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Abstract

For each integer k ≥ 2, we determine a sharp bound on mad(G) such that V (G) can be
partitioned into sets I and Fk, where I is an independent set and G[Fk] is a forest in which
each component has at most k vertices. For each k we construct an infinite family of examples
showing our result is best possible. Our results imply that every planar graph G of girth at least
9 (resp. 8, 7) has a partition of V (G) into an independent set I and a set F such that G[F ] is
a forest with each component of order at most 3 (resp. 4, 6).

Hendrey, Norin, and Wood asked for the largest function g(a, b) such that if mad(G) < g(a, b)
then V (G) has a partition into sets A and B such that mad(G[A]) < a and mad(G[B]) < b. They
specifically asked for the value of g(1, b), i.e., the case when A is an independent set. Previously,
the only values known were g(1, 4/3) and g(1, 2). We find g(1, b) whenever 4/3 < b < 2.

1 Introduction

An (I, Fk)-coloring (I, Fk)-coloringfor a graph G is a partition of V (G) into sets I and F such that I is an
independent set and F induces a forest in which each component has at most k vertices. The
average degree of G is 2|E(G)|/|V (G)|. The maximum average degree of G, denoted mad(G) mad(G), is
the maximum, taken over all subgraphs H , of the average degree of H . In this paper, we prove
a sufficient condition for a graph G to have an (I, Fk)-coloring, in terms of mad(G).

Theorem 1. For each integer k ≥ 2, let

f(k) :=

{
f(k)3− 3

3k−1 k even

3− 3
3k−2 k odd

If mad(G) ≤ f(k), then G has an (I, Fk)-coloring.

Theorem 1 is best possible. For each positive integer k there exists an infinite family of
graphs with maximum average degree approaching f(k) (from above) such that none of these
graphs has an (I, Fk)-coloring. Note that f(3) = 18

7 , f(4) =
30
11 , and f(6) = 48

17 . Each planar

graph G with girth g has mad(G) < 2g
g−2 . So Theorem 1 implies that every planar graph G of

girth at least 9 (resp. 8, 7) has a partition of V (G) into an independent set I and a set F where
G[F ] is a forest with each tree of order at most 3 (resp. 4, 6); for girth 9, this is best possible,
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since [9, Corollary 4] constructs girth 9 planar graphs with no (I, F2)-coloring. This strengthens
results in [8, 10]. Theorem 1 is implied by a more general result below, our Main Theorem.
Before introducing definitions and notation to state it, we briefly discuss related work.

Choi, Dross, and Ochem [6] studied a variant of (I, Fk)-colorings where they did not require
the components of G[Fk] to be acyclic, but only to have order at most k. They proved that G has
such a coloring whenever mad(G) < 8

3 (1 −
1

3k+1 ). Theorem 1 allows a weaker hypothesis (and
a stronger conclusion). Moreover, the argument on the sharpness of Theorem 1 (see Lemma
5) does not require the acyclic nature of Fk, and therefore Theorem 1 is also a sharp result
for this variant of the problem. Dross, Montassier, and Pinlou [8] studied a different variant of
(I, Fk)-colorings, where G[Fk] has bounded maximum degree, but perhaps not bounded order
(earlier related results are in [5] and [2]). Under hypotheses very similar to those in Theorem 1,
they proved that G has such a coloring. These results, too, are strengthened by Theorem 1.

We can also view Theorem 1 in a more general context. Hendrey, Norin, and Wood [1,
Problem #14] asked for the largest function g(a, b) g(a, b)such that if mad(G) < g(a, b) then V (G) has
a partition into sets A and B such that mad(G[A]) < a and mad(G[B]) < b. They specifically
asked for the value of g(1, b), which corresponds to the case that A is an independent set.
Nadara and Smulewicz [10] used maximum flows to give a short proof that g(1, b) ≥ b + 1 and
g(2, b) ≥ b + 2. However, the only exact values previously known1 were g(1, 4/3) and g(1, 2)
(see [4] for g(1, 4/3) and see below for g(1, 2)). We find the value of g(1, b) whenever 4/3 ≤ b < 2.

We also study a related function g̃(a, b) g̃(a, b). This is the largest value for which there is a finite set
Ga,b of graphs such that if mad(G) < g̃(a, b) and G has no graph in Ga,b as a subgraph, then V (G)
has a partition into sets A and B where mad(G[A]) < a and mad(G[B]) < b. That is, g̃(a, b) is
the minimum value such that there is an infinite family of graphs Gj with mad(Gj) approaching
g̃(a, b) from above (as j → ∞) and each V (Gj) has no partition A,B with mad(Gj [A]) < a and
mad(Gj [B]) < b. Clearly, g(a, b) ≤ g̃(a, b), and sometimes this inequality is strict.

In [7] we observed that g(1, 2) = 3. The lower bound follows from degeneracy.2 The upper
bound g(1, 2) ≤ 3 comes from K4. However, K4 is the single obstruction to strengthening this
bound. In fact, we proved that g̃(1, 2) = 3.2. Each component of a graph G with mad(G) < 2
is a forest. Thus, a partition of V (G) into sets I and F with mad(G[I]) < 1 and mad(G[F ]) <
2− 2/(k+1) is precisely an (I, Fk)-partition. In the present paper, we show that g(1, 2− 2/(k+
1)) = g̃(1, 2− 2/(k + 1)) = f(k) for every integer k ≥ 2 (here f(k) is as defined in Theorem 1).
This is particularly interesting because g̃(1, 2) = 3.2, but g̃(1, b) < 3 for every b < 2.

A precoloring precoloringof G is a partition of V (G) into sets U0, U1, . . . , Uk−1, F1, F2, . . . , Fk

U0, . . . , Uk−1

F1, . . . , Fk, I

, and I.
Intuitively, we think of a vertex in Fj as being already colored F and having an additional j− 1
(fake) neighbors that are also already colored F . So, for example, if a vertex is in Fk then

we cannot color any of its neighbors in
⋃k−1

j=0 Uj with F , since this would create a component
colored F with at least k + 1 vertices. Similarly, a vertex v in Uj is uncolored, but has j fake
neighbors that are colored F . So coloring v with F would create a component colored F with
j + 1 vertices. An (I, Fk)-coloring of a precolored graph G is an (I, Fk)-coloring (I ′, F ′) of the
underlying (not precolored) graph G such that I ⊆ I ′, ∪k

j=1Fj ⊆ F ′ and each component of
G[F ′] has at most k vertices including any fake neighbors arising from the precoloring. A graph
G is precolored trivially if U0 = V (G), so U1 = · · · = Uk−1 = F1 = · · · = Fk = I = ∅.

A precolored graph G is (I, Fk)-critical (I, Fk)-criticalif G has no (I, Fk)-coloring, but every proper sub-
graph of G does and, furthermore, for any vertex precolored Uj or Fj , reducing j by 1 allows
an (I, Fk)-coloring of G. So Theorem 1 is equivalent to saying that every (trivially precolored)
(I, Fk)-critical graph G has mad(G) > f(k). To facilitate a proof by induction, we want to
extend Theorem 1 to allow other precolorings. However, a vertex in Uj (with j > 0) or in
Fj imposes more constraints on an (I, Fk)-coloring than one in U0. Intuitively, a vertex in

1Borodin, Kostochka, and Yancey [3] also showed that g(4/3, 4/3) = 14/5.
2Given a vertex v of degree at most 2, by induction we partition G−v into sets I and F such that I is independent

and G[F ] is a forest. If v has no neighbor in I , then we add v to I . Otherwise, we add it to F .
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V (G) \ U0 should “count more” toward the average degree than one in U0. This motivates
weighting vertices differently, as we do below. (In Section 1.2, we explain our choice of weights.)

Definition 2. For each integer k ≥ 2, let

• CE := {3k − 1 for k even, 3k − 2 for k odd}; CE

• CU,0 := 3CE−3
2 ;

• CU,j := CU,0 − 3j = 3CE−3
2 − 3j for 0 < j ≤ k; CU,j

• CF,j := CU,j−1 + CI − CE = CE − 3j for 1 ≤ j ≤ ⌊k+1
2 ⌋; CF,j

• CF,j := CU,⌊ k−1

2
⌋ + CU,⌈ k−1

2
⌉ + CU,j−⌊ k+3

2
⌋ − 3CE = 3(k − j) for ⌊k+3

2 ⌋ ≤ j ≤ k; and

• CI := CU,0 + CF,k − CE = CE−3
2 . CI

Main Theorem. Fix an integer k ≥ 2. Let

ρkG(R) :=

k−1∑

j=0

CU,j |Uj ∩R|+
k∑

j=1

CF,j |Fj ∩R|+ CI |I ∩R| − CE |E(G[R])|, ρkG

for each R ⊆ V (G). If a precolored graph G is (I, Fk)-critical, then ρkG(V (G)) ≤ −3.

Now is a good time to define more terminology and notation. We typically write ρk, rather
than ρkG, when there is no danger of confusion. We also write coloring coloringto mean (I, Fk)-coloring.
An F -component F -componentis a component of G[F ] (either for an (I, Fk)-coloring of a graph G or for a

precoloring of G, where F = ∪k
j=1Fj). We will often want to move a vertex v from Ua to Ua+b

or from Fa to Fa+b, for some integers a and b. Informally, we call this “adding b F -neighbors
to v”. If an uncolored vertex v ever has k or more F -neighbors, then we recolor v with I (since
coloring v with F would create an F -component with at least k+1 vertices, which is forbidden);
see Lemma 6 and the comment after it. Note the following easy proposition.

Proposition 3. The Main Theorem implies Theorem 1.

Proof. Observe that
2CU,0

CE
= f(k), as defined in Theorem 1. Thus, if G is precolored trivially,

then the condition ρk(V (G)) ≥ 0 is equivalent to 2|E(G)|
|V (G)| ≤ f(k). By the Main Theorem, each

(I, Fk)-critical graph G has ρk(V (G)) ≤ −3. Thus, if mad(G) ≤ f(k), then ρ(R) ≥ 0 for all
R ⊆ V (G); so G contains no (I, Fk)-critical subgraph. Hence, G has an (I, Fk)-coloring.

The proof of the Main Theorem differs somewhat depending on whether k is even or odd.
However, the two cases are similar. Thus, we begin the proof (for all k) in Section 2. In Section 3
we conclude it for k even, and in Section 4 we conclude it for k odd. Before proving the Main
Theorem, we discuss the sharpness examples and the gadgets that motivate our weights in
Definition 2. We then conclude the introduction with a brief overview of the potential method.

1.1 Sharpness Examples

Example 4. We write add a pendent 3-cycle at a vertex z to mean identify z with a vertex of
a new 3-cycle. Adding ℓ pendent 3-cycles at z means repeating this ℓ times. Similarly, adding a
2-thread from y to z means adding new vertices y′ and z′ and new edges yy′, y′z′, z′z. (Adding
ℓ 2-threads is defined analogously.)

