
A PARTITION OF UNITY METHOD FOR DIVERGENCE-FREE OR
CURL-FREE RADIAL BASIS FUNCTION APPROXIMATION

KATHRYN P. DRAKE∗, EDWARD J. FUSELIER† , AND GRADY B. WRIGHT∗

Abstract. Divergence-free (div-free) and curl-free vector fields are pervasive in many areas of
science and engineering, from fluid dynamics to electromagnetism. A common problem that arises in
applications is that of constructing smooth approximants to these vector fields and/or their potentials
based only on discrete samples. Additionally, it is often necessary that the vector approximants
preserve the div-free or curl-free properties of the field to maintain certain physical constraints.
Div/curl-free radial basis functions (RBFs) are a particularly good choice for this application as they
are meshfree and analytically satisfy the div-free or curl-free property. However, this method can
be computationally expensive due to its global nature. In this paper, we develop a technique for
bypassing this issue that combines div/curl-free RBFs in a partition of unity framework, where one
solves for local approximants over subsets of the global samples and then blends them together to
form a div-free or curl-free global approximant. The method is applicable to div/curl-free vector
fields in R2 and tangential fields on two-dimensional surfaces, such as the sphere, and the curl-free
method can be generalized to vector fields in Rd. The method also produces an approximant for the
scalar potential of the underlying sampled field. We present error estimates and demonstrate the
effectiveness of the method on several test problems.

Key words. divergence-free, solenoidal, curl-free, irrotational, partition of unity, potential,
radial basis functions

AMS subject classifications. 65D12, 41A05, 41A30

1. Introduction. Approximating vector fields from scattered samples is a per-
vasive problem in many scientific applications, including, for example, fluid dynamics,
meteorology, magnetohydrodynamics, electromagnetics, gravitational lensing, imag-
ing, and computer graphics. Often these vector fields have certain differential invariant
properties related to an underlying physical principle. For example, in incompressible
fluid dynamics the velocity of the fluid is divergence-free (div-free) as a consequence
of the conservation of mass. Similarly, in electromagnetics the electric field is curl-free
in the absence of a time varying magnetic field as a consequence of the conservation
of energy. Additionally, the fields may have properties of being tangential to a surface
(e.g., the sphere S2) and have a corresponding surface div-free or curl-free property,
as occurs in many areas of geophysical sciences [16]. In several of these applications it
is necessary for the approximants to preserve these differential invariants to maintain
certain physical constraints. For example, in incompressible flow simulations using
the immersed boundary method, excessive volume loss can occur if the approximated
velocity field of the fluid is not div-free [4].

To enforce these differential invariants on the approximant, one cannot approxi-
mate the individual components of the field separately, but must combine them in a
particular way. One idea uses the property that div-free fields (in two dimensions) and
curl-free fields can be defined in terms of a scalar potential (e.g., a stream function or
electric potential). These methods then compute an approximant for the potential of
the field by solving a Poisson equation involving the divergence or curl of the sampled
field [5]. A separate idea is to use a vector basis for the approximant that satisfies the
underlying differential invariant. This paper develops a radial basis function (RBF)
method that uses latter approach, but has similarities to the former.

∗Department of Mathematics, Boise State University, Boise, ID (KathrynDrake@u.boisestate.edu,
gradywright@boisestate.edu)
†Department of Mathematics, High Point University, High Point, NC (efuselie@highpoint.edu)

1

ar
X

iv
:2

01
0.

15
89

8v
2

 [
m

at
h.

N
A

]
 1

6
Fe

b
20

21

mailto:KathrynDrake@u.boisestate.edu
mailto:gradywright@boisestate.edu
mailto:efuselie@highpoint.edu

2 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

RBFs are a main tool for scattered data approximation [18, 20, 47]. In the early
1990s, researchers began to focus on the problem of developing vector RBF inter-
polants for div-free fields that analytically satisfy the div-free constraint [2, 28, 36].
The idea, as presented in [36], is to use linear combinations of shifts of a matrix-valued
kernel, whose columns satisfy the div-free property, to interpolate the samples of given
field. Since these kernels are constructed from scalar-valued RBFs, they are referred
to as div-free RBFs. These ideas were later extended to curl-free fields in [14, 23].
Further extensions of the idea to vector fields tangential to a two-dimensional surface
(e.g., S2) that are surface div-free or curl-free were given in [37]. Some applications
of these div/curl-free RBFs can, for example, be found in [11,25,31,34,35,42,48].

There are, however, issues with scaling div/curl-free RBF interpolation to large
data sets. For a data set with N scattered nodes X = {xj}Nj=1, the method requires
solving a dN -by-dN linear system, where d = 2, 3 is the dimension of the underlying
domain. Additionally, each evaluation of the resulting interpolant involves dN terms.
If the div/curl-free RBFs are constructed from scalar-valued RBFs with global sup-
port, then the linear system is dense and not well suited to iterative methods. To
ameliorate these issues, a multilevel framework has been developed for compactly sup-
ported div/curl-free RBFs in [17]. However, we take a different approach to reducing
the computational cost using the partition of unity method (PUM) [6,18,32,33,46].

In RBF-PUM, one only needs to solve for local approximants over small subsets
of the global data set and then blend them together to form a smooth global approx-
imant. A particular challenge with extending this idea to div/curl-free RBFs is in
enforcing that the global approximant is analytically div/curl-free. To overcome this
challenge, we use the local div/curl-free RBFs to obtain local approximants to scalar
potentials for the field and then blend these together to form a global scalar potential
for the entire field. A div/curl-free vector approximant is then obtained by applying
the appropriate differential operator to the global scalar potential. The method as
presented here will only work for fields that can be defined by scalar potentials, which
includes div/curl-free vector fields in R2, surface div/curl-free tangential fields on two-
dimensional surfaces, and curl-free fields in Rd, but not div-free fields in R3. However,
there are several benefits of the method. First, for node sets X that are quasiuniform,
the algorithm parameters can be chosen to produce global approximants to the field
in O(N logN) operations. Second, we have error estimates showing the method can
give high rates of convergence, and numerical evidence that rates faster than algebraic
with increasing N are possible. Unlike the method from [17], these convergence rates
are possible with the fixed complexity of O(N logN). Finally, a global approximant
for the scalar potential is given directly from the samples without having to compute
derivatives of the sampled field or solving a Poisson problem.

As far as we are aware, the only other computationally scalable div-free approxi-
mation technique for scattered data is the div-free moving least squares (MLS) method
from [45]. The method is used for generating finite difference type discretizations for
Stokes’ equations. While it worked quite successfully for this application, it can be
computationally expensive for more general approximation problems, since it requires
solving a new (small) linear system for each evaluation point. For the method we
develop, the (small) linear systems are independent of the evaluation points. Addi-
tionally, the div-free MLS method does not directly allow the potential for the field
to also be approximated.

The rest of the paper is organized as follows. In the next section we introduce some
background material necessary for the presentation of the method. Section 3 contains
a review of PUM and then presents the div/curl-free RBF-PUM. Error estimates for

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 3

the new method are presented in Section 4. Section 5 contains numerical experiments
demonstrating the convergence rates of the method on three model problems. The
final section contains some concluding remarks.

2. Div/Curl-free RBFs. We review the generalized vector RBF techniques for
reconstructing vector fields below, first for div-free fields and then for curl-free fields.
In both cases, we focus on approximations of tangential vector fields on smooth,
orientable, surfaces embedded in R3 (which includes R2 and S2). In the curl-free
case the method extends trivially to Rd. Before discussing these two techniques, we
introduce some notation and review some relevant background material.

2.1. Notation and preliminaries. Let P denote a smooth, orientable surface
embedded in R3, possibly with a boundary, and let n ∈ R3 denote the unit normal
vector to P expressed in the Cartesian basis. When discussing tangential vector fields
on P, we use the terms divergence and curl to be tacitly understood to refer to surface
divergence and surface curl for P. The surface curl (or rot) operator L and the surface
gradient operator G play a central role in defining div-free and curl-free tangential
fields on P. We can express these operators in extrinsic (Cartesian) coordinates as
follows:

L = n×∇, G = (I − nnT)∇,

where ∇ is the standard R3 gradient, and I is the 3-by-3 identity matrix. It is a well
known consequence of Poincaré’s Lemma that div-free and curl-free fields are locally
images of these operators [13]1

Proposition 2.1. Let u be a tangential vector field defined on P then

1. u is div-free iff for each point x ∈ P there exists a neighborhood U ⊂ P and
a scalar potential ψ : U −→ R such that u = L(ψ)

2. u is curl-free for each point x ∈ P there exists a neighborhood U ⊂ P and a
scalar potential ϕ : U −→ R such that u = G(ϕ)

Note that since L and G only annihilate constant functions along P, the scalar po-
tentials are unique up to the addition of a constant.

