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TROPICAL LINEAR REGRESSION AND MEAN PAYOFF GAMES: OR, HOW
TO MEASURE THE DISTANCE TO EQUILIBRIA

MARIANNE AKIAN, STEPHANE GAUBERT, YANG QI, AND OMAR SAADI

ABSTRACT. We study a tropical linear regression problem consisting in finding the best approxi-
mation of a set of points by a tropical hyperplane. We establish a strong duality theorem, showing
that the value of this problem coincides with the maximal radius of a Hilbert’s ball included in a
tropical polyhedron. We also show that this regression problem is polynomial-time equivalent to
mean payoff games. We illustrate our results by solving an inverse problem from auction theory. In
this setting, a tropical hyperplane represents the set of equilibrium prices. Tropical linear regression
allows us to quantify the distance of a market to the set of equilibria, and infer secret preferences
of a decision maker.

1. INTRODUCTION

1.1. The tropical linear regression problem. A tropical hyperplane in the n-dimensional trop-
ical vector space (RU {—o00})" is a set of vectors of the form

(1) Ho ={x € (RU{—0})", max a; + 2; is achieved at least twice} .

Such a hyperplane is parametrized by the vector a = (a1, ...,a,) € (RU{—00})", which is required
to be non-identically —oo.

Tropical hyperplanes are among the most basic objects in tropical geometry. They are images by
the valuation of hyperplanes over non-archimedean fields, and so, they are the simplest examples
of tropical linear spaces [SS04, [FR15] and tropical hypersurfaces [EKL0OG]. Tropical hyperplanes
arise in tropical convexity [CGQO4, DS04], since closed tropical convex sets can be described as
intersections of tropical half-spaces. A further motivation arises from the study of pricing problems:
tropical hypersurfaces have been used in [BK19) to represent the influence of prices on the decision
of agents buying bundles of elementary products. The “unit demand” case (bundles of cardinality
one) is modelled by tropical hyperplanes.

In this paper, we address the following tropical analogue of the linear regression problem. Given
a finite set of points ¥V C (R U {—o00})", we look for the best approximation of these points by
a tropical hyperplane. Of course, the notion of “best approximation” depends on the metric. A
canonical choice in tropical geometry is the (additive version of) Hilbert’s projective metric. Its
restriction to R™ is induced by the so called Hilbert’s seminorm or Hopf oscillation

lz||g := maxx; — minx; .
i€[n] i€[n)
It is a projective metric, in the sense that the distance between two points is zero if and only if
these two points differ by an additive constant. Hence, we formulate the tropical linear regression
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problem as the following optimization problem:

@ Mg, gl o =l
where the minimum is taken over the space of parameters of tropical hyperplanes. For simplicity,
we assume for the moment that the vectors v € V have finite entries, this assumption will be relaxed
in the body of the article.

Equation is a non-convex optimization problem, which is of a disjunctive nature since a
tropical hyperplane is a union of convex cones.

The tropical linear regression problem is not only of theoretical interest. We shall see that
it allows one to quantify the “distance to equilibrium” of a market model, and to infer hidden
preferences of a decision maker.

1.2. Results. We show that tropical linear regression is tractable, theoretically, and to some extent,
computationally. Our main result is a strong duality theorem, Theorem showing that the
infimum of the distance of the set of points V to a tropical hyperplane coincides with the supremum
of the radii of Hilbert’s balls included in the tropical convex cone generated by the elements of
V. This provides optimality certificates which can be interpreted geometrically as collections of n
“witness” points among the elements of V. Our approach also entails that tropical linear regression
is polynomial-time equivalent to solving mean payoff games. The latter games, originally studied
in [EMT79, IGKKS8§|, are among the problems in the complexity class NP N co-NP [ZP96] for which
no polynomial time algorithm is known. However, several effective methods are available [GKKSS],
ZP96l, BV0O7, DGO6|]. In particular, policy iteration allows to solve large scale instances [Cha(9],
even if it is generally super-polynomial [Fri09]. Thus, the present results lead to a practical solution
of the tropical linear regression problem.

We subsequently study variants of the tropical linear regression problem, involving in particular
the signed notion of tropical hyperplane, obtained by requiring the maximum in to be achieved
by two indices 4, j belonging to prescribed disjoint subsets I, J of [n]. We also establish a strong
duality theorem in this setting, and provide reductions to mean payoff games for these variants.

We finally illustrate tropical linear regression by an application to an auction model. We consider
a market governed by an invitation to tender procedure. We suppose that a decision maker selects
repeatedly bids made by firms, based on the bid prices, which are ultimately made public (after the
decision is taken), and also on other criteria (assessments of the technical quality of each firm or of
environmental impact) or influence factors (like bribes). This is a variant of the classical “first-price
sealed-bid auction” [Kri02], with a bias induced by the secret preference. Here, we define the market
to be at equilibria if for each invitation, there are at least two best offers. Hence, in the simplest
model (unit demand), the set of equilibria prices can be represented by a tropical hyperplane. We
distinguish two versions of this problem, one in which only the prices are public, and the other, in
which the identities of the winners of the successive invitations are also known. In both cases, we
show that solving a tropical linear regression problem allows an observer to quantify the distance
of such a market to equilibrium, and also to infer secret preference factors. This solves, in the
special case of unit-demand, an inverse problem, consisting in identifying the agent preferences and
utilities in auction models, like the one of [BK19|. This might be of interest to a regulation authority
wishing to quantify anomalies, or to a bidder, who, seeing the history of the market, would wish to
determine how much he should have bidded to win a given invitation or to get the best price for an
invitation that he won, thus avoiding the “winner’s curse”.

1.3. Related work, and discussion. Several “best approximation” problems have been studied

in tropical geometry. The simplest one consists in finding the nearest point in a (closed) tropical

module, in the sense of Hilbert’s metric. The solution is given by the tropical projection [CGQO04],

see also [AGNSTI|. The best approximation in the space of ultrametrics, which is a fundamental
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example of tropical module in view of its application to phylogenetics, has been thoroughly stud-
ied [CF00, LSTY17, Ber20]. Another important special case is the best approximation of a point
by a tropical linear space [Ard04) [JSY07]. In contrast with the regression problem studied here,
these problems concern the approximation of a single point.

It is a general principle that regression (best approximation) is somehow dual to separation.
Hence, tropical linear regression should be compared with the tropical support vector machines
(SVM) introduced in [GJ08], and further studied in [TWY20]. Whereas the input of the tropical
SVM problem (a configuration of points in dimension n — 1 partitioned in n color classes) is the
same as the one of the version “with types” of the tropical linear regression problem, we explain
in Remark [9] why both problems differ in essential ways.

A different problem of tropical regression consists in finding a vector x minimizing the sup-norm
lly — Az || where y is a vector of observations, and A is a known matrix acting tropically on z. This
can be solved in (strongly) polynomial time, again by a tropical projection [Butl0]. See also [CF00]
for a general version of this result. Tropical linear regression problems of this nature have been
studied in the context of learning [MCT21|. The sparse version is of practical interest; it arose in
the approximation of solutions of Hamilton-Jacobi PDE, where it was shown to be equivalent to
a non-metric infinite dimensional facility location problem [GMQ11]|. The finite dimension version
which is NP-hard is studied in [TM19].

A different tropical regression problem, with a L;-type error term (instead of sup-norm here), has
been solved in [YZZ19, Theorem 4|, in the special case of a configuration of n points in dimension
n — 1. The value is given by a tropical volume [DGJ17], instead of an inner radius.

Tropical geometry has been applied to economics in [BK19|, see also [TY19|, and [DKMO0I] for
early results in this direction. Our modelling of agent’s responses to prices is inspired by [BK19].
Auction models taking into account bribery have been studied in particular in [CLMVO05, BP07,
Racl13].

We build on the results of [AGGI12|, showing the equivalence between tropical linear programming
and mean payoff games. Further reductions and equivalences, concerning in particular the problem
of the emptiness of tropical linear prevarieties, were given in [GP13|. The relation between the mean
payoff of a game and the inner radius of a Shapley operator was first observed in [Sko18| [AGKS1S],
where it was applied to define a condition number and derive complexity results for games. The inner
radius of tropical polyhedra defined by n generators in dimension n — 1 was initially characterized
in [Ser(7], as a tropical eigenvalue.

Open problems related to the present work are discussed in the concluding section.

1.4. Organization. In Section [2] we recall the needed results concerning tropical algebra, mean
payoff games, and non-linear Perron-Frobenius theory. In Section [3] we show that computing the
inner radius of a tropical polyhedron given by generators is equivalent to solving a mean payoff
game. Section [ contains our main results, including Theorem the strong duality theorem
for tropical linear regression. Several variants of the tropical linear regression problem are dealt
with in Section In Section [6] we explain how to solve tropical linear regression problems in
practice, using mean payoff games algorithms. In Section [7, we give an application to an auction
problem. The appendix provides sufficient conditions for the existence of finite eigenvectors of a
class of Shapley operators. These conditions are helpful when dealing with regression problems for
configurations of points with —oo coordinates.

2. PRELIMINARIES

2.1. Tropical cones. The max-plus semifield R,y is the set of real numbers, completed by —oo

and equipped with the addition (a,b) — max(a,b) and the multiplication (a,b) — a ® b := a + b.

The name “tropical” will be used in the sequel as a synonym of “max-plus”. We shall occasionally
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use variants of this semifield. These include the min-plus semifield Ry, which is the set RU{+o0},
equipped with the addition (a,b) — min(a,b) and the multiplication (a,b) — a ® b := a +b. This
semifield is isomorphic to Rpy,x. These also include the subsemifield Zpyax C Riax, with ground set
Z U {—o0}. We refer the reader to [BCOQ92, Butl0, MS15| for background on tropical algebra.

For any integer n, we set [n] := {1,...,n}. Forallz,y € (Rpax)", A € (Rpmax)™™™, and A € Ryax,
A+ 2 € (Ryax)™ denotes the vector with entries A + x;, for i € [n], A+ A € (Rpax)™*™ denotes the
matrix with entries A + A;j, for i € [n],j € [m],  Vy = sup(z, y) denotes the vector with entries
max(z;,y;), for i € [n], and Ay = inf(x, y) denotes the vector with entries min(z;,y;), for i € [n].
The set (Rpax)™ equipped with the addition (z,y) — x V y and the action (A, z) — A 4+ = of Ryax
is a tropical module, i.e. a module over the semifield Ry ax.

A subset C of (Ryax)™ is a tropical (convex) cone or equivalently a tropical submodule of (Ryax)™
if it satisfies x,y € C and X\ € Ryax implies A\+x € C and z Vy € C. We endow (Ryax)™ with the
topology defined by the metric 0(x,y) = max;e|,) [e** — e¥|. It induces the usual topology in R™.
For any given subset V of (Ry,ax)™, we denote by Sp(V) the tropical submodule of (Ry,ax)"™ generated
by V, that is the minimal tropical submodule of (Ryax)™ containing V. A tropical polyhedral cone
C is a tropical cone which is finitely generated, that is such that there exists a finite subset V such
that C = Sp(V). For any given matrix V', we also denote by Col(V') the column space of V', that
is the tropical polyhedral cone generated by the columns of V', and we denote by Row (V') the row
space of V, that is the tropical polyhedral cone generated by the rows of V.

A tropical polyhedral cone can also be defined externally by a system of tropical linear inequalities
of the form
(3) max (A +z;) < max(By; +z;),  i€[m],

jE€[n] J€[n]
where A;;, B;j belong to Rpyax, see [GK11]|. Then, A and B will be thought of as m x n matrices
with entries in Ry ax.

Let A € (Rpax)™ ™ and x € (Rpax)”. We denote by Az the vector in (Rpyax)™ with entries
(Az); = maxjepy(Aij + z;), for i € [m]. To a matrix A € (Rpax)™*"™, we associate the operator
AP (Rppin)™ — (Rpin)™, given by:

Vy € (Runin)™, Vj € [n], (Aty); = Z,Iél[inn](—Aij + i)
with the convention —co + 0o = +o0o. The operator A is called the adjoint of A and we can easily
check that it satisfies the following property:

V& € (Rupax)™ VY € (Ruin)™, Az <y <z < Afy .

We define the identity matrix I € (Rmax)"*"™ by Vi € [n],1; =0, and Vi, j € [n],i # j,1;; = —oo.

A scalar p is a tropical eigenvalue of a matrix M € (Ryyax)™*™ if there exists a vector u € (Ryax)",
not identically —oo, such that Mwu = p + u in the tropical sense. The eigenvalue is known to be
unique when the digraph of M is strongly connected, then it coincides with the maximum weight-
to-length ratio of the circuits of the digraph of M. We denote it by A(M). See [BCOQ92) But.10]
for more information.

2.2. Mean payoff games. We consider zero-sum deterministic games, with perfect information,
defined as follows. There are two players, “Max” and “Min” (the maximizer and the minimizer),
who will move a token on a weighted digraph. We assume this digraph is finite and bipartite: the
node set is the disjoint union of two non-empty sets S™2 and S™", and the arc set A is included
in (Smax x Gminy |y (gmin » gmax) The set of states of the game is the set of nodes of the digraph.
We associate a real weight w,s to each arc (r,s).

The two players alternate their actions. When the token is in node i € S™" Player Min must
choose an arc (7, 7) in the digraph, meaning he moves the token to node j, and pays w;; to player
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Max. When Player Min has no possible action, that is, when there are no arcs of the form (i, )
in the digraph, the game terminates, and Player Max receives +o0o. Similarly, when the token is in
node j € ™ Player Max must choose an arc (j,7) in the digraph. Then he moves the token from
node j to node 7, and receives wj; from Player Min. When Player Max has no possible action, that
is there are no arcs of the form (j,7) in the digraph, the game terminates, and Player Max receives
—00.

We measure the time in turns, i.e., a time step consists of two half-turns (a move made by
Player Min followed by a move made by Player Max). We consider the following game in horizon
k: starting from an initial state 7 € S™". the two players make k moves each, unless the game
terminates before. So, if the game does not terminate before time k, the history of the game is
described by a sequence of nodes 7 = ig, j1,41, .- -, jk, ix, belonging alternatively to S™™ and S™a,
and the total payment received by Player Max is given by

RY = wigjy + wjiy + Wiy + -+ Wiy, -
If the game terminates before time k, we set R? = +o00 depending on the player who had no available

action. The following assumption requires Player Min to have at least one available action in every
state:

Assumption 1. For all i € S™" there exists j € S™& such that (i, j) is an arc of the digraph of the
zero-sum deterministic game.

In this way, we always have R¥ € R U {—o0o}. We shall also consider the dual assumption.

Assumption 2. For all j € S™3 there exists i € S™" such that (j,4) is an arc of the digraph of the
zero-sum deterministic game.

In most works on mean payoff games, both assumptions are required to hold, which entails in
particular that RF is finite. Here, we shall occasionally relax Assumption [2, but always require As-
sumption [1} so that R¥ € RU{—o0o}. This leads to an unpleasant symmetry breaking. However, we
shall see that this generality will be sometimes needed to handle the application to tropical linear
regression. Indeed, from a tropical perspective, —oo is the zero element, hence a meaningful value.

