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ABSTRACT. We relate finite generation of cones, monoids, and ideals in increasing chains
(the local situation) to equivariant finite generation of the corresponding limit objects (the
global situation). For cones and monoids there is no analog of Noetherianity as in the case
of ideals and we demonstrate this in examples. As a remedy, we find local-global corre-
spondences for finite generation. These results are derived from a more general framework
that relates finite generation under closure operations to equivariant finite generation under
general families of maps. We also give a new proof that non-saturated Inc-invariant chains
of ideals stabilize, closing a gap in the literature.

1. INTRODUCTION

Finite generation of algebraic and geometric objects is a central necessity to efficiently
work with these objects and to represent them in a computer. A well-known and important
finiteness principle in algebra is Noetherianity. A commutative ring R is Noetherian if every
ideal I ⊆ R is finitely generated, or equivalently, every ascending chain I1⊆ I2⊆ ·· · of ideals
eventually stabilizes, that is, from some index on, all ⊆ are equalities.

In some cases symmetry can augment finiteness. E.g., the polynomial ring K[x1, . . . ,xn]
over a field K is Noetherian, but K[x1,x2, . . . ] is not, since 〈x1〉( 〈x1,x2〉( · · · is an infinite
ascending chain. Yet, polynomials f ∈K[x1,x2, . . . ] have finitely many terms, so each is con-
tained in some Noetherian subring K[x1, . . . ,xn] ⊆ K[x1,x2, . . . ]. This finiteness can be sys-
tematically investigated, for example, by exploiting the action of symmetric groups, which
renumber the indeterminates. The chain 〈x1〉 ( 〈x1,x2〉 ( · · · has the property that its n-th
ideal 〈x1, . . . ,xn〉 arises from the first 〈x1〉 by an action of the symmetric group Sym(n) and
ideal closure: 〈x1, . . . ,xn〉 = 〈Sym(n)(〈x1〉)〉. A theorem of Cohen [7] and Aschenbrenner-
Hillar [1] states that if a chain of ideals (In)n with In ⊆ K[x1, . . . ,xn] is Sym-invariant in the
sense that 〈Sym(n+ k)(In)〉 ⊆ In+k for all n,k ∈ N, then eventually the chain stabilizes, in
the sense that for large enough n, 〈Sym(n+ k)(In)〉 = In+k for all k ∈ N. Additionally, the
union I∞ :=

⋃
In⊆K[x1,x2, . . . ] is generated by finitely many Sym-orbits. These facts, which

are called Sym-Noetherianity or equivariant Noetherianity of K[x1,x2, . . . ], have interesting
applications [1, 7, 13] and inspired lots of recent work. See, e.g., [9, 14, 15, 16, 17, 20, 21].
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We aim to explore such equivariant finiteness principles in the broader context of discrete
geometry. For example, we are looking for a framework to formulate equivariant versions
of theorems from polyhedral geometry. For this one needs to consider chains of cones (Cn)n
with Cn ⊆ Rn

≥0 with a suitable equivariance (Definition 2.11 contains the general version).
Equivariant Noetherianity cannot hold in these setting as the ambient Rn

≥0 has no Noethe-
rianity: There are non-polyhedral (i.e., not finitely generated) cones such as the open orthant,
defined by positivity of all coordinates. A chain of open orthants stabilizes but the limit is
not finitely generated. Examples 5.5–5.8 showcase these effects.

What remains of the theory is the equivalence of equivariant finite generation in the limit
(the global situation) and stabilization of the chain (the local one) under appropriate assump-
tions. For example, the local-global principle for cones in Corollary 5.4 states that the limit
C∞ of a Sym-invariant family of cones is equivariantly finitely generated if and only if the
family (Cn)n stabilizes and eventually all Cn are finitely generated. This is also equivalent to
an eventual saturation condition Cn =C∞∩Rn

≥0 together with finite generation of Cn by rays
of bounded support. Section 5 also contains a parallel development for monoids.

The similarity between the results for cones and monoids points at a generalization and
unification, which we undertake in Sections 2–4. In Section 2 we abstract taking the ideal,
cone, or monoid to any closure operation and the action of Sym(n) to any system of maps
that maps objects of the chain into the later object. The generalization has many advantages.
It allows to formulate a general local-global principle, i.e. the exact conditions under which
the equivalence of finite generation up to symmetry and stabilization hold. This is our central
Theorem 2.16. Specializing the maps to Sym and Inc (the monoid of increasing maps) yields
Theorems 4.10 and 4.11. Further specializations to chains of polyhedral cones and monoids
under Sym and Inc follow in Section 5. In Section 6 we return to equivariant Noetherianity
in polynomial rings and use our results to fill a gap in the proof that Inc-invariant chains of
ideals stabilize, a fact that is used in the literature, e.g. in [11, 20].

Our work could be phrased in the framework of FI-modules by Church, Ellenberg, and
Farb (see, e.g., [4, 5, 6]). This concerns, among other things, equivariant chains of mod-
ules using symmetric groups. The fundamental difference between our developments in all
but the last section is that the elements of our chains are subsets of finite-dimensional vec-
tor spaces which rarely appear with module structures, but rather take into account various
closure operations. In the broader context of representation stability and twisted commuta-
tive algebras, there is, in particular, the fundamental work of Sam and Snowden (see, e.g.,
[22, 23]). Unlike in our situation, Noetherianity abounds and is a central tool in this theory.
In summary, while it would be possible to generalize our results in Section 4 and, based
on [21], phrase them in the language of FI-modules we chose a direct approach that is most
suitable for applications like the algebraic and geometric situations in Sections 5 and 6.

Finite generation is essential for computation. To make our results effective, more re-
search is needed on the concrete stability indices, for which very little is known. On the side
of polyhedral geometry, there is software for dual description conversion modulo symme-
try [2], but computer algebra for symmetric ideals or monoids is in its infancy.
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2. CHAINS OF SETS

We begin with a general framework of chains of sets and closure operations. Our goal is
to be able to transfer properties from such chains of sets to their union (or limit) and back.

Throughout this section S∞ is any set and S = (Sn)n≥1 is an increasing chain of subsets

(1) S1 ⊆ S2 ⊆ ·· · ⊆ Sn ⊆ ·· · such that S∞ =
⋃
n≥1

Sn.

The set S∞ has its notation for consistency with the limits below. One could think of S∞ as
an ambient set and S as an ambient chain in which the chains of interest live. A chain of sets
A = (An)n≥1 with respect to S is an increasing chain

A1 ⊆ A2 ⊆ ·· · ⊆ An ⊆ ·· ·
with An ⊆ Sn for all n≥ 1. The limit set of A is

A∞ =
⋃
n≥1

An ⊆ S∞.

A chain of sets A is saturated (respectively, eventually saturated) if

An = A∞∩Sn for all n≥ 1 (respectively, for all n� 0).

Here and in the following “for all n� 0” means that there exists some N ∈ N such that the
property holds for all n > N.

Any chain A with limit set A∞ has a saturation that is a chain Ā = (An)n≥1 defined by

An := A∞∩Sn for all n≥ 1.

Evidently, A is the only saturated chain with limit set A∞.
The key objects of this paper are chains of sets that possess two additional structures: First,

each set is closed with respect to a closure operation, and second, the chains are invariant
under a group or monoid action. In the following we describe these two structures as well
as their compatibility. Our notion of closure follows the idea of E.H. Moore [19] (although
it differs slightly). Let P(X) denote the power set of a set X .

Definition 2.1. A closure operation on a set X is a map cl : P(X)→ P(X) such that
(i) A⊆ Acl for all A ∈ P(X).

(ii) Acl = (Acl)cl for all A ∈ P(X).
(iii) If A,B ∈ P(X) with A⊆ B, then Acl ⊆ Bcl.

A set A ∈ P(X) is cl-closed if Acl = A.

Let cl∞ be a closure operation on S∞ and cln a closure operation on Sn for all n ≥ 1. We
call cl∞ a global closure operation and cl= (cln)n≥1 a chain of local closure operations.

Definition 2.2. A global closure operation cl∞ is consistent with a chain clof local closure
operations (or (cl,cl∞) is a consistent system of closure operations) if

(A∩Sn)
cln = Acl∞ ∩Sn for all n≥ 1 and A⊆ S∞.
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Remark 2.3. Definition 2.2 formulates a local-global consistency of the closure operations.
This implies the following local-local consistency:

(An∩Sm)
clm = Acln

n ∩Sm for all n≥ m≥ 1 and An ⊆ Sn.

Indeed, it follows from Definition 2.2 that Acln
n = (An∩Sn)

cln = Acl∞
n ∩Sn. Thus,

Acln
n ∩Sm = Acl∞

n ∩Sn∩Sm = Acl∞
n ∩Sm = (An∩Sm)

clm .

On the other hand, local-local consistency does not imply local-global consistency. To see
this, one can simply take cl∞ to be the trivial closure operation (i.e. Acl∞ = S∞ for any A⊆ S∞)
and clthe chain of identity closures considered in the next example.

Example 2.4. The following are some closure operations that appear here.
(i) Letting Aidn = A for A ⊆ Sn yields the chain of identity closures (idn)n≥1. Obviously,

this chain satisfies the local-local consistency described above.
(ii) Taking conical hulls cnn(A) = cone(A) for A ∈ P(Rn) induces the chain of conical

closures cn= (cnn)n≥1. See Section 5 for details.
(iii) Taking monoid closures mnn(A) = mon(A) for A∈ P(Rn) induces the chain of monoid

closures mn= (mnn)n≥1. See Section 5 for details.
(iv) Let K[Xn] be the polynomial ring from Section 4.1. Taking ideal closures 〈A〉n for

A ∈ P(K[Xn]) induces the chain of ideal closures (〈·〉n)n≥1. See Section 6 for details.