The present method relies on this property as it solves for scalar potentials on
overlapping patches covering the domain of interest. Since each of these potentials
is unique up to a constant, a straightforward procedure can be derived to determine
these values so that the potentials can be shifted to agree over the domain. In three
dimensions, div-free vector fields have vector potentials unique up to the addition of
the gradient of a harmonic scalar function, and it not clear to us how to adapt the
current method to this situation. However, the method will be applicable to curl-
free fields in higher dimensions since a vector field u on Rd is curl-free if and only if
u = ∇ϕ for some scalar potential.

In what proceeds, we use the following notation for the L operator:

L =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


︸ ︷︷ ︸

Qx

∇,(2.1)

1Poincaré’s Lemma is typically given in terms of the exterior derivatve operator d. In this case
applying the Hodge star operator * to u before applying Poincaré’s Lemma gives the div-free result.
For the curl-free result, one starts with ∗du = 0 and applying the Hodge star operator to this allows
one to apply the lemma.

4 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

where n = (a1, a2, a3) is the unit normal to P at x. Note that applying Qx to a vector
in R3 gives the cross product of n with that vector. Similarly, we express G as

G = Px∇,(2.2)

where Px = I− nnT projects any vector at x on P into a plane tangent to P at x.
Two important cases of P are P = R2 and P = S2. For the former case, the unit

normal is independent of its position and is typically chosen as n = (0, 0, 1). Using
this with (2.1) and (2.2), leads to the standard definition for these operators for vector
fields on R2:

L =

−∂y∂x
0

 and G =

∂x∂y
0

 ,(2.3)

which can be truncated to remove the unnecessary third component. For P = S2, the
unit normal at x is n = x, but L and G do not simplify beyond this.

2.2. Div-free RBF interpolation. Div-free vector RBF interpolants are sim-
ilar to scalar RBF interpolants in the sense that one constructs them from linear
combinations of shifts of a kernel at each of the given data sites. The difference be-
tween the approaches is that in the vector case one uses a matrix-valued kernel whose
columns are div-free. For the sake of brevity, we give the final construction of these
kernels and refer the reader to [37] for a rigorous derivation. For more information on
scalar-valued RBFs, which we do not discuss here, see any of the books [18,20,47].

Let φ : R3 × R3 −→ R be a radial kernel in the sense that φ(x,y) = η(‖x− y‖),
for some η : [0,∞) −→ R, where ‖ · ‖ is the vector 2-norm. It is common in this case
to simply write φ(x,y) = φ(‖x − y‖). Supposing φ has two continuous derivatives,
then the matrix kernel Φdiv is constructed using the operator L in (2.1) as

(2.4)
Φdiv(x,y) = LxLTyφ (‖x− y‖) = Qx

(
∇x∇Tyφ (‖x− y‖)

)
QTy

= Qx

(
∇∇Tφ (‖x− y‖)

)
Qy,

where the subscripts in the differential operators indicate which variables they operate
on and, for simplicity, no subscript means they operate on the x component. Here we
have used the fact that the matrixQy in (2.1) is skew-symmetric and∇Tyφ (‖x− y‖) =

−∇Tφ (‖x− y‖). For any c ∈ R3 and fixed y ∈ P, the vector field Φdiv(x,y)c is
tangent to P and div-free in x, which follows from Proposition 2.1 since

Φdiv(x,y)c = Qx∇
(
∇Tφ (‖x− y‖)Qyc

)
= L(ψ(x)),(2.5)

where ψ is the potential for Φdiv(x,y)c. The second argument of Φdiv acts as a shift
of the kernel and indicates where the field Φdivc is “centered.”

An interpolant to a div-free tangential vector field u : P −→ R3 sampled at
distinct points X = {xj}Nj=1 ⊂ P can be constructed using Φdiv as follows:

(2.6) s(x) =

N∑
j=1

Φdiv(x,xj)cj ,

where the coefficients cj ∈ R3 are tangent to P at xj (this is necessary to make the
interpolation problem well-posed as discussed below) and are chosen so that s

∣∣
X

=

u
∣∣
X

. We refer to (2.6) as a div-free RBF interpolant.

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 5

Instinctively, one may try to solve for the expansion coefficients in (2.6) by im-
posing s(xj) = uj , j = 1, . . . , N , where uj = u(xj). However, this will lead to a
singular system of equations since each uj can be expressed using only two degrees
of freedom rather than three. To remedy this, let {dj , ej ,nj} be orthonormal vectors
at the node xj , where nj is the outward normal to P, ej is a unit tangent vector
to P, and dj = nj × ej . Since uj is tangent to P we can write it in this basis as
uj = γjdj+δjej , where γj = dTj uj and δj = eTj uj . We may also express each tangent
cj as cj = αjdj + βjej , which leads us to express (2.6) as

s(x) =

N∑
j=1

Φdiv(x,xj) [αjdj + βjej] ,(2.7)

and to write the interpolation conditions as dTi s(xi) = γi and eTi s(xi) = δi. This
leads to the 2N -by-2N system of equations

N∑
j=1

([
dTi
eTi

]
Φdiv(xi,xj)

[
dj ej

])
︸ ︷︷ ︸

A(i,j)

[
αj
βj

]
=

[
γi
δi

]
, 1 ≤ i ≤ N.(2.8)

The interpolation matrix that arises from this system (with its (i, j)th 2-by-2 block
given by A(i,j)) is positive definite if Φdiv is constructed from an appropriately chosen
scalar-valued RBF (e.g., a positive definite φ) [37].

When P = R2, the div-free RBF interpolant can be simplified considerably since
in this case we can choose dj = (1, 0, 0) and ej = (0, 1, 0) and use (2.3) for defining
Φdiv. Using this in (2.7) and truncating the unnecessary third component of the vector
interpolant (since it is always zero) gives the expansion

s̃(x) =

N∑
j=1

Φ̃div(x,xj)c̃j ,(2.9)

where s̃, c̃j ∈ R2, and

Φ̃div(x,xj) =

[
−∂yy ∂xy
∂xy −∂xx

]
φ(‖x− xj‖).

This expression for Φ̃div can be written as Φ̃div = −I∆φ + ∇∇Tφ, which is the
standard way to express div-free kernels for general Rd [23].

An important consequence from the construction of the div-free RBF interpolant
(2.6) is that we can extract a scalar potential ψ for the interpolated field. Using (2.5)
for Φdiv in (2.6) we have

s(x) =

N∑
j=1

Φdiv(x,xj)cj = Qx∇︸ ︷︷ ︸
L

(N∑
j=1

∇Tφ (‖x− xj‖)Qxjcj︸ ︷︷ ︸
ψ(x)

)
= L(ψ(x)).(2.10)

This potential will play a crucial role in developing the PUM in Section 3.

6 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

2.3. Curl-free RBF interpolation. Curl-free vector RBF interpolants are con-
structed in a similar fashion to the div-free ones, the only difference being that G is
applied instead of L in the construction of the matrix kernel. Given a scalar RBF φ
and using a derivation similar to (2.4), Φcurl is given as

(2.11) Φcurl(x,y) = GxGT
yφ (‖x− y‖) = −Px

(
∇∇Tφ (‖x− y‖)

)
Py,

where we have used the fact that the Px matrix in (2.2) is symmetric. For any c ∈ R3

and fixed y ∈ P, the vector field Φcurl(x,y)c is tangential to P and curl-free in x.
This follows from Proposition 2.1 since

Φcurl(x,y)c = Px∇
(
−∇Tφ (‖x− y‖)Pyc

)
= G(ϕ(x)),(2.12)

where ϕ is the potential for Φcurl(x,y)c. As with the div-free kernel (2.5), the second
argument of Φcurl acts as a shift of the kernel and indicates where the field Φcurlc is
“centered”.