A strategy of a player is a map which associates to the history of the game an action of this player.
Assuming that Player Min plays according to strategy o, and that Player Max plays according to
strategy 7, we shall write R¥ = RF(o,7) to indicate the dependence on these strategies. It follows
from standard dynamic programming arguments that the game in horizon k starting from node 7
has a value vf and that Players Min and Max have optimal strategies o* and 7%, respectively, see
e.g. [MSZ15, Th. IV.3.2]. This means that the payment function has the following saddle point
property:

RF(o, 1) < vF = RF(o*,7%) < RF (0%, 7)

k

for all strategies o, 7. Moreover, the value vector v := (vF);cgmin is determined by the following

dynamic programming equation

oF = Tk, =0
where T : (RU {—o00})"” = (RU {—oc})" is the Shapley operator, defined, for i € S™* by
4 Ti(z) = i ij + ma i+ .
W () = e e Lo )

Owing to Assumption [I} the above minimum is never taken over an empty set, whereas the above
maximum is never taken over an empty set when Assumption [2] is made. By convention, the
maximum of an empty set is —oo. When both assumptions hold, 7" sends R" to R™.

We are interested in the limit



Thus, x;(T") yields the limit of the mean payoff per time unit, for the game starting from the initial
state 4, when the horizon tends to infinity. It follows from [Koh80] that the limit does exist, and
that x(7T) € R™, when Assumption [I| and Assumption [2| hold (and more generally, when T is a
piecewise affine self-map of R™ that is non-expansive in some norm, see [AGGI2| and Section
below for details). Alternatively, under the same assumptions, x;(7) can be characterized as the
value of an infinite mean-payoff game, in which player Max wishes to maximize the liminf of the
average payment received per time unit, whereas player Min wishes to minimize the liminf of the
same quantity — this is the approach originally described by Ehrenfeucht and Mycielski [EMT79].
It follows from a general result of Mertens and Neyman, on the existence of the so called uniform
value [MNS&I], that this approach leads to the same notion of mean payoff. Hence, we shall refer to
Xi(T') as the (asymptotic) mean payoff starting from node 1.

More generally, the limit x(7') € (R U {—o00})" does exist as soon as Assumption |1] is satisfied.
To see this, observe that we can always construct in polynomial time an equivalent game satisfying
also Assumption . Indeed, let us delete any node i of S™® in which Player Min has at least one
action (i,j) € A such that Player Max has no available action in state j. After at most |S™®| of
such deletions, we arrive at a new game, played on a bipartite subdigraph of the original graph,
induced by a subset of nodes belonging to Player Min &' ™ < §min  Note that S ™ may be
empty. It is immediate that this subdigraph satisfies both Assumption [1] and [2l So, for i € S™i,
the existence of limy Uf /k follows from the result already established, whereas for i € ™"\ G/ max
we have vf = —oo for k large enough, implying limy, vf Jk = —o0.

A (stationary) policy of Player Min is a map o : S™" — S™a% guch that (i,0(i)) € A for all
i € 8™ Such a policy determines a one-player game, in which Player Min always selects moves
i — o(7). This one-player game corresponds to the Shapley operator 77, defined by

T7 () = wig(i) + . (;Té%eA(wa(i)l +a)
Similarly, a policy of Player Max is a map 7 : S™8% — S™i% gych that (j, 7(j)) € A for all j € S™max,
It determines a one-player game, with Shapley operator "T" defined by

Ti(w) = min (wij +wjr) + o)
A result of Liggett and Lippman [LL69] entails that each player has optimal strategies in a mean
payoff game, which are obtained by applying a stationary policy. This entails in particular that

X(T) = minx(T?) = maxx("T) ,

under Assumptions [I|and 2 The mean payoff x;(T) is known to coincide with the weight-to-length
ratio of a circuit of the bipartite digraph of the game, the “length” being measured as the number
of full turns, i.e., as the number of Min nodes of the circuit (one half of the ordinary length). In
particular, if the payments w,s are integers, the mean payoff is a rational number p/q, where p, g
are integers, and ¢ is a positive integer bounded by the maximal length of a circuit of the bipartite
digraph of the game (measuring the length as the number of nodes of Min that are visited) and
Ip/q| is bounded by 2| max,s wys|.
Now we formalize the following problem.

Problem 1 (Mean payoff games). Input: A finite bipartite directed graph with integer weights,
satisfying Assumptz'ons and@, together with an initial node 1. Question: Is the mean payoff x,(T")
starting from node 1 nonnegative?

As discussed in the introduction, Problem [I] is a fundamental problem in algorithmic game the-
ory |GKKSS]. It belongs to the class NP N coNP [ZP96], no polynomial time algorithm is known.
It will be useful to keep in mind several equivalent versions of this problem.
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As a first variant, one may ask whether x,(7") is positive, instead of non-negative. This variant
is equivalent to the negated version of Problem : considering T(z) = —T(—z), i.e., the Shapley
operator of the game in which all payments are negated, we have that X(T) = —x(7T), and so,
Xao(T') > 0 i x,(T) < 0.

As observed above, the variant of mean payoff games in which Assumption [2]is relaxed reduces to
the variant in which this assumption holds by a preprocessing, so there is no restriction on requiring
Assumption [2] in Problem [I]

Another variant consists in computing x,(7"), instead of deciding whether x,(T") is nonnegative.
This problem of computation polytime Turing-reduces to Problem [I] by binary search. Indeed,
given a rational number o = p/q, we can consider the modified game with integer weights w¢, =
2¢g(wyrs — /2), which corresponds to replacing the Shapley operator T' by T% := 2¢(—a + T'). Thus
X.(T%) = 0 iff x,(T) > . Then, since the mean payoff x,(T") is a rational number whose absolute
value is bounded by 2 max, |w,s| and whose denominator is bounded by |S™®|, we can compute
X.(T) by a dichotomy argument, calling at each step an oracle solving Problem [I| for a modified
game with weights we;.

2.3. Perron-Frobenius tools. We now recall some tools from Perron-Frobenius theory, in relation
with mean payoff games. We refer the reader to [AGG12] for more information.

We denote by L the vector of (Rpmax)™ identically equal to —oo. We consider the Hilbert’s
projective metric, defined for vectors z,y € (Rpyax)"™ where at least one of them is not equal to L,
by

dz,y) =inf{A—p | \peR, p+y <x; < A+y; Vi€ n]} € RuygU {+oo} .
In addition, we set d(L, L) :=0.

The support of a vector z € (Ryax)™ is defined by suppx := {i € [n] | z; # —oo}. Each subset
I C [n] yields a part Pr of (Ryax)™, consisting of vectors with support I.

Observe that d(x,y) is finite if and only if  and y belong to the same part P;. Moreover, if
T+0,

d _ ) — min(zs — )
(x7 y) I?EE%IX(xl yz) Ilrlel}l(l‘l yz)

We denote by P(Rpmax)™ the tropical projective space, i.e., the quotient of the set of non-identically
—oo vectors of (Ryax)™ by the equivalence relation ~ which identifies tropically proportional vectors.
We shall abuse notation and denote by the same symbol a vector and its equivalence class. Similarly,
we shall think of a part P; with I # () as a subset of the tropical projective space.

Observe that d(x, y) vanishes if and only = and y represent the same point of the tropical projective
space, so that d yields a well defined metric on each part of the tropical projective space. We denote
by B(a,r) the closed ball centered at a € R™ with radius r under Hilbert’s projective metric.

It will be convenient to consider an abstract version of the concrete Shapley operators used so
far. We call (abstract) Shapley operator a map T : (Rpax)” — (Rmax)™ that is order preserving,
continuous, and such that T'(a+x) = a+T(z) for all @ € Ryax and x € (Ryax)™. Observe that the
operator 1" defined by , with ST = [p], is a special case of abstract Shapley operator, as soon
as Assumption [I] holds. We shall often consider situations in which an abstract Shapley operator
restricts to a map R™ — R", we will still use the term Shapley operator for the restricted map.

We are interested in the non-linear spectral problem for T, consisting in finding a vector u €
(Rmax)™, non-identically —oo, and a scalar A € Ryax such that T'(u) = A 4+ u. The spectral radius
of T is defined as

(5) p(T) =sup{A e RU{—o0} | Fue (RU{—oco})"u# L, T(u) =A+u} .
Variants of this spectral radius are given by the Collatz-Wielandt number cw,
(6) cew(T) =inf{AeR|Fu e R", T'(u) < A+u} .

7



and by the dual Collatz-Wielandt number
(7) ew'(T) =sup{A e RU{—o0} |Fu € (RU{—oco})",u# L, T(u) = X+ u} .
For all # € (Rpax)", we define top z := max;cf,) z;- We shall also consider

X(T) := 1ilgnt0p(Tk(0))/k = jnf top(T*(0))/k .

The existence of the limit and the fact it coincides with the infimum follow from the subadditivity
property top(T*(0)) < top(T*(0)) + top(T*(0)). Of course, when the limit x(7") = limg T%(0)/k
exists, we have X(T') = top x(T') = max;c[,] x:(T). Then, X(T') may be interpreted as the value of
a modified mean payoff game, in which Player Max chooses first the initial state ¢ € [n], and then,
the games starts from this state as described in Section 2.2} Thus, in the sequel, we shall refer to
X(T') as the upper mean payoff associated to the operator T'.

The following result, which follows from [AGGI2|, provides several spectral characterizations of
this upper mean payoff. We say that a map F from R" to (R U {—o00})™ is piecewise affine if we
can cover R™ by finitely many polyhedra in such a way that each coordinate map Fj is either affine,
or identically —oo, on each of these polyhedra.

Theorem 1. Let T : (Rpyax)” — (Rmax)™ be a Shapley operator. Then,
(5) ow!(T) = pl(T) = X(T) = ew(T) ,

and the suprema in and are always achieved.
Moreover, if the restriction of T to R™ is piecewise affine, and if p(T) # —oo, then the infimum
in @ 1s also achieved.

Before giving the details of the derivation of Theorem [1|from [AGGI12|, we need to recall a result
of Kohlberg. An invariant half-line of a Shapley operator T : R™ — R" is a pair (u,n) € R" x R"
such that

T(u+sn) =u-+ (s+1)n, Vs >0 .
Recall that a self-map of R"™ is non-expansive for a fixed norm || - || if ||T(z) — T(y)| < ||z — y]|-
Observe that a Shapley operator that preserves R” is automatically non-expansive in the sup-norm

(see e.g. [GGO4]).

Theorem 2 (|[Koh80]). A piecewise affine map T : R™ — R™ that is nonexpansive in some norm
admits an invariant half-line.

If a Shapley operator T' : R®™ — R™ has an invariant half-line (u,7), it is immediate, using
the fact that T is nonexpansive in the sup-norm, that x(7) = lim, T%(0)/k = limy T%(u)/k =
limg (v + kn)/k = n. Thus, the invariant half-line determines the mean payoff vector.

Proof of Theorem[]l The equalities in are established in [AGGI12, Lemma 2.8|, where they
are derived from a theorem of Nussbaum concerning continuous, order preserving and positively
homogeneous self-maps of the orthant, see [Nus86, Theorem 3.1] and also [GGO04, Prop. 1]. If
T(u) = p(T) + u with u # L, we also have T'(v) = p(T') + v, where v := u — topu is such that
topv = 0. Using the compactness of {v € (Ryax)"” | topv = 0} and the continuity of 7" on this
set, we deduce that the supremum in is always achieved. A similar argument shows that the
supremum in @ is also achieved.

Consider now F(z) = T(z) V (cw(T') 4+ x), which sends R™ to R™, and which is piecewise affine
because the action spaces are finite. It is immediate that cw(F') = cw(7T'). Let us take an invariant
half-line (u,n) of F. Then, it follows from F*(u) = u + kn, and from the nonexpansiveness of
F in the sup-norm that x(7") = limy_,o top F*(0)/k = limy_,o top F*(u)/k = topn. Moreover,
Flu)=u+n<u+cw(F), and so, T(u) < u+ cw(T). O
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Proposition 3. A piecewise affine Shapley operator T : R™ — R™ admits a finite eigenvector if and
only if the mean payoff x:(T) is independent of the choice of the initial state i € [n].

Proof. By Theorem [2| T" has an invariant half-line (u,n) and x(7") = n. So, if x;(7") = A for all
i, we have T'(u) = A + u, showing that u is a finite eigenvector of T'. Conversely, if T'(u) = A + u
for some u € R™, then, using the nonexpansiveness of T, x(T) = limy T%(0)/k = limy T*(u)/k =
limg(u + kEX) k= (A, ..., A). O

3. INNER RADIUS OF A TROPICAL POLYHEDRON DEFINED BY GENERATORS

For any subset W of (Rpax)"™, we define the inner radius of W, denoted in-rad(W), as the
supremum of the radii of Hilbert’s balls centered at a point in R™ and included in Sp(W). More
generally, for all non-empty subsets I C [n], we define the relative inner radius of W, denoted by
in-rad; (W), as the supremum of the radii of Hilbert’s balls centered at a point in the part P of
(Rmax)™ and included in Sp(W). Thus, in particular, in-radp, (W) = in-rad(W). Observe that the
relative inner radius depends only on the image of WM P; in the tropical projective space P(Rpyax)"™.

In [AGKSI18], it is shown that computing the inner radius of a tropical polyhedral cone given by
an external description P = {z € (Rpax)" | Az < Bz} reduces to computing the Collatz-Wielandt
number cw(7T') of a Shapley operator.

In this paper, we consider the somehow dual situation in which the tropical polyhedral cone is
given by an internal description,

Col(V)={Vz |z € Ruax)’} »

where V' is a n X p matrix with entries in the tropical semifield Ry,.x, rather by an external descrip-
tion. Recall that the size of an external description of a tropical polyhedral cone can be exponential
in the size of an internal description, and vice versa [AGK11]. This leads us to consider the following
problem.

Problem 2. Input: a matriz V € Znnk. Goal: Compute the inner radius of Col(V).
We shall make the following assumption.
Assumption 3. The matrix V' has no identically —oo row and no identically —oo column.

This is not restrictive. Indeed, let I C [n] (resp. J C [p]) denote the set of indices of non-identically
—o00 rows (resp. columns) of V' and V' denote the I x J submatrix of V. For K C [n], if K is not
included in I, we have in-radg (V') = —oo, whereas if K = I, then in-radg (V) = in-rad(V"). More
generally, the relative inner radii of V for K C I coincide with the ones of V' (up to permutations
of rows of V).