In what follows we fix a global closure operation cl∞ and a chain cl= (cln)n≥1 of local
closure operations.

Definition 2.5. A chain of sets A = (An)n≥1 is cl-closed (respectively, eventually cl-
closed) if An is cln-closed for all n≥ 1 (respectively, for all n� 0).

Given a cl-closed chain A, one might ask whether the limit set A∞ is cl∞-closed, and
vice versa, if the limit set A∞ is cl∞-closed, what can be said about the chain A? This type
of local-global question is a frequent theme here. A partial but quite general answer is the
following.

Lemma 2.6. Let (cl,cl∞) be a consistent system and A = (An)n≥1 a cl-closed chain with
limit set A∞ and saturation A. Then the following hold:

(i) A∞ is cl∞-closed if A is eventually cl-closed or A is eventually saturated.
(ii) If A∞ is cl∞-closed, then A is cl-closed.

Proof. (i) Assume first that A is eventually cl-closed. Then there exists m≥ 1 such that

(A∞∩Sn)
cln = A∞∩Sn for all n≥ m.

Since S∞ =
⋃

n≥1 Sn =
⋃

n≥m Sn, it follows from Definition 2.2 that

Acl∞
∞ = Acl∞

∞ ∩S∞ =
⋃

n≥m
(Acl∞

∞ ∩Sn) =
⋃

n≥m
(A∞∩Sn)

cln =
⋃

n≥m
(A∞∩Sn) = A∞.
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Hence, A∞ is cl∞-closed. IfA is eventually saturated, then A∞∩Sn = An is cln-closed for all
n� 0. Thus, the chain A is eventually cl-closed and we conclude by the first case.

(ii) If A∞ is cl∞-closed, then by Definition 2.2,

A∞∩Sn = Acl∞
∞ ∩Sn = (A∞∩Sn)

cln for all n≥ 1.

This means that the chain A is cl-closed. �

The following lemma is immediate given Lemma 2.6.

Lemma 2.7. Under the assumptions of Lemma 2.6 the following are equivalent:
(i) A∞ is cl∞-closed;

(ii) A is eventually cl-closed;
(iii) A is cl-closed.

Moreover, these equivalent statements hold if A is eventually saturated.

Now that the chains are described, we focus on group or monoid actions implementing
symmetries within the chain. In the abstract setting we begin with just maps and specialize
to actions later. Let Π be a set of maps S∞→ S∞, and for m ≤ n let Πm,n be a set of maps
Sm→ Sn. We use the adjectives global to refer to the maps in Π and local for those in the sets
Πm,n. Let ϖ denote the family {Πm,n}m≤n. We call (ϖ ,Π) a system of maps. For Am ⊆ Sm
and A∞ ⊆ S∞ set

Πm,n(Am) = {π(v) | π ∈Πm,n, v ∈ Am} ⊆ Sn,

Π(A∞) = {π(v) | π ∈Π, v ∈ A∞} ⊆ S∞.

In most cases of interest here Πm,n(Am) is a finite set whenever Am is a finite subset of Sm.

Definition 2.8. A family ϖ = {Πm,n}m≤n is locally finite if for every n ≥ m ≥ 1 and every
finite subset Am ⊆ Sm the set Πm,n(Am) is finite.

It is worth mentioning that a family ϖ = {Πm,n}m≤n can be locally finite even when each
Πm,n is infinite; see Lemma 4.5.

Later, when Π is a group or monoid, each set Πm,n can be derived from Π, and moreover,
the system (ϖ ,Π) is (weakly) consistent in the sense of the next definition. In such cases, it
is customary to use Π as a representative for the family ϖ .

Definition 2.9. A system of maps (ϖ ,Π) is
(i) weakly consistent if

Π(Am) =
⋃

n≥m
Πm,n(Am) for all m≥ 1 and Am ⊆ Sm;

(ii) consistent if

Πm,n(Am) = Π(Am)∩Sn for all n≥ m≥ 1 and Am ⊆ Sm.
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Remark 2.10.
(i) Consistency is stronger than weak consistency. Indeed, if (ϖ ,Π) is consistent, then

for all n≥ m≥ 1 and Am ⊆ Sm one has

Π(Am) = Π(Am)∩S∞ = Π(Am)∩
( ⋃

n≥m
Sn

)
=
⋃

n≥m
(Π(Am)∩Sn) =

⋃
n≥m

Πm,n(Am).

(ii) Weak consistency is frequently applied in the form of the following easy conse-
quence: For all n≥ m and Am ⊆ Sm it holds that Πm,n(Am)⊆Π(Am).

(iii) The consistency of (ϖ ,Π) is a local-global consistency. It implies the following
local-local consistency:

Πm,n(Am) = Πk,n(Am) for all n≥ k ≥ m and Am ⊆ Sm ⊆ Sk,

since both sides are equal to Π(Am)∩Sn.

We are now ready to introduce the main object of study in this paper.

Definition 2.11. Let (ϖ ,Π) be a system of maps and let cl= (cln)n≥1 be a chain of closure
operations.

(i) A subset A∞ ⊆ S∞ is Π-invariant if

Π(A∞)⊆ A∞.

(ii) A cl-closed chain A = (An)n≥1 is ϖ -invariant if

(Πm,n(Am))
cln ⊆ An whenever n≥ m.

A ϖ -invariant chain stabilizes if there exists some integer r ≥ 1 such that for all
n≥m≥ r one has (Πm,n(Am))

cln = An. The smallest such r is the ϖ -stability index
(or stability index) of A with respect to cland denoted by indϖ

cl(A), or indcl(A),
or even ind(A) if there is no danger of confusion.

Let A = (An)n≥1 be a chain of sets. We would like to describe properties of A (i.e. local
properties) that can be transferred to corresponding properties of the limit A∞ (i.e. global
properties) and vice versa. After Lemma 2.6, here is the next example of such a property.

Lemma 2.12. Let (ϖ ,Π) be a weakly consistent system of maps and A = (An)n≥1 be a
ϖ -invariant cl-closed chain with limit set A∞. Then the following hold:

(i) A∞ is Π-invariant.
(ii) If A∞ is cl∞-closed, then A is a ϖ -invariant cl-closed chain.

Proof. (i) It follows from Definitions 2.9(i) and 2.11(ii) that

Π(A∞) = Π

( ⋃
m≥1

Am

)
=
⋃

m≥1

Π(Am) =
⋃

n≥m≥1

Πm,n(Am)⊆
⋃
n≥1

An = A∞.

Thus, A∞ is Π-invariant.
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(ii) By Lemma 2.6(ii), A is cl-closed. So it remains to show that A is ϖ -invariant. Let
m,n ∈ N with n≥ m. According to Remark 2.10(ii) it holds that

Πm,n(A∞∩Sm)⊆Π(A∞∩Sm)⊆Π(A∞)⊆ A∞,

where the last inclusion follows from (i). On the other hand, one has Πm,n(A∞∩Sm)⊆ Sn by
definition. Hence, Πm,n(A∞∩Sm)⊆ A∞∩Sn, which implies

(Πm,n(A∞∩Sm))
cln ⊆ A∞∩Sn

since A is cl-closed. Therefore, A is ϖ -invariant. �

The main focus of this work is to explore under which conditions local finite generation
implies global finite generation and vice versa. We first give a definition of this property in
local and global situations.

Definition 2.13. Let (ϖ ,Π) be a system of maps and (cl,cl∞) a system of closure opera-
tions. Let A = (An)n≥1 be a cl-closed chain and A⊆ S∞ a cl∞-closed set.

(i) (local) A is finitely generated (respectively, eventually finitely generated) if for all
n≥ 1 (respectively, for all n� 0) there is a finite subset Gn⊆An such that An =Gcln

n .
(ii) (global) A is Π-equivariantly finitely generated if there exists a finite subset G⊆ A

such that A = Π(G)cl∞ .

To discuss the relation between local and global finite generation we introduce a crucial
local-local compatibility condition.

Definition 2.14. A chain cl= (cln)n≥1 of closure operations and a family of maps ϖ =
{Πm,n}m≤n are compatible if

Πm,n(Aclm
m )⊆ (Πm,n(Am))

cln for all n≥ m≥ 1 and Am ⊆ Sm.

Lemma 2.15. If cland ϖ are compatible, then

(Πm,n(Aclm
m ))cln = (Πm,n(Am))

cln for all n≥ m≥ 1 and Am ⊆ Sm.

Proof. From Definition 2.14 it follows that

(Πm,n(Aclm
m ))cln ⊆ ((Πm,n(Am))

cln)cln = (Πm,n(Am))
cln.

The reverse inclusion is obvious since Am ⊆ Aclm
m . �

We are now ready to describe situations where the finite generation property of a chain is
inherited by its limit, and vice versa.

Theorem 2.16. Let (cl,cl∞) be a consistent system of closure operations and (ϖ ,Π) a
system of maps. Let A = (An)n≥1 be a ϖ -invariant, cl-closed chain with limit set A∞.
Consider the statements:
(a) (local) A stabilizes and is eventually finitely generated.
(b) (global) A∞ is Π-equivariantly finitely generated.
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The following hold:
(i) If A∞ is cl∞-closed, (ϖ ,Π) is weakly consistent, and cland ϖ are compatible, then

(a) implies (b).
(ii) If ϖ is locally finite and (ϖ ,Π) is consistent, then (b) implies (a). Moreover, in

this case A is eventually saturated.