Interpolants to a curl-free tangential vector field u : P −→ R3 sampled at distinct
points X = {xj}Nj=1 ⊂ P are constructed from Φcurl as

(2.13) s(x) =

N∑
j=1

Φcurl(x,xj)cj ,

where the coefficients cj ∈ R3 are tangent to P at xj and are chosen so that s
∣∣
X

= u
∣∣
X

.
The procedure for determining these coefficients is identical to the div-free case, one
just needs to replace Φdiv with Φcurl in (2.7) & (2.8). The matrix from the linear
system (2.8) with Φcurl is similarly positive definite for the same φ. Further, a scalar
potential ϕ can also be extracted from the curl-free field (2.13) using (2.12):

s(x) = Px∇︸︷︷︸
G

(
−

N∑
j=1

∇Tφ (‖x− xj‖)Pxjcj︸ ︷︷ ︸
ϕ(x)

)
= G(ϕ(x)).(2.14)

In the Euclidean case Rd, the curl-free kernel is simply given as Φcurl(x,y) =
−∇∇Tφ(‖x − y‖) [23], where ∇ is the d-dimensional gradient. The interpolation
conditions s

∣∣
X

= u
∣∣
X

also lead to the simplified linear system for the expansion

coefficients cj ∈ Rd:

N∑
j=1

Φcurl(xi,xj)cj = ui, i = 1, 2, . . . , N,(2.15)

which is dN -by-dN . A scalar potential ϕ for the vector interpolant can be extracted
as

s(x) = ∇
(
−

N∑
j=1

∇Tφ (‖x− xj‖) cj︸ ︷︷ ︸
ϕ(x)

)
.(2.16)

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 7

3. A div-free/curl-free partition of unity method. The cost associated
with solving the linear systems (2.8) and (2.15) is O(N3), which is prohibitively high
when the number of nodes N in X is large. In this section, we develop a partition of
unity method (PUM) that requires solving several linear systems associated with sub-
sets X` of X with n` << N nodes, which reduces the computational cost significantly
regardless of the nature of the RBF used.

3.1. Partition of unity methods. Let Ω ⊂ Rd be an open, bounded domain of
interest for approximating some function f : Ω −→ R. Let Ω1, . . . ,ΩM be a collection
of distinct overlapping patches that form an open cover of Ω, i.e., ∪M`=1Ω` ⊇ Ω, and let
the overlap between patches be limited such that at most K << M patches overlap
at any given point x ∈ Ω. For each ` = 1, . . . ,M , let w` : Ω` −→ [0, 1] be a weight
function such that w` is compactly supported on Ω` and the set of weight functions
{w`} have the property that

∑M
`=1 w` ≡ 1. Suppose s` is some approximation to f on

each patch Ω`. The partition of unity approach of Babuška and Melenk [3] is to form
an approximant s to f over the whole domain Ω by “blending” the local approximants
s` with w` via s =

∑M
`=1 w`s`.

When samples of f are given at N “scattered” nodes X = {xj}Nj=1 ⊂ Ω, RBF
interpolants are a natural choice for the local approximants s`, as pointed out in [3].
RBF-PUM was first explored for interpolation in 2002 by Wendland [46] and Lazzaro
and Montefusco [33], and then later in 2007 by Fasshauer [18, Ch. 29]. More recent
work has explored various aspects of the method in terms of applications, methods,
and implementations, especially by Cavoretto, De Rossi, and colleagues (e.g., [7–9]),
and also extensions to problems on the sphere [6, 42]. Additionally, the method has
been adapted for approximating the solution of partial differential equations (e.g., [1,
32,40,44]).

Common choices for the patches in RBF-PUM are disks for problems in R2,
spherical caps for problems on S2, and balls for problems in R3, and these are the
choices we use throughout this paper. Figure 1 gives an example of a set of patches for
a problem in R2. Techniques for choosing the patches are discussed in, e.g., [9,32,42]
(see Section 3.3 for more discussion). Other choices for patches commonly used in
PUM methods are rectangles and procedures for generating these can be found, for
example, in [27].

Based on the choices of patches, the weight functions w` can be constructed using
Shepard’s method as follows. Let κ : R+ → R have compact support over the interval
[0, 1). For each patch Ω`, let ξ` denote its center and ρ` denote its radius, and define
κ`(x) := κ (‖x− ξ`‖/ρ`). The weight functions are then given by

w`(x) = κ`(x)/

M∑
j=1

κj(x), ` = 1, . . . ,M.

Note that each w` is only supported over Ω` and that the summation on the bottom
only involves terms that are non-zero over patch Ω`, which is bounded by K. Figure 1
(b) illustrates one of these weights functions for the example domain in part (a), where
κ is chosen as the C1 quadratic B-spline

κ(r) =

{
1− 3r2, 0 ≤ r ≤ 1

3 ,
3
2 (1− r)2, 1

3 ≤ r ≤ 1.
(3.1)

This is the weight function we use throughout the paper.

8 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

(a) (b)

Figure 1. (a) Illustration of partition of unity patches (outlined in blue lines) for a node set X
(marked with black disks) contained in a domain Ω (marked with a dashed line). (b) Illustration of
one of the PU weight functions for the patches from part (a), where the color transition from white
to yellow to red to black correspond to weight function values from 0 to 1.

3.2. Description of the method. A first approach at a vector RBF-PUM may
be to construct local vector approximants s` for the patches Ω` that make up the PU
using either (2.6) for div-free fields or (2.13) for curl-free fields. These approximants
can then be “blended” into a global approximant for the underlying field:

s =

M∑
`=1

w`s`.(3.2)

The issue with this approach is that s will not necessarily inherit the div-free or
curl-free properties of s` because of the multiplication by the weight functions w`.
We instead use the local scalar potentials that are recovered from each s` and then
blend those together. A div-free or curl-free approximant can then be recovered by
applying the appropriate differential operator to the blended potentials. Since the
essential ingredients are very similar for all the kernels treated from Section 2, for
brevity we describe the method only for the div-free case in R2 and mention any
relevant differences as needed.

Let X` denote the nodes from X ⊂ R2 that belong to patch Ω`, and let s` denote
the div-free RBF interpolant (2.6) to the target div-free field u over X`. Our interest
is also in the scalar potential for each interpolant given in (2.10), which we denote as
ψ`. While we could try to construct a global PU approximant for the scalar potential
of the field ψ and then apply the operator L to the result, we would immediately
run into problems since the scalar potentials are only unique up to a constant. This
means that for two patches Ω` and Ωk that overlap, ψ` and ψk could be off up to
the addition of a constant in the overlap region and thus lead to an inaccurate PU
approximant. To rectify this situation, we need to “shift” each ψ` by a constant b`
such that ψ` + b` ≈ ψk + bk if Ω` and Ωk overlap.

To summarize, the main steps of the div-free PUM are as follows:

1. On each patch Ω`, compute a divergence free interpolant x` and extract its
scalar potential ψ` using (2.10).

2. Determine constants {b`}M`=1 such that ψ̃` := ψ`+b` ≈ ψk+bk =: ψ̃k whenever

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 9

(a) (b)

Figure 2. Div-free RBF partition of unity approximant of the potential from Section 5.1 (a)

without the patch potentials shifted (ψk) (b) with the patch potentials shifted (ψ̃k).

Ω` ∩ Ωk 6= ∅.
3. Blend the shifted potentials with the PU weight functions to obtain a global

approximant for the underlying potential:

(3.3) ψ̃(x) :=

M∑
`=1

w`(x)ψ̃`(x).

4. Apply L to ψ̃ to obtain a global div-free approximant to the underlying field:

(3.4) s̃(x) :=

M∑
`=1

L
(
w`(x)ψ̃`(x)

)
=

M∑
`=1

w`(x)s`(x) +

M∑
`=1

ψ̃`(x)L(w`(x)).

Note that the second term in the last equality acts as a correction to the PU ap-
proximant formed by blending just the div-free RBF interpolants. Figure 2 illustrates
the necessity of shifting the patch potentials by way of an example from Section 5.1.
The figure shows a div-free RBF-PU approximant of a potential when the local patch
potentials are not shifted (i.e., using ψ` in (3.3) rather than ψ̃`) and when they are
shifted.