In [AGGI2], the tropical linear independence of the columns of the matrix V was studied by
means of a specific Shapley operator, which will also play a key role in our approach. We set
E ={(i,k) € [n] x [p] | Vit # —o0}. Consider the operator T : (Rpmax)"” = (Rmax)", defined by

(9) Tiw)= it [ Vie+ max (Vi+ay)| .

kelpl,(i,k)eE J€lnlj#i
Owing to Assumption 3] the latter infimum is never taken over an empty family, so the operator does
send (Rpyax)"™ to (Rmax)™. We shall sometimes write Ty instead of T' to emphasize the dependence
on V. Observe that T is exactly the Shapley operator of a mean payoff game defined in Section [2.2}
the set of nodes belonging to Player Min is S™ := [n], the set of nodes belonging to Player Max
is S™&* .= F, with the set of allowed moves

(10)  A={(G, G k) [i€n]kelp],(ik) e EYU{((ik),)) | (i,k) € E,(j,k) € E, i #j} .
The payment associated with the arc (7, (i,k)) is w; ; k) = —Vir, whereas the payment associated
With ((7,, k),j) is w(i7k)7j = V}k

9



Remark 1. In this game, the mean payoff x,(7") starting from any state ¢ is always nonpositive.
Indeed, Player Min can always play a “tit for tat” policy, moving to state (j, k) from state j, and
thus, paying —Vj;, to Max, if the last move of Max was (i,k) — j, so that Min paid Vj;. In this
way, Min can cancel the last payment he made, which guarantees a nonpositive mean payoff.

Given a vector a € (Rpax)", a # L, we define the tropical hyperplane:

Ho = {2 € Runax)" | mz[u]((ai + ;) achieved at least twice} .
€N

Observe that H, depends only on the point in the tropical projective space represented by a.
Moreover, H, is stable under the additive action of scalars, so that H, can be identified with the
subset of the tropical projective space consisting of the equivalence classes of non-identically —oo
vectors of H,,.

For a finite vector a € R", the tropical hyperplane H, divides (Rmax)" into n sectors (Si(a))ign);
defined by

(1) Sia) == {x € Rux)" | Vj € [, i+ a; > 2+ ;) -

The vector —a, which is unique up to an additive constant, is called the apex of H,. Indeed, the
set Hqo NR™ modulo the scalar additions is the support of a polyhedral complex and —a € R” is the
unique vertex (cell of dimension 0) of this complex. Then, we shall say that H, has a finite apex.
See Figure [I] for an illustration.

8
w

»------

FIGURE (1) The hyperplane H, with finite apex a = (0,0,1) and the sectors that
H, defines in the projective space P(Rpyayx)®.

The following result shows that verifying whether there is a tropical hyperplane containing a
given collection of vectors reduces to solving a mean payoff game.

Proposition 4. [AGGI12, Corollary 4.8] For a € (Rpax)™ such that a # L, suppose that V €
(Ruax)™™P satisfies Assumption@ and let T be defined as above. Then, the following assertions are
equivalent:

(1) a <T(a);

(2) The column space Col(V') is included in H,.
Corollary 5. The columns of V' are contained in a tropical hyperplane iff p(T) is nonnegative.

Proof. This follows from the equality p(T) = c¢w’(T) in Theorem [1| and the fact the supremum is
achieved in (7). 0

Theorem 6. Let T = Ty be the Shapley operator associated to the matrix V- € (Rmax)" P defined
in (). Then, p(T) < 0. Moreover,

—p(T') = in-rad(Col(V)).
10



If p(T) is finite, a mazimal Hilbert’s ball included in Col(V) NR™ is given by B(—a, —p(T')) where
a is any vector in R™ such that T'(a) < p(T) + a.

We will deduce Theorem [f] from the following lemma:

Lemma 7. For all A € [—00,0] and a € R",
B(—a,—\) CColV <= T(a) < A+a

Proof. Suppose first that A is finite. Then, considering @D, we see that T'(a) < A+ a is equivalent
to

(12) Viell, kel Viehl j#i -A—ata <V
Let z € R"™, we have z € B(—a, —\) if and only if
(13) Vieln], Vjen], zi—z;<—-A—a;+aj .

Moreover, the basic properties of residuation entail that VV* < I, where Vfz is the maximal element
y such that Vy < z. It follows that 2 € Col(V) if and only if 2 = VV*¥z, or equivalently, < VV¥z.
The latter property can be rewritten as z; < maxyep{Vir + minjep)(=Vir + x5)}, for all i € [n],
which is equivalent to

(14) Vien], 3kelp], Vjen|, zi—z;<Vy-V;

We can see that if eq. and eq. are true then eq. follows, which shows the “<”
direction of the lemma.
Now, we suppose that B(—a, —\) C Col V. For a given i € [n], we consider the vector () € R™

given by xgi) = —)\ —a; and xg.i) = —aj for all j # i. Since A < 0, we have () € B(—a, —\), then
(M € Col(V). Therefore by eq. , there exists k € [p] such that Vj € [n], a;z(-i) — my) < Vi — Vg

Moreover, we have Vj € [n],j # 1, :cl@ — my) = —\ — a; + a;. Finally this yields eq. , which
proves that T'(a) < A + a.

We finally show that the conclusion of the lemma is still true when A = —oo. This follows from
B(—a,+00) = U e(—o0,0)B(—a, —p1) and —oco + a = inf,,c(_ o o) pt + a. O

Proof of Theorem[d If B(—a,—\) C Col(V) for some finite a, with A < 0, by Lemma [7] we see
that T'(a) < A+ a, and we deduce from the Collatz-Wielandt property (Theorem (1)) that p(T") < A,
and so, the radius of the ball, —), is bounded above by —p(T).

Moreover, it follows from Assumption that Col(V) has a finite vector a; indeed, we can take for
a the supremum of the columns of V. Then, B(—a,0) C Col(V'), and by the previous observation,
0< —p(7T).

If p(T') = —o0, then using the expression of the Collatz-Wielandt number of T, we get that for all
finite A < 0, there exists a finite vector a € R™ such that T'(a) < A + a. By Lemma , this implies
that B(—a, —\) C Col(V), and so in-rad(Col(V)) > —A. Since this holds for all A < 0, we deduce
that in-rad(Col(V')) = +o00 = —p(T) is the supremum of the radius of a Hilbert’s ball included in
Col(V) N R™.

Finally, if p(T') is finite, since the infimum is attained in the expression of the Collatz-Wielandt
number of T' (see Theorem [I), there exists a finite vector a € R™ such that T'(a) < p(T) + a.
By Lemmal7] this entails that B(—a, —p(T")) C Col(V).

This shows that —p(T') is the maximum radius of a Hilbert’s ball included in Col(V)NR™. O

Remark 2. One can give an alternative, less direct proof, of Theorem [6] by deriving it from The-

orem 16 of [AGKSI1S8]. The latter result shows that if 7' is a Shapley operator which satisfies the

technical condition (7" must be “diagonal free”), then, the supremum of the radii of Hilbert’s balls

included in S(T) := {z € R" | < T'(x)} coincides with sup{p € R | Jv € R", u +v < T(v)}. The
11



initial part of the proof of Lemma |7} up to , entails that Col(V') is precisely the set of vectors
x such that z < —T'(—x).

The following is an immediate corollary of Theorem [f]
Corollary 8. The set Col(V) NR™ is of empty interior if and only p(T) = 0. O

By combining Corollary 8] and Corollary [5] we recover the following known result, established
in [DSS05| (when the entries of the matrix V' are finite).

Corollary 9 (Compare with Th. 4.2 of [DSS05]). The set Col(V) NR™ is of empty interior if and
only if Col(V) is included in a tropical hyperplane. O

The following additional corollary implies that we can check in polynomial time whether the inner
radius of Col(V) is finite.

Corollary 10. The following assertions are equivalent:
(1) The inner radius of Col(V') is infinite;
(2) There is no part of (Rmax)™ that is left invariant by the operator T';
(3) T™(0) is the vector identically equal to —oo;
)

(4) p(T) = —oo.

Proof. (| .:>. Suppose that T™(0) is equal to L, the identically —oo vector. Let us take u €
(Rpax)™, not identically —oo, such that T'(u) = p(T') + u. Then, there is a constant a € R such
that u; < a, for all i € [n], and so np(T") +u = T"(u) < T™(0) + « is the identically —oo vector. It
follows that p(T') = —oo. Then, by Theorem [6] the inner radius of Col(V) is infinite.

:>: Let I be a non-empty subset of [n], and suppose that the part P consisting of vectors
of (Ryax)™ of support I is left invariant by 7. Let u be the vector in this part such that u; = 0
for all 4 € I. Since T(u) € Pr, there exists a real number « such that T'(u) > a + u. Hence,
p(T) = cw'(T) > o > —00, and, by Theorem [6], in-rad(Col(V)) = —p(T") < +oo0.

2)=@): Consider the map 7 : (Rmax)” — P([n]), which sends a vector u to its support,
w(u) = {i € [n] | u; # —oo}, and consider the equivalence relation ker7m on (Rpax)™, such that
(z,y) € kerm iff w(x) = 7(y). The quotient set (Rpyax)"/kerm can be identified to P([n]), and
the order on (Ryax)™ induces an order on (Ryax)™/ ker m, corresponding to the inclusion order on
P([n]). The elements if (Rpax)"™/ ker 7 are precisely the parts of (Ryax)™, together with the singleton
consisting of the identically —oo vector. Let 1 = 7~1(()) denote this singleton, and let T = 7 ([n]).
Observe that T is the maximal element of (Rpyax)™/ ker m, and that L is its minimal element.

Since the operator T is order preserving and commutes with the addition of a constant, it induces a
map T from (Rpax)™/ ker 7 to itself, which is still order preserving. Moreover, the fixed points of T}
distinct from L are precisely the parts of (Rpax)™ that are invariant by T. We have, T(T) < T, from
which we deduce that ((7)*(T))x=0 is a nonincreasing sequence. If (T;)¥(T) = (T,))*1(T) # L,
for some k, then (T} )*(T) would be an invariant part of T, contradicting the assumption. It follows
that the sequence (TX(T))sso strictly decreases until it reaches L. Since the maximal cardinality
of a chain in the lattice P(n) is n+ 1, it follows that (7%)"(T) = L. Hence, T7(0) is the identically
—o0 vector.

Finally, the equivalence between (|1) and (| . ) follows from Theorem @ O

Recall that a vector w in a tropical cone V C (Rpax)" is extreme |[GKOT, BSS07] if v = vV w with
v,w € V implies that u = v or u = w. An extreme direction of V is of the form Ry, + u, for some
extreme vector of V, i.e., it consists of the tropical scalar multiples of u. We say that a tropical
cone in (Ryax)™ is simplicial if it has precisely n extreme directions.

Proposition 11. If a Hilbert’s ball of positive radius is included in Col(V'), then it is also included

i a simplicial tropical cone generated by some n columns of V.
12



Proof. For all maps o : [n] — [p], such that (i,0(i)) € E, we consider the Shapley operator of the
one-player game obtained when player MIN selects the action k = (i) in state 4, that is,
77 (Rmax) — (Rmax) ) Tz (.ZL') ‘/20'(2) +j€r[IrlLﬁ§'(;£i(V;a(l) + x]) :

If B(—a,—\) C Col(V), then, by Lemma [T} T'(a) < A+ a. So, by choosing k = o(i) that achieves
the minimum in the expression of T'(a) in (9), we get 79(a) < A+ a. Let J := o([n]), so that
|J| < n. Since (i,0(i)) € E holds for all ¢ € [n], the submatrix V[J] of V, obtained by keeping the
columns in J, cannot have a —oo row. Hence Lemma [7| can be applied to V[.J]. We deduce that
B(—a,—\) C Col(V[J]). Up to eliminating elements of J, we may assume that the set J is minimal
to generate Col(V'[J]).

Let u/ denote the jth column of V. Then, every u/ must be extreme in Col(V[J]). Indeed, suppose
that w/ = v Vw with v,w € V with w/ # v and 4/ # w. Then, we can write v = Ve (Ax + u¥)
and w = Vgey(ur + uk), for some Ap, i, € Ryax. Moreover, we must have A\; < 0, otherwise,
v > u, and since v < vV w = u/, v = v/, a contradiction. A similar result holds for w. Since
W =vVw=Vies (A V ) +uF), and A; V pj < 0, we deduce that u/ = Vie (3 (A V ) 4+ ")
is generated by the columns {u* | k € J\ {j}}, contradicting the minimality of .J. It follows that
every column of V[J] is extreme in Col(V[.J]).

To show that Col(V[J]) is simplicial, it remains to check that |J| > n. It is known that a
collection of at most n — 1 vectors in (Rpax)™ is included in a tropical hyperplane — this follows for
instance from a tropical analogue of the Radon theorem, see e.g. [But03] or [AGG09, Coro. 6.13];
or this can be deduced from the characterization of the tropical rank [DSS05, TR09, [AGG12]. So if
|J| < n, then Col(V'[J]) is of empty interior, contradicting B(—a, —\) C Col(V[J]). O

We get as a corollary the following result.

Corollary 12. We have
(15) in-rad(Col(V)) = max in-rad(Col(V'[J]))

where the mazimum is taken over all subsets J C [p] of cardinality n. Moreover, if the inner radius
is positive, the maximum is achieved by J such that Col(V[J]) is simplicial.

By convention, if p < n, the maximum in ([15)) is zero.

Proof. The inequality > in is trivial. If in-rad(Col(V)) = 0, the equality trivially holds in (L5).
If in-rad(Col(V')) > 0, then for all 0 < A < in-rad(Col(V')), there exists a Hilbert’s ball of radius
A included in Col(V'). By Proposition this ball is also included in a simplicial tropical cone
generated by columns of V, which means that there exists J C [p] of cardinality n such that
A < in-rad(Col(V]J])) < maxyin-rad(Col(V[J])). Since this holds for all 0 < A < in-rad(Col(V')),
we deduce the inequality in-rad(Col(V')) < maxin-rad(Col(V'[J])) and so the equality. O

Corollary 13. Computing the inner-radius of a tropical polyhedron (Problem@) is polynomial-time
Turing equivalent to mean payoff games (Problem .

Proof. We observed immediately after stating Problem (1| that the problem of computing x;(7),
where T is the Shapley operator of a deterministic mean payoff game, satisfying Assumption [I]
polynomially Turing-reduces to mean payoff games. By Theorem [6] the opposite of the inner-
radius is equal to p(T'). Since, p(T) = max;epy Xi(T'), computing the inner-radius polynomially
Turing-reduces to mean payoff games.

Conversely, Corollary 3.11 of [GP13| shows in particular that mean payoff games (Problem
polynomially Turing-reduces to checking whether a collection of vectors vl, ..., vP of (Zpax)" are
included in a tropical hyperplane. By Corollary [9] and Corollary [§] the latter problem is equivalent
to checking whether the inner-radius of a tropical polyhedral cone Col(V') vanishes. O

13



Corollary 14. Computing the center of a Hilbert’s ball of mazimal radius included in Col(V'), where
V e Zusk | polynomially Turing-reduces to mean payoff games.