Proof. Assume first (a) and the assumptions of (i). Since A stabilizes, its stability index
ind(A) is finite. Since A is eventually finitely generated, we may choose an m ≥ ind(A)
and a finite subset G⊆ Am such that Am = Gclm . So for n≥ m one obtains

An = (Πm,n(Am))
cln (by Definition 2.11(ii))

= (Πm,n(Gclm))cln (since Am = Gclm)

= (Πm,n(G))cln (by Lemma 2.15)

= (Πm,n(G)∩Sn)
cln (since Πm,n(G)⊆ Sn)

⊆ (Π(G)∩Sn)
cln (by Remark 2.10(ii))

= Π(G)cl∞ ∩Sn (by Definition 2.2).

Since An ⊆ Am for n≤ m it follows that

A∞ =
⋃
n≥1

An =
⋃

n≥m
An ⊆

⋃
n≥m

(Π(G)cl∞ ∩Sn) = Π(G)cl∞.

On the other hand, Π(G)cl∞ ⊆Π(A∞)
cl∞ ⊆ Acl∞

∞ = A∞ by Lemma 2.12(i) and the assumption
that A∞ is cl∞-closed. Hence, A∞ = Π(G)cl∞ is Π-equivariantly finitely generated.

Now assume (b) and the assumptions of (ii). Since A∞ is Π-equivariantly finitely gener-
ated, there exists a finite subset G ⊆ A∞ such that A∞ = Π(G)cl∞ . Since G is finite, we may
assume G⊆ Am for some large enough m. Thus, for n≥ m one has

(Πm,n(Am))
cln ⊆ An ⊆ A∞∩Sn

= Π(G)cl∞ ∩Sn (since A∞ = Π(G)cl∞)

= (Π(G)∩Sn)
cln (by Definition 2.2)

= (Πm,n(G))cln (by Definition 2.9(ii))

⊆ (Πm,n(Am))
cln (since G⊆ Am),

hence equalities hold throughout. That is,

A∞∩Sn = An = (Πm,n(Am))
cln = (Πm,n(G))cln.

This shows that A stabilizes and is eventually saturated. Moreover, A is eventually finitely
generated because G is finite and ϖ is locally finite. �

Now we formulate assumptions that guarantee equivalence of (a) and (b) in Theorem 2.16.
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Corollary 2.17. Let (cl,cl∞) and (ϖ ,Π) be consistent systems and ϖ be locally finite and
compatible with cl. IfA = (An)n≥1 is a ϖ -invariant, cl-closed chain such that the limit A∞

is cl∞-closed, then the following statements are equivalent:
(a) (local) A stabilizes and is eventually finitely generated;
(b) (global) A∞ is Π-equivariantly finitely generated.
Moreover, if either of the above equivalent statements holds, thenA is eventually saturated.

For later applications it is useful to relax the assumption that (ϖ ,Π) is consistent in The-
orem 2.16(ii). Analyzing the proof of this part, we see that its conclusion still holds true if
the consistency of (ϖ ,Π) is replaced by the existence of a finite subset G⊆ A∞ such that

(2) A∞ = Π(G)cl∞ and Π(G)∩Sn ⊆Πm,n(Am) for all n≥ m� 0.

Hence, we obtain the following.

Proposition 2.18. Let (cl,cl∞) be a consistent system of closure operations and (ϖ ,Π) be
a system of maps. Assume that ϖ is locally finite. Let A = (An)n≥1 be a ϖ -invariant,
cl-closed chain with limit set A∞. If there exists a finite set G⊆ A∞ such that condition (2)
is satisfied, then A stabilizes and is eventually finitely generated.

3. SYMMETRIC GROUPS AND A RELATED MONOID

We are mainly interested in systems of maps that are induced by actions of symmetric
groups or the monoid of increasing functions. We discuss here some properties of these
objects that will be used later.

Let N = {1,2, . . .} denote the set of positive integers and, for n ∈ N, set [n] = {1, . . . ,n}.
We adopt the convention that [∞] = N. Let Sym(n) denote the symmetric group on [n] for
any n ∈ N. Since Sym(n) can be naturally regarded as the stabilizer subgroup of n+ 1 in
Sym(n+ 1), we have an increasing chain of finite symmetric groups Sym(1) ⊆ Sym(2) ⊆
·· · ⊆ Sym(n)⊆ ·· · . The limit of this chain is

Sym(∞) :=
⋃
n≥1

Sym(n).

We often use Sym as an abbreviation for Sym(∞). For m ≤ n let ιm,n : [m]→ [n] denote the
canonical embedding, i.e. ιm,n(k) = k for all k ∈ [m]. We define

Symm,n := Sym(n) ◦ ιm,n = {σ ◦ ιm,n | σ ∈ Sym(n)}.

Let Symdenote the family {Symm,n}m≤n. In the cases of interest, (Sym,Sym) is consistent
by Lemma 4.4(ii).

Consider next the monoid of strictly increasing maps on N, defined as

Inc := {π : N→ N | π(n)< π(n+1) for all n≥ 1}.
When m≤ n we set

Incm,n := {π ∈ Inc | π(m)≤ n}.
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Thus, each Incm,n is a subset of Inc and for any m≥ 1 there is an increasing chain

(3) Incm,m ⊆ Incm,m+1 ⊆ ·· · ⊆ Incm,n ⊆ ·· · with limit Inc =
⋃

n≥m
Incm,n .

Let Inc denote the family {Incm,n}m≤n. Then in the setting of Section 4, (Inc, Inc) is a
weakly consistent system of maps by Lemma 4.4(i). Since π([m])⊆ [n] for any π ∈ Incm,n,
we may view the restriction π|[m] as a map [m]→ [n]. It is also useful to consider the set

Incm,n := {π : [m]→ [n] | there exists π ∈ Incm,n with π = π|[m]},

which can be regarded as the quotient of Incm,n by the equivalence relation: π1 ∼ π2 if
π1|[m] = π2|[m]. The next lemma records a useful relationship between Sym and Inc.

Lemma 3.1. Let m ∈ N and n ∈ N∪{∞} with m≤ n. Then the following hold:

(i) Symm,n equals the set of injective maps from [m]→ [n] and Incm,n equals the set of
injective order-preserving maps [m]→ [n].

(ii) Incm,n ⊆ Symm,n . In particular, π|[m] ∈ Symm,n for every π ∈ Incm,n.
(iii) Symm,n = Incm,n ◦Sym(m) := {π ◦σ | π ∈ Incm,n,σ ∈ Sym(m)}.

Proof. (i) and (ii) are easy to check directly from the definitions. Using (i), a proof of
(iii) amounts to checking that each injective map [m]→ [n] factors into a reordering of [m]
followed by an order-preserving injective map [m]→ [n]. �

We also need the following decomposition, which can be shown to also hold for Sym.

Lemma 3.2. For any m,n ∈ N with n > m it holds that

Incm,n = Incm+1,n ◦ Incm,m+1 = Incn−1,n ◦ Incm,n−1 .

Proof. From [20, Proposition 4.6] it follows that Incm,n = Incm+1,n ◦ Incm,m+1 . Based on this
decomposition, one can show by induction that

Incm,n = Incn−1,n ◦ Incn−2,n−1 ◦ · · · ◦ Incm,m+1 = Incn−1,n ◦ Incm,n−1 . �

4. SETS UP TO SYMMETRY

In this section we specialize the theory in Section 2 to Sym- and Inc-invariant chains.
For simplicity, we restrict the discussion to a setup which is compatible with the ones in
the forthcoming sections so that the results in this section can be applied in a direct and
effective way. To this end, we only consider chains of sets with respect to an ambient chain
R = (Rn)n≥1 in which each Rn is either a polynomial ring or a subset of Rn.
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4.1. Ambient chains. We describe two types of ambient chains R = (Rn)n≥1 for the rest of
this paper. The first is a chain of polynomial rings. Let K be a field and c a positive integer.
For any n ∈ N let Rn be the polynomial ring K[Xn] := K[xi, j | i ∈ [c], j ∈ [n]].

Then, for m≤ n, the embedding ιm,n : [m]→ [n] induces a canonical embedding Rm→ Rn,
also denoted by ιm,n, that maps each polynomial in Rm to the same polynomial considered
as an element of Rn. Thus, we obtain the chain

R1 ⊆ R2 ⊆ ·· · ⊆ Rn ⊆ ·· · with limit R∞ =
⋃
n≥1

Rn = K[X ] := K[xi, j | i ∈ [c], j ∈ N].

The second type of the ambient chain R = (Rn)n≥1 are chains with Rn ⊆ Rn for all n≥ 1
that are Sym-invariant, meaning that

(4) Symm,n(Rm)⊆ Rn for all n≥ m≥ 1.

The inclusion is to be understood as follows. Every element π = σ ◦ ιm,n ∈ Symm,n with
σ ∈ Sym(n) gives rise to a map Rm→ Rn. First, the embedding ιm,n : [m]→ [n] induces a
canonical inclusion ιm,n : Rm→ Rn that embeds Rm as the first m coordinates in Rn:

(5) ιm,n(v) = (v,0, . . . ,0) ∈ Rn for any v ∈ Rm.

Then σ ∈ Sym(n) acts on Rn by permuting coordinates, that is

(6) σ(v1, . . . ,vn) = (vσ−1(1), . . . ,vσ−1(n)) for any (v1, . . . ,vn) ∈ Rn.

Thus, each π = σ ◦ ιm,n ∈ Symm,n defines a map π : Rm→ Rn, and we understand (4) as

Symm,n(Rm) := {π(Rm) | π ∈ Symm,n} ⊆ Rn for all n≥ m≥ 1.

Via the embedding ιm,n we regard Rm as a subset of Rn for m ≤ n and thereby get a chain
with limit R∞ =

⋃
n≥1 Rn contained in the infinite dimensional vector space R(N) :=

⋃
n≥1Rn.

The canonical basis of R(N) consists of the vectors εi, i ∈ N, with

(εi) j =

{
1 if i = j,
0 otherwise.