We now turn our attention to a technique for determining the constants {b`}M`=1

for shifting the potential. The idea is to pick a point in the overlap region of each pair
of overlapping patches and enforce that the potentials for the each of these patches are
equal at this point. We refer to these points as the “glue points” since they are where
the potentials between neighboring patches are “glued” to one another. We have found
the following procedure for choosing these points to be effective. If Ω` and Ωk overlap,
then let x̄k` denote the center of the overlap region: x̄k` := (ρkξ`+ρ`ξk)/(ρk+ρ`), where
` < k to avoid redundancy; see Figure 3 for an illustration. We denote the collection
of all such points by X̄ := {x̄k` |Ω` ∩ Ωk 6= ∅, ` < k} = {x̄i}Li=1, where L = |X̄| and
we have reindexed the set so that each x̄i = x̄k` for some unique overlapping pair of
patches Ω` and Ωk.

On this set we want to impose the conditions

ψ`(x̄
k
`) + b` = ψk(x̄k`) + bk

for some constants b`, ` = 1, . . . ,M , which we refer to as the “potential shifts”. This
can be arranged into a sparse L-by-M over-determined linear system

Pb = c(3.5)

10 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

Figure 3. Illustration of the glue points for shifting the potentials. The asterisks denote the
glue points and the small circles denote the patch centers.

with the following properties. The L-by-M matrix P is sparse with two non-zeros per
row: the ith row, where x̄i corresponds to x̄k` , has a 1 in the `th column and a −1 in
the kth column. The vector b contains the potential shifts, and the vector c is given
by ci = ψk(x̄i)−ψ`(x̄i) = ψk(x̄k`)−ψ`(x̄k`). The matrix P also has rank M − 1. This
follows since P is the (oriented) incidence matrix for the graph with vertices being
the patch centers Ω` and edges corresponding to non-empty intersections of patches.
Based on the assumption that {Ω`}M`=1 is an overlapping open covering, this graph is
connected, so rank(P) = M − 1 [12, Thm. 10.5]. In the next section we discuss the
procedure we use to determine the potential shifts from (3.5).

Remark 3.1. The procedure described above works exactly the same for curl-free
fields in R2 and R3 using (2.16) for the interpolants and potential fields on each patch.
The procedure also extends to more general surfaces P for div-free fields (using (2.10))
and curl-free fields (using (2.14)). However, in this case determining the glue points
using the above technique can be more difficult, but for P = S2, this is easy since the
center of the overlap region is trivial to determine.

3.3. Implementation details. We now discuss how the patches {Ω`}M`=1 are
chosen as well as how one might compute the potential shifts from the system (3.5).
In what follows, we assume that the nodes X are quasiuniformly distributed (i.e.,
have low discrepancy) in the underlying domain Ω, so that the mesh-norm for X,

h := sup
y∈Ω

min
x∈X

dist(x,y),(3.6)

satisfies h = O(1/ d
√
N), where d is the dimension of Ω. We also assume that there is a

signed distance function for the domain to distinguish the interior from the exterior.

3.3.1. Patch centers. To determine the patches {Ω`} for domains in R2 and
R3, we use an approach similar to the one described in [32]. The idea is to start with
a regular grid structure of spacing H that covers the domain Ω of interest and then
remove the grid points that are not contained in the domain. The remaining grid
points are chosen as the patch centers {ξ`}M`=1. Next, an initial radius ρ is chosen
proportional to H so the patches {Ω`}M`=1 form an open cover and there is sufficient
overlap between patches (specifics on this are given below). Finally, for any node in X
that is not contained in one of the patches, the nearest patch center ξj is determined
and the radius ρj for that patch is enlarged to enclose the node. We perform all range
queries on patch centers using a k-d tree.

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 11

For domains in R2, we choose the initial grid structure for the patch centers as
regular hexagonal lattice of spacing H. Neighboring patches will not overlap if the
initial radius is less than or equal to H/2. Therefore, to guarantee overlap, we set
the initial radii for the patches to ρ = (1 + δ)H/2, where δ > 0. See Figure 1 for an
illustration of the patches chosen using this algorithm for δ = 1/2. For domains in R3,
we choose the initial grid structure for the patch centers as a regular Cartesian lattice
of spacing H. In this case, neighboring patches along the longest diagonal directions
will not overlap if the initial radius is less than or equal to

√
3H/2. To guarantee

overlap, we thus set the initial radii for the patches to ρ = (1 + δ)
√

3H/2.
To determine the patches for S2, we use an approach similar to the one described

in [42]. The idea is to use M quasi-uniformly spaced points on S2 for the set of patch
centers. We choose these as near minimum energy (ME) point sets [30], and use the
pre-computed near ones from [49]. For a set with M points, the average spacing H
between the points can be estimated as H ≈

√
4π/M . We select a value of H and

then determine M as M = d4π/H2e. Since the ME points are typically arranged in
hexagonal patterns (with a few exceptions [30]), we choose the radius for each patch
as ρ` = (1 + δ)H/2, where the parameter δ again determines the overlap.

To keep the overall cost under control, the initial radii of the patches H should
decrease as N increases. The rate at which H should decrease can be determined
as follows. Assuming that the patches that intersect the boundary have similar radii
to the interior patches, and using the assumption that X is quasiuniform, a simple
volume argument gives that number of nodes in each patch satisfies n = O(ρdN) =
O(HdN), where d is the dimension of Ω. So, to keep the work roughly constant per
patch, we need H = O(1/N1/d). In our implementation of the vector PUM, we choose

H = q (A/N)
1/d

,(3.7)

where A is related to the area/volume of Ω, and q is a parameter that controls the
average number of nodes per patch. Note that from the above analysis, the compu-
tational cost increases as the overlap parameter increases and as q increases. Based
on the assumptions on X and the patches, choosing H according to (3.7) results in
a computational cost of O(N) for constructing the vector PUM approximants, and
O(N logN) for the range queries involved for determining the patch structure. How-
ever, in practice, the cost is dominated by the former part of the method.

3.3.2. Potential shifts. Since rank(P) = M − 1 and its nullspace consists of
constant vectors, we first set one of the shifts bj to zero, for some 1 ≤ j ≤ M , and
then compute the remaining shifts using the least squares solution of (3.5). For this
problem we can form the normal equations directly since the matrix PTP is just a
graph Laplacian (recall P is an oriented incidence matrix). We have found that the
accuracy of the reconstructed field (3.4) can often be improved if a weighted least
squares approach is used. In this case, we use a diagonal weight matrix W with
entries that depend on the distance between the glue points and the patch centers.
Specifically, we set ri as the closer of the two distances between the ith glue point x̄i
and the centers of the two patches it was formed from, and then set

Wii = exp

(
−γ
(

1− ri
rmin

)2
)
,(3.8)

where rmin = minj rj and γ > 0. The normal equations in this case now look like a
weighted graph Laplacian.

12 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

4. Error Estimates. The error bounds will be expressed in terms of local mesh
norms h`, which are given by (3.6), with Ω = Ω` and X = X`. Error rates for RBF
interpolation, including divergence-free (curl-free) RBF approximation, both in flat
space and on the sphere, have been known for some time. Many of these estimates are
valid for target functions within the native space, which we denote by N (Ω), of the
RBF used - which for infinitely smooth RBFs are subspaces of analytic functions and
for kernels of finite smoothness are essentially Sobolev spaces (with norms equivalent
to Sobolev norms on bounded subsets)2. For the RBF kernels considered here, there
is a continuous embedding from the native space of the matrix kernel into a Sobolev
space of order τ > d/2. In this situation we get the estimate below. In what follows,
we let Hτ (Ω`) denote the space of vector fields with each coordinate function in the
Sobolev space Hτ (Ω) with smoothness τ .

Proposition 4.1. Suppose that u ∈ N (Ω) and that each Ω` ⊂ Ω satisfies an
interior cone condition with radius R` and angle θ independent of `. Suppose also
that there is a continous embedding of the native space into Hτ (Ω). Then there are
constants Q := Q(θ, τ) and C := C(θ, τ, d) such that if h` < QR`, then

‖u− s`‖L∞(Ω`) ≤ E(h`)‖u‖N (Ω`),

where E(h) = Chτ−d/2.

Proof. Estimates like these have been worked out for div/curl-free RBFs on sub-
sets of Rd and on S2 [23, 24, 26]. However, in the papers referenced the domain was
fixed and the dependence of the constants on the cone condition radius was not em-
phasized, so we should briefly review the arguments here.

First, note that the function u− s` will be zero on X`. On domains satifying an
interior cone condition, in the Euclidean case and on surfaces, we may therefore employ
a “zeros lemma” in each coordinate function. These give constants Q := Q(θ, τ) and
C := C(θ, τ, d) such that if h` < QR`, then

‖u− s`‖L∞(Ω`) ≤ Ch
τ−d/2
` ‖u− s`‖Hτ (Ω`).