Proof. We first compute the maximal radius, —p(7'), which has been noted above, polynomially
Turing-reduces to mean payoff games. We can also obtain by the same type of reduction an optimal
policy o of Player Min, which satisfies p(T') = p(7'?). Indeed, for each move of player Min i — 7,
we can consider a modified Shapley operator T/ corresponding to the game in which player Min
makes the move i — j when in node i (i.e., this player has no choice in node i), and all the other
allowed moves are unchanged. By checking whether p(T(7)) = p(T), we can verify if the move
1 — j belongs to an optimal policy of Player Min. By repeatedly restricting the freedom of moves
of Player Min, we arrive, after a polynomial number of evaluation of p(-), at such an optimal policy
0. We showed that the center of an optimal Hilbert’s ball is of the form —u where u € R™ and
T(u) < p(T) +wu. Since T < T7, and p(T) = p(T7), it suffices to construct a vector in R™ such
that 77(u) < p(T7) + u. Considering the tropically linear map B := —p(T7) + T, we see this is
equivalent to Bu < u. A standard result of tropical spectral theory shows that one can compute
such a vector u by solving a shortest path problem. Actually, a tropical generating family of the
set of such vectors u is the set of columns of the so called “metric closure” or “Kleene star” B* of
the matrix B, defined as the tropical sum of the tropical powers of B, see e.g. Th. 3.101]
and [Butl0, § 4.4]. Moreover, the tropical sum u of the columns of B* is a finite vector. In this
way, we constructed u such that Bu < u, and so T'(u) < p(T) + u. O

Remark 3. A subset J C [p] satisfying in-rad(Col(V')) = max; in-rad(Col(V[J])) can be computed
by using any mean payoff game algorithm that returns, together with the mean payoff X (7'), a vector
u € R™ such that T'(u) < X(T') + u. Indeed, we saw in the proof of Proposition [11] that, taking any
policy o such that T'(u) = T7(u), and setting J := o([n]), we have B(—u, —x(T)) C Col(V]J]).
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FIGURE (2) Example of an inner ball of the column space Col(V') in the projective
-3 0 0 1 1 -1 0 0 -1

space P(Ruyax)?, where V = o -3 0 0 -1 1 1 -1 0
-1 -1 -4 -2 -1 -1 -2 0 0

We can verify easily that A = —1 and a = (0,0,1) " satisfy T'(a) = A + a. Moreover, a policy o
such that T7(a) = T'(a) is given by o(1) =4, 6(2) = 6 and o(3) = 8. Therefore, by Theorem [6] the
maximal radius of a Hilbert’s ball included in Col V' is —\ = 1. Moreover, a maximal Hilbert’s ball
is given by B(a, 1), and B(a,1) is included in the simplicial cone Col(V[J]) where J = {4,6,8} =
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o([3]). This Hilbert’s ball, together with the simplicial cone Col(V[J]), are shown in Figure
Observe that the set J such that in-rad(Col(V[J])) = in-rad(Col(V)) is not unique, indeed, every
J' ={i,j,k} with i € {4,5}, j € {6,7} and k € {8,9} is a candidate.

4. THE STRONG DUALITY THEOREM FOR TROPICAL LINEAR REGRESSION

In this section we will study the best approximation of a set of points in the tropical projective
space by a tropical hyperplane. We will show that the best error of approximation is equal to the
inner radius of the tropical module generated by this set of points.

Let V= {vM ... P} € P(Ryax)” be a finite subset of the tropical projective space. Since we
mainly focus on Sp(V), by abusing notions, we denote by V' € (Ry,ax)™*? the matrix whose columns
are given by some representatives of v(}),... v(®) . Note that Sp(V) = Col(V), which does not
depend on the choice of the representatives of v(1), ... @) In the following, we use the notation
ri¥ = in-rad(Sp(V)).

We introduce a one-sided Hausdorff distance from a set A C P(Rpax)™ to a set B C P(Rpax)"
with respect to the Hilbert’s projective metric, which we shall call the Hilbert’s distance from A to
B:

(16) disty (A, B) := supdisty(a, B) , with distg(a, B) := inf d(a,b) .
acA beB

Note that distz (A, B) = 0 if and only if for each part P; of the tropical projective space, AN Py
is included in the closure of B N P; with respect to the relative topology of Pr.

We are interested in the following tropical linear regression problem, consisting of finding a best
hyperplane approximation of the set V in Hilbert’s distance:

(17) inf  distyg(V,H,) -

a€EP(Rmax)™
Observe that if there is an index i € [n] such that vl-(l) == vgp ) = —00, then the tropical linear
regression problem is trivially solved by setting a; = 0 and a; = —oo for j # 7. Hence, in the sequel,

we shall assume that the matrix V satisfies Assumption [3] In particular, considering the operator
T defined in Equation (), we know from Theorem [f] that the inner radius of Sp(V) is —p(T).
The following lemma gives a simple formula for the Hilbert’s distance from a point to a hyperplane.

Lemma 15. For z,a € P(Rpax)", let i* € argmax;cp,(w; + a;). Then the Hilbert’s distance from
the point x to the hyperplane H, is

(18) distg(x, He) = @ + ajx — Fl}@); (x; +a;)
1€|n|,iA*

where we use the convention (—oo) — (—o0) = 0.

Proof. If max;cpy)(7; + a;) = —oo, then z € H, and Equation holds with the convention
(=00) = (=00) = 0. If max;cpy)(7; + a;) # —oo and the maximum in the expression is attained
twice, then x € H, and Equation holds.

Now we focus on the case max;ep,) ji- (zj + aj) < xi+ + a; € R, which implies 2+ € R and
a; € R. We split the argument into the following two cases.

Case 1: max;epy) j2i+ (75 + a;) € R. Then 6 := i« + a;j» — maxc(y) jzi+ (i + a;) > 0. Consider
the point Z given by

e = a4 —0
Tj=x; , for j € [n],j #1i*
Then & € H, and d(z, %) = ¢, implying disty (z, Hs) < 8. Now, let 2’ € H,, then the maximum in
max;e[,] (2 + a;) is achieved at least twice. So there exists i # %, such that max;cp, (2 + a;) =
@} + a;. Since i # i*, we have § < xj« + a;» — (x; + a;), then o} — z; > o} + a; — (v« + a;+) + 6.
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Since 2}« + a;+ < maxyep (2}, + ax) = j + a;, then xj — xp < 27 + a; — (v4+ + a). Therefore
d(z,2") > (a} — x;) — (2}« — x+) > 0, which proves disty(z, Hs) = 6.

Case 2! maxXje[n) jxi (¥ + a;) = —oo. For 2’ € H,, there exists i # ¢, such that max;e, (2 +
aj) =z, + a;. If ¥, +a; = —oo, then ). — a;» = —oo. Since a;+ € R, then 2}, = —oo. Thus
the fact that z;+ € R forces d(z,z') = 400, ie., disty(z,H,) = +0oo and Equation holds.
Now if z} + a; € R, then zj € R and a; € R. Since the assumption max;ey) j (75 + aj) = —00
and i # i* gives us z; + a; = —00, we have z; = —o0o, which leads to d(x,2’) = +o00. Therefore
distg (z, ") = +00 and Equation holds. O

The next lemma shows that the distance from a Hilbert’s ball to any tropical hyperplane is
bounded below by the radius of this ball.

Lemma 16. For a,b € P(Ryax)", suppose that the supports of a and b are not disjoint. Then, for
all v > 0, we have

(19) disty (B(a,r), Hp) > r

Proof. Let i* € argmax;c,)(a; + b;). Since the supports of a,b are not disjoint, we have a;« + b+ >
—00. Define x € (Ryax)™ by 24+ = 7+ a;+ and x; = a; for all i # i*. Then x € B(a,r), and for
all 1 #£ i* xy« + b» =17+ a; +b» =1+ a; +b; =71+ z; + b;. So by Lemmawe deduce that
dist gy (=, Hb) r, which implies that disty (B(a,r), Hp) = 7. O

Lemma 17. Suppose that W is a tropical cone in (Ryax)™. Then,
(20) distg (Sp(V), W) = distg(V, W) .

Proof. Consider an element 2 € Sp(V), so that there exists a finite subset of points (v\7));c; of V
and (aj)jes € R7, satisfying 2 = Vjes(ay + v@)). Take \ > disty(V,W). Then, for any j € J,
there exists w(J) ew such that d(v(), wl)) < X, and so, there are real numbers 77, 37 such that
A +w® <o) < BI4+w@ and 7 —~7 < . After replacing w) by 47 +w) € W, we may assume
that v/ = 0 Then \/]6]04] +w@ <z <A+ Viejoj + w), which entails that distg (z, W) < A
Since this holds for all A > dlstH(V W), we deduce that disty(xz, W) < distg(V, W), and so,
distg (Sp(V), W) < distg(V, W).

The other inequality follows from V C Sp(V). O

The next lemma shows that the distance from the set V to any tropical hyperplane is always
greater than or equal to the radius of any Hilbert’s ball included in the module Sp(V).

Lemma 18 (Weak duality). We have the following inequality
(21) rY = sup{r > 0| 3a € R", B(a,r) C Sp(V)} < , P(iﬂgf distg(V, Hyp) -
G n

Proof. Let a € R™ and r > 0 such that B(a r) C Sp(V), and let b € P(Ry,ax)™. Since the supports
of a and b are not disjoint, by Lemma [16, we have r < disty(B(a,r),Hp). Since B(a,r) C Sp(V),
then disty(B(a,r),Hp) < distg(Sp(V), ’Hb) Therefore, by using Lemma [17, we conclude that

r < distH(V,’Hb). O
Lemma 19. For all A € [—00,0] and b € P(Ryax)”, we have

(22) T(b) = A+ b e distg(V, Hp) < =X .

Proof. The equivalence is trivial if A = —o0, so, we suppose that A € (—oo,0]. Suppose in addition

that T'(b) > X + b, i.e., for any i € [n],

min [V + max (Vjp +b;)] = A+ b;.
kelpl,(ik)eE J€n].j#i
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Then for any ¢ € [n] and any k € [p],
Vi + b; < max (‘/]k + bj) -\
jelnl,j#i
For each k € [p], by taking i € argmax;c,(Vir + ;) and using Lemma we deduce that the

distance from the column Vi, = v®) to the hyperplane H, is < —\, which implies distg(V, Hp) < —A.
Now we suppose that distg(V,Hp) < —A. For k € [p] and i € [n], if i & argmax;c,)(Vik + b;),
then

Ve bi < max (Vi +b) < max (Vig+by) — A

jelmli#i 7T el
Otherwise, if i € argmaxje[n]( Vji+b;), then knowing that dist (v, H) < —\ and using Lemma ,
we get Vi, + b; < maxjepy) j£i(Vjk + bj) — A. Therefore, we deduce that for all i € [n] and k € [p],
Vie +b; < max (Vi +0b5) — A
jenl.j#i

Thus for all i € [n],

min _ [=Vik+ max (Vik+bj)] 2 A+ b
ke[p},(z',k)ejg[ k je[n]#i( ik +0;5)]

namely 7'(b) > A + b. O

The following theorem presents a strong duality result between a best tropical hyperplane ap-
proximation of a set V of points and the largest inner balls that its module Sp(V) contains.

Theorem 20 (Strong duality). We have

(23) , P{ﬁin " dist 7 (V, Hp) = % = sup{r > 0| Ja € R™, B(a,r) C Sp(V)}.

E max
The minimum is achieved by any vector b € P(Rmax)" such that T(b) = p(T) +b. Moreover, if
ryy s finite, the supremum is achieved by a ball B(—c,m3) where ¢ € R™ is any vector such that

T(c) < p(T) +c.

Proof. Theorem |§| entails that i} = —p(T') and that the last assertion of the theorem holds. More-
over, the existence of a vector b € P(Ruyax)" such T'(b) > p(T') + b follows from Theorem [1} Then,
by Lemma we have dist H(V,Hb) < T{?, which combined with the weak duality property
implies that the equality holds in (21]), and that b such that T'(b) > p(T') + b achieves the minimum
in (23). O

The following lemma allows us to bound from below the value of the tropical linear regression
problem by looking at points in the sectors of a hyperplane H,.

Lemma 21. Ifa € R" and r € [0,+00| are such that
Vien],3kelp, ¥ eSi(a) and disty(w®, Hy) =7 |
then B(—a,r) C Col(V) and minyepg,,,y» distg(V, Hp) > r

Proof. If r = 400, then for any i € [n], there is some o; € [p] such that v(%) € S;(a) and
dist 7 (v(7), H,) = +oo. Since a is finite, for any i € [n], we have vz(gi) € Rand v](o(i)) = —oo for any
j # i. We deduce that Sp(v(@), ... v(@)) = Ry... Then Col(V) = Ry, and so B(—a, +00) =
Rumax € Col(V).

Now we consider r € [0,+00). For i € [n], by the assumption of this lemma, there exists

k € [p] such that v®) € S;(a) and disty (v*), H,) > r. Hence, by using and Lemma we
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deduce that the column V = v®) satisfies Vik +a; > r 4+ max;+; (Vi + a;j). Therefore, we have
—Vik + max;j; (Vi + a;) < —r + a;, which implies for any i € [n],
inf { — Vi + max (Vj+ aj)] < —r+a;,

Ti(a) =  in max
lelpl, (i, eE j€ln].i#i
ie., T(a) < —r + a. Therefore, by Lemma [7| we deduce that B(—a,r) C Col(V).
Finally by Theorem [20] we have

, P{ﬁin : dist g (V, Hp) = i} = sup{s > 0| 3z € R", B(x,s) C Sp(V)} > r.
e max i

O

Given a hyperplane Hy, we call witness point of Hp any point p in V such that the distance from
p to the hyperplane H; equals the distance from the set V to this hyperplane.

Theorem 22 (Optimality certificates). Let a € R™, then the following assertions are equivalent:

(1) T(a) = p(T) + a;
(2) The hyperplane H, admits a witness point in each sector, meaning that Vi € [n], 3k €
[p], v € Si(a) and disty(v®),H,) = disty(V, Ha).

Moreover, if these assertions hold, then, p(T) = —distg(V, Ha), Ha is an optimal solution of the
tropical linear regression problem, and B(—a,distg(V,Hs)) is a Hilbert’s ball of maximal radius

included in Sp(V).
Proof. If a € R™ satisfies T(a) = p(T) + a = —T%? + a, then by Theorem , H, is optimal
in Equation , e, distgy(V,Ha) = r%ﬁl, and for all i € [n] we have
min —Vir + max (Vi +a;)] = —rd +a;.
eptert VT Vet o) v
Then for all ¢ € [n], there exists k € [p] such that
Vi + max (Vi +aj) = —rd + a;,
i je[n],;;i( ik + aj) vt ai
ie, Vi +a; = rg‘ + maxje) j2i(Vik + a;j). This implies that v®) = V. € Si(a), and also
by Lemma that disty (v®, H,) = rid = disty (V, Ha).
Now, we suppose that we have assertion (2). By Lemma , we have

min  disty(V, Hp) = distg(V, Ha),
beP(Rmax)n

which means that H, achieves the minimum in (23), so that disty(V,Ha) = ri}. Hence, Vk €
[p], dist 7 (v(®), H,) < 738, so that by Lemma we have Vk € [p],Vi € [n],

Vit +a; <+ max (Vj, + aj).

j€ln].j#i
Therefore, we obtain
(24) Vi € [n],Vk € [pl, (i, k) € B; =1} + a; < =Vip + max_ (Vi +a;)
J€ln],j#i

Assertion (2) also implies Vi € [n], 3k € [p], Vir, + a; = maxcp) j£i(Vjr + a;) and disty (v®), Hy) =
ry, with Vi, # —oo becagse a € R™ and Vi # L. This means, by Lemma that Vi € [n], 3k €
[p], (i, k) € E, Vig + a; = 73 + maxc(n) j£i(Vjk + aj). Then
(25) Vi € [n],3k € [p), (i,k) € B; =} +a; = —Vip + max (Vi +aj) .