With respect to the identity closures in Example 2.4(i), an ambient chain R = (Rn)n≥1 of
the second type is exactly a Sym-invariant chain in the sense of Definition 2.11(ii). Chains
of this type include the cases where Rn equals Rn, Rn

≥0, Zn, or Nn for all n≥ 1.
From now on, we always assume the ambient chain R = (Rn)n≥1 is one of the two types

described above. For m ∈ N the canonical embedding ιm,∞ : Rm→ R∞ allows to identify Rm
with a subset of R∞. Thus, for any v ∈ Rm, the elements v, ιm,n(v), ιm,∞(v) are all identical
for every n ≥ m. By definition, each w ∈ R∞ is contained in some Rm. The smallest such m
is the width of w:

width(w) := min{m ∈ N | w ∈ Rm}.
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When R∞ = K[X ], let var(w) denote the set of variables appearing in w. If R∞ ⊆ R(N), then
we write w = (w1,w2, . . .) with w j ∈ R. The support of w is

supp(w) :=

{
{ j ∈ N | xi, j ∈ var(w) for some i ∈ [c]} if R∞ = K[X ],

{ j ∈ N | w j 6= 0} if R∞ ⊆ R(N).

In the polynomial ring case our definition of support is coarser than the usual definition, in
which supp(w) is the set of monomials of w. However, the above definition is more useful
for our purposes. We call |supp(w)| the support size of w. Evidently, |supp(w)| ≤width(w).

4.2. Sym and Inc actions. Given an ambient chain R = (Rn)n≥1, the systems (Sym,Sym)
and (Inc, Inc) give rise to systems of maps on (R,R∞). In particular, this yields actions of
Sym(∞) and Inc on the ambient set R∞. We now collect basic properties of these actions and
discuss the consistency and local finiteness of (Sym,Sym) and (Inc, Inc).

Consider (Sym,Sym) first. Let m≤ n and π = σ ◦ ιm,n ∈ Symm,n with σ ∈ Sym(n). Then
π induces a map π : Rm→ Rn given by

(7) π(v) =

{
∑k≥1 vkεπ(k) if v = ∑k≥1 vkεk ∈ Rm ⊆ Rm,

xi,π( j) if v = xi, j ∈ Rm = K[Xm],

where in the first case, π is precisely the map induced by the composition of the maps in (5)
and (6), which is well-defined because the chain R is Sym-invariant. By this definition,
Symm,n is identified with a set of maps Rm→ Rn. In particular, the group Symn,n = Sym(n)
acts on Rn, and moreover, the action of Sym(n+1) on Rn+1 extends that of Sym(n) on Rn for
all n≥ 1. Since Sym(∞) =

⋃
n≥1 Sym(n) and R∞ =

⋃
n≥1 Rn, these actions together build an

action of Sym(∞) on R∞. We have thus defined the system of maps (Sym,Sym) on (R,R∞).
Some useful observations from the above definition are recorded in the next lemma.

Lemma 4.1. Let m,n ∈ N with m≤ n and v ∈ Rm. Then the following hold:
(i) |supp(v)|= |supp(π(v))| for every π ∈ Symm,n .

(ii) Symm,n(v) = Sym(n)(v).

Proof. (i) follows easily from (7). To see (ii), recall that v and ιm,n(v) are identified in Rn.
Hence, Symm,n(v) = (Sym(n) ◦ ιm,n)(v) = Sym(n)(ιm,n(v)) = Sym(n)(v). �

Next, we construct the system of maps (Inc, Inc), based on the system (Sym,Sym).
Let π ∈ Incm,n. Then π := π|[m] ∈ Incm,n ⊆ Symm,n by Lemma 3.1(ii). Hence, π induces a
map Rm→ Rn, explicitly described in (7). So we can define a map π : Rm→ Rn by letting
π(v) = π(v) for all v ∈ Rm. Now let π ′ ∈ Inc and w ∈ R∞. Then w ∈ Rm for some m and
there exists n≥ m such that π ′ ∈ Incm,n. Evidently, π ′(w) does not depend on the choice of
m and n. This implies that π ′ induces a map π ′ : R∞→ R∞. Thus, we obtain the system of
maps (Inc, Inc) on (R,R∞).

From the construction it is clear that (7) still holds if Sym is replaced by Inc. In particular,
Inc acts as a monoid on R∞. The next result compares the actions of Sym and Inc.
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Lemma 4.2. Let m,n ∈ N with m≤ n. Then for any v ∈ Rm and w ∈ R∞ the following hold:
(i) Incm,n(v) = Incm,n(v)⊆ Symm,n(v).

(ii) Inc(w)⊆ Sym(w).

Proof. (i) follows from viewing π ∈ Incm,n as π|[m] ∈ Incm,n. To prove (ii), let π ∈ Inc. Then
w ∈ Rm and π ∈ Incm,n for some n≥ m. So it follows from (i) and Lemma 4.1(ii) that

π(w) ∈ Symm,n(w) = Sym(n)(w)⊆ Sym(w). �

Sometimes it is necessary to describe the truncated orbits Sym(w)∩Rn and Inc(w)∩Rn
of an element w ∈ R∞. Truncating at the width suffices to not lose information.

Lemma 4.3. Let w ∈ R∞ and m,n ∈ N with n≥ m.
(i) If width(w) = m, then Inc(w)∩Rn = Incm,n(w).

(ii) If w ∈ Rm (i.e. width(w)≤ m), then Sym(w)∩Rn = Sym(n)(w) = Symm,n(w).

Proof. (i) We may assume that w 6= 0. Let n≥ m. It suffices to prove the inclusion

Inc(w)∩Rn ⊆ Incm,n(w).

Take u ∈ Inc(w)∩Rn. Then width(u)≤ n and u = π(w) for some π ∈ Inc.
Consider first the case that R∞ ⊆ R(N). Using width(w) = m, we write w = ∑

m
k=1 wkεk

with wm 6= 0. Then u = π(w) = ∑
m
k=1 wkεπ(k). This implies that π(m)≤ n since wm 6= 0 and

width(u)≤ n. Hence, π ∈ Incm,n and u = π(w) ∈ Incm,n(v).
In the case R∞ = K[X ], w involves a variable xi,m for some i ∈ [c] since width(w) = m.

Thus u = π(w) involves xi,π(m). Since width(u)≤ n, one again gets π ∈ Incm,n as above.
(ii) The first equality is easy to see, while the second follows from Lemma 4.1(ii). �

We are now ready to discuss the consistency and local finiteness of the systems of maps
(Sym,Sym) and (Inc, Inc).

Lemma 4.4.
(i) The system (Inc, Inc) is weakly consistent.

(ii) The system (Sym,Sym) is consistent.

Proof. (i) follows from (3) and (ii) from Lemma 4.3(ii). �

The system (Inc, Inc) is not consistent as Example 5.10 shows.

Because of the preceding result and the way that the family Sym (respectively, Inc) is
derived from Sym (respectively, Inc), one usually uses Sym (respectively, Inc) as a repre-
sentative for Sym (respectively, Inc). So, for example, the statement of the next result
is another way of saying that the families Sym and Inc are locally finite in the sense of
Definition 2.8. For simplicity we also use the terms Sym- or Inc-invariant chain instead of
Sym- or Inc-invariant chain, and so forth.

Lemma 4.5. Sym and Inc are locally finite.
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Proof. Let n ≥ m ≥ 1 and Am ⊆ Rm be a finite subset. We have to show that Symm,n(Am)
and Incm,n(Am) are finite sets. The first set is finite because Symm,n finite. The second one is
also finite since Incm,n(Am) = Incm,n(Am) by Lemma 4.2(i) and Incm,n is finite. �

4.3. Sym- and Inc-invariant chains. As a consequence of Lemma 4.2 there are more Inc-
invariant chains than Sym-invariant chains. Generalizing [20, Lemma 7.6] we have:

Lemma 4.6. Let cl= (cln)n≥1 be a chain of closure operations.
(i) If a cl-closed chain (An)n≥1 is Sym-invariant, then it is Inc-invariant.

(ii) If A⊆ R∞ is Sym-invariant, then it is Inc-invariant.

Example 4.7. The converses of Lemma 4.6(i) and (ii) are not true. Consider the chain of
identity closures as in Example 2.4(i). Let A1 = {0} and An = {0}×Rn−1

≥0 ⊆ Rn for n≥ 2.
Then A = (An)n≥1 is an Inc-invariant chain of sets. However, it is not Sym-invariant since,
e.g., Sym2,n(A2) contains vectors v ∈ Rn with v1 6= 0.

Remark 4.8.
(i) By Lemma 4.6(i), one can view a Sym-invariant chain as an Inc-invariant chain. This

was used for chains of ideals in [13] and elsewhere. Also in our general setup, with
some more effort, it can be shown that if A = (An)n≥1 is a Sym-invariant, cl-closed
chain of sets, then A stabilizes as a Sym-invariant chain if and only if it stabilizes as
an Inc-invariant chain. In this case indSym(A) = indInc(A).

(ii) By Lemma 4.6(ii), any Sym-invariant subset A⊆ R∞ is also Inc-invariant. Then it can
be shown with some more effort that equivariant finite generation of a Sym-invariant,
cl∞-closed set A⊆ R∞ holds for Sym if and only if it holds for Inc.

The following characterization of stabilization, which generalizes [20, Lemma 5.2], could
be of independent interest.

Proposition 4.9. Let cl= (cln)n≥1 be a chain of closure operations that is compatible
with Inc. Let A = (An)n≥1 be an Inc-invariant, cl-closed chain of sets. Then for r ∈ N
the following statements are equivalent:

(i) A stabilizes and its stability index is at most r;
(ii) Incn,n+1(An)

cln+1 = An+1 whenever n≥ r;
(iii) Incr,n(Ar)

cln = An whenever n≥ r.