See for example [47, Theorem 11.32] and [29, Theorems A.4 and A.11]).
Next, since u ∈ N (Ω), then u ∈ N (Ω`) and there is an isometric extension

E : N (Ω`)→ N (Ω) such that ‖Eu‖N (Ω) = ‖u‖N (Ω`) (see [47, Theorem 10.46,10.47]3).
With this, since N (Ω) is continuously embedded in Hτ (Ω) for some τ > d/2, we get

‖u− s`‖Hτ (Ω`) = ‖Eu− sEu,`‖Hτ (Ω`) ≤ ‖Eu− sEu,`‖Hτ (Ω) ≤ C‖Eu− sEu,`‖N (Ω),

where we write sEu,` = s` to emphasize that the interpolant on X` of the extension
is also s`. Note that the constant here may depend on Ω, but not on Ω`. Finally, it is
well-known that the interpolation error is always orthogonal to the kernel interpolant
in the native space, which implies the bound

‖Eu− sEu,`‖N (Ω) ≤ ‖Eu‖N (Ω) = ‖u‖N (Ω`),

where the last equality follows because E is an isometry. This completes the proof.

2See [47, Ch. 10] for native spaces of scalar valued functions, and see [22,24] for the vector cases
on Rd and the sphere.

3The theorems referenced are given in the Euclidean scalar-valued context, but the arguments
are general enouch to apply to matrix valued positive definite kernels on any set.

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 13

Thus it is possible to acheive high order convergence with patch sizes that are pro-
portional to the mesh norm. In what follows we assume that the patch radii and local
mesh norms are such that Proposition 4.1 is satisfied.

In addition to the estimate above, our arguments that follow will also rely on
the Mean Value Theorem, which for a scalar function ψ: Rd → R and x,y ∈ Rd we
express as

|ψ(x)− ψ(y)| ≤ |∇(ψ)|x∗ | dist(x,y),

where x∗ is on the line segment between x and y. Here we use the notation | · |
to denote the Euclidean length when the argument is a vector. To derive a similar
estimate on surfaces, let x,y ∈ P and let γ : [0,distP(x,y)] → P denote a shortest
path in P connecting x and y with γ(0) = x, γ(distP(x,y)) = y, parameterized by
arclength. This implies that γ′ is tangent to P and |γ′| = 1. Applying the single
variable Mean Value Theorem to the real-valued function ψ ◦ γ implies that

|ψ(x)− ψ(y)| ≤ |∇ψ · γ′|t∗ |distP(x,y),

where t∗ ∈ [0,distP(x,y)]. Since γ′ is tangent to P and has length 1, we get |∇ψ ·γ′| =
|Gψ · γ′| ≤ |Gψ|. Combining the above with the fact that |G(ψ)| = |L(ψ)| gives us
the following

(4.1) |ψ(x)− ψ(y)| ≤ |G(ψ)|x∗ | distP(x, y) = |L(ψ)|x∗ | distP(x,y),

where x∗ ∈ P.
Before proceeding we summarize some of the important assumptions on the par-

tition of unity. Recall that each x ∈ Ω is covered by only a small number of patches
(say at most K patches). We also assume that the number of patches that intersect
a given patch is uniformly bounded by some constant m. Additionally, we suppose
that there are roughly the same number of nodes in each patch, and that the node
distribution in each patch is quasi-uniform. This leads to an estimate of the form
ch` ≤ diam(Ω`) ≤ Ch` for some constants c, C independent of `. Lastly, we assume
that the partition is “1-stable” (see [47][Def. 15.16]), meaning that first order deriv-
atives of the weight functions satisfy a bound of the form |∇w`| ≤ C(diam(Ω`))

−1,
where C is some constant independent of `. This with the quasi-uniformity supposi-
tion gives the bound |∇w`| = |Lw`| ≤ Ch−1

` for some C independent of `.
Now we give an estimate for the pointwise error of the divergence-free approximant

in a two dimensional domain. Note that the bound is local in the sense that it
comprised of a local interpolation error plus an expression involving the residuals
rk` := ψ̃`(x̄

k
`)− ψ̃k(x̄k`) from adjusting neighboring potential functions.

Theorem 4.2. Suppose that the conditions in Proposition 4.1 are satisfied. Given
a div-free vector field u = L(ψ) ∈ N (Ω), let ψ̃ and s̃ = L(ψ̃) denote the PUM
approximants from (3.3) and (3.4). Then the error at x ∈ Ω satisfies∣∣∣G(ψ̃ − ψ)(x)

∣∣∣ =
∣∣∣L(ψ̃ − ψ)(x)

∣∣∣ = |u(x)− s̃(x)|

≤ mC max
` |x∈Ω`

(
E(h`)‖u‖N (Ω`)

)
+ C

∑
`|x∈Ω`, ` 6=k

h−1
` |r

k
` |,(4.2)

where k is any index such that x ∈ Ωk.

14 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

Proof. The first equality follows from the fact that Gf and Lf have the same
magnitude. Next, note that

(4.3) s̃ =
∑
`

w`s` +
∑
`

L(w`)ψ̃`.

The first term is a weighted average of RBF interpolants to u and the weight functions
sum to 1, so we have∣∣∣∣∣u(x)−

∑
`

w`(x)s`(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
`

w`(x)u(x)−
∑
`

w`(x)s`(x)

∣∣∣∣∣ ≤∑
`

w`(x)|u(x)− s`(x)|

≤
∑
`

w`(x)CE(h`)‖u‖N (Ω`) = C max
` |x∈Ω`

E(h`)‖u‖N (Ω`).

To complete the proof we need to bound the second term in (4.3). Given x ∈ Ω,
fix a k such that x ∈ Ωk. Since

∑
L(w`) = 0 and w`(x) = 0 for x /∈ Ω` we get∑

`

L(w`)ψ̃`(x) =
∑

` |x∈Ω`

L(w`)
(
ψ̃`(x)− ψ̃k(x)

)
.

This and our assumptions on the weight functions give us the estimate

(4.4)

∣∣∣∣∣∑
`

L(w`)ψ̃`(x)

∣∣∣∣∣ ≤ ∑
` |x∈Ω`

Ch−1
`

∣∣∣ψ̃`(x)− ψ̃k(x)
∣∣∣ .

If ` = k, the corresponding term in the sum is zero. If ` 6= k, we let g := ψ̃` − ψ̃k and
x̄k` be the adjustment point for Ω` and Ωk, we can rewrite

ψ̃`(x)− ψ̃k(x) = g(x)− g(x̄k`) + g(x̄k`) = g(x)− g(x̄k`) + rk` .

To bound g(x)− g(x̄k`), we use (4.1) and the fact that L(g) = s` − sk to get

|g(x)− g(x̄k`)| ≤ ‖L(g)‖L∞(Ωk∩Ω`)dist(x, x̄k`) ≤ ‖L(g)‖L∞(Ωk∩Ω`)h`

≤ h`
(
‖s` − u‖L∞(Ωk∩Ω`) + ‖u− sk‖L∞(Ωk∩Ω`))

)
≤ Ch`

(
E(h`)‖u‖N (Ω`) + E(hk)‖u‖N (Ωk)

)
,

which when applied to (4.4) gives∣∣∣∣∣∑
`

L(w`)ψ̃`(x)

∣∣∣∣∣ ≤ ∑
`|x∈Ω`, ` 6=k

C
(
E(h`)‖u‖N (Ω`) + E(hk)‖u‖N (Ωk)

)
+ Ch−1

` |r
k
` |

≤ mC max
` |x∈Ω`

E(h`)‖u‖N (Ω`) + C
∑

`|x∈Ω`, ` 6=k

h−1
` |r

k
` |.

The result follows.

Note that very similar arguments follow through also for curl-free vector fields
on surfaces, i.e. an estimate identical to (4.2) holds for the curl-free case. The proof
also carries directly over to Rd - namely if u = ∇ϕ, and s̃ = ∇ϕ̃ denotes the curl-free
RBF-PUM approximant, one has an estimate of the form

|∇(ϕ̃− ϕ)(x)| = |u(x)− s̃(x)| ≤ mC max
` |x∈Ω`

(
E(h`)‖u‖N (Ω`)

)
+ C

∑
`|x∈Ω`, ` 6=k

h−1
` |r

k
` |.