JEN],j#i
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From and , we conclude that
Vi € [n], -1 +a; = i -V V; )] = Ti(a).
Pell—r e min Vit max (Vi+ o)) = T
Therefore T'(a) = p(T) + a.
The final part of the theorem follows from Theorem ([l

Remark 4. When T'(a) = p(T) + a and a € R", Theorem [22{ and Theorem [20] entail the following
remarkable property: there is an optimal Hilbert’s ball whose center coincides with the apex of an
optimal regression hyperplane. This property is illustrated in Figure ] below.

Remark 5. The situation in which T'(a) = L holds for some finite vector a (or equivalently, for all
finite vectors a) is degenerate. Indeed, we observe from the proof of Theorem [22| that T'(a) = L
for some finite vector a if and only if, for all i € [n], there is a vector v(®) such that vgk) is
finite and all fu](.k) with j # ¢ are —oo. Then, V contains a n x n diagonal submatrix, and so,

Col(V) = Sp(V) = (Rpax)™-

We next exhibit a situation in which the existence of a finite eigenvector, required to apply The-
orem 22| is guaranteed.

Proposition 23. Suppose that all the vectors v € V have finite entries. Then, the operator T' has
a finite eigenvector a.

Proof. Theorems 9 and 13 of [GGO04] imply that an order preserving and additively homogeneous
map T : R” — R” has a finite eigenvector if the recession function 7'(z) := limy oo s~ 'T'(sz) has
only fixed points on the diagonal. When the matrix V is finite, considering T := Ty, we have
Ty(x) = MaXjey] i Tj, for all i € [n], so the latter condition is trivially satisfied. This entails that
there exists a vector a € R" such that T'(a) = p(T') + a. O

A more general condition, involving the notion of dominions, is given in Appendix [A]

The following proposition shows that we can determine witness points from a policy o : [n] — [p],
that satisfies T'(a) = T (a) where a is a finite eigenvector of the operator 7'. For an illustration of
this lemma see Figure [2]

Proposition 24. Let a € R" such that T(a) = —ri} +a, and o : [n] — [p] a map, such that
Vi € [n], (i,0(i)) € E. We have T(a) =T (a) if and only if for all i € [n], V., is a witness point
of Ha that belongs to the sector Si(a).

Proof. If T(a) = T°(a), then T7(a) = —ri} + a. Therefore, we have for all i € [n], —Vip(;) +
max;z;(Viga) + a;) = = + ai, ie. Vigq) + ai = 1)) + max;»(Vjs) + aj), which means that
V() € Si(a) and, by Lemma that disty (V. (), Ha) = i, i.e for all i € [n], Vi) is a witness
point in the sector S;(a).

Conversely, if for all i € [n], V,(;) is a witness point in the sector S;(a). Let i € [n], we have
then Vip(;) +ai = ry) + maxjs; (Vi) + aj), 6. —Vig) +max;xi(Vig) +aj) = —r)) +a;. We know
that for all k € [p], distg(Vig, Ha) < 7“51, then by Lemma Vie +a; < 7“%51 + max;j (Vg + aj), ie.
Vi + maxﬁéi(vjk + aj) > —Ti\? + a;. Therefore, Ti(a) = infke[p},(z',k)eE [ — Vit + manE[n],j;éi(V}k +

a;)| = —Vie@s) + maxjzi(Vie) + aj) = T7 (a). O

We now formalize the tropical linear regression problem:

Problem 3 (Tropical linear regression). Input: a finite set of vectors V C Z%... Goal: compute

the infimum of the one-sided Hausdorff distance of V to a tropical hyperplane, i.e., the value of the
optimization problem .
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Corollary 25. The tropical linear regression problem (Problem @ is polynomial time Turing-
equivalent to mean payoff games (Problem .

Proof. This follows from the strong duality theorem (Theorem and Corollary O

Corollary 26. Computing an optimal regression hyperplane Hq in , given a finite set of vectors
V C Z} x> polynomially Turing-reduces to mean payoff games.

Proof. By Theorem we need to find a vector a such that T'(a) > p(T) + a. Arguing as in the
proof of Corollary [I4] but exchanging the roles of Player Max and Min, we end up with an optimal
policy 7 of Player Max. Then, it suffices to find a vector a € (R U {—o0})", a # L, such that
"T'(a) = p("T) + a. Still arguing as in the proof of Corollary we are reduced to a problem
of tropical (min-plus instead max-plus) spectral theory, which again reduces to a shortest path
problem. O

In Figure[3] we consider the same matrix V as in Figure[2] The Figure [3]shows the witness points
in each of the sectors defined by the hyperplane H, where a = (0,0,1) " satisfies T'(a) = X + a with
A = —1. In this example, we have two witness points in each sector: V4 and V5 are the witness
points in the sector S1(a) (in green), Vg and V.7 are the witness points in the sector Sa(a) (in blue)
and Vg and Vg are the witness points in the sector S3(a) (in red).

T3

~
|
|
|
|
I
I
I
I
I
I

FIGURE (3) The inner ball of a column space Col(V') and the linear regression of
the columns of V.

In Figure 4 we consider the following matrix U € R3*%:

-1 0 1 0
U= 0 -1 0 1
0O 0 -2 =2

The operator associated to U is the following map 7" : (Rmax)” = (Rmax)”

1 min[l + max(zg, x3), max(—1 + z2,x3), —1 + max(x2, —2 4+ z3), max(1 + z2, —2 + x3)]
T | z2 | = | min[max(—1+ z1,x3), 1 + max(z1,z3), max(l + z1, —2 + z3), —1 + max(z1, —2 + x3)]
min[max(—1+ z1,22), 1 + max(z1, —1 + z2),2 + max(l + z1,x2), 2 + max(z1, 1 + z2)]
We verify easily that A = —1 and a = (0,0,1)" satisfy T(a) = A + a, so that the inner radius
of Col(U) is r;} = 1. In this example, other hyperplanes like H; and H., with b = (0,0, —1)" and
20



c= (0,0, —oo)T, are also optimal solutions of the tropical linear regression problem, but H, is the
only hyperplane such that a is a finite eigenvector of the operator T and, hence, that satisfies also
B(—a,1) C Col(U).

FIGURE (4) A column space Col(U) (light and dark gray regions) with multiple
hyperplanes that are optimal solutions of the tropical linear regression problem, and
multiple inner balls of maximal radius, but a unique optimal hyperplane with witness
points in each sector, corresponding to the finite eigenvector a = (0, 0, 1)—r of T and
to the inner ball in dark gray.

5. TROPICAL LINEAR REGRESSION WITH SIGN OR TYPE PATTERNS

Here, we study several variants of the tropical linear regression problem, which can also be solved
by the present technique of reduction to a mean payoff game. The second of these variants (with
“types”) will arise in the economic application of Section Iﬂ

5.1. Tropical linear regression with signs. Given I, J C [n] such that I,J # (), IUJ = [n] and
INJ=0and a € P(Ryax)™, we define the signed tropical hyperplane of type (I,J):

(26) Héj = {2 € (Rmax)" | max(a; + x;) = max(a; + x;)}
el JjeJ

Given a set V C (Ryax)™, of cardinality |V| = p, the signed tropical linear regression problem of
type (I, J) consists in finding the best approximation of V by a signed hyperplane of type (I, J):

27 i dist LTy
(27) aeﬁ%éﬁx)” istar (Vo)

Let M be a closed tropical cone of (Ryax)™ and z € (Rpax)™. The projection Pys(x) of the point
x onto M [CGQO04] is defined by:

(28) Py(x) :=max{z e M | z < z} .

The Hilbert’s distance from x to M is achievd by the projection Pys(x).
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Theorem 27 (|[CGQO4]). Given a closed tropical semimodule M C (Rpax)"™ and x € (Rmax)", we
have:
distg(x, M) = d(z, Py(z)) .

The following lemma identifies the projection of a point x € P(Rpax)™ onto a signed tropical
hyperplane H.7.

Lemma 28. Let z,a € P(Ryax)" and K = suppa. The projection Py1s(x) of x onto HL is given
by:

x; , forl e K¢
(29) [Py (z)]; = § min{z;, —a; + maxjes(a; +x;)} , forl€e INK

min{z;, —a; + max;er(a; + )} , forle JNK

where K¢ denotes the complementary of K in [n].

Proof. Denote the right hand side vector of by . From , we have Py () = max{z €
HIT | 2 < 2} Let z € HL/ such that z < 2. We will prove that 2 < #. Let [ € I,if [ € I N K¢, we
have right away that z; < 2; = #;. Now if [ € I N K, knowing that z € H./ and using , we have
a;+ 2z < max;er(a; + 2;) = maxjes(aj + zj) < maxjej(a; + ;). Then, z; < —a;+ maxjcj(a; + ;).
We know also that z; < xj, then z; < Z;. Similarly the inequality z; < Z; can also be proved for all
I € J. Therefore, for all z € HL/, if 2 < x then z < #. Using , it suffices now to prove that
& € H!7. Indeed, max;er(a;+3;) = maxjerni (a;i+%;) = max;eng {min(a;+z;, max;e j(aj+z;))} =
min{max;cni (a;+2;), max;cs(a;+x;)} = min{max;cr(a;+x;), max;cs(aj+x;)}, and by symmetry
we deduce that maxjes(a; + ;) is also equal to the same quantity, and so & € HZ17. O

Remark 6. The formula of Lemma 28 may be compared with formula for the projection of a point
onto a tropical half-space {z € (Ryax)" | maxser(a; + z;) < maxjes(a; + x;)}, see [AGNSII]
Th. 5.1].

Proposition 29. Let x,a € P(Ryax)™. The Hilbert’s distance of the point x to the signed hyperplane
HET gs:
(30) distg (2, HL') = | max(x; + a;) — max(x; + a;)] ,

i€l jeJ

if at least one of these mazima is finite, and disty(x, HL') = 0 otherwise.

Proof. From Theorem 27, we have disty (z, H./) = d(x, %) with & = Pyri(z). Let K =suppa and
O=suppz. FINKNO=JNKNO =0, then KNO =0, so x+a= —oo, and this means that
r € HLY and so disty (z,HL)) = 0.

FINKNO=0and JNKNO # 0, then max;cs(z; + a;) = —oo and maxcj(z; + aj) # —oo.
Let j € JN K NO, we have £; = min{z;, —a; + max;es(a; + x;)} = —oo and we have x; # —o0,
then d(x,Z) = 400 = |max;er(x; + a;) — maxjcy(x; + aj)|. By symmetry we treat the case when
INKNO#Pand JNKNO = .

Now, we suppose that TN KNO # 0 and JNKNO # 0. Let i € INK N O, we have
x; — T; = x; + max{—wx;,a; — maxjes(a; + x;)} = max{0,z; + a; — max;jes(a; + x;)}. Then,
we have max;cr(z; — &;) = maxiernkno(®i — ;) = max{0, max;ernxno(z; + a;) — maxjcy(a; +
xj)} = max{0,max;er(x; + a;) — maxjes(a; + x;)}, and symmetrically, we have max;cs(z; —
7;) = max{0, max;e s (7; + a;) — max;es(a; + x;)}. Therefore, we deduce that maxe(,(v; — 7;) =
| max;er(x; + a;) — maxjes(z; + aj)|.

To finish the proof we need now to show that min;¢ (x;—Z;) = 0. This is a general property of the
projection & = Py (x) of a vector on a closed tropical cone: since & < z, the minimum is nonnegative,
and if the minimum is positive, adding a small constant € to every entry of &, we get a vector z¢
which still belongs to M and satisfies ¢ < z, contradicting Py/(z) = max{z € M | z < z}. O
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In the sequel, we suppose that the following Assumption [4] holds.
Assumption 4. We suppose that for each [ € [n], there exists v € V, such that v; # —oc.
We now introduce the operator 777 : (Rpax)™ + (Rmax)", defined by:

(31) TIJ(x) — ?nffuev,vlf—oo{*vl + manEJ(Uj + x]’)}v.if lel,
! infyep o, 2—co{—v1 + maxer(v; +a3)}, if L€ J .

The following result, analogous to Lemma gives a metric interpretation of the sub-eigenspace
of the operator T,

Lemma 30. Let A € [—00,0] and a € P(Rpax)", we have

T (a) > M+ a < distg (V, HE) < =) .
Proof. The equivalence is trivial if A = —o0, so, we suppose that A € (—oo,0]. We have
Vi e I,Yv eV, vy # —oo; —u + maxjes(v; + aj) = A+ q
Vie JYv eV, v # —o0; —v; + maxier(v; + a;) = A+ q

(33) Vo € V,maxjer(v + @) < maxjcy(vj +aj) — A
Yo € V,maxje (v + a;) < maxier(v; +a;) — A

(32) T”(a)>A+a<:>{

Let V' denote the set of vectors v € V for which at least one of the latter maxima are finite, and
observe that the vectors of V \ V' trivially belong to M Then, using Proposition we see that
the last condition in is equivalent to

Vo € V', d(v, HL') = | max(v; + a;) — max(v; 4+ aj)| < —A
il jed

ie., distg(V, HLT) < =\ O

Let w € R™ and r > 0, we define the vertical interval of type I,J centered at point w and of
radius r,
Bry(w,r) = {A+w+ pe’ | p€[-rr], A €R},

where e’ is the vector of R” such that ei] =0forl eI and 62] =1 for [ € J. Using the identity

—u+ ue‘] = —Mel, we see

Brj(w,r) = {A+w+pe’ | pe[-rr,AeR} .
Lemma 31. Let A € [—00,0] and a € R", we have
Brj(—a,—X\) € Sp(V) = T (a) <A +a .
Proof. Suppose first that A is finite. If Byj(—a,—\) C Sp(V), then

V,U, € [_)‘a /\]7 3(%)1;@) € Rpa —a+ lu’eJ - maé((av + U)'
vE

Let 1 € [=A, A], we have

(34) Viel,(VoeV, —a; > ay+0v; and 0 €V, —a; = Q) + UZ@) ,
and also
(35) Vjed (YveV,—aj+pn > o+ v and Fo) ey, —aj + p = o) + v](-j)) )

From (35)), we have Vv € V,supje s (vj + aj) < —ay + p, and from ([34), we have Vi € I,UZ@ # —00

because a, ) +o = —q; R Then, for all i € I, we have T/ (a) = Infyey -0l —vitsup;e s (vj+

)
aj)} < infyey v, £—co{—vi —aw + p} < —UZ@ — () + p = p+ a;. This being true for all p € [\, A],
we take here ;1 = \ and we get that Vi € I, T}/ (a) < A\ + a;.
23



Similarly? we have Vj € J, TjU(a) = infyep v;# 0ol —vj +sup;er(vi +a;)} <infpey v £ cof{—v; —

ay} < —vjw — a,;) = —p + a;. By taking here p = —\, we get that Vj € J, Tj“(a) < A+ aj.
Therefore, we get that 777 (a) < A + a.