We form an (I, Fk)-critical graph Gk,t Gk,tas follows (Figure 1 shows Gk,3). Start with vertices
v0, . . . , vt, w0, . . . , wt, x0, . . . , xt, where {vj, wj , xj} induces K3 for each j ∈ {0, . . . , t}. Now add
⌊k−2

2 ⌋ pendent 3-cycles at v0, ⌊
k−1
2 ⌋ pendent 3-cycles at w0, and ⌊k

2 ⌋ pendent 3-cycles at x0.

For each j ∈ {1, . . . , t}, add ⌊k−2
2 ⌋ 2-threads from vj−1 to vj , ⌊

k−1
2 ⌋ 2-threads from vj−1 to wj ,

and ⌊k
2⌋ 2-threads from vj−1 to xj . Finally, add a single pendent 3-cycle at vt.
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The proof thatGk,t is (I, Fk)-critical is a bit tedious, but we include it below for completeness.
It is not needed for the proof of our Main Theorem, so the reader should feel free to skim (or
skip) it. Intuitively, if we start to color Gk,t from the left, each vj will be in an F -component
of order k; but for vt, due to the extra pendent 3-cycle, we get an F -component of order k + 1,
a contradiction. When we delete some edge e, at some point we are able to use I on some vj′ ,
and we continue using I on each vj with j ≥ j′. The coloring of Gk,t − e is some combination
of the two colorings at the bottom of Figure 1. (It is interesting to note that the family G2,t is
precisely those sharpness examples given by Borodin and Kostochka in [4].)

Lemma 5. Gk,t is (I, Fk)-critical for all integers k ≥ 2 and t ≥ 0.

Proof. Let Gj
k,t denote the subgraph of Gk,t induced by v0, . . . , vj , w0, . . . , wj , x0, . . . , xj along

with their pendent 3-cycles and any 2-threads between them. We show by induction that Gj
k,t

has an (I, Fk)-coloring for each j < t; furthermore, in each such coloring vj is in an F -component
of order k. Consider G0

k,t. Because of their pendent 3-cycles, w0 and x0 will have at least ⌊k−1
2 ⌋

and ⌊k
2 ⌋ F -neighbors (respectively) in every coloring of G0

k,t. If both w0 and x0 are colored F ,

then they lie in an F -component of order at least ⌊k−1
2 ⌋+ ⌊k

2 ⌋+ 2 = k + 1, a contradiction. So
one of w0 and x0 must be colored I. Thus, v0 is colored F ; so v0 lies in an F -component of
order at least ⌊k−2

2 ⌋ + ⌊k−1
2 ⌋ + 2 = k. To see that G0

k,t has a coloring, color x0 with I and v0
and w0 with F . For each 3-cycle pendent at v0 or w0, use I on one vertex and F on the other.
For each 3-cycle pendent at x0, use F on both vertices. This proves the base case.

Now we consider the induction step. Since vj−1 is in an F -component of order k in Gj−1
k,t , each

neighbor of vj−1 on a 2-thread to {vj, wj , xj} must be colored I; thus, each of their neighbors
must be colored F . Now the analysis is nearly identical that that for j = 0. To extend the
coloring to all of Gj

k,t, color xj with I and color vj and wj with F . If we instead tried to color
vj with I, then wj and xj must both be colored F , so they lie in an F -component of order
⌊k
2 ⌋+ ⌊k−1

2 ⌋+ 2 = k + 1, a contradiction.
To see that Gk,t has no coloring, note that such a coloring would have vt in an F -component

of order k (as in the induction step above). However, due to the extra pendent 3-cycle at vt,
this creates an F -component of order k + 1, a contradiction.

⌊(k − 2)/2⌋

⌊(k − 1)/2⌋

⌊k/2⌋

⌊(k − 2)/2⌋
⌊(k − 1)/2⌋

⌊k/
2⌋

⌊(k − 2)/2⌋
⌊(k − 1)/2⌋

⌊k/
2⌋

⌊(k − 2)/2⌋
⌊(k − 1)/2⌋

⌊k/
2⌋

Figure 1: Top: The sharpness exampleGk,3. Bold edges denote multiple pendent 3-cycles at a vertex
or multiple 2-threads between two vertices. Bottom left: An (I, Fk)-coloring of Gk,3 − e, where e
is on the 3-cycle pendent at vt. Bottom right: An (I, Fk)-coloring of Gk,3 − w0x0. (Throughout,
vertices in I are black and vertices in F are white.)
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Finally, we show that Gk,t is (I, Fk)-critical. That is, for each e ∈ E(Gk,t) subgraph Gk,t− e

has a coloring. By induction we first prove the stronger statement that if e ∈ E(Gj−1
k,t ), then

Gj
k,t − e has a coloring with vj colored I. (The intuition is that once we get this for some j′,

then we can ensure it for all j′ > j, so can finish the coloring.) Afterward, we use this to prove
that Gk,t − e has an (I, Fk)-coloring for every e ∈ E(Gk,t).

Base case: j = 1. If e is not on a pendent 3-cycle at v0, then Gj−1
k,t − e has a coloring in

which v0 is colored I, as follows. Either (a) e ∈ {v0w0, v0x0}, so we can color two vertices in
{v0, w0, x0} with I or (b) e = w0x0 or e is on a 3-cycle pendent at w0 or x0, so we can color
both w0 and x0 with F . If we can color v0 with I, then we extend to G1

k,t − e by using F on
all neighbors of v0 on 2-threads, using I on v1 and neighbors of w1 and x1 on 2-threads, and
using F on all remaining vertices. Assume instead that e is on a pendent 3-cycle at v0. Now
we color both endpoints of e with I, so that v0 is in an F -component of order only k − 1. This
enables us to use F on some neighbor of v0 on a 2-thread to x1 (and use I on its neighbor on
that 2-thread). Now we use F on w1 and x1, and use I on v1. This finishes the base case.

The induction step is nearly identical to the base case. Suppose e ∈ E(Gj−1
k,t ). If e ∈ E(Gj−2

k,t ),

then Gj−1
k,t − e has a coloring in which vj−1 uses I. We extend it to Gj

k,t − e in exactly the same

way as extending the coloring of G0
k,t − e to G1

k,t − e above. Otherwise e ∈ E(Gj−1
k,t ) \E(Gj−2

k,t ).

Recall, from above, that Gj−2
k,t has a coloring, and it has vj−2 in an F -component of order k.

Now the extension to Gj−1
k,t is nearly identical to coloring G0

k,t − e (from the base case at the
start of the proof). This proves our stronger statement by induction.

Finally, we prove that Gk,t− e has a coloring for every e ∈ E(Gk,t). If e is not on the 3-cycle
pendent at vt, then we can color Gk,t − e with I on vt, so the extra pendent 3-cycle does not
matter. If e is on the pendent 3-cycle, then we color so that vt is in an F -component of order k
without the extra 3-cycle. However, now vt has only a single neighbor on that pendent 3-cycle,
so we color that neighbor with I and the remaining vertex with F .

1.2 Gadgets: Where the Coefficients Come From

Here we explain our choice of weights in Definition 2: CE , CU,j , CF,j , CI . Everything starts
with our sharpness examples in Section 1.1. We must choose CU,0 and CE so that all of these
examples have the same potential, i.e., ρk(Gk,t+1) = ρk(Gk,t) for all positive t. Note that
|V (Gk,t+1)| − |V (Gk,t)| = 3 + 2(⌊k

2 ⌋ + ⌊k−1
2 ⌋ + ⌊k−2

2 ⌋) = CE and |E(Gk,t+1)| − |E(Gk,t)| =

3 + 3(⌊k
2 ⌋+ ⌊k−1

2 ⌋+ ⌊k−2
2 ⌋) = CU,0. This is how we chose CE and CU,0.

For each of I, Fj and Uj (j > 0) we construct a gadget, consisting of edges and vertices in U0.
Each gadget has a specified vertex v which the gadget simulates having the desired precoloring;
see Figure 2. The easiest of these is U1. The gadget is simply a 3-cycle. Suppose we add a
pendent 3-cycle C at any vertex v. In any coloring of G (with C added), at least one neighbor
of v on C is colored F . Further, if v is colored F , then we can color the remaining vertices of
C so that exactly one is in F . Thus, this gadget precisely simulates v being in U1. For each
larger j, the gadget for Uj simply adds j pendent 3-cycles at v. Alternatively, we can define the
gadgets recursively, where adding a pendent 3-cycle moves a vertex from Uj to Uj+1.

But how do we simulate a vertex in F1? It is simpler (surprisingly) to start with the gadget
for Fk. This is just the subgraph of Gk,t induced by v0, w0, x0 and their pendent 3-cycles.
Precisely, it is formed from a K3 by adding ⌊k−2

2 ⌋ pendent 3-cycles at v and adding ⌊k−1
2 ⌋ and

⌊k
2 ⌋ pendent 3-cycles at the two other vertices of the K3; see the left end of Figure 1. In the proof

of Lemma 5, we showed that any coloring of this subgraph must have v0 in an F -component of
order k. The potential of this subgraph is 0, so CF,k = 0. The gadget for I is simply an edge to
a vertex in Fk. So CI = CU,0 − CE + CF,k = CE−3

2 . Finally, the gadget for F1 is an edge to a
vertex in I. So CF,1 = CU,0 +CI −CE = CE − 3. Adding a pendent 3-cycle at a vertex in CF,j

moves it to CF,j+1. So we are tempted to say that CF,j+1 = CF,j − 3 for all j; but this is not

5



v

Uj → Uj+1 (always)

Fj → Fj+1 (j 6= ⌊(k + 1)/2⌋)

v

U0 → F⌊(k+3)/2⌋

⌊(k − 1)/2⌋ ⌊k/2⌋

v

Fk

U0 → I

v

I

U0 → F1

Figure 2: Gadgets to simulate precoloring.

quite right! We must simulate each Fj as efficiently as possible. We can do slightly better for
Fj′ when j′ = ⌊k+3

2 ⌋. The best gadget for Fj′ is shown in Figure 2; it is formed from the gadget
for Fk by removing k − j′ pendent 3-cycles at v0. This gadget gives CF,j′ = 3k − 3j′ (rather
than CE − 3j′, which we get if we build up from the gadget for F1). Now for each j > j′, we
add j − j′ pendent 3-cycles at v. Thus, CF,j = 3k − 3j for all j ≥ j′.

It is enlightening to notice that the Main Theorem is logically equivalent to its restriction to
graphs that are precolored trivially. Since this is not needed for our proof of the Main Theorem,
we are content to provide only a proof sketch.

Equivalence Lemma. The Main Theorem is true if and only if it is true when restricted to
graphs with no precolored vertices.

Proof Sketch. The case with a trivial precoloring is clearly implied by the general case. Now
we show the reverse implication. Suppose the Main Theorem is false for some specific value of
k. Let G be a counterexample; among all counterexamples, choose one that minimizes |V (G)|.