Proof. The implication (i) ⇒ (ii) follows directly from the definition. We prove (iii) from
(ii) by induction on n. First consider the case n = r. Since Incr,r contains the identity map,
one has Ar ⊆ Incr,r(Ar)⊆ Incr,r(Ar)

clr ⊆ Ar, hence Ar = Incr,r(Ar)
clr .

Assume we have shown that An = Incr,n(Ar)
cln for some n≥ r. Then An+1 equals

Incn,n+1(An)
cln+1 = Incn,n+1(Incr,n(Ar)

cln)cln+1 = Incn,n+1(Incr,n(Ar))
cln+1 = Incr,n+1(Ar)

cln+1,

by (ii), the induction hypothesis, Lemma 2.15, and Lemma 3.2.
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To prove (iii)⇒ (i), take any n > r. We show that An = (Incm,n(Am))
cln for all n≥ m≥ r

by induction on m. The case m = r follows from (iii). Assume An = (Incm,n(Am))
cln for

some m with n > m≥ r. By Lemma 3.2, Incm,n = Incm+1,n ◦ Incm,m+1. It follows that

An = (Incm,n(Am))
cln = (Incm+1,n ◦ Incm,m+1(Am))

cln ⊆ (Incm+1,n(Am+1))
cln ⊆ An.

Hence, An = (Incm+1,n(Am+1))
cln , which concludes the induction argument. �

4.4. Finite generation up to symmetry. We apply and refine the results on local-global
finite generation in Section 2 to Sym- and Inc-invariant chains. For this we consider a general
system of closure operations (cl,cl∞), leaving more specific discussions until later sections.

For Sym-invariant chains, apart from the local-global principle in Corollary 2.17, there is
one additional local characterization. The following result generalizes [1, Theorem 4.7] and
[13, Corollary 3.7]; see Section 6 for more details.

Theorem 4.10. Let (cl,cl∞) be a consistent system of closure operations that is compatible
with Sym. LetA = (An)n≥1 be a Sym-invariant, cl-closed chain for which A∞ is cl∞-closed.
Then the following statements are equivalent:
(a) (local) A stabilizes and is eventually finitely generated;
(b) (local) There exists an r ∈ N such that for all n≥ r the following hold:

(i) (saturation) A∞∩Rn = An,
(ii) (support size) An is finitely generated by elements of support size at most r;

(c) (global) A∞ is Sym-equivariantly finitely generated.

Proof. From Lemmas 4.4(ii) and 4.5 we know that the system of maps (Sym,Sym) satisfies
the remaining assumptions of Corollary 2.17. So (a) and (c) are equivalent. We show the
implications (a)+(c)⇒ (b) and (b)⇒ (a).

(a)+(c)⇒ (b): Since A∞ is Sym-equivariantly finitely generated (by (c)), it follows from
Corollary 2.17 thatA is eventually saturated. Thus, there exists r ∈N such that A∞∩Rn =An
for all n≥ r, which is (b)(i). By (a), ind(A) is finite and An is finitely generated for n� 0.
So we may assume that r≥ ind(A) and Ar is finitely generated by, say, v1, . . . ,vs ∈ Ar. Then
for all n≥ r we have An = (Symr,n(v1)∪·· ·∪Symr,n(vs))

cln . Each vt ∈ Ar ⊆ Rr has support
size at most r. Since Symr,n is finite and its elements do not change the support size of vt by
Lemma 4.1(i), we conclude (b)(ii).

(b)⇒ (a): Assuming r as in (b), it suffices to show that for all n≥ r, (Symr,n(Ar))
cln = An.

This is trivially true for n = r. Let n > r. By (b)(ii), An is generated by some u1, . . . ,up ∈ Rn
of support size at most r. We want to show that u1, . . . ,up ∈ (Symr,n(Ar))

cln . For any t ∈ [p],
|supp(ut)| ≤ r < n and thus there exists a σ ∈ Sym(n) such that σ(ut) ∈ Rr. Hence, σ(ut) ∈
Rr∩A∞ = Ar, using (b)(i). Then by Lemma 4.1(ii),

ut = σ
−1(σ(ut)) ∈ Sym(n)(Ar) = Symr,n(Ar)⊆ (Symr,n(Ar))

cln. �

For Inc-invariant chains we obtain a weaker version of Theorem 4.10. The polynomial
ring case of this result and its relation to [13, Theorem 3.6] are discussed in Section 6.
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Theorem 4.11. Let (cl,cl∞) be a consistent system of closure operations so that clis com-
patible with Inc. Let A = (An)n≥1 be an Inc-invariant, cl-closed chain such that the limit
set A∞ is cl∞-closed. Consider the following statements:
(a) (local) A stabilizes and is eventually finitely generated.
(b) (global) A∞ is Inc-equivariantly finitely generated.
Then (a) implies (b) and if A is eventually saturated, then (a) and (b) are equivalent.

Proof. That (a) implies (b) follows immediately from Theorem 2.16(i) and Lemma 4.4(i).
To prove the equivalence, we can assume that A is saturated. To see this, replace A

by its saturation A. Then (b) and the assumptions of the theorem are still satisfied by
Lemma 2.12(ii); (a) remains unchanged since A and A coincide eventually (because A
is eventually saturated). Therefore, it is harmless to assume that A is saturated.

We prove (b)⇒ (a) using Proposition 2.18. To verify its assumptions, use Lemma 4.5 for
the local finiteness of Inc. Then by (b), there exist w1, . . . ,ws ∈ A∞ such that

A∞ = (Inc(w1)∪·· ·∪ Inc(ws))
cl∞.

Choose m so that wt ∈ Am for all t ∈ [s]. To apply Proposition 2.18, it remains to show that

(8) Inc(wt)∩Rn ⊆ Incm,n(Am) for all n≥ m and t ∈ [s].

Let k = kt := width(wt). It is evident that k ≤ m and wt ∈ A∞∩Rk = Ak, where we used that
A is saturated. By Lemma 4.3(i), Inc(wt)∩Rn = Inck,n(wt) ⊆ Inck,n(Ak). To prove (8) it
suffices to show that

Inck,n(Ak)⊆ Incm,n(Am) for all k ≤ m.

By Lemma 3.2, Inck,n = Inck+1,n ◦ Inck,k+1, and hence

Inck,n(Ak) = (Inck+1,n ◦ Inck,k+1)(Ak)⊆ Inck+1,n(Ak+1).

The proof finishes with a finite induction. �

Remark 4.12. Comparing Theorems 4.10 and 4.11, the following questions are natural:
(1) Can the assumption that A is eventually saturated in Theorem 4.11 be omitted?
(2) Does there exist a characterization for Inc-invariant chains similar to Theorem 4.10(b)?

Precisely, when A is eventually saturated, is it true that A∞ is Inc-equivariantly finitely
generated if A is eventually finitely generated by elements of bounded support size?

These questions can be affirmatively answered for chains of ideals (Theorem 6.3), but in
general both have negative answers as we show in Examples 5.10 and 5.11.

5. CONES AND MONOIDS UP TO SYMMETRY

In this section we specialize the results of the previous section to invariant chains of con-
vex cones and monoids. We provide various examples to demonstrate that some assumptions
of our results are indispensable and give counterexamples to potential strengthenings.
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The results of this section have recently been employed to extend foundational results in
polyhedral geometry to the equivariant setting [18]. For standard terminology on cones and
monoids the reader is referred to [3] and [24].

5.1. Cones up to symmetry. We consider convex cones in the nonnegative orthant R(N)
≥0

of R(N). That is, the ambient chain is R = (Rn)n≥1 with Rn = Rn
≥0 for all n ≥ 1 and R∞ =⋃

n≥1Rn
≥0 = R(N)

≥0 . To consider convex cones, the closure operations are cnn = cone(·) in
Rn
≥0 for n≥ 1 and cn∞ = cone(·) in R∞, where cone(A) consists of finite nonnegative linear

combinations from A, that is, cone(A) = {∑k
i=1 λiai | k ∈ N, ai ∈ A, λi ∈ R≥0}. We restrict

our attention to cones in R∞ instead of the whole space R(N), since the system of conical
hulls (cn,cn∞) is consistent on R∞, but not on R(N).

Lemma 5.1. Consider the ambient chain R = (Rn
≥0)n≥1 of nonnegative orthants as above.

Then the system of conical hulls (cn,cn∞) is consistent.

Proof. For any A ⊆ R(N)
≥0 and n ∈ N we need to show that cnn(A∩Rn

≥0) = cn∞(A)∩Rn
≥0.

The inclusion “⊆” is obviously true. For the reverse inclusion, take v ∈ cn∞(A)∩Rn
≥0. Then

width(v) ≤ n and there exist a1, . . . ,ak ∈ A and λ1, . . . ,λk > 0 such that v = ∑
k
i=1 λiai. By

positivity of the λi, and since ai ∈ R(N)
≥0 for all i ∈ [k], we have width(ai) ≤ width(v) ≤ n.

Thus ai ∈ A∩Rn
≥0 for all i ∈ [k], and hence v = ∑

k
i=1 λiai ∈ cnn(A∩Rn

≥0). �

It is easy to give examples showing that (cn,cn∞) is not consistent on R(N).

Example 5.2. Let A = {(1,1),(1,−1)} ⊂ R2. Identifying R with R×{0} ⊆ R2, one has

cn1(A∩R) = cn1( /0) = {0}(R≥0 = cn2(A)∩R.

By Remark 2.3, this means that the system (cn,cn∞) is not consistent if we choose the
ambient chain with Rn = Rn for all n≥ 1.