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 15

Now we discuss the residual in shifting the local potentials. We begin by showing
that good constants for the shifts exist.

Proposition 4.3. Let s` = Lψ` be the local RBF interpolant on X` ⊂ Ω` and let
X̄` = X̄ ∩Ω` be the collection of glue points on Ω`. Given any v such that u = L(v),
the constant

b∗` :=
1

|X̄`|
∑
y∈X̄`

v(y)− ψ`(y)

gives
‖ψ` + b∗` − v‖L∞(Ω`) ≤ Ch`E(h`)‖u‖N (Ω`).

Proof. Let x ∈ Ω`. First we apply the triangle inequality and the Mean Value
Theorem to obtain

|ψ`(x) + b∗` − v(x)| ≤ 1

|X̄`|
∑
y∈X̄`

|ψ`(x)− v(x)− (ψ`(y)− v(y))|

≤ 1

|X̄`|
∑
y∈X̄`

‖sj − u‖L∞(Ω`)
dist(x,y).

Next, an application of Proposition 4.1 and the fact that diam(Ω`) ≤ Ch` finishes the
proof.

Letting r∗ := Pb∗ − c, i.e., the residual in the system (3.5) using the shifts given
in the above proposition, with a triangle inequality and using the fact that hk ∼ h`
for neighboring patches, we get

(4.5) (r∗)k` ≤ Ch`E(h`)‖u‖N (Ω`) + Ch`E(hk)‖u‖N (Ωk).

Applying this to the residual term from (4.2) becomes:∑
`|x∈Ω`, ` 6=k

h−1
` (r∗)k` ≤ mC max

` |x∈Ω`
E(h`)‖u‖N (Ω`)(4.6)

Thus if the shifts are chosen appropriately the method can achieve the same approxi-
mation order as that of local interpolation. However, we compute the shifts according
to the overdetermined (3.5). The residual from that system satisfies the following.

Proposition 4.4. Let b be the least squares solution to (3.5). The residual r :=
Pb− c satisfies the bound

|r|2 ≤ mC
∑
`

h2
`E(h`)

2‖u‖2N (Ω`)
.

Proof. Choose any scalar potential v such that u = L(v), and let b∗ be the vector
whose `th element is b∗` as defined in Proposition 4.3. Then we have |r| ≤ |r∗|. Next,
we square the left-most inequality in (4.5) and estimate further to get

(4.7) ((r∗)k`)2 ≤ C
(
E(h`)

2h2
`‖u‖2N (Ω`)

+ E(hk)2h2
k‖u‖2N (Ωk)

)
.

Now sum the estimate over all glue points, and note that each Ω` (and Ωk) will appear
in the sum at most m times (the maximum number of patches that intersect any given
patch). This gives the result.

16 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

In an attempt to bound the error solely in terms of the point distribution and
target function, let us look at an application of this estimate to the residual term
from (4.2). For simplicity, assume that all h` ∼ h for all h`. Since there are at most
m terms in the sum, a Cauchy-Schwarz inequality gives

∑
`|x∈Ω`, ` 6=k

h−1
` |r

k
` | ≤ h−1

√
m|r| ≤ CmE(h)

√∑
`

‖u‖2N (Ω`)
.

Due to the sum over all patches, this bound may or may not match the expected error
rates. It is reasonable to guess that this sum is equivalent to ‖u‖2N (Ω). Numerical
experiments for scalar RBF interpolants, not presented here, suggest that such a sum
may be uniformly bounded in the case of a thin plate spline, and may grow very
slowly for Matérn kernels. We leave exploring a tight bound for this term as an open
question. A very rough estimate of the sum would introduce a factor of

√
M , where

M is the number of patches. In the quasi-uniform case, a volume argument gives√
M ∼ h−d/2. Thus a worst-case scenario is that the method converges according to
E(h)h−d/2. However, numerical experiments suggest that the errors decay according
to E(h) (see for example Section 5.2) and do not seem to depend on the number of
patches - which suggests that the estimate E(h)h−d/2 is pessimistic.

5. Numerical experiments. In this section, we numerically study the vector
RBF-PUM for three different test problems: a div-free field in a star-shaped domain
in R2, a div-free field on S2, and a curl-free field in the unit ball in R3. For each of
these cases, we numerically test the convergence rates of the method and compare
them to the estimates from Section 4. The point sets we use in the experiments are
all quasiuniform, so rather than compute the mesh-norm h and use this to measure
convergence rates, we simply use h ∼ N−1/d.

To illustrate the different convergence rates that are possible, we use the in-
verse multiquadric (IMQ) kernel φ(r) = 1/

√
1 + (εr)2 and the Matérn kernel φ(r) =

e−εr
(
1 + (εr) + 3

7 (εr)2 + 2
21 (εr)3 + 1

105 (εr)4
)
. The latter kernel is piecewise smooth

and the local error from Proposition 4.1, in terms of N , is given by E(N) = (
√
N)−3.5

for d = 2 (see [26] for more details). The IMQ kernel is analytic and therefore the
local error decreases faster than any algebraic rate. For scalar interpolation with the

IMQ, the local error estimate is E(N) = e−C log(N)N1/2d

[39], where C > 0 is a con-
stant. We demonstrate that this also appears to be the correct rate for the vector
case. While the error estimates are in terms the ∞-norm, we also include results on
the 2-norm for comparison purposes. Since we are interested in demonstrating the
convergence rates from the theory, we fix the shape parameter ε in all the tests, as
using different ε on a per patch level will lead to different constants in the estimates.
The values were selected so that conditioning of the linear systems (2.8) (or (2.15))
is not an issue. Choosing variable shape parameters in scalar RBF-PUM is explored
in [10] and may be adapted to the current method, but we leave that to a separate
study. For brevity we report results for one kernel per example, with the IMQ kernel
used for the first and third test and the Matérn used for the second. However, we note
that the estimated convergence rates for each kernel were consistent with the theory
across all tests. Finally, we set the weighted least squares parameter in (3.8) to η = 4.
This value produced good results over all the numerical experiments performed.

All results were obtained from a MATLAB implementation of the vector RBF-
PUM method executed on a MacBook Pro with 2.4 GHz 8-Core Intel Core i9 processor
and 32 GB RAM. No explicit parallelization was implemented.

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 17

5.1. Div-free field on R2. The target field and domain for this numerical test
are defined as follows. Let the potential for the field be

ψ(1)(x) = −2g(27
2 ‖x‖

4)− 1

2
g(27‖x‖2)− 2

4∑
j=0

g(9‖x− ξj‖2),(5.1)

where ξj = (cos(2πj/5 + 0.1), sin(2πj/5 + 1
2)) and

g(r) = exp(r)/(1 + exp(r))2.(5.2)

The target domain is set from the potential as Ω(1) = {x ∈ R2|ψ(1)(x) ≤ − 1
10}, and

target div-free vector field is u
(1)
div = Lψ(1). This gives a star-like domain with a non-

trivial field that is tangential to ∂Ω; see Figure 4 for a visualization of the potential
and field.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Figure 4. Contours of the potential ψ(1) (left) and corresponding div-free velocity field u
(1)
div

(right) for the numerical experiment on R2.

The node sets X for this test were initially generated from DistMesh [38], but
then perturbed by a small amount to remove any regular structures. The sizes of the
node sets for the tests are N = 11149, 17405, 30943, 44570, and 696354. We estimate
A in (3.7) to be 6, and use an overlap parameter for the patches of δ = 1/2. We
test three different values of q to see how the errors are effected by increasing the
nodes per patch. For q = 6, 8, 10, there are an average of 63, 112, 173 nodes per patch,
respectively. The boundaries create some variability in the nodes per patch and lead
to minimum values of 32, 57, 85 and the maximums of 109, 191, 300, respectively. As
mentioned above, we only report results for the IMQ kernel, for which the shape
parameter is set to ε = 13 for all tests. Errors in the approximations of the target
potential and field are computed at a dense set of 94252 points over the domain. Errors
in the approximation of the target potential are computed after first normalizing the
approximant and the potential to have a mean of zero over the evaluation points. For
each N and q, the error reported is the average of the ∞-norm (2-norm) errors using
20 different random perturbations of the initial node set X. This reduces fluctuations
in the errors caused by particularly good samples of the target field. We observed

4These node sets were produced from DistMesh when setting the “spacing” parameter to h0 =
0.025, 0.02, 0.015, 0.0125, 0.01

18 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

45 50 55 60 65 70 75 80 85 90 95
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

45 50 55 60 65 70 75 80 85 90 95
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(a) Errors for the potential ψ(1) (b) Errors for the field u
(1)
div

Figure 5. Convergence results for the numerical experiment on the star domain in R2 for the
IMQ kernel and different values of q. Filled (open) markers correspond to the relative ∞-norm

(2-norm) errors and solid (dashed) lines indicate the fit to the estimate E(N) = e−C log(N)N1/4
,

without the first values included.

that the relative standard deviation in the norms of the errors using this sampling
technique varied from 5% to 10% for the 2-norm and 20% to 40% for the ∞-norm
across the N we used.