We will construct another counterexample Ĝ (for the same value of k) with U0 = V (Ĝ).
If G has a vertex v precolored I, then we form G′ from G − v by coloring each neighbor

of v (in G) with F . Since G is (I, Fk)-critical, so is G′. Since G′ is smaller than G, we know
that ρkG′(V (G′)) ≤ −3. It is straightforward to check that ρkG(V (G)) ≤ ρkG′(V (G′)) ≤ −3 (see
Lemma 6 for details); so G is not a counterexample, a contradiction. Thus, I = ∅.

Now we form a graph Ĝ from G by identifying each vertex v ∈ V (G) colored Uj or Fj with
the vertex v in the corresponding gadget (and removing the precoloring). It is easy to check

that −2 ≤ ρkG(V (G)) = ρkG(V (Ĝ)); indeed, this is exactly why we chose the values we did for

CU,j and CF,j . So all that remains is to show that Ĝ is (I, Fk)-critical.
First, note that each gadget precisely simulates the precoloring. That is, every (I, Fk)-

coloring of the gadget for each Uj either gives v at least j F -neighbors or it colors v with I;
furthermore, some coloring of the gadget for Uj colors v with I and some other coloring of the
gadget for Uj colors v with F and gives v exactly j F -neighbors. Similarly, every (I, Fk)-coloring
of the gadget for each Fj colors v with F and puts it in an F -component of order at least j; and
some coloring of the gadget for Fj colors v with F and puts it in a component of order exactly
j. Second, note that deleting any edge from the gadget for Uj allows a coloring in which v has
at most j− 1 F -neighbors. Similarly, deleting any edge from the gadget for Fj allows a coloring

in which v is in an F -component of order at most j − 1. Thus, Ĝ is (I, Fk)-critical.

Since the Main Theorem is equivalent to its restriction to graphs with trivial precolorings,
what is the point of allowing precolorings? The point is to order the graphs in a way that
is more useful for induction (note that V (Ĝ) > V (G), so allowing precolorings enables us to

simulate Ĝ with a precolored graph G that is smaller than Ĝ). In fact, we could write the whole
proof without precolorings, but the partial order on the graphs needed for that version would
be much harder to understand and keep track of.
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1.3 The Potential Method: A Brief Introduction

The function ρk is called the potential function potential
function

, and the proof technique we employ in this paper
is called the potential method

potential method
. Here we give a brief overview.

The essential first step in any proof using the potential method is to find an infinite family of
sharpness examples. These examples determine a sharp necessary condition on mad(G). So we
use them to choose the coefficients CU,0 and CE , which define ρ. The necessary generalization
(allowing precoloring and specifically all the different options Uj and Fj) varies with the problem.
For some problems, we do not use precoloring at all. In one case we allowed parallel edges [7].
Whenever a generalization allows precolorings, the coefficients are all determined by the gadgets,
as discussed in the previous section (so it is essential to find the gadgets with highest potential).

Behind every proof using the potential method is a typical proof using reducibility and
discharging. Consider, for example, Theorem 1. Suppose we are aiming to prove that theorem
and we want to show that a certain configuration H is reducible. Typically, we color G− V (H)
by induction and then show how to extend the coloring to V (H). The reason we can color
G − V (H) by induction is that, by definition, mad(G − V (H)) ≤ mad(G); since G − V (H) is
smaller than G, the theorem holds for G− V (H). The heart of the potential method is to show
that we can slightly modify G − V (H) before we color it by induction. This modification (say,
adding some F -neighbors) enables us to require more of our coloring of G − V (H). Since this
coloring of G − V (H) is more constrained, we may be able to extend it to V (H), even if we
could not do so for an arbitrary (I, Fk)-coloring of G − V (H). To make all of this precise, we
need a lower bound on ρk(R) for all R ( V (G). Such a bound is called a Gap Lemma. Our
modifications may lower ρk(R), but if we can ensure that even this lowered potential is at least
−2 for all R, then we know by induction that G′ cannot contain an (I, Fk)-critical subgraph, so
it must have an (I, Fk)-coloring.

Once we have proved that various configurations are reducible, we use discharging to show
that a (hypothetical, smallest) counterexample G to our Main Theorem cannot exist. We assign
charge so that the assumption ρk(V (G)) ≥ −2 implies that the sum of all initial charges is
at most 4. (This is analogous, for graphs with mad < α, to using the initial charge ch(v) :=
d(v) − α.) As a first step, we show that each vertex ends with nonnegative charge. With a bit
more work, we show that if G has no coloring, then its total charge exceeds 4, so G is not a
counterexample.

Our proof of the Main Theorem naturally translates into a polynomial-time algorithm. This
is typical of proofs using the potential method. The translation is mostly straightforward. The
least obvious step is efficiently finding a set of minimum potential, which can be done using a
max-flow/min-cut algorithm. We discuss algorithms at length in [7, Sections 2.3 and 5].

2 Starting the Proof of the Main Theorem

Fix an integer k ≥ 2. In what follows, we typically write ρ rather than ρk. We say that a
graph G1 is smaller smallerthan a graph G2 if either (a) |V (G1)| < |V (G2)| or (b) |V (G1)| = |V (G2)|
and |E(G1)| < |E(G2)|. Assume that the Main Theorem is false for k. Let G be a smallest
counterexample. In this section, we prove a number of lemmas restricting the structure of G.

Lemma 6. I ∪ Uk ∪ Fk = ∅.

Proof. Assume, to the contrary, that I ∪Uk ∪Fk 6= ∅. First, suppose there exists v ∈ Fk. Form
G′ from G by deleting v and adding each neighbor of v to I. For each R′ ⊆ V (G′), subgraph
G′[R′] has an (I, Fk)-coloring if and only if G[R′ ∪ {v}] does. Since G is (I, Fk)-critical, so is
G′. Since G′ is smaller than G, by the minimality of G, we have ρG′(V (G′)) ≤ −3. However,
now ρG(V (G)) ≤ ρG′(V (G′)) + (CU,0 − CI − CE)d(v) = ρG′(V (G′)) ≤ −3. Thus, G is not a
counterexample.
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Suppose instead there exists v ∈ I. Form G′ from G by deleting v and adding each neighbor
of v to F (we assume d(v) ≥ 1). For each R′ ⊆ V (G′), subgraph G′[R′] has an (I, Fk)-coloring
if and only if G[R′ ∪ {v}] does. Since G is (I, Fk)-critical, so is G′. Since G′ is smaller than G,
by the minimality of G we have ρG′(V (G′)) ≤ −3. Coloring a vertex in Uj with F moves it to
Fj+1, so decreases its potential by CU,j − CF,j+1 ≤ 3CE−3

2 − 3j − (CE − 3(j + 1)) = CE+3
2 . So

ρG(V (G)) ≤ ρG′(V (G′))+ (CE+3
2 )dG(v)−CEdG(v)+CI = ρG′(V (G′))+ (3−CE

2 )d(v)+ CE−3
2 ≤

ρG′(V (G′)) ≤ −3. Thus, G is not a counterexample.
Finally, suppose there exists v ∈ Uk. Form G′ from G by coloring v with I. For each

R′ ⊆ V (G′), subgraph G′[R′] has an (I, Fk)-coloring if and only G[R′] does. Since G is (I, Fk)-
critical, so is G′. Note that ρG′(V (G′)) = ρG(V (G)) − CU,k + CI > ρG(V (G)). Now repeating
the argument in the previous paragraph shows that G is not a smallest counterexample.

At various points in our proof, we will construct a graph G′ from some subgraph of G by
adding F -neighbors to one or more vertices. If this ever produces an uncolored vertex v with at
least k F -neighbors, then we recolor v with I, as in the final paragraph of the previous proof.

Lemma 7. For each edge vw, at least one of v and w is in U .

Proof. Suppose, to the contrary, that v ∈ Fi and w ∈ Fj . Form G′ from G by contracting
edge vw to create a new vertex v ∗ w ∈ Fi+j . Further, for each vertex x incident to both v
and w, remove edges vx and wx and put x into I. Contracting edge vw decreases potential by
(CF,i + CF,j − CE) − CF,i+j ≤ 0. Putting a vertex x into I and deleting two incident edges
decreases potential by at most CU,0−2CE−CI = −CE ; that is, it increases potential by at least
CE . Since G′ is smaller than G, we have ρG′(V (G′)) ≤ −3. Thus, ρG(V (G)) ≤ ρG′(V (G′)) ≤
−3. So G is not a counterexample.

Lemma 8. For each v ∈ V (G), either d(v) ≥ 2 or v ∈ Fj with j ≥ ⌊k+3
2 ⌋.

Proof. Assume, to the contrary, that d(v) ≤ 1 and v /∈ Fj with j ≥ ⌊k+3
2 ⌋. Since G is critical,

it is connected, so d(v) = 1; denote the unique neighbor of v by w. If v is uncolored, then color
G−v by the minimality of G. Now extend this coloring to G by coloring v with the color not used
on w. So assume, by Lemma 6, that v is precolored Fj for some j ∈ {1, . . . , ⌊k+1

2 ⌋}. Lemma 7
implies that w ∈ Uℓ for some ℓ. Form G′ from G − v by increasing the number of F -neighbors
of w by j. Note that ρG(V (G)) − ρG′(V (G′)) ≤ CU,ℓ + CF,j − CE − CU,ℓ+j = 0. (If the new
total number of F -neighbors of w is at least k, then we color w with I.) For each R′ ⊆ V (G′),
subgraphG′[R′] has an (I, Fk)-coloring if and only G[R′∪{v}] does. Since G is (I, Fk)-critical, so
is G′. Since G′ is smaller than G, by the minimality of G, we have ρG′(V (G′)) ≤ −3. However,
now ρG(V (G)) ≤ ρG′(V (G′) ≤ −3. Thus, G is not a counterexample.

Recall, from Section 1.3, that the heart of any proof using the potential method is its gap
lemmas. Our next definition plays a crucial role in the first of these.

Definition 9. GivenR ( V (G) and an (I, Fk)-coloring ϕ ofG[R], we constructG′ := H(G,R, ϕ) G′, H(G,R, ϕ)

as follows; see Figure 3. Let R := V (G) \ R. Let ∇(R) R,∇(R):= {v ∈ R : ∃w ∈ R, vw ∈ E(G)}. To
form G′ from G, delete R and add two new vertices vF , vI , where vF is precolored Fk and vI is
precolored I. (So G′[R] ∼= G[R].) For each vw ∈ E(G) with w ∈ R, v ∈ R and ϕ(v) = F , add
to G′ the edge wvF . For each vw ∈ E(G) with w ∈ R, v ∈ R and ϕ(v) = I, add to G′ the edge
wvI . Finally, delete vF or vI if it has no incident edges. So V (G′) ⊆ R∪ {vF , vI}. In each case,
let X := V (G′) \R.
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G R

ϕ
R′\X

→

G′

X

R′↔

Figure 3: The construction of G′ from G, R, and ϕ in Definition 9, and the vertex subset R′ of a
critical subgraph of G′ in the proof of the Weak Gap Lemma. The picture is nearly identical for
the proof of the Strong Gap Lemma.