The next result shows that the chain cn of conical hulls is compatible with Sym(∞) and
Inc, even when one considers the whole space R(N).

Lemma 5.3. Let Π = Sym(∞) or Π = Inc. Then for any m ≤ n and Am ⊆ Rm one has
Πm,n(cnm(Am))⊆ cnn(Πm,n(Am)). Thus, with R = (Rn

≥0)n≥1, cn is compatible with Π.

Proof. Let π ∈ Πm,n and v = ∑
k
i=1 λiai ∈ cnm(Am) with ai ∈ Am and λi ≥ 0. We expand

ai = ∑
m
j=1 ai jε j in the canonical basis. Then by (7),

π(v) = π

( m

∑
j=1

( k

∑
i=1

λiai j
)
ε j

)
=

m

∑
j=1

( k

∑
i=1

λiai j
)
επ( j) =

k

∑
i=1

λiπ(ai).

This yields π(v) ∈ cnn(Πm,n(Am)), as desired. �
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It is obvious that for an increasing chain C = (Cn)n≥1 of convex cones with Cn ⊆ Rn for
all n≥ 1, the limit set C∞ is a convex cone. With Lemmas 5.1 and 5.3 in place, we are ready
to apply the results of the previous section to chains of cones. At first we formulate the
following version of Theorem 4.10.

Corollary 5.4. Let C = (Cn)n≥1 be a Sym-invariant chain of convex cones Cn ⊆ Rn
≥0 with

limit cone C∞. Then the following statements are equivalent:
(a) C stabilizes and is eventually finitely generated;
(b) There exists an r ∈ N such that for all n≥ r the following hold:

(i) C∞∩Rn
≥0 =Cn,

(ii) Cn is finitely generated by elements of support size at most r;
(c) C∞ is Sym-equivariantly finitely generated.

We now give several examples that demonstrate the necessity of the conditions in Corol-
lary 5.4. The first shows that in (a) and (b) the word “eventually” cannot be omitted.

Example 5.5. Consider the chain C = (Cn)n≥1 with C1 = {0},
C2 = {(x,y) ∈ R2

≥0 | x > 0, y > 0}∪{(0,0)} and Cn = Rn
≥0 for n≥ 3.

Then C stabilizes as a Sym-invariant chain of convex cones. The limit cone C∞ = R(N)
≥0 =

cn∞(Sym(ε1)) is Sym-equivariantly generated by the first basis vector. However, this does
not imply that all cones Cn are finitely generated, since C2 is not. Additionally C∞∩R2

≥0 =

R2
≥0 6=C2. Thus, C is not saturated.

The only insight in this example is that finite subsequences can often be changed rather
wildly without changing the limit C∞. This suggests that properties of C∞ can only be related
to the tail of the chain, or alternatively, to the unique saturated chain defining it.

The following example shows that for the implication “(a) ⇒ (c)” in Corollary 5.4 it is
necessary to assume that the cones are eventually finitely generated.

Example 5.6. Consider the chain C = (Cn)n≥1 with C1 = {0},
C2 = {(x,y) ∈ R2

≥0 | x > 0, y > 0}∪{(0,0)} and Cn = cnn(Sym2,n(C2)) for n≥ 3.

By construction, C stabilizes as a Sym-invariant chain of convex cones. However, C∞ is not
Sym-equivariantly finitely generated, since then C∞∩R2

≥0 would be finitely generated. But
C∞∩R2

≥0 =C2 because C2 contains exactly the elements of C∞ of width at most two, and C2
is evidently not finitely generated.

We now show that in Corollary 5.4(b) both (i) and (ii) are necessary and independent.

Example 5.7. For n≥ 2 let vn = (n,1,0, . . . ,0)∈Rn
≥0. Consider the chain C = (Cn)n≥1 with

C1 = {0}, C2 = cn2(Sym(2)(v2)) and

Cn = cnn
(

Sym(n)
(
ιn−1,n(Cn−1)∪{vn}

))
⊆ Rn

≥0 for n≥ 3.

Then C is a Sym-invariant chain of convex cones and the following hold:
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(i) All cones Cn are pointed, rational and finitely generated (as a cone) by one ele-
ment of support size two up to symmetry. More precisely, for n ≥ 2 we have
Cn = cnn(Sym(n)(vn)). In particular, the orbits of all generators of Cm in Cn are
redundant whenever m < n.

(ii) C∞ is not Sym-equivariantly finitely generated.
(iii) C∞∩Rn

≥0 6=Cn for all n≥ 2.

Proof. (i) By definition, cnn(Symn−1,n(Cn−1)) ⊆ Cn for n ≥ 2. Thus, C is indeed a Sym-
invariant chain of pointed and rational convex cones. Let C̃n = cnn(Sym(n)(vn)) for n ≥ 2.
Clearly, C̃n⊆Cn for every n≥ 2. We show by induction that equality holds, which is trivially
true for n = 2. Let n > 3 and assume that Cn−1 = C̃n−1. It suffices to prove that

(9) cnn(Symn−1,n(Cn−1))⊆ C̃n.

Using Lemma 5.3 and the fact that Symn−1,n = Symn−1,n ◦Sym(n−1) one has

cnn(Symn−1,n(Cn−1)) = cnn(Symn−1,n(cnn−1(Sym(n−1)(vn−1))))

⊆ cnn(Symn−1,n(Sym(n−1)(vn−1)))

= cnn(Symn−1,n(vn−1)) = cnn(Sym(n)(ιn−1,n(vn−1))).

Since vn−1 ∈Cn−1, this implies

(10) cnn(Symn−1,n(Cn−1)) = cnn(Sym(n)(ιn−1,n(vn−1))).

So for (9) we only need to show that ιn−1,n(vn−1) ∈ C̃n. Applying ι2,n to

(n−1,1) =
n2−n−1

n2−1
(n,1)+

1
n2−1

(1,n)

we obtain

ιn−1,n(vn−1) =
n2−n−1

n2−1
vn +

1
n2−1

σ(vn),

where σ ∈ Sym(n) is the transposition (12). Hence, ιn−1,n(vn−1) ∈ cnn(Sym(n)(vn)) = C̃n,
as desired. So Cn = C̃n for n≥ 2 and the orbits of all generators of Cn−1 in Cn are redundant.
It follows that the same is true for the cones Cm and Cn, whenever m < n.

(ii) We claim that C does not stabilize. Indeed, it suffices to show that

vn ∈Cn \ cnn(Symn−1,n(Cn−1)) for all n≥ 2.

Assume the contrary. Then vn ∈ cnn(Symn−1,n(Cn−1)) for some n ≥ 2. So by (10), there
exist λ1, . . . ,λk > 0 and σ1, . . . ,σk ∈ Sym(n) such that

(11) vn =
k

∑
i=1

λiσi(ιn−1,n(vn−1)).

By the positivity of the λi, width(σi(ιn−1,n(vn−1)))≤ 2 for all i ∈ [k]. It follows that

σi(ιn−1,n(vn−1)) = (n−1,1,0, . . . ,0) or σi(ιn−1,n(vn−1)) = (1,n−1,0, . . . ,0)
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for all i ∈ [k]. This together with (11) yields the existence of λ ,µ ≥ 0 such that

(n,1) = λ (n−1,1)+µ(1,n−1).

But this is impossible. Hence, the chain C does not stabilize.
By Corollary 5.4, C∞ is not Sym-equivariantly finitely generated. One can also show that

C∞ is the subset of R(N)
≥0 consisting of 0 and all elements of support size at least two, leading

to the following explicit description:

C∞ = R(N)
≥0 \

(⋃
n≥1

R>0 εn

)
.

(iii) Since width(vn+1) = 2, we have vn+1 ∈C∞∩R2
≥0 ⊆C∞∩Rn

≥0 for n≥ 2. On the other
hand, it has been shown in (ii) that vn+1 6∈Cn. Hence, C∞∩Rn

≥0 6=Cn for all n≥ 2. �

The next example gives a chain with no global bound for the support sizes of generators.

Example 5.8. For n≥ 2, let wn = (n−1,1, . . . ,1) ∈ Rn
≥0. Consider the chain C = (Cn)n≥1

with C1 = {0}, C2 = cn2(Sym(2)(w2)) and

Cn = cnn
(

Sym(n)
(
ιn−1,n(Cn−1)∪{wn}

))
⊆ Rn

≥0 for n≥ 3.

Then C is a Sym-invariant chain of convex cones and the following hold:

(i) All cones Cn are pointed, rational and finitely generated (as cones), but there exists
no global bound for the support sizes of generators of the cones.

(ii) C∞ is not Sym-equivariantly finitely generated.
(iii) C∞∩Rn

≥0 =Cn for all n≥ 2.

Proof. (i) As for Example 5.7(i) we see that C is a Sym-invariant chain of pointed, rational
and finitely generated convex cones. An easy induction shows that Cn is generated by

Gn = {Symm,n(wm) | 2≤ m≤ n}.

In this generating set, wn is irredundant for Cn whenever n ≥ 3. To see this, consider the
supporting hyperplane H = {(z1, . . . ,zn) ∈ Rn | z1 = ∑

n
l=2 zl} of Cn. If wn were redundant,

there would exist λ1, . . . ,λk > 0 and u1, . . . ,uk ∈ Gn \{wn} such that wn = ∑
k
i=1 λiui. Since

wn lies on the supporting hyperplane H, it follows that ui ∈H for all i = 1, . . . ,n. Thus, each
ui must have m− 1 as its first entry and exactly (m− 1) entries 1 as the remaining nonzero
entries for some m < n. Comparing the second entry in wn = ∑

k
i=1 λiui, we find ∑

k
i=1 λi ≤ 1.