The conclusion of the lemma is still true when A = —oo. This follows from Bjj(—a,+00) =
Upe(=o0,0)Bri(—a, —p) and —oo + a = inf ,c(_o0 0y 1t + a. O

Lemma 32. Let A € [—00,0], we have
Ju € R T (u) < A+ u = Jw € R™; Bry(w, —\) € Sp(V) .

Proof. Suppose first that A is finite. For simplicity of notation, we shall assume that u = 0. The
general case reduces to this one by replacing every vector v € V by the vector v + u. We denote by
V the matrix whose columns are the elements of V. Since T/ (u) < A + u, denoting by o a map
[n] = [p] such that for all [ € [n], v = V,;(;) achieves the minimum in (31), we get:

(36) Viel, VjelJ, Vie) € Viey + A 5
(37) Vie J, Viel, Via(l) < WU(Z) + A

Consider the vectors
w' = Vier = Vi) + Vo, 0 =Vies = Vio(i) + Vio(s

so that w!,w”’ € Sp(V). By considering the values i = [ or j = [ in the suprema above, we get

(38) wl >0,V el, wi >0,vleJ .
Moreover, using , we get

(39) wi = Vier = Vi) + Vio) < A, forall jeJ
and similarly, using ,

(40) w] <\ foralliel .

Define the vector w by

W — wlI, iflel ,
T W, ifled .

Using (38)—([40), we deduce that for all p € [X, =],
w+ pe’ = (w4 p) v w? € Sp(V)

and so Brj(w,—\) C Sp(V).

We finally show that the conclusion of the lemma is still true when A = —oo. This follows from
the fact that the above center w depends only on the vectors of V and does not depend on A, and
also from the facts that B(w, +00) = Uye(—00,0)B(w, —p1) and —oo + w = inf ;¢ (_ o 0y pt + w. O

The next result is immediate from Lemmas [31] and 32} It is analogous to Lemma [7] It shows
that the existence of a super-eigenvector of T7”/ is equivalent to the existence of a wertical interval
included in the module Sp(V).

Proposition 33. Let A € [—00,0], and a € R™, we have
Ju e R TH (u) < A+ u < Jw e R?; Bry(w,—\) € Sp(V) . O

We now derive a strong duality theorem for signed tropical regression.
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Theorem 34. We have

(41) IP)I(%in : disty(V, HL) = —p(T!7) = sup{r > 0 | 3w € R", Byj(w,r) C Sp(V)} .

ac max )"
The minimum is achieved by any vector b € P(Ryax)™ such that TT(b) = p(T*7) +b. Moreover, if
p(T!7) is finite, the supremum is achieved by a ball B(c, p(T*?)) where ¢ € R™ can be deduced from
any vector u such that T (u) < p(T!7) + u.

Proof. From Proposition Lemma and the Collatz-Wielandt property (Theorem , we deduce
the strong duality property (41). Moreover, the existence of a vector b € P(Ryax)" such T (b) >
p(T17) + b follows from Theorem [1} Then, by Lemma |30, we have distg (V,H) < —p(T1), which
implies that b such that 77/ (b) > p(T!7) + b achieves the minimum in (1))

Finally, if p(T77) is finite, since the infimum is attained in the expression of the Collatz-Wielandt
number of 7?7 (see Theorem , there exists a finite vector u € R" such that 777 (u) < p(T?7) + w.
By the proof of Lemma , we can then construct a vector ¢ such that Br(c, —p(T'7)) c Sp(V). O

Remark 7. When the set I = {i} is of cardinality one, the regression problem for the signed
hyperplane has the following special form:

42 Mi o . N

(42) Min max v; (I;lg} aj — a; +v;)|

This can be solved in a direct way [MCT21], avoiding the recourse to mean payoff games.Indeed,
reduces to the following “one-sided” tropical linear regression problem. Given sample points
(™), y®)) in R™ x R™, for k € [p], compute

43 Min max llo® — Ap®) 7

(43) finmax ly 2 oo

where the minimum is taken over tropical matrices A of size m x n, and the product Az*) is under-
stood tropically. Up to a straightforward duality, this problem was solved in [But10, Theorem 3.5.2],
the result being attributed there to Cuninghame-Green [CG79|. Alternatively, this solution may be
recovered by combining [CF00, Coro. 1] with the explicit formula of the tropical projection [CGQO04),
Th. 5]. More precisely, define the matrix A € R™*" by A;; := Mminge(y) ygk) - l‘;k), so that A is
the maximal matrix such that Az(®) < y*) for all k € [p]. Let § := maxye, [|[y*) — Az ||, and
A;?]P ' = A;;+6/2. Then, A% is the greatest optimal solution. It can be computed in O(mnp) arith-
metic operations. By specializing this formula, one can solve in O(np) arithmetic operations.
We refer the reader to [MCT21| for more information, and for the solution of further problems of
this category.

Remark 8. In contrast, when I, J are part of the input, the signed linear tropical regression problem
is polytime Turing equivalent to mean payoff games. This can be seen as follows. The reduction
to mean payoff games is a consequence of Theorem Conversely, observe that finding a signed
tropical hyperplane ”Hé"] containing a set V = {v(l), e ,v(p)} in R™ is equivalent to solving a
tropical linear system of the form Bz = Cy, where € (Ruax)?, ¥ € (Rumax)”, B € (Rpax)?*7,
C € (Rmax)px‘], By = ng) for i € I and Cy; = ’Uj(-k) for j € I. Indeed, the vector a defining

HI s given by a; = z; for i € I and a; = y; for j € J. We know from [AGGI2| that deciding
whether a mean payoff game has an initial winning position is equivalent to the existence of a
non-identically —oo solution z € (Rpyax)® of a system of tropical linear inequalities F'z < Gz, where
F,G € (Zmax)"** are given. Such a system F'z < Gz can be rewritten as Bx = C'y by introducing
lift variables u,v € (Rpax)", so that v = Fz and w is a slack variable. Setting y := (u,v), identified
to a column vector, B := (‘I) }) and C := (g), where 0 is a zero tropical matrix, and I the identity
matrix, we see that F'z < Gz has a non-identically —oo solution iff By = Cz has a non-identically
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—oo solution. It follows that mean payoff games reduce to checking whether there is a solution of
a signed tropical linear regression problem with zero error.

5.2. Tropical linear regression with type information. The following variant will be relevant
to the application to economy considered below, to measure the “distance to equilibria” of a market.
We suppose the set of points V' is the disjoint union V = U;c[,Vi, where each V; is non-empty. We
shall say that the points of V; are of type i € [n]. Note that the set of types is the same as the set
of indices of vectors. For each type i € [n], we consider the signed hyperplane:

Hfz = H({li}{i}c = {2 € Rmax)" | @; +2; = I?Qf((aj + )}
The typed tropical linear regression problem associated to the partition Vi,...,V, of V, is defined
as:

(44) Min  maxdistgy(Vi, 1Y) -
a€P(Rmax)™ i€[n]

The value of this problem is small if and only if for each i € [n], the points of V; are close to the
signed tropical hyperplane .

From Proposition 29, we know that disty (v, H:) = |v; + a; — max;4(vj + a;)|.

We suppose in the sequel that Assumption 4| holds. For each type i € [n], we consider the Shapley
operator T : (Rpax)” = (Rmax)", given by where the type considered is (I, J) = ({i}, {i}°)
and to the set of points is V;:

< infyey, v, £ ool —vi + max;z(v; +xj)}, if 1=1
4 T (z) = § ViAol Tl UANCIISCE ’
(45) l (z) { mfvevi’vﬁéfoo{_w+vi}+xi, if 1#£4 .

We consider now the Shapley operator TY : (Rmax)” = (Rmax)™ given by the infimum of the
operators T%" i € [n]. It is given by:

(46) TV (z) = min T (x) .

The following lemma, analogous to Lemma|[I9] gives a metric interpretation of the sub-eigenspace
of the operator T'.

Lemma 35. Let A € [—00,0] and a € P(Rpax)", we have

TY(a) > \+a & m:[p}(distH(Vi,Hé) < =N
S

Proof. Let A € [—00,0] and a € P(Ryax)". From and Lemma[30] we deduce the equivalence:
TY(a) > A+aaVicn, T (z) > +a
e Vie [n],disty(Vi, HY) < =X,
& maxdisty (V;, H) < =\ . O

i€[n]

From Lemma [35] and theorem [T} we deduce the following result, showing that the tropical linear
regression problem with types, associated to the sets Vi, ..., V,, also reduces to a mean payoff game.

Theorem 36. We have,

i disty (Vi, HY) = —p(TY) .
wepin | madistyy (Vi o) = —p(T7)

Moreover, the minimum is achieved by any vector a € P(Ruyax)™ such that T% (a) > p(TY) + a.
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Remark 9. Typed tropical linear regression should be compared with the tropical SVM problem
introduced in |[GJO§|. In the tropical SVM setting, we have a partition of the set of points in n
color classes, Ve,, ..., V., , and we are looking for a tropical hyperplane H,, and for a permutation
o of {1,...,n} such that for all i € [n], all the points of color ¢; are in the same sector S,(;)(a). In
other words, we want the tropical hyperplane to separate the n color classes. This is not possible
in general, so one needs to consider metric versions, modelling the minimization of classification
errors [TWY20]. A possible metric formulation, in the spirit of the present approach, would be to
consider

(47) min min maxdisty (V;, Sy(;)(a)) (Metric Tropical SVM)

0€6, aER™ je[n]

where &,, denotes the symmetric group on n letters. By comparison with , we see that we have in
addition a minimization over the symmetric group, but the subproblem with a fixed permutation o
arising in the SVM problem is simpler than the analogous problem of typed tropical linear regression,
since the sector Sy(;) is convex, whereas the set H! arising in is not a convex one. In the
application described below, it is the set H? that is relevant to measure the “distance to equilibrium”.

In Figure we consider the following matrix V € R3*11:

1 1 2 0 0 0 -3 -1 0 0 =2
(48) V=10 -2 0 1 1 2 1 0 0 -3 O ,
o 0 -2 -2 -1 -2 0 2 3 1 1

and the types are given by the subsets of V = [11] as follows V; = {1,2,3,4}, V» = {5,6,7,8}
and V3 = {9,10,11}.

The operators 7% : (Ryax)™ — (Rmax)™ given by and associated to the above matrix V'
and partition (V;);c[3) are given by:

x1 min[—1 4+ max(—2 + 2, z3), —2 + max(xa, —2 + x3), max(1 + z2, —2 + x3)]
Tty’l T = -1+ Tl ,
T3 1+x
T 1+ a9
T2 29 | = [ min[—2 + max(z1, =2 + x3), =1 + max(—3 + x1, 23), max(—1 + 21,2 + z3)] | ,
T3 -2+ x9
1 1+ x5
T3 ro | = 1+ x5
x3 min[—3 + max(z1,x2), —1 + max(z1, =3 + x2), —1 + max(—2 + 1, x2)]

Then the operator T% : (Rpax)™ = (Rmax)™ given by is in this example:

1 min[—1 + max(—2 + x9, 3), —2 + max(za, —2 + x3), 1 + z2, 1 + x3, ]
T [ 22 | = | min[—2 + max(z1, =2 + x3), —1 + max(—3 + z1, v3), —1 + 21, 1 + 23]
x3 min[—3 + max(z1, z2), —1 + max(z1, —3 + x2), 1 + x1, —2 + z2]

We verify easily that A = —2 and a = (0,0, —1) " satisfy 7% (a) = X + a, so that by Theorem
the apex a is optimal for the typed tropical linear regression problem .

We notice that in this case, the tropical hyperplane H, has at least one witness point in each
sector, which means, by Theorem that H, is also an optimal hyperplane in the sense of the
usual tropical linear regression studied in Section [4
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Now, if we consider the same matrix V in , but we exchange the types of the points Vg and
V.10, i.e. we consider the partition V; = {1,2,3,4}, Vo = {5,6,7,10} and V3 = {8,9,11}, then the
new typed Shapley operator T% is given by:

R K51 min[—3+m2,3+af3]
TY [ z2 | = | min[—2 + max(z1, —2 + x3), —1 + max(—3 + x1, z3), —1 + 1, 1 + x3]
xs min[l +:1:1,—4+a:2]

We verify easily that y = —5/2 and b = (0,1/2,—1)" satisfy T%(b) = u + b. This example
is presented in Figure Here, we notice that the hyperplane H,; that is optimal in the typed
tropical linear regression sense (Section does not have witness points in each sector, which
means that it is not optimal in the usual tropical linear regression framework (Section .

FIGURE (5) Figure : A set of typed points V with three types in P(Rpay)?
with an optimal tropical hyperplane H, in the sense of the typed tropical regression,
where a = (0,0, —1) " satisfies 7% (a) = —2 + a. Figure The same set of typed
points V as Figure but with the types of the two points Vg and V.o being
exchanged, and an optimal tropical hyperplane H; in the sense of the typed tropical

regression, where b = (0,1/2,—1)" satisfies T% (b) = —5/2 + b.

6. ALGORITHMIC ASPECTS

In this section, we explain how the tropical linear regression problem can be effectively solved by
using mean-payoff games algorithms. Throughout the section, we assume that the set of points V
is given by as the set of columns the matrix V. By Corollary [I4] in theory, any algorithm solving
mean payoff games in the weakest sense (deciding the inequality x;(7") > 0) can be used. However,
some game algorithms lead to more direct approaches, we next discuss some of these.

Considering the strong duality result, Theorem and the result on the existence of witness
points Theorem [22] the key algorithmic issues are:

(i) to compute the upper mean payoff, p(T") (which is the opposite of the value of the tropical
linear regression problem);
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(ii) to decide whether there is a finite eigenvector v € R™ such that T'(u) = p(T') + u, and to
compute such an eigenvector (when this is so, —u is the center an an optimal ball included
in Sp(V) and the apex of an optimal regression hyperplane, see Remark ;

(iii) to find a sub-eigenvector b € (Rpax)™ \ {L}, satisfying T'(b) > p(T') + b (then, H,; is an
optimal regression hyperplane);

(iv) to find a super-eigenvector ¢ € R satisfying T'(¢) < p(T') + ¢ (then, —c is the center of an
optimal ball included in Sp(V).

For simplicity of the discussion, we assume that 7" sends R™ — R™. The case in which 7" sends R"
to (Rmax)™ reduces to this one by considering the action of 7" on the parts of (Ryax)™ and looking
for invariant parts.

Then, problems (i)—(iv) are solved, simultaneously, as soon as we know an invariant half-line of T'.
Indeed, we observed after stating Theorem [I] that if (u,n) is an invariant half-line, then x(T') = n. In
this way, p(T') = max;c[,) xi(T') is determined, and this solves issue (i). Moreover, by Proposition
T admits a finite eigenvector if and only if 7 is a constant vector, i.e., n = (A, ..., A) for some A € R,
and u is an eigenvector. This solves issue (ii). We observed in the proof of Theorem |l|that u satisfies
T(u) < p(T') + u, and so, this solves issue (iii). Finally, setting I := {i € [n] | xs(T) = p(T)}, and
defining the vector @ such that @; = w; for i € I and 4; = —oo otherwise, it can be checked that
T(u) > u+ p(T), which solves issue (iv).