Lemma 10 (Weak Gap Lemma). If R ( V (G) and |R| ≥ 1, then ρ(R) ≥ 1.

Proof. Suppose, to the contrary, that there exists such an R with ρ(R) ≤ 0. Choose R to
minimize ρ(R). By Lemma 6, Fk = ∅. So each vertex has positive potential. Thus, |R| ≥ 2
and R induces at least one edge. Since G is critical, G[R] has an (I, Fk)-coloring ϕ. Let
G′ := H(G,R, ϕ). If G′ has an (I, Fk)-coloring ϕ′, then the union of ϕ and ϕ′ is an (I, Fk)-
coloring of G (since each edge from R to R has endpoints with opposite colors). So G′ has
a critical subgraph G′′; let R′ := V (G′′) (it is possible that some vertices in R′ have fewer
F -neighbors in G′′ than in G′). Note that |V (G′)| ≤ |V (G)| and |E(G′)| < |E(G)|; thus, G′ is
smaller than G. As a result, G′′ is smaller than G. Thus, ρG′(R′) ≤ ρG′′(R′) ≤ −3. Since G′[X ]
is edgeless, ρG′(X ′) ≥ 0 for every X ′ ⊆ X . Now

ρG((R
′ \X) ∪R) ≤ ρG′(R′)− ρG′(R′ ∩X) + ρG(R)

≤ −3 + ρG(R) (1)

< ρG(R).

Since ρG((R
′ \X)∪R) < ρG(R) and we chose R to minimize ρG(R), this implies that (R′ \X)∪

R = V (G). But now ρ(V (G)) ≤ −3, so G is not a counterexample.

The Strong Gap Lemma, which we prove next, is one of the most important lemmas in the
paper. Very roughly, the proof mirrors that of the Weak Gap Lemma, but it is much more
nuanced, which allows us to prove a far stronger lower bound (one that grows linearly with k).

Lemma 11 (Strong Gap Lemma). If R ( V (G) and G[R] contains an edge, then ρ(R) ≥ CE−3
2 .

Before proving the lemma formally, we give a proof sketch. Choose R Rto minimize ρ(R)
among R ( V (G) such that G[R] contains an edge. For the sake of contradiction, assume that

ρ(R) < CE−3
2 ; by integrality, ρ(R) ≤ CE−5

2 . Let t :=
⌊
ρ(R)+2

3

⌋
t. Again, by integrality, 3t ≥ ρ(R).

By the Weak Gap Lemma, t ≥ 1.
We essentially repeat the proof of the Weak Gap Lemma, but more carefully. In that

proof it was crucial that ρG′(V (G′) \ R) ≥ ρG(R). To ensure this now, we will show that
ρG′(V (G′) \ R) ≥ CE−5

2 . To do this, before using induction to get an (I, Fk)-coloring ϕ of
G[R], we modify G[R] slightly, to get a graph GR. Denote ∇(R) by v1, . . . , vs. We must ensure
that in the coloring ϕ of G[R] the components colored F containing v1, . . . , vs do not each
contain k vertices. Specifically, if F 1, ..., Fm are the F -components of ϕ containing vertices
v1, . . . , vs, then we want to maximize

∑m

j=1(k − |F j |). When constructing G′, this will allow

us to create vertices vj that are precolored F|F j |, rather than Fk. When j ≤ ⌊k−2
2 ⌋, recall that

CF,k−j = 3j. Thus, to ensure that ρ(X) ≥ ρ(R), it suffices to have
∑m

j=1(k − |F j |) ≥ t, since

then ρ(X) ≥
∑m

j=1 3(k − |F j |) ≥ 3t ≥ ρ(R), as desired.
We construct GR from G[R] by adding “fake” neighbors precolored F to vertices in ∇(R); in

total, we must add at least t such fake F -neighbors. More formally, we move vertices from Faj

to Fbj where
∑

bj = t+
∑

aj . The reason that we can color the resulting graph GR is that we
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chose R to minimize ρ(R). In particular, ρG(Y ) ≥ ρG(R) for all Y ⊆ R (that induces at least

one edge). Thus, ρGR
(Y ) ≥ ρG(Y )− 3t ≥ ρG(R)− 3⌊ρG(R)+2

3 ⌋ ≥ −2. Thus, Y cannot induce a
critical graph in GR or some subgraph of it; so, GR is colorable. Making all this precise requires
more details, which we give below in Case 2.

Proof. We exactly repeat the first paragraph above; in particular, we define R and t as above.
Before proceeding to the main case, we handle the easy case that ρ(∇(R)) < ρ(R).

Case 1: ρ(∇(R)) < ρ(R). By our choice of R, we know that G[∇(R)] is edgeless; also
R \ ∇(R) 6= ∅. That is, ∇(R) is an independent separating set. Moreover, each vertex of ∇(R)
is colored F , since min{CU,k−1, CI} ≥ min{ 3k−3

2 , CE−3
2 } > CE−5

2 ≥ ρ(R). Form G̃ from G by
moving each vertex of ∇(R) into Fk. For each S ⊆ V (G) such that G[S] contains an edge, we
have ρG̃(S) ≥ ρG(S) − ρG(∇(R)) > ρG(S) − ρG(R) ≥ 0. Furthermore, ρG̃(S) ≥ 0 for each
S ⊆ V (G) such that G[S] is edgeless, since each vertex has nonnegative potential. Thus, every
proper induced subgraph of G̃ has an (I, Fk)-coloring. Denote the components of G − ∇(R)
by C1, C2, . . . , Cr. For each j, by induction we have an (I, Fk)-coloring of G̃[Cj ∪ ∇(R)]. The
union of these colorings is a coloring of G, which contradicts that G is a counterexample.

Case 2: ρ(∇(R)) ≥ ρ(R). Now we show how to form GR from G[R] so that our (I, Fk)-
coloring ϕ of GR ensures ρG′(V (G′) \ R) ≥ ρG(R). Denote ∇(R) by v1, . . . , vs v1, . . . , vs. First suppose
that some vℓ is uncolored; say vℓ ∈ Upℓ

. To form GR from G[R], we move vℓ to Upℓ+t; if
pℓ + t > k − 1, then we instead move vℓ to I. (We leave all other vertices in ∇(R) unchanged.)
Now assume that each vj ∈ ∇(R) is colored F . Say vj ∈ Fpj

for each vj ∈ ∇(R). We pick
nonnegative integers ℓj iteratively as follows. Let ℓj := min{k − pj , t−

∑
j′′<j ℓj′′}. Note that

ρ({vj}) ≤ 3(k−pj) for all j. So, if
∑

ℓj ≤ t−1, then ρ(∇(R)) ≤ 3(t−1) < ρ(R); this contradicts
the case we are in. Thus,

∑
ℓj = t (also, ℓj ≥ 0 for all j). Form GR from G[R] by moving each

vj into Fpj+ℓj .
We claim GR has an (I, Fk)-coloring. Since GR is smaller than G, this will hold by induction

once we show that ρGR
(R′) ≥ −2 for each R′ ⊆ R. Assume, to the contrary, that ρGR

(R′) ≤ −3,
for some R′. Now

ρG(R
′) ≤ ρGR

(R′) + 3t ≤ −3 + 3t = 3

(⌊
ρG(R) + 2

3

⌋
− 1

)
< ρG(R).

By our choice of R, this implies that R′ is edgeless. But this contradicts ρGR
(R′) ≤ −3, since

each vertex contributes nonnegative potential. Thus, GR has the desired (I, Fk)-coloring ϕ.
We construct G′ from G, R, and ϕ as follows. As described above, G′ contains G[R], to

which we add new vertices that we call X . Let F 1, F 2, . . . , Fm denote the components of F in ϕ
that contain at least one vertex of ∇(R). For each F j , let (k − ℓ′j) be the number of vertices in

F j when ϕ is viewed as a coloring of G[R] (not GR); when constructing G′, add to X a vertex
vF,j ∈ Fk−ℓ′

j
. If ϕ uses I on one or more vertices in ∇(R), then add to G′ a single vertex vI ∈ I.

Next, we must show that ρG′(X) ≥ ρG(R). Recall that X denotes the vertices in G′ that
are not in G. By construction, G′[X ] is edgeless, so ρG′(X) =

∑
vj∈X ρG′(vj). If vI ∈ X , then

ρG′(X) ≥ ρG′({vI}) = CI = CE−3
2 > ρG(R), so we are done. Thus, we assume that vI /∈ X .

Essentially, we want to show that each vj ∈ X ∩ Fk−ℓ′
j
adds 3ℓ′j to ρG′(X). Since

∑
ℓ′j ≥ t, we

get ρG′(X) =
∑

ρG′({vj}) =
∑

3ℓ′j ≥ 3t ≥ ρG(R). But there is a small complication.

We only have ρG′({vj}) = 3ℓ′j when ℓ′j ≤ ⌈k−3
2 ⌉; otherwise ρG′({vj}) = CE−3(k−ℓ′j), which

is 3ℓ′j − 1 when k is even and 3ℓ′j − 2 when k is odd. If ℓ′j ≥ ⌈k−1
2 ⌉ for at least two values of j,

then ρG′(X) ≥ 2(CE − 3(k − ⌈k−1
2 ⌉)) ≥ CE−5

2 ≥ ρG(R), as desired. So assume that ℓ′j ≥ ⌈k−1
2 ⌉

for at most one value of j. If k is even, then ρG(R) ≤ CE−5
2 = 3k−6

2 , so t = ⌊ 3k−2
6 ⌋ = ⌊k−2

2 ⌋.

Thus, either ℓ′j ≤ ⌈k−1
2 ⌉ for each j, or

∑
ℓ′j > t. In both cases, ρG′(X) ≥ ρG(R). Assume

instead that k is odd. If ρG(R) < CE−5
2 , then t ≤ ⌊k−2

2 ⌋, and the analysis is similar to that

above for k even. So we instead assume that ρG(R) = CE−5
2 and ℓ′i =

k−1
2 = t for some i (with
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ℓ′j = 0 for all other j). But in this case, ρG′(X) = 3t−2 and ρG(R) = 3k−7
2 = 3k−3

2 −2 = 3t−2.
So, again ρG′(X) ≥ ρG(R), as desired.

The graph G′ is smaller than G, since by construction |V (G′)| ≤ |V (G)| (equality may be
possible if G[R] ∼= K1,s−1) and |E(G′)| < |E(G)|, since G[R] contains an edge. Each vertex
v ∈ R has at most one neighbor in R since otherwise

ρ(R ∪ {v}) ≤ ρ(R) + CU,0 − 2CE ≤ ρ(R)−
CE + 3

2
≤

CE − 5

2
−

CE + 3

2
= −4.