Now comparing the first entry yields n−1 = ∑
k
i=1 λiui,1 < ∑

k
i=1 λi(n−1)≤ n−1, which is

impossible. Hence, Cn has an irredundant generator of support size n.
(ii) By (i) and Corollary 5.4, C∞ is not Sym-equivariantly finitely generated.
(iii) According to Remark 2.3, the consistency of (cn,cn∞) (by Lemma 5.1) gives

Ck∩Rn
≥0 = cnk(Gk)∩Rn

≥0 = cnn
(
Gk∩Rn

≥0
)
= cnn(Gn) =Cn
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for all k ≥ n≥ 2. It follows that

C∞∩Rn
≥0 =

⋃
k≥n

Ck∩Rn
≥0 =

⋃
k≥n

(
Ck∩Rn

≥0
)
=Cn for all n≥ 2. �

For the reader’s convenience, we briefly summarize the above examples in Table 1.

Example

(a) (b) (c)

C stabilizes C evtl. f. g. C evtl. satur.
C evtl. f. g. by

elem. of bound.
supp. size

C∞ Sym-
equiv. f. g.

5.5 3
3

(C2 not f. g.)
3

(C not satur.) 3 3

5.6 3 7 3 7 7
5.7 7 3 7 3 7
5.8 7 3 3 7 7

TABLE 1. Summary of Examples 5.5–5.8

We consider Inc-invariant chains next. By Lemmas 5.1 and 5.3, we obtain the following
cone version of Theorem 4.11.

Corollary 5.9. Let C = (Cn)n≥1 be an Inc-invariant chain of convex cones Cn ⊆ Rn
≥0 with

limit C∞. Consider the following statements:
(a) C stabilizes and is eventually finitely generated.
(b) C∞ is Inc-equivariantly finitely generated.
Then (a) implies (b) and if C is eventually saturated, then (a) and (b) are equivalent.

We again give counterexamples to potential strengthenings of the corollary. The first
shows that, in contrast to Corollary 5.4(b)(i), the equivariant finite generation of the limit
cone C∞ does not imply that C is eventually saturated, and moreover, that the equivalence
in Corollary 5.9 does not hold without the assumption that C is eventually saturated. By
Theorem 2.16(ii), this also implies that the system (Inc, Inc) is not consistent.

Example 5.10. For n≥ 2 let

An = {ε1, . . . ,εn−1} and Bn = {εi +nεn | 1≤ i≤ n−1}.
Consider the chain C = (Cn)n≥1 with C1 = {0} and Cn = cnn(An ∪Bn) ⊆ Rn

≥0 for n ≥ 2.
Then the following hold:

(i) C is an Inc-invariant chain of convex cones and each Cn is finitely generated by
vectors of support size at most two.

(ii) C∞ is Inc-equivariantly finitely generated.
(iii) C does not stabilize.
(iv) C∞∩Rn

≥0 6=Cn for all n≥ 2.
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Proof. (i) For n≥ 2 let B̃n+1 = {εi +nεn+1 | 1≤ i≤ n}. We claim that

cnn+1(Incn,n+1(Cn)) = cnn+1(An+1∪ B̃n+1) for n≥ 2.

One has Incn,n+1(An) = An+1 and Incn,n+1(Bn) = Bn∪ B̃n+1. Evidently, Bn ⊆ cnn+1(An+1)
and therefore,

cnn+1(Incn,n+1(Cn)) = cnn+1(Incn,n+1(cnn(An∪Bn))) = cnn+1(Incn,n+1(An∪Bn))

= cnn+1(An+1∪Bn∪ B̃n+1) = cnn+1(An+1∪ B̃n+1),

where we used Lemma 2.15 in the second equality and also that conical hulls are compatible
with Inc by Lemma 5.3. Now since (n+1)(εi+nεn+1) = εi+n(εi+(n+1)εn+1), it follows
that B̃n+1 ⊆ cnn+1(An+1∪Bn+1). Hence

cnn+1(Incn,n+1(Cn))⊆ cnn+1(An+1∪Bn+1) =Cn+1 for n≥ 2,

i.e. C is an Inc-invariant chain of convex cones. The remaining assertion is obvious.
(ii) Since

R(N)
≥0 =

⋃
n≥2

cnn(An)⊆
⋃
n≥2

Cn =C∞ ⊆ R(N)
≥0 ,

one obtains C∞ = R(N)
≥0 = cn∞(Inc(ε1)). Thus, C∞ is Inc-equivariantly generated by ε1.

(iii) For all n≥ 2 and 1≤ i≤ n one has

εi +(n+1)εn+1 6∈ cnn+1(An+1∪ B̃n+1) = cnn+1(Incn,n+1(Cn)).

This implies cnn+1(Incn,n+1(Cn)) Cn+1 for n≥ 2, which means that C does not stabilize.
(iv) The assertion follows since εn ∈ Rn

≥0 =C∞∩Rn
≥0, but εn 6∈Cn for n≥ 2. �

As announced in Remark 4.12, the equivalence “(b) ⇔ (c)” in Corollary 5.4 cannot be
extended to Inc-invariant chains. The following example shows this and also that the equiv-
alence “(a)⇔ (b)” in Corollary 5.4 does not hold for Inc-invariant chains.

Example 5.11. For n≥ 2 let

En = {ε2, . . . ,εn} and Fn = {iε1 + εi | 2≤ i≤ n}.

Consider the chain C = (Cn)n≥1 with C1 = {0} and Cn = cnn(En ∪Fn) ⊆ Rn
≥0 for n ≥ 2.

Then the following hold:
(i) C is Inc-invariant and each Cn is finitely generated in support size at most two.

(ii) C∞∩Rn
≥0 =Cn for all n≥ 2.

(iii) C does not stabilize.
(iv) C∞ is not Inc-equivariantly finitely generated.

Proof. (i) For n≥ 2 let F̃n+1 = {iε1 + εi+1, iε2 + εi+1 | 2≤ i≤ n}. It is evident that

Incn,n+1(En) = En+1 and Incn,n+1(Fn) = Fn∪ F̃n+1.
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Similarly to Example 5.10 one can show that

cnn+1(Incn,n+1(Cn)) = cnn+1(En+1∪Fn∪ F̃n+1) for n≥ 2.

Since Fn ⊆ Fn+1 and F̃n+1 ⊆ cnn+1(En+1∪Fn+1), it follows that

cnn+1(Incn,n+1(Cn))⊆ cnn+1(En+1∪Fn+1) =Cn+1.

Hence, C is an Inc-invariant chain of convex cones. The remaining assertion is obvious.
(ii) Similar to Example 5.8(iii) one has

Ck∩Rn
≥0 = cnk(Ek∪Fk)∩Rn

≥0 = cnn
(
(Ek∪Fk)∩Rn

≥0
)
= cnn(En∪Fn) =Cn

for all k ≥ n≥ 2. Therefore,

C∞∩Rn
≥0 =

⋃
k≥n

Ck∩Rn
≥0 =

⋃
k≥n

(
Ck∩Rn

≥0
)
=Cn for all n≥ 2.

(iii) C does not stabilize since (n+1)ε1+εn+1 ∈Cn+1 \cnn+1(Incn,n+1(Cn)) for all n≥ 2.
(iv) C∞ is not Inc-equivariantly finitely generated by Corollary 5.9. �

All cones considered here are given in their V -representation, i.e., generated by vectors.
This is suitable to consider finite generation of cones. By the Minkowski–Weyl theorem [24,
Theorem 1.3], finitely generated cones have a finite H-representation as an intersection of
linear halfspaces. It would be interesting to understand the interaction of this duality with
Π-equivariance. To work on the following problem, it might be necessary to replace the
ambient space, which is a direct limit of (Rn

≥0)n≥1, with an inverse limit. In general, inverse
limits as ambient spaces provide many interesting directions for the future.

Problem 5.12. Let a chain of convex cones be given in their H-representations. Find H-
versions of Corollaries 5.4 and 5.9 and relate them to the V -versions provided there. 1

5.2. Monoids up to symmetry. In almost complete analogy to the cones discussed above,
one can also consider monoids in Z(N)

≥0 . Then the ambient chain is R = (Zn
≥0)n≥1 with

ambient set R∞ =
⋃

n≥1Zn
≥0 = Z(N)

≥0 . The closure operations are mnn = mon(·) in Rn for
n ≥ 1 and mn∞ = mon(·) in R∞, where mon(·) denotes the monoid closure. For A ⊆ Z(N)

it is defined as mon(A) = {∑k
i=1 miai | k ∈ N, ai ∈ A, mi ∈ Z≥0}. Now the theory develops

in complete analogy to the case of cones, so we omit the details. One first shows that the
system of monoid closures (mn,mn∞) is consistent. An easy modification of Example 5.2
shows that (mn,mn∞) is not consistent if one works in the ambient chain (Zn)n≥1. As in
Lemma 5.3, mn is compatible with Π for Π= Sym(∞) and Π= Inc. Again, ifM=(Mn)n≥1
is an increasing chain of monoids with Mn ⊆ Zn for all n≥ 1, then the limit M∞ is a monoid
in R∞.

With these ingredients one finds the monoid versions of Theorems 4.10 and 4.11.

1This problem has been resolved for Sym-invariant chains of cones in [18].
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Corollary 5.13. Let M = (Mn)n≥1 be a Sym-invariant chain of monoids Mn ⊆ Zn
≥0 with

limit M∞. Then the following statements are equivalent:
(a) M stabilizes and is eventually finitely generated;
(b) There exists an r ∈ N such that for all n≥ r the following hold:

(i) M∞∩Zn
≥0 = Mn,

(ii) Mn is finitely generated by elements of support size at most r;
(c) M∞ is Sym-equivariantly finitely generated.