More generally, the reduction in the second part of the proof of Corollary [14]shows that algorithm
which returns an optimal policy o of Player Min, i.e., a policy such that x(7') = x(7), can be
used to produce a finite vector ¢ € R™ such that T'(¢) < X(T') + ¢, by reduction to a tropical
eigenvalue problem. Moreover, any algorithm which returns an optimal policy 7 of Player Max, i.e.,
a policy such that x(7') = x("T'), can be used to produce a vector b € (Rpax)™ \ {L}, satisfying
T(b) = p(T) + b, see the second part of the reduction in Corollary

We refer the reader to [Cha09] for a comparative discussion of mean payoff game algorithms. The
main known algorithms include the pumping algorithm of |[GKKSS|, value iteration [ZP96], and
different algorithms based on the idea of policy iteration [BV0T7, [Sch08, [DG06|. In particular, the
algorithm of [DGO6| returns an invariant half-line. The policy iterations algorithms [BVQT7, [DGO6]
were reported in [Cha09] to have the best experimental behavior, although policy iteration is are
generally exponential [Fri09].

For the present application to tropical linear regression, we often know in advance that the oper-
ator T has a finite eigenvector; this occurs in particular if the entries of the matrix V are finite, and
more generally, under the dominion condition of Theorem Then, one can use another algorithm,
projective Krasnoselkii-Mann value iteration [GS20|, which is straightforward to implement and still

effective. Starting from a vector v = (0,---,0) T, this algorithm computes the following sequence:
(49) P =T (k) — (max;ep) T(vh),)e,
(50) VPl = (1 — y)vF + 4Rt

where e = (1,---,1)T € R?, and v € (0, 1) is fixed, 1 —~ being interpreted as a damping parameter.
In the original Krasnoselskii-Mann algorithm, one writes simply v*+1 = (1—v)v*+~T'(v*). It follows
from [GS20), Coro. 13|, based on a general result of Baillon and Bruck [BB92] on the convergence of
the original Krasnoselskii-Mann algorithm in normed spaces, see also [CSV14], that v* does converge
to an eigenvector of T as soon as such a (finite) eigenvector u exists. Moreover, ||T(v*) — v*| g <
2||lul| g /+/7y(1 —v)k. In practice, we fix a desired precision € > 0, and stop the computation of the
sequence v* when ||T(v%) — o¥||g < e

We now analyze the complexity of the projective Krasnoselskii-Mann algorithm in our special
setting. The following observation, shows that, notwithstanding the quadratic size of S™?* in the
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game associated with 7' (see the discussion after @D), the operator T' can be evaluated in linear
time.

Proposition 37. The operator T' can be evaluated in O(|E|) arithmetic operations.

Proof. We write T;(x) = mingep) i k)er(—Vik +yix) where yix = max;cp) jzi k)er(Vik+ok). First,
for each column k of the matrix V', we compute the column maximum My, := max;c,] jk)er(Vik +
xy) together with an arbitrary index jj that achieves this maximum, and also the second column
maximum, my = MaX;efy] j£j.,.k)eE(Vik + ). This preprocessing requires O(|E|) arithmetic
operations. We observe that y;, = my, if i = ji and y;, = M}, otherwise. Hence, all the y;;, with
(i,k) € E can be computed in O(|E|) arithmetic operations. Finally, the T;(x) are obtained from
the y;x in O(|E|) arithmetic operations. O

We set:

W .= .
ma o]

Lemma 38. Suppose that V is finite, then any finite eigenvector u of T satisfies ||u||lg < W.

Proof. By definition of W, we have v € By (0, W) for all v € V, and since By (0, W) is stable by
tropical linear combinations, we get Sp(V) C By (0, W). Moreover, by Lemma [7, By (u, —p(T)) C
Sp(V). Hence u € By (0, W), meaning that ||ul|g < W. O

Remark 10. There are situations (Appendix in which although some vectors of V have infinite
entries, it is still the case that T has a finite eigenvector. Then, we may still show that there
exists a finite eigenvector with not too large entries. To see this, we need to replace W by W’ :=
maxye(y (V. k), where §(V. ) = maxiepn) i x)er Vik — minjepmer Vik- We can always choose
such an eigenvector u in such a way that |ul|gz = O(nW’), by appealing to a Blackwell optimality
argument, using the proof method of [Skol8, Lemma 8.51] (details are left to the reader). Note that
in the special case in which V' has finite entries, the bound on ||u|| g is improved by a factor n.

Corollary 39 (Approximate optimality certificate). Suppose thatV C R™ is of cardinality p. Then,
the projective Krasnoselskii-Mann iteration returns in a number of arithmetic operations O(npW/e?)
a vector u € R™ such that —u is both the center of a ball of radius —p(T') — € included in Sp(V) and
the apex of a regression hyperplane, H,, such that distg(Sp(V), Hy) < —p(T) + €.

Proof. By [GS20, Coro. 13| and Lemma after k = O([W/€?]) iterations, we end up with a
vector u := v¥ which satisfies | T(u) — u|lgz < €. Moreover, by Proposition each iteration
requires O(np) arithmetic operations. Setting A := bot(T'(u) — u), where bot(z) := min; z;, we
deduce that A +u < T'(u) < A(T) + € + u, which, by Theorem (1| entails that p(T) < A(T) + e.
Then, by Theorem 20, B(—u, —p(T') —€) C Col(V). The proof that disty (Col(V),H,) < —p(T)+e¢
is dual. O

The following result shows that the factor in 1/¢2 can be replaced by 1/¢ if we look separately for
the center of a Hilbert’s ball included in Sp(V) and for the apex of an approximate tropical linear
regression hyperplane (in Corollary the apex and the center coincide).

Corollary 40. Suppose that ¥V C R" is of cardinality p. Then, an e-approximation of the inner
radius of Col(V'), as well as vectors v, z € R™ satisfying By (v, in-rad(V)—e) C V and disty (V, H,) <
in-rad(V) + € can be obtained in O(npW/e€) arithmetic operations.

Proof of Corollary[{0. We now rely on the value iteration approach of [AGKSIS| S_k018]. The latter
computes the sequence given by v0 = 0, v¥ := T(vkil), together with the numbers A := MaX;e n] Uf,
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A= min;e ] fuf. The sequence v* generally does not converge, even up to an additive constant.
So, we rely on the following “regularized” sequence [GGO04],

(51) w” = inf (0%, vt = N/, 0P = N (R = 1) /k) .

Lemma 8.18 of [SkoI8| entails that p(T') satisfies A*/k < p(T) < ¥ /k with N /k — p(T) < ||ul|z/k
and p(T') — A*/k < ||u||/k, where u € R™ is an arbitrary finite eigenvector of T'. Hence, it suffices
to execute the algorithm up to the iteration k := [W/e] to make sure that \* < p(T) + € and
A > p(T) — e. Moreover, Lemma 2 of [GG04] entails that T'(w*) < ¥ 4+ w*. Hence, by Lemma
—w” is the center of a Hilbert’s ball of radius —A¥ included in Sp(V). The construction of the
apex of an approximate optimal regression hyperplane uses a dual argument, replacing inf by sup

in . O

Remark 11. The conclusions of Corollary [39] and Corollary [40] can be extended to the situation in
which some vectors of V have infinite entries, provided T has a finite eigenvector. Using Remark
we need to replace W by W'n in the bounds of Corollary [39[ and Corollary

7. ILLUSTRATION: INFERRING HIDDEN INFORMATION FROM EQUILIBRIA IN REPEATED
INVITATIONS TO TENDERS

We now illustrate our results on an example from auction theory, in which tropical linear re-
gression allows one to identify secret information from the observation of prices offered in repeated
invitations to tenders (ITT).

7.1. Auction model with hidden preference factors. We suppose a public decision maker
chooses the best offer made by the firms responding to ITT. In accordance with market regulations,
see e.g. Jcod21l, Art. R.2152-7], the best offer is not nessarily the one with the lowest price: other
factors, like technical quality, respect of environment, of social impact, can also be taken into
account. In the presence of corruption, decisions may be also influenced by bribes.

We assume that this I'TT is done repeatedly for a similar service or product each time and in
front of the same local firms. We label the firms by 1,2,--- ,n, and we suppose that we have a
history of ¢ I'T'Ts with the prices offered by each firm, that are revealed by the decision maker, after
having made her choice.

More precisely, we denote the price offered by firm ¢ € [n] for the ITT number j € [¢] by p;j. We
assume that the decision maker has a non public preference factor f; > 0 for each firm ¢, and that
she selects the firm of index ¢ minimizing the expression:

(52) minpijf;1 .

i€[n]
In this way, the decision maker considers that for a requested price of p;;, the final cost to be taken
into account is p;; fi_l, where f,L-_1 > 1 is a proportional penalty depending on her estimate f; of the
technical, environmental, or social quality of the firm (the larger f;, the better its quality).

The same model applies to the situation in which fz-_1 = 1— ;8 for some 0 < «a; < 1 and
0 < 8 < 1. Now, a; may be interpreted as a proportional bribe: the firm promises to secretly give
back a;p;; to the decision maker if its offer is accepted, and the parameter 3 measures how sensitive
is the decision maker to bribery (5 = 0 corresponds to a totally honest decision maker, and =1~
to a totally dishonest one). This is a variant of the classical first-price sealed-bid auction [Kri02],
incorporating the secret preference.

We suppose that the same firms answer in a recurrent manner to invitations from the same
decision maker, and that the factors f; secretly attached to each firm are kept constant. Then we
expect that the prices to be offered to constitute an equilibrium, meaning that for each invitation
J € lgl, the minimum min;¢( pi; fi_1 is achieved twice at least. Indeed, if the firm 4 that wins the
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invitation offers a price p;; such that p;;f; * is strictly smaller than py;f, * for all k € [n] \ {i}, it
may offer a higher price and still win the offer, so, in the long run, if an invitation of the same type
is made recurrently, the firm will adapt its offer.

This can be modeled in terms of membership to a tropical hyperplane. We put Vj; = —log(pi;)
and a; = log f;, so that the decision maker selects the firm of index achieving the maximum in

(53) m?}]{(%j +ai) .
€|n

Assuming the prices p;; are observed, our goal is to infer the secret information f;, i.e. the preference
factor for firm 4, or the bribe offered by this firm.

We first suppose that for each invitation, the identity of the firm that wins the contract is not
known to us. We want to infer the hidden information f = (fi)cpn)- So, we look for a tropical
hyperplane H;, that is the best regression of the set V formed by the points (V.;) ¢4 following the
analysis of Section |4}, i..e, we solve a problem of the form . Following Theorem we solve this
problem by computing a super-eigenvector b € R™ of T, i.e. such that T'(b) > p(T) + b, where the
operator 1" is given by @D

We note that the decision maker cares only about the relative preference factors between the
firms, in the sense that if all the preference factors f;, i € [n] are multiplied by the same positive
constant, the choices of the decision maker will not change. Therefore, we can suppose without loss
of generality that max;c[, f; = 1, or equivalently, max;c[, a; = 0.

7.2. Numerical instance and experiments. In the following toy example, we take n = 3 firms,
and a history of ¢ = 6 I'TTs. We suppose that the decision maker attributes to the firms the
preference factors f = (1,0.8,0.6), and we take Vi € [3], a; = log(f;).

We generated the matrix V;; and the prices p;; = exp(—Vj;) by the following structured prob-
abilistic model. We consider six types of products with prices of different order of magnitude.
In Table [1f the reference prices of these products are P = (1,3,9,25,70,130). For each j € [6], we
draw entries A;;, 7 € [3] randomly in the interval K;; = [0.9 x P; f;, 1.1 x P; f;] following a log-uniform
law, i.e. equal to the exponential of a variable generated uniformly on the logarithm of the interval
K;;. We choose the log-uniform law because it’s in adequacy with Benford’s law that is observed
in real-life price instances. Then, we take B;; = —log(A;;), and we project each column B.; into
the tropical hyperplane H,, to get a vector C.;, such that for a given ¢ € argmaxke[n](Bkj + ag),
we take Cjj = maxy.;i(Byj + ar) — a; and we take for all k& # i, Cy; = By;. Now the columns C.;
belong to the tropical hyperplane H,. To model the inefficiency of the market, we perturb these
columns by taking Vj; = Cj; + d;5, with ¢;; generated randomly uniformly in [—d, ], with § = 0.05.
Then the prices are given by p;; = exp(—Vj;).

To solve our example, we used the projective Krasnoselskii-Mann iteration described in Section [6]
with a damping parameter v = 1/2. We take b = v"V that gives the approximation of the preference
factors by tropical linear regression: f;°® = exp(b;), i € [n].

We define the error of the approximation e as the ratio between the Hilbert’s distance of the
set V to the hyperplane H;, which measures the “distance to equilibrium" in this market, and the
maximal absolute value of the logarithm of the Hilbert’s seminorms of the price vectors (p.;);eq:

- diStH(V, Hb)

-~ maxjelg |log(|lp )l

The following Table (1| shows the preference factors f;, the prices p;; generated with this model and
for each invitation we underlined the price of the firm wining that invitation in the sense of achieving
the minimum in . Table [1f shows also the prediction f™& of the preference factors that we find
by tropical linear regression.
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In this example, we set a target accuracy of € = 108, and we get that the number of iterations N
needed to get | T'(vV)—o™V||g < eis N = 25. By setting b = vV, we have dist g (V, Hp) = 4.21 x 1072
and max e[y |log(||p.j]lz)| = 3.84, and this leads to an error equal to e = 1.09 x 1072 Figure@
shows the points (V;);c[ in the projective space P(Ruax)?, with the tropical hyperplane H; (in
blue solid lines) and the points of the space that are at distance equal to distg(V, Hyp) from Hy (in
blue dashed lines). Figure |§| shows in particular the existence of a witness point in each on the three
sectors associated to the tropical hyperplane Hy.

individual houses | social housing | school | road | stadium | bridge | f | f*8
Firm 1 1.02 3.21 8.72 | 26.2 69.8 123 1 1
Firm 2 0.81 2.65 7.49 | 20.3 53.8 106 |0.8| 0.81
Firm 3 0.6 1.86 5.5 | 14.7| 418 76 | 0.6 | 0.605

TABLE (1) Prices proposed by firms in million euros, the vector of preference factors
f and its estimation by tropical linear regression f™®& based on the observation of
the prices.

0.45 1

0.40

0.35 1

0.30 1

0.20 A

0.0 0.1 0.2 03 0.4
FIGURE (6) The points (V) e[e) in the projective space P(Ruax)?, with the tropical
hyperplane H; (in blue solid lines) and the points of the space that are at distance
equal to disty(V, Hp) from Hy (in blue dashed lines).

Now we consider a similar example still with n = 3 firms, but with ¢ = 100 invitations to tenders.
We use the same generation model, the reference prices Pj,j € [100], being generated randomly
following a log-uniform law on the interval [1,100]. We set a target accuracy of ¢ = 1078, and we
get that the number of iterations N needed to get || T(vY) — vV|lg < eis N = 24. By setting
b =™, we have distz (V, Hp) = 7.69 x 10”2 and max;c(y | log(||p;|| )| = 3.72, and this leads to an
error equal to e = 2.06 x 1072, and the approximation of the preference factors that we obtain is
fr8 = (1,0.7994,0.6018). Figure [7| shows the points (V;);e[100) and the approximation hyperplane
‘Hp obtained in this case with a history of ¢ = 100 invitations. We observe also that we have at
least a witness point in each sector defined by the tropical hyperplane Hp.