Figure 5 displays the relative ∞-norm and 2-norm errors in the approximation of
the target potential and field as a function of log(N)N1/4. Included in the figures are

the lines of best fit to the errors using the error estimate E(N) = e−C log(N)N1/4

from
scalar RBF theory. We see from the figure that this error estimate provides a good fit
to both the ∞-norm and 2-norm errors for the potential and the field. The ∞-norm
errors for the potential have more variability especially for q = 6, but the 2-norm
errors are quite consistent. As expected, the errors in reconstructing the potential are
lower than those for reconstructing the field, and the 2-norm errors are lower than
the ∞-norm errors. Increasing q leads to a consistent decrease in the 2-norm errors,
but the decrease is more variable for the ∞-norm errors.

5.2. Div-free field on S2. Let x = (x, y, z) ∈ S2, and the potential for the
target field be defined as

ψ(2)(x) = − 1

1 + e−20(z+1/
√

2)
− 1

1 + e−20(z−1/
√

2)
− 3

5∑
j=0

(−1)jg(‖x− yj‖2, aj),

(5.3)

where g is given in (5.2), yj = (cos(λj) cos(θj), sin(λj) cos(θj), sin(θj)) for {λj}5j=0 =

{0.05,1.1,2.12, 3.18,4.22,5.26} and {θj}5j=0 ={0.79,−0.82,0.76,−0.81,0.8,−0.77}, and

aj = 4 + j/2. The div-free field is then given as u
(2)
div = Lψ(2). The values used

in (5.3) were chosen to produce a zonal jet in the mid-latitudes with three superim-
posed vortices in each of the northern and southern hemispheres; see Figure 6 for a
visualization of the potential and field.

The node sets X for this test are chosen as Hammersley nodes, which give qua-
siuniform, but random sampling points for S2 [49]. The sizes of the node sets for the

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 19

-2

-1.5

-1

-0.5

0

Figure 6. Contours of the potential ψ(2) (left) and corresponding div-free velocity field

u
(2)
div(right) for the numerical experiment on S2.

100 120 140 160 180 200 220 240
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

100 120 140 160 180 200 220 240
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

(c) Errors for the potential ψ(2) (d) Errors for the field u
(2)
div

Figure 7. Convergence rates for the numerical experiment on S2 for the Matérn kernel and
different values of q. Filled (open) markers correspond to the relative ∞-norm (2-norm) errors and
solid (dashed) lines indicate the lines of best fit to the ∞-norm (2-norm) errors as a function of

√
N

on a loglog scale. The legend indicates the slopes of these lines with the first number corresponding
to the ∞-norm and the second the 2-norm, which give estimates for the algebraic convergence rates.

tests are N = 10000, 15000, 20000, 30000, 40000, 50000 and 60000. We use A = 4π
in (3.7) and set the overlap parameter to δ = 9/16. We again use three different
values of q to see how the errors are effected by increasing the nodes per patch. For
q = 6, 9, 12, there are an average of 63, 143, 252 nodes per patch, respectively. Since
there are no boundaries for this domain, the number of nodes per patch is much more
consistent across all patches. The minimum nodes per patch are 58, 137, 245 and the
maximums are 69, 150, 261, respective to the q values. For this example, we only re-
port results for the Matérn kernel, for which the shape parameter is set to ε = 7.5 for
all tests. Errors in the approximations of the target potential and field are computed
at a quasiuniform set of 92163 points over S2. Errors in the approximation of the
target potential are again computed after first normalizing the approximant and the
potential to have a mean of zero over the evaluation points. Similar to the previous
experiment, for each N and q, the error reported is the average of the ∞-norm (2-

20 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

norm) errors from 20 different random rotations of the initial Hammersley node set
X. We observed similar results on the relative standard deviations of the norms of
the errors as the previous experiment using this sampling technique.

Figure 8. Timing results for the numerical experiment on S2 with different values of q. The
darker region of each bar marks the time it takes to compute the interpolation coefficients on each
patch and solve for the potential shifts, while the full bar includes this time and the time it takes to
evaluate the approximant of the field and the potential at N points.

Figure 7 displays the relative ∞-norm and 2-norm errors in the approximation
of the target potential and field as a function of N1/2. Included in the figure are the
lines of best fit to the log of the errors vs. the log of N1/2 for each q, and the slopes
of these lines are reported in the legend of the figure (where the first number is for
∞-norm and second for the 2-norm). We see from this figure that the computed rates
of convergence for the ∞-norm are slightly higher than the theoretical rate of −3.5.
Thus the residual estimate from Proposition 4.4 is not leading to a reduction in the
convergence rates as discussed at the end of Section 4. We also see from the figure
that the estimated rates for the 2-norm errors are higher than the ∞-norm errors as
one would expect. Finally, similar to the previous experiment, we see that the errors
in reconstructing the potential are lower than those for reconstructing the field.

We also display timing results for this experiment in Figure 8. For these results,
we scaled the evaluation points with N and measured the time for the fitting phase of
the method (determining the interpolation coefficients on each patch and the potential
shifts) and the evaluation phase (evaluating the approximants of the field and potential
on each patch and combining these using the PU weight functions). The results for
q = 9 and q = 12 show a clear linear scaling with N , but the rate appears to be a bit
higher for q = 6, which we anticipate is due to not being in the asymptotic range of
N for this case. Also, the predicted O(N logN) complexity is most likely not visible
over the range of N considered. In all the results, we see that the evaluation phase
takes less time than the fitting phase, which is expected since the cost for this phase
is O(n2) per patch vs. O(n3) for fitting. Interestingly, with this serial version of the
code, q = 9 is overall the fastest. Since the number of patches is inversely proportional
to q2, these results indicate that there is an optimal value that balances solving fewer
larger systems to more smaller systems.

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 21

5.3. Curl-free field on the unit ball. The target curl-free field for this test
is generated as follows. Let g(r, a) = (a+ r2)−1/2 and define the following potential:

ψ(3)(x) = −1

4
g(‖x‖, 0.1) +

1

8

1∑
j=1

2g(‖x− ξj‖, 0.04),(5.4)

where {xj}12
j=1 are the vertices of a regular icosahedron with each vertex a distance

of 2/3 from the origin. The target curl-free is then generated by u
(3)
curl = −∇ψ(3).

This field can be interpreted as the (idealized) electric field that is generated from a
negative (smoothed) point charge at the origin, surrounded by 12 positive (smoothed)
point charges, equidistance from one another; see Figure 9(a) for a visualization of
the potential and field.

(a) Potential and field (b) Nodes

Figure 9. (a) Visualization of the potential ϕ(3) and corresponding curl-free velocity field

u
(3)
curl = −∇ϕ(3) for the numerical experiment on the unit ball. (b) Example of N = 4999 node set

(small solid disks) used in the numerical experiment on the unit ball, where colors of the nodes are
proportional to their distance from the origin (yellow=1, green = 0.5, blue=0). The plots in both
figures show the unit ball with a wedge removed to aid in the visualization.

The node sets X for this test are obtained from the meshfree node generator
described in [41], which produces quasiuniform but unstructured nodes in general
domains; see Figure 9 (b) for an example of the nodes used for the unit ball. The
sizes of the node sets for the tests are N = 4999, 9103, 19636, 59116, and 1584745.
We use A = 4/3π in (3.7) and an overlap parameter of δ = 1/4. We again test three
different values of q: q = 2, 3, 4. For q = 2, the minimum, average, and maximum
nodes per patch are 18, 37, 83, for q = 3 these values are 72, 120, 238, and for q = 4
these values are 186, 271, 512. As with the first experiment, we only present results
for the IMQ kernel, for which the shape parameter is set to ε = 4 for all tests. Errors
in the approximations of the target potential and field are computed at a set of 208707
points over the unit ball. Errors in the approximation of the target potential are again
computed after first normalizing the approximant and the potential to have a mean of
zero over the evaluation points. Similar to the previous experiments, for each N and
q, the error reported is the average of the ∞-norm (2-norm) errors from 20 different
random rotations of the initial node set X.