Corollary 5.14. Let M = (Mn)n≥1 be an Inc-invariant chain of monoids Mn ⊆ Zn
≥0 with

limit M∞. Consider the following statements:
(a) M stabilizes and is eventually finitely generated.
(b) M∞ is Inc-equivariantly finitely generated.
Then (a) implies (b) and ifM is eventually saturated, then (a) and (b) are equivalent.

Various possible relaxations of the above results are false. We briefly discuss two.

Example 5.15. Let M1 = {0}, M2 = mn2(e1 + ke2 | k ∈ N) and Mn = mnn(Sym2,n(M2)) for
n≥ 3. ThenM = (Mn)n≥1 is a Sym-invariant chain of monoids. One checks that Mn is not
finitely generated for n ≥ 2 and M∞ is not Sym-equivariantly finitely generated. By defini-
tion,M stabilizes. Thus, in Corollary 5.13(a) the second assumption cannot be omitted.

Example 5.16. Let M1 = {0}, M2 = mn2(e1 +2e2) and Mn = mnn(Incn−1,n(Mn−1)∪{e1 +
nen}) for n ≥ 3. This Inc-invariant chain of finitely generated monoids does not stabilize
and M∞ is not Inc-equivariantly finitely generated, since for i < k ≤ j, the generator ei + ke j
is irredundant. Thus, the first assumption in Corollary 5.14(a) is necessary for (a)⇒(b).

Remark 5.17. As for the cone and monoid situations studied in this section, one can also
consider invariant chains of polytopes in R(N)

≥0 . It is easy to derive the polytope version of
Theorems 4.10 and 4.11 that are analogous to what we have done for cones and monoids.

6. CHAINS OF IDEALS

We apply Theorem 4.10 and strengthen Theorem 4.11 when the equivariant chain consists
of ideals in polynomial rings. These results are known in the literature. However, the proof
in [13] of Theorem 6.3 contains a gap. We fill this gap.

Consider the ambient chain R = (Rn)n≥1 of polynomial rings Rn = K[Xn]. Then R∞ =
K[xi, j | i ∈ [c], j ∈ N]. For n ∈ N∪{∞} let 〈·〉n denote the ideal closure operation in Rn, that
is, if A⊆ Rn then 〈A〉n = {∑k

i=1 fiai | k ∈ N, fi ∈ Rn, ai ∈ A}. One checks that these closure
operations satisfy the assumptions of Theorems 4.10 and 4.11: 〈·〉∞ is consistent with the
chain (〈·〉n)n≥1; the chain (〈·〉n)n≥1 is compatible with both Sym and Inc; and for any chain
I = (In)n≥1 of increasing ideals In ⊆ Rn the limit set I∞ =

⋃
n≥1 In is an ideal in R∞.

Hilbert’s basis theorem (see, e.g. [10, Theorem 1.2]) says that Rn is a Noetherian ring for
all n ∈N, that is, every ideal in Rn is finitely generated. The ring R∞ is not Noetherian, but it
is Π-Noetherian for Π = Sym and Π = Inc, in the sense that every Π-invariant ideal in R∞ is
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Π-equivariantly finitely generated. This result was first proved by Cohen [7, Proposition 2],
[8, Theorem 7] and later rediscovered by Aschenbrenner and Hillar [1, Theorem 1.1] and
Hillar and Sullivant [13, Theorem 3.1, Corollary 3.5]. Moreover, [13, Theorem 3.1] shows
that every Π-invariant ideal in R∞ has a finite Π-Gröbner basis with respect to the lexico-
graphic order 4 on R∞ induced by

xi, j 4 xk,l ⇔ j < l or j = l and i≤ k.

Here a subset G of a Π-invariant ideal I ⊆ R∞ is a Π-Gröbner basis for I with respect to 4,
if for any f ∈ I there exist g ∈ G and π ∈Π such that in4( f ) is divisible by in4(π(g)).

The above results show that chains of ideals are better behaved than chains of cones and
monoids. In particular, the statements of Theorems 4.10(c) and 4.11(b) on the equivariant
finite generation of the limit ideal are always true for any Sym- or Inc-invariant chain of
ideals. Thus, for Sym-invariant chains of ideals Theorem 4.10 immediately yields the fol-
lowing consequence, the first two statements of which are [13, Corollary 3.7] (see also [1,
Theorem 4.7]).

Corollary 6.1. Let I = (In)n≥1 be a Sym-invariant chain of ideals In ⊆ Rn. Then
(i) I stabilizes.

(ii) There exists an r ∈ N such that for all n≥ 1, In is finitely generated by elements of
support size at most r.

(iii) I is eventually saturated.

For Inc-invariant chains, using that Theorem 4.11(b) always holds, one obtains:

Corollary 6.2. Let I = (In)n≥1 be an Inc-invariant chain of ideals with In ⊆ Rn for all n≥ 1.
If I is eventually saturated, then it stabilizes.

Surprisingly, compared to cones and monoids, this result can be much improved.

Theorem 6.3. Every Inc-invariant chain of ideals stabilizes.

This result is the second part of [13, Theorem 3.6], but its proof contains a gap as we
now explain. In order to show that an Inc-invariant chain of ideals I = (In)n≥1 stabilizes,
the idea in [13] is to consider the global ideal I∞ =

⋃
n≥1 In, show that this ideal has a finite

Inc-Gröbner basis based on Higman’s lemma (see [13, Theorem 3.1]), and then apply [13,
Lemma 2.18] to get the desired conclusion (see [13, Theorem 2.19]). However, the problem
here is that [13, Lemma 2.18] is applicable only to saturated chains, and so this argument
works only for such chains.

To fix the gap, one can still follow the idea of using Higman’s lemma as in [13], but instead
of passing to the global ideal I∞, one needs to work directly on the chain I. The following
proof was suggested by an anonymous referee and is much simpler than our original one.

Proof of Theorem 6.3. Let I = (In)n≥1 be an arbitrary Inc-invariant chain of ideals. Using
the lexicographic order and a Gröbner basis argument, we may assume that the chain I
consists of monomial ideals (see, e.g. [20, Lemma 7.1]). For every n∈N we have a bijection
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between the set Mon(Rn) of monomials of Rn and (Nc)n, in which each u ∈ Mon(Rn) is
mapped to its exponent vector. Thus, there is a bijection between the disjoint unions

Mon(R) :=
⊎
n≥1

Mon(Rn) and (Nc)∗ :=
⊎
n≥1

(Nc)n.

Endowing Mon(R) and (Nc)∗ with the Higman partial order (see, e.g. [13, Definition 3.2])
the above bijection is in fact a poset isomorphism. By Higman’s lemma [12, Theorem 4.3],
the Higman order is a well-partial-order on (Nc)∗. Hence, it is so on Mon(R) as well, and
the chain I stabilizes. �

Remark 6.4. In the context of FI- and OI-modules, a similar idea to the one used in the
proof of Theorem 6.3 was employed in [21] to show that certain FI- and OI-modules have
finite Gröbner bases (see, in particular, [21, Propositions 5.3, 6.2, Theorem 6.14]).

We conclude this section with a discussion of the stability index of Inc-invariant chains.

Example 6.5. Although any non-saturated Inc-invariant chain of ideals stabilizes by The-
orem 6.3, its stability index can behave very badly, unlike that of a saturated chain. Let
I = (In)n≥1 be an Inc-invariant chain of ideals and let G be a finite Inc-Gröbner basis for
the limit ideal I∞ with respect to the lexicographic order 4. If I is saturated and G⊆ Rr for
some r ∈ N, then ind(I)≤ r by [13, Lemma 2.18]. However, such a bound does not hold if
I is not saturated. Indeed, let m ∈ N and consider the chain I = (In)n≥1 with

In =


〈x2

1,x
2
2, . . . ,x

2
n〉n if n≤ m−1,

〈x1,x2
2, . . . ,x

2
m〉n if n = m,

〈Incm,n(Im)〉n if n≥ m+1.

Then ind(I) = m, while G = {x1} ⊆ R1 is an Inc-Gröbner basis for the limit ideal I∞ =⋃
n≥1 In = 〈x1,x2,x3, . . .〉∞ = 〈Inc(x1)〉∞. This shows that there is no bound for ind(I) in

terms of the smallest index r with G⊆ Rr.

For non-saturated chains one may try to replace the condition “G ⊆ Rr” by “G ⊆ Is” and
ask for a bound for ind(I) in terms of the smallest index s with G⊆ Is. This is a reasonable
question because in Example 6.5, G = {x1} ⊆ Im and s = m = ind(I). Unfortunately, this
also does not work. To build an example, note that in the chain I above one has

Im+ j = 〈Incm,m+ j(Im)〉m+ j = 〈x1, . . . ,x j+1,x2
j+2, . . . ,x

2
m+ j〉m+ j for j ≥ 0.

Now take l ∈ N and consider the chain I′ = (I′n)n≥1 with

I′n =


In if n≤ m+ l−1,
Im+l + 〈xl+2〉n if n = m+ l,
〈Incm+l,n(I′m+l)〉n if n≥ m+ l +1.

It is clear that I′∞ =
⋃

n≥1 I′n = 〈x1,x2,x3, . . .〉∞ = I∞. Thus, G′ = G = {x1} ⊆ I′m is an Inc-
Gröbner basis for I′. However, ind(I′) = m+ l is not bounded by m as l is arbitrary.
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[24] G.M. Ziegler, Lectures on Polytopes. Graduate Texts in Mathematics 152, Springer, 1995.

Authors’ addresses:
Thomas Kahle, OvGU Magdeburg, Germany, thomas.kahle@ovgu.de
Dinh Van Le, Universität Osnabrück, Osnabrück, Germany, dlevan@uos.de
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