7.3. Example of regression with types — in which the identities of the winners of the

invitations are known. We now suppose the decision maker makes public not only the bid prices

that were offered to her, but also the identities of the firms that won the different invitations j € [g].

Then, we can write the set of points V as a disjoint union V = Uy, Ve, where V is the set of

invitations won by firm £. This information can be exploited through the typed tropical linear

regression of Section Indeed, if v = V,; € Vy, and if the market is “at equilibria”, we know not
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FIGURE (7) The points (V.;) jc100] in the projective space P(Ruax)?, with the tropi-
cal hyperplane H;, (in blue solid lines) and the points of the space that are at distance
equal to disty(V, Hp) from Hy (in blue dashed lines).

only that the maximum max;c,|(Vi; +a;) is achieved twice, but that it must be achieved by the firm
that won the invitation, i.e., ¢ = . Thus, the vector v € V,; should be close to the signed tropical
hyperplane H’, a finer condition than being close to H, D H:. So, to infer the vector a, we now solve
the typed regression problem , instead of the untyped problem . Following Theorem we
are looking for a super-eigenvector b such that 7% (b) > p(T%) 4 b, where the operator T% is given
by .

We use the same two examples above, and we generate the information of the firm winning each
contract j € [g] by using the information f known by the decision maker. We construct the sets V;
and the operator T%, and we find a super-eigenvector of T% by using the projective Krasnoselkii-
Mann value iteration algorithm described in Section [6]

After doing the numerical experiments, we find that, the apex b found by typed tropical linear
regression, taking advantage of the knowledge of which firm won each invitation, is the same as the
one found above by tropical linear regression, for both examples with ¢ = 6 and ¢ = 100. Hence,
here, the additional information provided by the identity of the winners did not help to improve
the inference of hidden preferences, by comparison with the basic model in which only the history
of the bid prices is used.

8. CONCLUDING REMARKS

We solved the tropical linear regression problem, when the metric is of sup-norm type, and for
tropical linear spaces of codimension 1 (tropical hyperplanes), but for a configuration of points of
arbitrary cardinality.

Several open problems related to the present work arise when changing either the class of metrics
or of tropical spaces.

For instance, we may replace Hilbert’s metric by the L,-projective metric, i.e., the metric obtained
by modding out the L, normed space R" by the action of additive constants, or by replacing the
Hausdorff distance in by a L, type distance, for p € [1,00). Approaches based on mixed linear
programming, or on local descent, have been proposed in [YZZ19, [PYZ20l [Hool7] in some specific
cases.

Another generalization consists in replacing hyperplanes by tropical linear spaces of a codimension
not necessarily 1. Recall that the tropical Grassmannian Grzzp can be defined as the image by
a non-archimedean valuation of the Grassmannian Gry,(K) over an (algebraically closed) non-
archimedean field, under the Pliicker embedding, see [SS04, [FR15]. In this way, an element of
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Gr}°P is represented by its tropical Pliicker coordinates p = (pr) € (RU {—oo})(Z) This vector
yields a tropical linear space L(p), defined by

m{:v € (Rmax)" | nlglea[x(pf\{i}) + ;) is achieved at least twice} ,

where the minimum is taken over all subsets of [n] of cardinality k + 1. When k =n—1, V(p) is a
tropical hyperplane. Hence, a general version of tropical linear regression problem can be written
as

54 a — .
(54) pGIEIEOPTJmEE? v —al[q

We solved here this problem when & =n — 1. When k = 1, L(p) is reduced to a single point, and
it is not difficult to see that reduces to a linear program. We leave it as an open question to
solve this problem when 1 < k < n — 1. The same problem may be considered when p is a valuated
matroid, or when it is inside the image of the Stiefel map [FR15|, meaning that p is given by the
maximal tropical minors of a matrix. A version of the latter problem (with a L;-type error) is
considered in [YZZ19]. One may also replace the linear space L(p) by the column space of a tropical
matrix A, which boils down to finding a best approximation by a tropical polyhedral cone with a
fixed number of vertices, see [Hool7, [PYZ20].
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APPENDIX A. DOMINIONS OF THE TWO PLAYERS AND EXISTENCE OF A FINITE EIGENVECTOR

The strongest form of strong duality (Theorem [22)), with the existence of witness points, is valid
whenever the Shapley operator T' in Equation as a finite eigenvector. In this appendix, we
provide a sufficient condition for the existence of this eigenvector, which is less demanding than the
condition of Proposition [23| (requiring V' to have only finite entries).

We recall that the operator T' represents a game I' with two players Min and Max, such that
when we are at state ¢, player Min plays first by choosing a column k € [p] such that (i,k) € E
then player Max chooses a state j € [n] such that j # ¢ and (j,k) € E. Moreover, policies can be
defined using . The game I’ is played repeatedly starting from a given initial position.

We call dominion of one player a nonempty subset of states I C [n] such that from any initial
position in I, that player can force the state to remain in I at each stage of the repeated game,
whatever actions the other player chooses. This means that there exist a policy of that player such
that for any strategy of the other player, a trajectory of the game starting in I is such that the
states visited by Min are all contained in I. The next result, which follows from a more general
result (which applies to arbitrary Shapley operators) relates the lack of disjoint dominions of the
two players with the existence of a finite eigenvector of a polyhedral Shapley operator.

Theorem 41 (Corollary of Thm. 1.2 of [AGH20]). The following assertions are equivalent:

(1) The two players do not have disjoint dominions in the game I';
(2) For all r € R™, the operator r + T has a finite eigenvector.

Deciding the existence of disjoint dominions for (deterministic) mean payoff games is equivalent
to deciding the existence of a non-trivial fixed point of a monotone Boolean function, which is a
NP-complete problem, see the discussion in [AGH15|. However, we next show that for the restricted
class of games associated to the Shapley operator Ty, this problem can be solved in polynomial
time.
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We make the following assumption, which is required for the operator T' to send R" to R™, and
a fortiori, to have a finite eigenvector.

Assumption 5. Each column of the matrix V' contains at least two finite entries.

Proposition 42. Suppose that Assumption[3 and Assumption[5hold. Then, the following assertions
are equivalent:

(1) There are disjoint dominions for the two players in the game I;

(2) There exist nonempty subsets I, J of [n], such that IUJ = [n], INJ =0, some columns of
V' have support included in I, and the other columns of V' have at least two finite entries in
J.

(3) There exists a subset K of [p], such that K # 0 and K # [p], and such that if we denote
by I the union of supports of the columns of V in K, then all the columns not in K have
at least two finite entries that are outside I . In this case, Ix together with its complement
[n] \ Ix constitute disjoint dominions of players Min and Maz, respectively.

Proof. We verify first that the assertion and the first part of assertion are equivalent. Indeed,
it is straightforward that implies by taking I = Ix and J = [n] \ Ix. Now, if is true, we
take K = {k € [p] | supp Vi C I}, so Ix = Upek supp Vi, C I, and each column k ¢ K has at least
two finite entries in J, i.e. outside Ik.

Now we suppose that assertion is satisfied, i.e. there are disjoint dominions I and J respectively
for Player Min and Player Max. Let us show that this implies . The set J is a dominion for Player
Max, then there exists a policy 7 for Max, such that, for all ¢ € J, for any possible action (i, k) € E
of Player Min, the policy 7 sends the state in J, that is 7((i,k)) € J. Since a policy for Max is a
map from E to [n] such that j = 7((i, k)) satisfies j # i and (j,k) € E, this implies that, for all
(i,k) € E with i € J, there exists (j, k) € F with j € J such that j # i. Therefore, for all k € [p],
supp Vi, N J is either empty or it contains at least two elements. We take I’ = [n]\ J D I # 0, then
the sets I’, J satisfy the assertion .

Now, we suppose that the first part of assertion is true, and show that Ix and J = [n] \ Ix
are disjoint dominions of players Min and Max respectively, which will imply . Indeed, if i € Ik,
then there exists k € K, such that ¢ € supp V., C Ix. Let us consider a policy o of Min such that if
i € I then o(i) = (i, k) with k € K. Then, if i € I, and if Min plays the action (i, k) = o (i), for
any possible action of player Max (which exists by Assumption , that is a choice of j € supp Vi
such that j # i, we have j € Ix. This shows that I is a dominion of Player Min. Now, let ¢ € J,
for any action (i, k) € E of Min (which exists by Assumption [3), we have k € K, since i € supp V,
and ¢ & I, so by , there exits j € supp Vi \ Ik, with j # 4. So j € J and j is a possible action
of Max when the game is in state (i, k). Considering the policy 7 for Max, such that 7(i, k) = j for
i, k, j as before, we get that the set J is a dominion of Player Max. U

From the proof of Proposition we deduce in a straightforward manner the following observa-
tion, which will be used in Algorithm . Note that in the present setting (deterministic mean payoff
games), if I, J are disjoint dominions of the two players, then [n] \ J and J are also dominions of

the two players, hence we shall restrict our search to disjoint dominions that constitute partitions
of [n].

Lemma 43. [f DMin DMax < [n] are disjoint dominions of players Min and Maz respectively, that
constitute a partition of [n], and K is a subset of columns of V' such that the set S = Uge supp Vi
satisfies S C DM then for each column k ¢ K that has only one finite entry i outside of S, we
have S U {i} ¢ DMin, O

Theorem 44. Algorithm[1], which decides the existence of disjoint dominions in the game I' asso-

ciated to a matriz V € (Ruyax)™*P, is correct, and it makes O(n?p?) arithmetic operations.
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Algorithm 1 Detecting dominions in the game arising from the tropical linear regression problem,
for an input matrix V' € (Rpax)"*P.

: for k € [p] do
: K + {k}
: S < the support of column k of V'

1

2

3

4: Declare S to be AUGMENTED (Boolean flag)

5: while S is declared as AUGMENTED do

6 Declare S not to be AUGMENTED

7 Declare all the elements of [p] \ K to be UNSCANNED (Boolean flags)

8 while ([p] \ K) contains an UNSCANNED element do

9: ¢ + smallest UNSCANNED element of [p] \ K, declare £ to be SCANNED
10: Sp < {i € [n]\ S| Vi is finite}

11: if |S¢| =1 then > column € of V' has precisely one finite entry outside S

12: K+ KU{l}, S« SUS,

13: Declare S to be AUGMENTED

14: end if

15: if |S¢| = 0 then > column ¢ of V' has no finite entries outside S

16: K+ Ku{t}

17: end if

18: > S is the union of supports of the columns of K

19: end while

20: end while

21: if S # [n] then return S and [n]\ S which are disjoint dominions of Players Min and Max
respectively

22: end if

23: end for

24: There are no disjoint dominions

Proof. The algorithm looks for a set of columns K satisfying the last statement of Proposition
Since the set K is required to be nonempty, it suffices for each k € [p], to verify whether there is
such a set K 3 k (for loop of the algorithm).

We next show that the algorithm admits the following invariants.

(1) At Line S is the union of supports of the columns of K.
(2) If there is a subset K > k satisfying the last statement of Proposition with associated
then at line of the algorithm, the set K satisfies K C K and the set S satisfies S ¢ DM,

The first invariant is enforced by lines[I0} [I2]and [I6] We prove that the loop invariant at line[I§/holds
by induction on the cardinality of S. Let us assume that the condition of the first “if”; i.e., |S¢| =1
is satisfied. Then, by Lemma and by the induction assumption, we must have S U {i} C DMin,
Moreover, the last statement of Proposition 42| entails that K U {¢} C K, and so, the loop invariant
is valid in this case. Moreover, if the condition of the second “if”] i.e., |Sy| = 0 is satisfied, then, the
second invariant is still valid. This shows that the loop invariant is always valid.

At the exit of the outer while loop, at line 21| we have by construction that every column of
V with index outside K has at least two finite entries outside S. Then, by the last statement
of Proposition if S # [n], S and [n] \ S provide disjoint dominions of Players Min and Max,
whereas if S = [n], there are no dominions arising from a set K > k. This shows the correctness of
the algorithm.

Each iteration of the inner “while” loop makes O(n) arithmetic operations, and every outer “while
loop” executes the inner while loop O(p) times. Moreover, the number of outer “while loop” iterations
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is at most n — 1. Finally, we have at most p iterations in the “for” loop, which leads to a complexity
bound of O(n?p?) arithmetic operations for the algorithm. O

We call Boolean pattern of the matrix V' € (Rpyax)™*P the matrix with entries in {0, —oco}, obtained
by replacing each finite entry of V' by 0. Theorem [41] provides a sufficient condition involving the
Boolean pattern on V', which guarantees that for all matrices V' with this pattern, the operator T’
admits a finite eigenvector. This condition is not necessary. Consider the following Boolean pattern:

03,2 03,2
55 ) ’
(55) ((—00)3,2 03,2) ’
where for a € {0, —o0}, a4 denotes the p x ¢ matrix with entries identically equal to «.

Proposition 45. If V' is a matriz with Boolean pattern , then, the operator T has a finite
etgenvector, but the associated game admits disjoint dominions.

Proof. First we have that the set K = {1,2} satisfies the condition of Proposition , and
from the proof of Proposition [42) we have that the sets I = {1,2,3} and J = {4, 5,6} are disjoint
dominions of Player Min and Player Max respectively.

To show that 7" has a finite eigenvector, by Proposition 3] it suffices to check that x(T") = 0. The
inequality x(7) < 0 follows from Remark[I] We next show that x(7") > 0.

If the game starts from a state ¢ € {4,5,6}, Player Min must choose the next state to be a
pair (i, k) with k € {3,4}, and Player Max can respond by choosing the next state j to belong to
{4,5,6}. So, Player Max can force Min to play the same game as the one defined by the submatrix
X = (Vij)iefa5,6},jef3,4}- Since the matrix X consists of only 2 columns of (Rpax)®, it follows
from Corollary that the inner radius of Col(X) is equal to 0. Then by Theorem |I} p(Tx) = 0,
and this entails that Player Max can ensure a payment equal to 0 in the original game, so that
Vi€ {4,5,6}, x:(T) = 0.

Suppose now that the initial state ¢ € {1,2,3}. Since x(7') = min, x(77) where the minimum
is taken over the stationary policies of Player Min, it suffices to show that for any such policy,
and for i € {1,2,3}, x;(T7) > 0. If this policy of Player Min chooses the column 3 or 4, Player
Max can again enforce Player Min to play the game associated to the submatrix X, and then
Player Max can ensure a payment 0 as before. Now, if the policy of Player Min does not choose
the columns 3 and 4, Player Max is forced to play a subgame correspinding to the the submatrix
Y := (Vij)ie1,2,3},je{1,2}, and by the same reasoning as before, we know that the value of this game
is equal to 0. Then Vi € {1,2,3}, x:(T) = 0. O

We leave it as an open question to characterize the Boolean patterns of V' which guarantee that
the operator T has a finite eigenvector.
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