If R ∪ {v} = V (G), then ρ(V (G)) ≤ −4, which contradicts that G is a counterexample. Other-
wise, R∪{v} ( V (G) and ρ(R∪{v}) < ρ(R), which contradicts our choice of R. So each v ∈ R
has at most one neighbor in R. This means that G′ does not have an (I, Fk)-coloring, since
such a coloring could be combined with ϕ to produce an (I, Fk)-coloring of G. So G′ contains
an (I, Fk)-critical subgraph G′′. Let W ′′ := V (G′′), and by induction ρG′′(W ′′) ≤ −3.

Because G is (I, Fk)-critical (and thus does not contain proper (I, Fk)-critical subgraphs)
W ′′ ∩X 6= ∅. Since G′[X ] is edgeless, ρG′(X ′) ≥ 0 for all X ′ ⊆ X . Let W := (W ′′ \X)∪R. By
submodularity,

ρG(W ) ≤ ρG′(W ′′)− ρG′(X ∩W ′′) + ρG(R) ≤ (−3)− (0) + ρG(R). (2)

By our choice of R, this implies that W = V (G). We are then in one of two cases, each of which
improves the bound in (2). If X ⊂ W ′′, then X ∩ W ′′ = X , so we use the prior result that
ρG′(X) ≥ ρG(R) to strengthen (2) and conclude that ρG(V (G)) = ρG(W ) ≤ ρG′(W ′′) ≤ −3,
which is a contradiction. So assume that X \W ′′ 6= ∅. Because W = V (G), we have R ⊂ W ′′.
By construction, every vertex in X has a neighbor in R in G′, and therefore at least one edge
with an endpoint in R and the other endpoint in R was not accounted for in (2). Thus, (2)
improves to ρG(W ) ≤ ρG(R)− 3−CE ≤ −CE+11

2 < −3, which is a contradiction. This finishes
Case 2, which completes the proof.

It will be convenient to write U i
j U i

j , F
i
jfor the set of vertices with degree i in Uj; similarly for F i

j .

When we do discharging, vertices in U2
j will need lots of charge, particularly when j is small.

This motivates our next lemma. It says that when j is small enough, such vertices do not exist.

Lemma 12. If U2
j 6= ∅, then j ≥ CE−7

6 .

Proof. Assume, to the contrary, that there exists j ≤ CE−9
6 and v ∈ U2

j . Denote the neighbors
of v by v1 and v2. Our basic plan is to delete v and add j + 1 F -neighbors to each of v1 and
v2; call this new graph G′. We show that G′ has an (I, Fk)-coloring ϕ′, and extend ϕ′ to G as
follows. If both v1 and v2 are colored with F , then color v with I. Otherwise, color v with F . It
is easy to see this yields an (I, Fk)-coloring of G, a contradiction. Mainly, we need to show that
ρG′(R′) ≥ −2 for all R′ ⊆ V (G′), which we do by the Strong Gap Lemma. This proves that G′

has the desired (I, Fk)-coloring. We also need to handle the possibility that our construction of
G′ creates a component of F with more than k vertices.

Case 1: For each vi ∈ N(v) either vi ∈ U or else vi ∈ Fℓi and ℓi + j + 1 ≤ k.
We follow the outline above, but need to clarify a few details. If adding j + 1 F -neighbors
to some vi ∈ U results in vi having at least k F -neighbors, then we instead color vi with I.
By design, we do not create any vertices in U with more than k − 1 F -neighbors or vertices
in F -components of order more than k. We also need to check that we do not create any
edges with both endpoints colored I. By Lemma 6, no vertex of G is colored I. So we only
need to check that we do not use I on both v1 and v2 when v1v2 ∈ E(G). Suppose that
we do. Assume that v1 ∈ Uℓ1 and v2 ∈ Uℓ2 . So ℓ1 + j + 1 ≥ k and ℓ2 + j + 1 ≥ k. Now
ρG({v, v1, v2}) = CU,ℓ1 +CU,ℓ2 +CU,j − 3CE = 9CE−9

2 − 3(j + ℓ1 + ℓ2)− 3CE = 3CE−9
2 − 3(j +

ℓ1 + 1)− 3(ℓ2 − 1) ≤ CE−9
2 − 3(ℓ2 − 1) ≤ CE−9

2 − 3(k − 2− CE−9
6 ) = CE − 3 − 3k < −3. This

contradicts the Weak Gap Lemma. Thus, G′ has a valid precoloring.
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Now we must show that ρG′(R′) ≥ −2 for all R′ ⊆ V (G′). If G[R′] is edgeless, then clearly
ρ(R′) ≥ 0. So assume G[R′] has at least one edge. If R′∩N(v) = ∅, then ρG′(R′) = ρG(R

′) ≥ 1,
by the Weak Gap Lemma. Instead suppose that |R′ ∩N(v)| = 1. By the Strong Gap Lemma,
ρG′(R′) ≥ ρG(R

′) − 3(j + 1) ≥ CE−3
2 − 3(j + 1) ≥ CE−3

2 − 3CE−3
6 = 0. Finally, suppose that

|R′ ∩N(v)| = 2. Now the Weak Gap Lemma (and the fact that ρG(V (G)) ≥ −2) gives

ρG′(R′) ≥ ρG(R
′ ∪ {v}) + 2CE − CU,j − 3(j + 1)2

= ρG(R
′ ∪ {v}) + 2CE − (

3CE − 3

2
− 3j)− 6(j + 1)

= ρG(R
′ ∪ {v}) +

CE + 3

2
− 3j − 6

≥ ρG(R
′ ∪ {v}) +

CE

2
+

3

2
−

CE − 9

2
− 6

= ρG(R
′ ∪ {v})

≥ −2.

Case 2: There exists vi ∈ N(v) such that vi ∈ Fℓi and j + ℓi ≥ k. If v1 and v2 are
both precolored F , then we simply delete v (since we can extend ϕ′ to G by coloring v with
I). So, we assume that v1 ∈ Fℓ1 with j + ℓ1 ≥ k and v2 ∈ Uℓ2 . Now we simply delete v and
color v2 with F . We must again ensure that ρG′(R′) ≥ −2 for all R′ ⊆ V (G′). If v2 /∈ R′, then
ρG′(R′) = ρG(R

′) ≥ 1. So, assume that v2 ∈ R′. If G′[R′] is edgeless, then clearly ρG′(R′) ≥ 0.
So assume that G′[R′] has at least one edge. Now, similar to above:

ρG′(R′) ≥ ρG(R
′ ∪ {v, v1}) + 2CE − CF,ℓ1 − CU,j − CU,ℓ2 + CF,ℓ2+1

≥ ρG(R
′ ∪ {v, v1}) + 2CE − 3(k − ℓ1)− (3CE − 3− 3(j + ℓ2)) + (CE − 3(ℓ2 + 1))

= ρG(R
′ ∪ {v, v1})− 3k + 3ℓ1 + 3j + 3ℓ2 − 3ℓ2

= ρG(R
′ ∪ {v, v1})− 3k + 3(j + ℓ1)

≥ ρ(G′ ∪ {v, v1})

≥ −2.

It will turn out that when j > CE−5
6 vertices in U2

j will have nonnegative initial charge. By

Lemma 12, we know that U2
j = ∅ when j < CE−7

6 . Thus, to finish the proof we focus on the

vertices in U2
j when j = CE−5

6 (in Section 3, where k is even) and when j = CE−7
6 (in Section 4,

where k is odd).

3 Finishing the Proof when k is Even

Throughout this section, k is always even. Recall that when k is even CE = 3k − 1. CEWe let

ℓ := CE−5
6 = 3k−6

6 = k
2 − 1. ℓ

Lemma 13. G does not contain adjacent vertices v and w with v, w ∈ U2
ℓ .

Proof. Assume the lemma is false. Let v′ and w′ denote the remaining neighbors of v and w,
respectively (possibly v′ = w′). By symmetry between v′ and w′, we assume that v′ /∈ Fj with
j ≥ k−ℓ (otherwise ρ({v, w, v′, w′}) ≤ 2CF,k−ℓ+2CU,ℓ−3CE = 6ℓ+2(3CE−3

2 −3ℓ)−3CE = −3,
which contradicts the Weak Gap Lemma). Form G′ from G\{v, w} by adding ℓ+1 F -neighbors
to v′. If v′ now has at least k F -neighbors, then move v′ to I. (By our assumption on v′, we
know that v′ is not in an F -component of order at least k + 1.)

Fix R′ ⊆ V (G′). If G′[R′] has no edges, then ρG′(R′) ≥ 0, since each individual vertex
has nonnegative potential. If v′ /∈ R′, then ρG′(R′) = ρG(R

′) ≥ 1, by the Weak Gap Lemma.
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Assume instead that v′ ∈ R′ and G[R′] contains at least one edge. By the Strong Gap Lemma,
ρG′(R′) ≥ ρG(R

′)− 3(ℓ+ 1) ≥ CE−3
2 − 3(ℓ+ 1) = CE−3

2 − CE−5+6
2 = −2. Thus, by minimality,

G′ has an (I, Fk)-coloring ϕ′.
We extend ϕ′ to v and w as follows. If ϕ′(v′) = I, then color v with F and color w with

the color unused on w′. Similarly, if ϕ′(w′) = I, then color w with F and color v with the
color unused on v′. (If ϕ′(v′) = ϕ′(w′) = I, then v and w lie in an F -component with order
2(ℓ) + 2 = CE−5

3 + 2 = 2(k2 − 1) + 2 = k.) Suppose instead that ϕ′(v′) = ϕ′(w′) = F . Now
color w with I and v with F . Note that this is an (I, Fk)-coloring of G, because of the extra
F -neighbors of v′ in G′.

Now we use discharging to show that G cannot exist. We define our initial charge function
so that our assumption ρ(V (G)) ≥ −2 gives an upper bound on the sum of the initial charges.
(Recall the values of CU,j and CF,j from Definition 2. By Lemma 6, I = ∅.) Precisely, let

• ch(v) := CEd(v)− 2CU,j = CEd(v) − 2(3CE−3
2 − 3j) ch(v)

= CE(d(v)− 3) + 3 + 6j for each v ∈ Uj ; and

• ch(v) := CEd(v)− 2CF,j = CEd(v)− 2(CE − 3j)
= CE(d(v)− 2) + 6j for each v ∈ Fj with j ≤ ℓ+ 1; and

• ch(v) := CEd(v)− 2CF,j ≥ CEd(v)− 2(3k − 3(ℓ+ 2))
= CEd(v)− 3k + 6 = CE(d(v) − 1) + 5 for each v ∈ Fj with j ≥ ℓ+ 2

(and this inequality is strict when j > ℓ+ 2).

