100 18 158 21 183 24

1% 556 30 771 36 671 37

Table 6.4: Communication Rounds Required by Two-Stage Stochastic Program under a modified χ2 Risk Measure

7. Conclusion. This paper introduces the problem of distributed risk-averse optimization. A concep-
tual DRAO method and a more practical DRAO-S method are proposed. Both of them are able to solve the
risk-averse problem with the same communication complexities as those for solving the risk-neutral prob-
lem. The optimality of their communication complexities is established with matching lower bounds. And
preliminary numerical experiments seem to indicate promising empirical performance for DRAO-S.

In future work, we will attempt to extend our proposed methods to the more general cross-device
federated learning setting [11] where fi’s are accessible only via a stochastic first-order oracle and the com-
munication network is unreliable. We will also attempt to study the extension to more complicated risk
measures for which p-prox mappings are prohibitively expensive and only gradient evaluations are possible.
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optimization in networks, Journal of Machine Learning Research, 20 (2019), pp. 1–31.
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8. Appendix. Lemma 8.1. Let fi : Rn → R be a proper convex closed function and f∗i be its Fenchel
conjugate. The following computations are equivalent for all ȳ ∈ X, π̄i ∈ Rn, τ > 0 :

πti ← arg maxπi〈ȳ, πi〉 − f
∗
i (πi)− τ

2 ‖πi − π̄i‖
2
, (8.1)

equiv:dualequiv:dual

πti ← π̄i + 1
τ (ȳ − y), where y ← arg minyfi(y) + 1

2τ ‖ȳ + τ π̄i − y‖2 . (8.2)
equiv:primalequiv:primal

Proof. Let us fix an i ∈ [m] and let ū := ȳ + τ π̄i. Let πti be generated according to (8.2). Consider a
Moreau envelop of fi given by g(u) = (fi2

1
2τ ‖ · −y‖

2)(u) := infy fi(y) + 1
2τ ‖u− y‖

2. Since fi is convex, g is
convex and smooth over Rn, thus ∂g(ū) is non-empty and unique.
Next, define ḡ(u) := fi(y) + 1

2τ ‖u − y‖
2 such that g(u) ≤ ḡ(u). Since y := infy fi(y) + 1

2τ ‖ū − y‖
2 in (8.2)

implies g(ū) = ḡ(ū), the subgradient of g at ū must be a subgradient of ḡ, a dominating function, at ū, i.e.,

∂g(ū) ⊂ ∂ḡ(ū) = {πti := 1
τ (ū− y)}.

Therefore πti = ∇g(ū). Using the infimal convolution identity (c.f. Theorem 4.16 in [1]) (g)∗(πi) =

(fi2
1
2τ ‖·‖

2
)∗(πi) = f∗i (πi) + τ

2 ‖πi‖
2 ∀πi, the equivalence between maximization and sub-gradient eval-

uation, and the fact ū := ȳ + τ π̄i, we get

πti ∈ ∂g(ū) = ∂(fi2
1
2τ ‖·‖

2
)(ū)⇔ πti ∈ arg maxπi〈ū, πi〉 − (fi2

1
2τ ‖·‖

2
)∗(πi)

⇔ πti ∈ arg maxπi∈Πi〈ȳ + τ π̄i, πi〉 − f∗i (πi)− τ
2 ‖πi‖

2

⇔ πti ∈ arg maxπi∈Πi〈ȳ, πi〉 − f
∗
i (πi)− τ

2 ‖πi − π̄i‖
2
.

8.1. Efficient Implementations for Proximal Mappings. Since X is either a box or Rn, the
x-prox mappings are implemented with closed-form solutions. The π-prox mappings also admit closed-
form solutions. For the linear regression problem in (6.1), the equivalent primal gradient computation
amounts to a matrix-vector multiplication. For the two-stage stochastic program in (6.2), since the simple
complete recourse is assumed [40], Πi is a box and the projection onto it can implemented by component-wise
thresholding.

The p-proximal update are implemented with binary searches and some basic matrix operations. When
ρ is a δ-CV@R risk measure, P can expressed as the intersection of an equality constraint and a box con-
straint [34]. By dualizing the coupling equality constraint, we arrive at an equivalent two-level optimization
formulation for the pt-prox mapping.

pt = arg maxp 〈p, g〉 − 1
2

∥∥p− pt−1
∥∥2 ⇔ pt = minλ∈Rarg maxp 〈p, g〉 − 1

2

∥∥p− pt−1
∥∥2

+ λ(
∑m
i=1 pi − 1)

s.t. 0 ≤ pi ≤ 1/(mδ) s.t. 0 ≤ pi ≤ 1/(mδ).∑m
i=1 pi = 1

(8.3)
eq:cvar-p-proximlaeq:cvar-p-proximla

For a fixed λ, the inner solution p(λ) can be computed via a component-wise vector thresholding and the
optimal λt is characterized by the root condition

∑m
i=1 pi(λ

t) − 1 = 0. Since p(λ) is a monotonically non-
decreasing function of λ, an accurate approximation to λt and hence pt can be found by a binary search on
λ. Next, when ρ is the risk measure induced by the χ2 ambiguity set, we can dualize the χ2 constraint to
express the pt-prox mapping equivalently as follows.

pt = arg max
p≥0

〈p, g〉 − 1
2

∥∥p− pt−1
∥∥2 ⇔ pt = min

u∈R+

arg max
p≥0

〈p, g〉 − 1
2

∥∥p− pt−1
∥∥2

s.t. ‖p− [1/m, . . . , 1/m]‖2 ≤ r + u(‖p− [1/m, . . . , 1/m]‖2 − r)
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∑m
i=1 pi = 1. s.t.

∑m
i=1 pi = 1.

For a fixed u, the inner solution p(u) above can be solved similarly to (8.3). A sufficient optimality condition

for ut is the KKT condition, i.e. either ut = 0, or ut > 0 and ‖p(ut)− [1/m, . . . , 1/m]‖2 − r = 0. So an
accurate ut and hence pt can be found by a binary search on u.
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