This definition of ch(v) yields the inequality

∑

v∈V (G)

ch(v) = −2ρ(V (G)) ≤ 4. (3)

d(v) U0 U1 F1 Uℓ Uℓ+1 Uℓ+2 Fℓ+2

1 4
2 4 0 2 8
3 0 6 CE + 3
4 CE − 1 CE + 5 2CE + 2

Table 1: Lower bounds on the final charges (when k is even).

We use a single discharging rule, and let ch∗(v) ch∗(v)denote the charge at v after discharging.

(R1) Each vertex in U2
ℓ takes 1 from each neighbor.

Lemma 14. After discharging by (R1) above, each vertex v with an entry in Table 1 has ch∗(v)
at least as large charge as shown. Each other vertex v has ch∗(v) ≥ 5.

Proof. Note that ch∗(v) ≥ ch(v) − d(v) for all v ∈ V (G). If v ∈ Uj , then ch∗(v) ≥ CE(d(v) −
3) + 3 + 6j − d(v) = (CE − 1)(d(v) − 3) + 6j. If v ∈ Fj and j ≤ ℓ + 1, then ch∗(v) ≥
CE(d(v) − 2) + 6j − d(v) = (CE − 1)(d(v) − 2) + 6j − 2. If v ∈ Fj and j ≥ ℓ + 2, then
ch∗(v) ≥ CE(d(v) − 1) + 5 − d(v) = (CE − 1)(d(v) − 1) + 4 (and this inequality is strict when
j > ℓ+2). By Lemma 6, I = ∅; by Lemma 12, U2

j = ∅ when j < ℓ . By Lemma 8, each v ∈ V (G)

has d(v) ≥ 2 unless v ∈ F 1
j with j ≥ ℓ+2. If v ∈ U2

ℓ+1, then ch∗(v) ≥ −CE+1+(CE−5+6) = 2.

Thus, if v /∈ U2
ℓ , then the lemma follows from what is above.

By Lemma 13, if v ∈ U2
ℓ , then v does not give away any charge. So v finishes with ch(v) +

2(1) = −CE + 3 + 6ℓ+ 2(1) = −CE + 5 + (CE − 5) = 0.
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Corollary 15. V (G) ⊆ U2
ℓ ∪ U2

ℓ+1 ∪ U3
0 ∪ U4

0 ∪ F 1
ℓ+2 ∪ F 2

1 (with U4
0 = ∅ when k ≥ 4) and

2|U2
ℓ+1|+ 4|U4

0 |+ 4|F 1
ℓ+2|+ 4|F 2

1 | ≤ 4.

Proof. This follows directly from Lemma 14 and (3).

Lemma 16. G has an (I, Fk)-coloring, and is thus not a counterexample.

Proof. We now construct an (I, Fk)-coloring of G. We color each v ∈ U2
ℓ with I and each v /∈ U2

ℓ

with F . By Lemma 13, we know that U2
ℓ is an independent set. So we only must check that

G− U2
ℓ is a forest in which each component has order at most k.

Suppose that G − U2
ℓ contains a cycle, C. Clearly C has no vertex in U4

0 ∪ F 2
1 , since such

a vertex would end with charge at least 6, a contradiction. (Also, C has no vertex in F 1
ℓ+2.)

Furthermore, each vertex in U2
ℓ+1 ∪ U3

0 on such a cycle would end with charge at least 2. Since
G is simple, C has length at least 3, so its vertices end with charge at least 6, a contradiction.
Thus, G − U2

ℓ is acyclic. If U4
0 ∪ F 1

ℓ+2 ∪ F 2
1 6= ∅, then U2

ℓ+1 = ∅ and |U4
0 ∪ F 1

ℓ+2 ∪ F 2
1 | = 1.

Furthermore, G is a bipartite graph with U2
ℓ as one part and U3

0 ∪ U4
0 ∪ F 1

ℓ+2 ∪ F 2
1 as another

(otherwise G has total charge at least 5, a contradiction). So G has an (I, Fk)-coloring using I
on U2

ℓ and F on U3
0 ∪ U4

0 ∪ F 1
ℓ+2 ∪ F 2

1 .
Assume instead that U4

0 ∪ F 1
ℓ+2 ∪ F 2

1 = ∅. Recall that G − U2
ℓ is a forest. Let T denote

a component of this forest, let n2 := |U2
ℓ+1 ∩ V (T )|, and let n3 := |U3

0 ∩ V (T )|. The number
of edges incident to T is (

∑
v∈V (T ) d(v)) − 2|E(T )| = 2n2 + 3n3 − 2(n2 + n3 − 1) = n3 + 2.

Recall that T gives away 1 along each such edge. Each vertex counted by n3 begins with 3,
and each vertex counted by n2 begins with 4. Thus the total final charge of vertices of T is
4n2 + 3n3 − (n3 + 2) = 4n2 + 2n3 − 2. Since G has total charge at most 4, either n2 = 1 and
n3 ≤ 1 or else n2 = 0 and n3 ≤ 3. Now color all vertices of T with F , except when n2 = 0,
n3 = 3, and k = 2. In that case, the total final charge of T is 4, so every other component of
G−U2

ℓ is an isolated vertex in U3
0 . Now color the leaves of T with F and the center vertex, say

v, with I. Also recolor the neighbor of v outside of T with F .

4 Finishing the Proof when k is Odd

4.1 Reducible Configurations when k is Odd

Throughout this section, k is always odd. Recall that when k is odd CE = 3k − 2. CEFurther,

let ℓ := CE−7
6 = 3k−9

6 = k−3
2 . ℓ(Note that CE and ℓ are defined differently from the previous

section.) We will frequently use the fact that 2ℓ+ 3 = k.

Lemma 17. G does not contain adjacent vertices v and w with v ∈ U2
ℓ and w ∈ U2

ℓ ∪ U2
ℓ+1.

Proof. Assume the lemma is false. Let v′ and w′ denote the remaining neighbors of v and w,
respectively (possibly v′ = w′). Form G′ from G \ {v, w} by adding ℓ + 1 F -neighbors to v′.
(Suppose this puts v′ in an F -component of order at least k + 1. In this case, ρ({v′, v, w}) ≤
CF,k−ℓ + CU,ℓ + CU,ℓ+1 − 2CE = 3ℓ + (3CE−3

2 − 3ℓ) + (3CE−3
2 − 3(ℓ + 1)) − 2CE = 3CE − 3 −

2CE − 3(ℓ+1) = CE − 3− 3(CE−7
6 +1) = CE−5

2 , which contradicts the Strong Gap Lemma. So
v′ is not in an F -component of order at least k + 1.)

Now we show that ρG′(R′) ≥ −2 for all R′ ⊆ V (G′). Fix some R′ ⊆ V (G′). If v′ /∈ R′, then
ρG′(R′) = ρG(R

′) ≥ 1, by the Weak Gap Lemma. If G′[R′] has no edges, then ρG′(R′) ≥ 0,
since each coefficient in Definition 2 is nonnegative. Assume instead that v′ ∈ R′ and G[R′] has
at least one edge. By the Strong Gap Lemma, ρG′(R′) ≥ ρG(R

′)− 3(ℓ+1) ≥ CE−3
2 − 3(ℓ+1) =

CE−3
2 − CE−7+6

2 = −1. Thus, G′ has an (I, Fk)-coloring ϕ′.
We extend ϕ′ to v and w as follows. If ϕ′(v′) = I, then color v with F and color w with

the color unused on w′. Similarly, if ϕ′(w′) = I, then color w with F and color v with the color
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unused on v′. (If ϕ′(v′) = ϕ′(w′) = I, then v and w lie in an F -component with order at most
2(ℓ) + 3 = CE−7

3 + 3 = 3k−9
3 + 3 = k.) Suppose instead that ϕ′(v′) = ϕ′(w′) = F . Now color w

with I and v with F . Note that this is an (I, Fk)-coloring of G, because of the extra F -neighbors
of v′ in G′.

Lemma 18. G does not contain a vertex v ∈ U3
0 with all three neighbors in U2

ℓ .

Proof. Suppose the lemma is false. Form G′ from G by deleting v and its three 2-neighbors.
Since G is critical, G′ has an (I, Fk)-coloring ϕ′. Now we extend ϕ′ to all of G. Color each
2-neighbor of v with the color unused on its neighbor in G′. If all three 2-neighbors of v are
colored F , then color v with I. Otherwise, color v with F . This produces an (I, Fk)-coloring of
G (because 2ℓ+ 3 = k).

Lemma 19. G does not contain adjacent vertices v, w ∈ U3
0 such that v has two neighbors in

U2
ℓ and w has at least one neighbor in U2

ℓ .

Proof. Suppose the lemma is false. Denote the 2-neighbors of v by x and y, and denote a
2-neighbor of w in U2

ℓ by z. Denote by w′, x′, y′, and z′ the remaining neighbors of w, x, y,
and z (other than v, w, and z); see Figure 4. We want to form G′ from G by deleting y and
contracting both edges incident to z; however, this creates parallel edges when w′z′ ∈ E(G), so
we consider two cases. Before doing that, we briefly consider the possibility that y = z.

If y = z, then by criticality we color G − {v, w, x, y/z}. To extend the coloring to G, we
color w with the color unused on w′ and color x with the color unused on x′. If both w and x
are colored F , then we color v with I; otherwise, we color v with F . Finally, if both v and w are
colored F , then we color y/z with I; otherwise, we color y/z with F . It is easy to check that
this coloring has no cycle colored F and no edge with both endpoints colored I. It also has no
F -component of size larger than 2ℓ+ 3 = k. Thus, we assume y 6= z.

Case 1: w′z′ /∈ E(G). Form G′ from G by deleting y and contracting both edges incident
to z; the new vertex w∗z′ formed from w and z′ inherits the precoloring of z′.

Consider R′ ⊆ V (G′). If w ∗ z′ /∈ R′, then ρG′(R′) = ρG(R
′) ≥ 1, by the Weak Gap Lemma.

If G′[R′] has no edges, then ρG′(R′) ≥ 0, since each individual vertex has nonnegative potential.
So assume that w ∗ z′ ∈ R′ and G′[R′] has at least one edge. Now

ρG′(R′) = ρG((R
′ \ {w ∗ z′}) ∪ {w, z, z′})− CU,ℓ − CU,0 + 2CE

= ρG((R
′ \ {w ∗ z′}) ∪ {w, z, z′})− (3CE − 3− 3ℓ) + 2CE

= ρG((R
′ \ {w ∗ z′}) ∪ {w, z, z′})− CE + 3 +

CE − 7

2

= ρG((R
′ \ {w ∗ z′}) ∪ {w, z, z′})−

CE + 1

2
≥ −2,

where the final inequality holds because the Strong Gap Lemma gives ρG(R
′ \ {w ∗ z′}) ∪

{w, z, z′}) ≥ CE−3
2 . Thus, G′ has an (I, Fk)-coloring ϕ′.

Case 2: w′z′ ∈ E(G). Again form G′ from G by deleting y and contracting both edges
incident to z; the new vertex w ∗ z′ formed from w and z′ inherits the precoloring of z′. Since
w′z′ ∈ E(G), this creates parallel edges between w′ and w ∗ z′. If one of w′ and w ∗ z′ is
colored with F , then delete both of the parallel edges and color the other endpoint with I. (By
Lemma 7, at least one of w′ and z′ is not colored F . ) If neither w′ nor w ∗ z′ is colored with
F , then we delete one edge between w′ and w ∗ z′ and add k−1

2 F -neighbors to each of them.
(It is not possible that each of w′ and w ∗ z′ ends with at least k F -neighbors, so gets recolored
I, since in that case ρG({w, z, w′, z′}) violates the Strong Gap Lemma.)
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Now we must show that ρG′(R′) ≥ −2 for all R′ ⊆ V (G′). If R′ ∩ {w′, w ∗ z′} = ∅, then
ρG′(R′) = ρG(R

′) ≥ 1 by the Weak Gap Lemma. So, we assume that R′ ∩ {w′, w ∗ z′} 6= ∅. We
will compute ρG′(R′)− ρG((R

′ \ {w ∗ z′}) ∪ {w, z, w′, z′}). For convenience, let α := −2CU,0 −
CU,ℓ + CI + 3CE . We have 5 cases to consider.

1. We added F -neighbors to both w′ and w ∗ z′ and |R′ ∩ {w′, w ∗ z′}| = 2. Now ρG′(R′) −
ρG((R

′\{w∗z′})∪{w, z, w′, z′}) = −CU,0−CU,ℓ+3CE−3(k−1) = α+CU,0−CI−3(k−1) =
α+ 3CE−3

2 − CE−3
2 − (CE − 1) = α+ 1.

2. We added F -neighbors to both w′ and w ∗ z′ and |R′ ∩ {w′, w ∗ z′}| = 1. Now ρG′(R′) −
ρG((R

′ \ {w ∗ z′})∪{w, z, w′, z′}) ≥ −2CU,0−CU,ℓ +4CE − 3k−3
2 = α+CE −CI −

3k−3
2 =

α+ CE − CE−3
2 − CE−1

2 = α+ 2.

3. We moved w′ or w ∗ z′ to I and |R′ ∩ {w′, w ∗ z′}| = 2. Now ρG′(R′)− ρG((R
′ \ {w ∗ z′})∪

{w, z, w′, z′}) ≥ −2CU,0 − CU,ℓ + CI + 3CE = α.

4. We moved w′ or w ∗ z′ to I and R′ contains the one we moved to I, but not the other.
Now ρG′(R′)− ρG((R

′ \ {w ∗ z′}) ∪ {w, z, w′, z′}) ≥ −2CU,0 − CU,ℓ − CF,1 + CI + 4CE =
α− CF,1 + CE ≥ α+ 3.

5. We moved w′ or w∗z′ to I and R′ contains the one we did not move to I, but not the other.
Now ρG′(R′)−ρG((R

′\{w∗z′})∪{w, z, w′, z′}) ≥ −2CU,0−CU,ℓ+4CE = α−CI+CE > α.

Note that α = −2CU,0−CU,ℓ+3CE+CI = −3CE+3−(CE+2)+3CE+ CE−3
2 = −CE+1

2 . Now,

by the Strong Gap Lemma, ρG′(R′) ≥ ρG((R
′\{w∗z′})∪{w, z, w′, z′})−CE+1

2 = CE−3
2 −CE+1

2 =
−2. Thus, G′ again has an (I, Fk)-coloring ϕ′.

We will show how to extend ϕ′ to G (after possibly modifying it a bit). We first extend ϕ′

to an (I, Fk)-coloring ϕ of G− y by uncontracting the two edges incident to z, coloring both w
and z′ with ϕ′(w∗z′), and coloring z with the opposite color.

v

U3
0

w

U3
0

x
U2
ℓ

x′

y
U2
ℓ

y′

z
U2
ℓ

z′

w′

G

→
v

U3
0

w∗z′

x
U2
ℓ

x′

y′

z
U2
ℓ

z′

w′

G′

Figure 4: Forming G′ from G in the proof of Lemma 19.

Suppose that ϕ(y′) = I. If ϕ(v) = I, then we color y with F and are done. So assume
ϕ(v) = F . If ϕ(w) = ϕ(x) = I, then we again color y with F and are done. If ϕ(w) = ϕ(x) = F ,
then we recolor v with I and are done as above. So assume that exactly one of w and x uses
I in ϕ and the other uses F . First suppose that ϕ(w) = I and ϕ(x) = F . If ϕ(x′) = I,
then we color y with F and are done. Instead assume that ϕ(x′) = F . Now we recolor x
with I and color y with F . Thus, we assume instead that ϕ(w) = F and ϕ(x) = I. If
both neighbors of w other than v are colored I, then we color y with F and are done. So
assume that z is the only neighbor of w colored I. Let s1 and s2 denote the orders of the
F -components of ϕ that contain w and z′, respectively. If s1 ≤ k − (ℓ + 1), then we color y
with F . If s2 ≤ k − (ℓ + 1), then we recolor z with F , recolor w with I, and color y with
F . The key observation is that one of these two inequalities must hold. Suppose not. The
F -component in ϕ′ containing w ∗ z shows that k ≥ s1 + s2 − 1. If both inequalities above fail,
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then k ≥ s1+s2−1 ≥ (k−(ℓ+1)+1)+(k−(ℓ+1)+1)−1 = 2k−2ℓ−1 = 2k−(k−3)−1 = k+2,
which is a contradiction.

Suppose instead that ϕ(y′) = F . If ϕ(v) = F , then we color y with I and are done. Assume
instead that ϕ(v) = I. First suppose w′ and z are colored I. Now recolor v with F and color
y with I; finally, if x′ is colored F , then recolor x with I. This gives an (I, Fk)-coloring of G.
Suppose instead that w′ is colored F . Let s1 and s2 denote the orders of the F -components of ϕ
that contain w and z′, respectively. Suppose that s1 ≤ k−(ℓ+2). Color y with I, recolor v with
F , and if ϕ(x′) = F , then recolor x with I. This gives an (I, Fk)-coloring of G. Suppose instead
that s2 ≤ k − (ℓ + 1). Again color y with I, recolor v with F , and if ϕ(x′) = F , then recolor x
with I. Finally, recolor w with I and recolor z with F . Again, this gives an (I, Fk)-coloring of
G. The key observation is that one of these two inequalities must hold; the proof is identical to
that in the previous paragraph, except that the first inequality is tighter by 1.

4.2 Discharging when k is Odd

Now we use discharging to show that G cannot exist. It is helpful to remember that I = ∅, by
Lemma 6, and U2

j = ∅ when j < ℓ, by Lemma 12. Furthermore, by Lemma 8, each v ∈ V (G)

satisfies d(v) ≥ 2 unless v ∈ Fj with j ≥ k+3
2 . We define our initial charge function so that our

assumption ρ(V (G)) ≥ −2 gives an upper bound on the sum of the initial charges. (Recall the
values of CU,j and CF,j from Definition 2.) Precisely, let

• ch(v) := CEd(v)− 2CU,j = CEd(v) − 2(3CE−3
2 − 3j) ch(v)

= CE(d(v)− 3) + 3 + 6j for each v ∈ Uj ; and

• ch(v) := CEd(v)− 2CF,j = CEd(v)− 2(CE − 3j)
= CE(d(v)− 2) + 6j for each v ∈ Fj with j ≤ k+1

2 ; and

• ch(v) := CEd(v)− 2CF,j ≥ CEd(v)− 2(3k − 3k+9
2 )

= CEd(v)− 3k + 9 = CE(d(v) − 1) + 7 for each v ∈ Fj with j ≥ k+3
2 .

This definition of ch(v) yields the inequality

∑

v∈V (G)

ch(v) = −2ρ(V (G)) ≤ 4. (4)

d(v) U0 U1 U2 F1 F2 Uℓ Uℓ+1 Uℓ+2

2 2 8 0 0 4
3 0 3 9 CE CE + 6
4 CE − 5 CE + 1 CE + 7 2CE − 2

Table 2: Lower bounds on the final charges (when k is odd).

We use two discharging rules, and let ch∗(v) ch∗(v)denote the charge at v after discharging.

(R1) Each v ∈ U2
ℓ (2-vertex) takes 2 from each neighbor.

(R2) Each v ∈ U3
0 (3-vertex) with two neighbors in U2

ℓ takes 1 from its other neighbor.

Lemma 20. After discharging with rules (R1) and (R2) above, each vertex v with an entry in
Table 2 has ch∗(v) at least as large charge as shown. Each other vertex v has ch∗(v) ≥ 5.

Proof. Note that ch∗(v) ≥ ch(v) − 2d(v) for all v ∈ V (G). If v ∈ Uj, then ch∗(v) ≥ CE(d(v) −
3) + 3 + 6j − 2d(v) = (CE − 2)(d(v) − 3) + 6j − 3. If v ∈ Fj and j ≤ k+1

2 , then ch∗(v) ≥
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CE(d(v) − 2) + 6j − 2d(v) = (CE − 2)(d(v) − 2) + 6j − 4. If v ∈ Fj and j ≥ k+3
2 , then

ch∗(v) ≥ CE(d(v) − 1) + 7 − 2d(v) = (CE − 2)(d(v) − 1) + 5. If v /∈ U2
ℓ ∪ U2

ℓ+1 ∪ U3
0 , then the

lemma follows from what is above.
If v ∈ U2

ℓ , then v has no neighbors in U2
ℓ ∪U

2
ℓ+1, by Lemma 17. Thus, ch∗(v) = −4+2(2) = 0.

If v ∈ U2
ℓ+1, then v has no neighbors in U2

ℓ , by Lemma 17. Thus, ch∗(v) ≥ 2− 2(1) = 0. Finally,
suppose that v ∈ U3

0 . By Lemma 18, v does not have three neighbors in U2
ℓ . A vertex in U3

0 is
needy needyif it has two neighbors in U2

ℓ . By Lemma 19, a vertex in U3
0 cannot have both a neighbor

in U2
ℓ and a needy 3-neighbor. Thus, we have ch∗(v) ≥ min{3−2, 3−2(2)+1, 3−3(1)}= 0.

Corollary 21. V (G) = U2
ℓ ∪U2

ℓ+1 ∪U2
ℓ+2 ∪F 2

1 ∪U3
0 ∪U3

1 ∪U4
0 . Furthermore 4|U2

ℓ+2|+2|F 2
1 |+

3|U3
1 |+ (CE − 5)|U4

0 | ≤ 4. (In particular, U4
0 = ∅ when k ≥ 5.)

Proof. This corollary follows directly from Lemma 20 and (4).

If we knew that
∑

v∈V (G) ch(v) < 0, then Lemma 20 would yield a contradiction. However,

we only know that
∑

v∈V (G) ch(v) ≤ 4, so we are not done yet. We will now try to construct

the desired coloring. We show that we can do this unless
∑

v∈V (G) ch(v) > 4, which gives the

desired contradiction. Our basic plan is to color all of U2
ℓ with I. This will force all neighbors

of U2
ℓ into F . Furthermore, all but a constant number of vertices in V (G) \ U2

ℓ will go into F .
To do this, we consider the components of G \U2

ℓ . All but a constant number of these have size
at most 4, and all have size at most 8.

Lemma 22. Each component of G \ U2
ℓ is one of the 30 shown below in Figures 5-9, and has

final charge as shown. (The coloring of vertices as black and white can be ignored for now.)

Proof. Let J be a component of G\U2
ℓ . Let ch

∗(J) :=
∑

v∈V (J) ch
∗(v). We will prove that if J is

some component other than one of those shown, then either G contains a reducible configuration
or ch∗(J) > 4; both possibilities yield a contradiction.

Case 1: V (J) ∩ U4
0
6= ∅. (By Corollary 21, this is possible only when k = 3.) Assume

v ∈ V (J) ∩ U4
0 . If V (J) = {v}, then we are done. Otherwise, ch∗(v) ≥ 3. So, by Table 2, we

know V (J) \ {v} ⊆ U3
0 ∪ U2

ℓ+1. Let w be a neighbor of v in J . If w ∈ U2
ℓ+1, then ch∗(J) ≥

ch∗(v) + ch∗(w) ≥ 4 + 1, a contradiction. The same is true if w ∈ U3
0 unless w is needy (recall

that w cannot have both a neighbor in U2
ℓ and a needy 3-neighbor, by Lemma 19). If v has at

most two needy 3-neighbors, then we are done. Otherwise, ch∗(v) ≥ 5, a contradiction.
Case 2: V (J) ∩ U2

ℓ+2
6= ∅. Assume v ∈ V (J) ∩ U2

ℓ+2. If V (J) = {v}, then we are done.

Otherwise, ch∗(v) ≥ 5, a contradiction.

U4
0

2

U4
0 U3

0

3

U3
0 U4

0 U3
0

4

U2
ℓ+2

4

F 2
1

2

F 2
1 U3

0

3

U3
0 F 2

1 U3
0

4

U3
1

3

U3
1 U3

0

4

Figure 5: The 9 possible components of G \ U2
0 in Cases 1–4.

Case 3: V (J) ∩ F 2
1
6= ∅. Assume v ∈ V (J) ∩ F 2

1 . If V (J) = {v}, then we are done.
Otherwise, let w be a neighbor of v in J . If w ∈ U2

ℓ+1, then ch∗(J) ≥ ch∗(v) + ch∗(w) ≥ 4 + 1,
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a contradiction. Thus, we must have w ∈ U3
0 . If w is not needy, then ch∗(v) + ch∗(w) ≥ 4 + 1,

a contradiction. Thus, v has one or two needy neighbors (and this is all of J).
Case 4: V (J) ∩ U3

1
6= ∅. Assume v ∈ V (J) ∩ U3

1 . If V (J) = {v}, then we are done.
Otherwise, let w be a neighbor of v. If w is not a needy 3-neighbor of v, then ch∗(v) ≥ 5, a
contradiction. Further, v has at most one needy 3-neighbor. Thus, we are done.

U3
0 U3

0

U3
0U3

0

4

U2
ℓ+1

U3
0U3
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U3
0

U3
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U3
0

U3
0U3

0 U3
0

4

Figure 6: The 4 possible components of G \ U2
ℓ in Case 5, those that have a cycle.

Case 5: V (J) ⊆ U2
ℓ+1

∪ U3
0
and J contains a cycle. Let C be a cycle in J ; see Figure 6.

It is easy to check that each cycle vertex finishes with charge at least 1; thus |C| ≤ 4. If |C| = 4,
then each cycle vertex is in U3

0 and has a neighbor in U2
ℓ . Thus, J

∼= C4. Now suppose |C| = 3.
If C contains a vertex in U2

ℓ+1, then it contains exactly one such vertex, and its other two vertices
are in U3

0 , each with a neighbor in U2
ℓ . So J ∼= C3 (with a single vertex in U2

ℓ+1). So assume C
is a 3-cycle with all vertices in U3

0 . If no vertex on C has a neighbor in J \C, then we are done.
Otherwise, exactly one cycle vertex does, and it is a needy 3-neighbor.

Case 6: V (J) ⊆ U2
ℓ+1

∪ U3
0

and J is a tree. Let T := J . Let n2 := |U2
ℓ+1 ∩ V (T )| and

n3 := |U3
0 ∩ V (T )|. Recall that no vertex in U2

ℓ+1 has a neighbor in U2
ℓ , by Lemma 17. So each

leaf of T is in U3
0 . Form T ′ from T by replacing paths with internal vertices in U2

ℓ+1 by edges.
So |V (T ′)| = n3. Let ch

∗(T ′) := ch∗(T )−2|U2
ℓ+1∩V (T )|. Note that ch∗(T ′) is precisely the sum

of charges that would have ended on T ′ if it had appeared in G when we did the discharging.
Since each vertex of T ′ has degree 3 in G, the number of edges (externally) incident to T is
3|T ′| −

∑
v∈T ′ dT ′(v) = 3|T ′| − 2(|T ′| − 1) = |T ′|+2. Since ch(T ′) = 3|T ′|, and T ′ sends 2 along

each incident edge, we have ch∗(T ′) = 3|T ′| − 2(|T ′|+ 2) = |T ′| − 4 = n3 − 4. Since ch∗(T ) ≤ 4,
we get that n3 ≤ 8. Recall that a vertex in U3

0 with three neighbors in U2
ℓ is reducible, by

Lemma 18. So n3 ≥ 2. Note that ch∗(T ) = n3 − 4 + 2n2 ≤ 4. So n2 ≤ 8−n3

2 . For brevity, we
henceforth denote |V (T ′)| by |T ′|. We consider the seven possibilities when |T ′| ∈ {2, . . . , 8}.

Suppose |T ′| = 2. By Lemma 19, the edge of T ′ must be subdivided in T by one or more
vertices of U2

ℓ+1. We have n2 ≤ 3, which gives the 3 possibilities in Figure 7.
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ℓ+1 U3
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0

U3
0 U2

ℓ+1 U2
ℓ+1 U3

0

2

U3
0 U2

ℓ+1 U2
ℓ+1 U2

ℓ+1 U3
0

4

Figure 7: The 3 possible components of G \ U2
0 in Case 6 when |T ′| = 2.

Suppose |T ′| = 3. By Lemma 19, no vertex in U3
0 has both a needy 3-neighbor and a

neighbor in U2
ℓ . Thus, each edge of T ′ must be subdivided in T by a vertex in U2

ℓ+1. Recall that

n2 ≤ 8−n3

2 . So n3 = 3 and n2 = 2.

Suppose |T ′| = 4. The only 4-vertex trees are K1,3 and P4. Recall that n2 ≤ 8−n3

2 = 2. If
T ′ ∼= P4, then T must contain a vertex in U2

ℓ+1 incident to each leaf. There is a unique such
tree, a 6-vertex path with each neighbor of a leaf in U2

ℓ+1 (and the four other vertices in U3
0 ).

So assume T ′ ∼= K1,3. Now n2 ∈ {0, 1, 2}. This results in 1, 1, and 2 possibilities with orders 4,
5, and 6.
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Figure 8: The 7 possible components of G \ U2
ℓ in Case 6 when |T ′| ∈ {3, 4, 5}.

Suppose |T ′| = 5. The only 5-vertex subcubic trees are P5 and K1,3 with an edge subdivided.
Now n2 ≤ 1. Thus, we cannot have T ′ ∼= P5, since then T would have a vertex in U3

0 with both
a needy 3-vertex and a neighbor in U2

ℓ , which contradicts Lemma 19. So T ′ is formed from K1,3

by subdividing a single edge. Now we have a single possibility for T , which is formed from K1,3

by subdividing a single edge twice.
Suppose |T ′| = 6. Now n2 ≤ 1. There are 4 subcubic trees on 6 vertices. However, two of

them contain two copies of a leaf adjacent to a vertex of degree 2 (in the tree). Neither of these
are valid options for T ′, by Lemma 19. Thus, either T ′ is formed by subdividing a single edge
of K1,3 twice or else T ′ is a double-star (adjacent 3-vertices, with 4 leaves). The first option
yields one case, and the second yields 3 cases (since we might not add a vertex of U2

ℓ+1).
Suppose |T ′| = 7. Now n2 = 0; that is, T ′ = T . Thus, each leaf of T ′ must be adjacent to a

vertex of degree 3 in T ′. Since T ′ has a 3-vertex, it has at least 3 leaves. Since each leaf has a
neighbor of degree 3 in T , tree T has at least two 3-vertices. There is a single possibility.

Suppose |T ′| = 8. The analysis is nearly the same as when |T ′| = 7. Now T ′ must contain
at least 4 leaves and at least two 3-vertices. Either T ′ has 5 leaves and three 3-vertices or else
T ′ has 4 leaves, two 2-vertices, and two 3-vertices. Each case gives a single possibility.
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Figure 9: The 7 possible components of G \ U2
ℓ in Case 6 when |T ′| ∈ {6, 7, 8}.
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Lemma 23. G has an (I, Fk)-coloring, and is thus not a counterexample.

Proof. We now construct an (I, Fk)-coloring of G. As we described above, our plan is to color
all vertices of U2

ℓ with I (since they form an independent set, by Lemma 17). For each possible
acyclic component J of G \ U2

ℓ , shown in Figures 5, 7, 8, and 9, we show how to extend this
coloring to J . Those vertices drawn as white are colored with F and those drawn as black are
colored with I. Doing this preserves that I is an independent set and G[F ] is a forest with at
most k vertices in each component. The only complication is the four possible components J
that contain a cycle, shown in Figure 6. In fact, the second and fourth of these are fine. Suppose
instead that J ∈ {C3, C4} with all vertices in U3

0 . Now we color one vertex v of J with I (and
the rest with F ). To preserve that I is an independent set, we recolor the neighbor w of v in
U2
ℓ with F . We must ensure that w does not become part of a tree on k + 1 vertices. Since

ch∗(J) ≥ 3, every other component J ′ of G \ U2
ℓ has ch∗(J ′) ≤ 1; in particular, this is true of

the component containing the neighbor of w other than v. So J ′ is either K1,3 (with all vertices
in U3

0 ) or else P3 (with its center vertex in U2
ℓ+1 and leaves in U3

0 ). In each case for J ′, the
subgraph induced by its vertices colored F is an independent set. Thus, recoloring w with F
creates a tree colored F with at most 2 vertices.
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