5These node sets were produced from the node generator [41] when setting the “spacing” param-
eter to h0 = 0.1, 0.08, 0.06, 0.04, 0.028

22 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

15 20 25 30 35 40 45
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

15 20 25 30 35 40 45
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(a) Errors for the potential ϕ(3) (b) Errors for the field u
(3)
curl

Figure 10. Convergence results for the numerical experiment on the unit ball in R3 for the IMQ
kernel and different values of q. Filled (open) markers correspond to the relative ∞-norm (2-norm)

errors and solid (dashed) lines indicate the fit to the expected error estimate E(N) = e−C log(N)N1/6
,

without the first values included.

Figure 10 displays the relative ∞-norm and 2-norm errors in the approxima-
tion of the target potential and field as a function of log(N)N1/6. As in the first
experiment, we have included the lines of best fit to the errors, but now using

E(N) = e−C log(N)N1/6

. We see from the Figure that the error estimate again gener-
ally provides a good fit to both the ∞-norm and 2-norm errors for the potential and
the field. The∞-norm errors deviate more from the estimates than the 2-norm errors,
especially for field in the q = 2 case. However, for this case the minimum number of
points per patch can be quite small.

Remark 5.1. In practice, there are several parameters a user needs to choose in
the algorithm that effect the computational cost and accuracy. In the experiments
reported here, and several others not reported, we have explored these parameters
and come up with the following suggestions. For the q parameter, which controls
the average nodes per patch, we recommend a value in the range of 8 ≤ q ≤ 9 for
2D problems and 3 ≤ q ≤ 4 for 3D problems. For the overlap parameter, δ, we
recommend a value in the range 1/2 ≤ δ ≤ 3/4. For the shape parameter ε, we
recommend choosing it as small as possible on each patch before ill-conditioning sets
in when solving the local linear systems (2.8). This is similar to the method [43] used
for generating RBF finite difference formulas. For smooth vector fields, this typically
gives the best accuracy for a given N .

6. Concluding remarks. We have presented a new method based on div/curl-
free RBFs and PUM for approximating div/curl-free vector fields in R2 and S2, and
for curl-free fields in R3. The method produces approximants that are analytically
div/curl-free and also produces an approximant potential for the field at no additional
cost. For quasi-uniform samples, we have shown how the parameters can be selected
so that the computational complexity of the method is O(N logN). We have proved
error estimates for the approximants based on local estimates for the div/curl-free
interpolants on the PU patches. We have also demonstrated the high-order conver-
gence rates of the method on three different test problems with samples ranging from

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 23

thousands to hundreds of thousands of nodes—all done on a standard laptop.
While we have only focused on div/curl-free interpolation over local patches, a

future area to explore is to instead use a least squares approach similar to the one used
for scalar RBFs in [32]. Here one can choose fewer centers in the local patches for the
div/curl-free RBFs than data samples, a technique referred to as regression splines in
the statistics literature [18, ch. 19]. This has the benefit of further reducing the cost
of the local patch solves for the approximation coefficients and could provide some
regularization. Another future area to explore is the adaption of stable algorithms
for “flat” RBFs [19, 21] to the div/curl-free RBFs. These algorithms are especially
important in scalar RBF-PUM methods based on smooth RBFs for reaching high
accuracies [32]. Some work has been done along these lines for S2 in [15], but not for
the local setting on patches. A final promising area for future research is in developing
adaptive algorithms for the method along the lines of [10].

Acknowledgments. We thank Elisabeth Larsson for helpful discussions regard-
ing the PU patch distribution algorithm and Varun Shankar for generating the node
sets used for the unit ball example. KPD’s work was partially supported by the
SMART Scholarship funded by The Under Secretary of Defense-Research and Engi-
neering, National Defense Education Program/BA-1, Basic Research. GBW’s work
was partially supported by National Science Foundation grant 1717556.

REFERENCES

[1] K. A. Aiton, A Radial Basis Function Partition of Unity Method for Transport on the Sphere,
master’s thesis, Boise State University, USA, 2014.

[2] L. Amodei and M. N. Benbourhim, A vector spline approximation, J. Approx. Theory, 67
(1991), pp. 51–79.

[3] I. Babuška and J. M. Melenk, The partition of unity method, Int. J. Numer. Meths. Eng.,
40 (1997), pp. 727–758.

[4] Y. Bao, A. Donev, B. E. Griffith, D. M. McQueen, and C. S. Peskin, An immersed
boundary method with divergence-free velocity interpolation and force spreading, J. Com-
put. Phys., 347 (2017), pp. 183–206.

[5] H. Bhatia, G. Norgard, V. Pascucci, and P.-T. Bremer, The Helmholtz-Hodge decompo-
sition—a survey, IEEE Transactions on Visualization and Computer Graphics, 19 (2013),
pp. 1386–1404.

[6] R. Cavoretto and A. De Rossi, Fast and accurate interpolation of large scattered data sets
on the sphere, Comput. Appl. Math., (2010), pp. 1505–1521.

[7] R. Cavoretto and A. De Rossi, A trivariate interpolation algorithm using a cube-partition
searching procedure, SIAM J. Sci. Comput., 37 (2015), pp. A1891–A1908.

[8] R. Cavoretto, A. De Rossi, G. E. Fasshauer, M. J. McCourt, and E. Perracchione,
Anisotropic weights for RBF-PU interpolation with subdomains of variable shapes, in Radu
F., Kumar K., Berre I., Nordbotten J., Pop I. (eds) Numerical Mathematics and Advanced
Applications ENUMATH 2017. Lecture Notes in Computational Science and Engineering,
Springer, Cham, 2019.

[9] R. Cavoretto, A. De Rossi, and E. Perracchione, Partition of unity interpolation on
multivariate convex domains, Int. J. Model. Simul. Sci. Comp., 06 (2015), p. 1550034.

[10] R. Cavoretto, A. De Rossi, and E. Perracchione, RBF-PU interpolation with variable
subdomain sizes and shape parameters, in AIP Conference Proceedings, vol. 1776, AIP
Publishing, 2016, p. 070003.

[11] D. Coe, E. Fuselier, N. Beńıtez, T. Broadhurst, B. Frye, and H. Ford, LensPerfect:
Gravitational lens mass map reconstructions yielding exact reproduction of all multiple
images, Astrophys. J, 681 (2008), pp. 814–830.

[12] A. Dharwadker and S. Pirzad, Graph Theory, CreateSpace Independent Publishing Plat-
form, North Charleston, SC, USA, 2011.

[13] M. P. do Carmo, Differential forms and applications, Universitext, Springer-Verlag,
Berlin, 1994, https://doi.org/10.1007/978-3-642-57951-6, https://doi.org/10.1007/
978-3-642-57951-6. Translated from the 1971 Portuguese original.

https://doi.org/10.1007/978-3-642-57951-6
https://doi.org/10.1007/978-3-642-57951-6
https://doi.org/10.1007/978-3-642-57951-6

24 K. P. DRAKE, E. J. FUSELIER, AND G. B. WRIGHT

[14] F. Dodu and C. Rabut, Irrotational or divergence-free interpolation, Numer. Math., 98 (2004),
pp. 477–498.

[15] K. P. Drake and G. B. Wright, A stable algorithm for divergence-free radial basis functions
in the flat limit, J. Comput. Phys., 417 (2020), p. 109595.

[16] M. Fan, D. Paul, T. C. M. Lee, and T. Matsuo, Modeling tangential vector fields on a
sphere, Journal of the American Statistical Association, 113 (2018), pp. 1625–1636.

[17] P. Farrell, K. Gillow, and H. Wendland, Multilevel interpolation of divergence-free vector
fields, IMA J. Numer. Anal., 37 (2016), pp. 332–353.

[18] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathe-
matical Sciences, World Scientific Publishers, Singapore, 2007.

[19] G. E. Fasshauer and M. J. McCourt, Stable evaluation of Gaussian radial basis function
interpolants, SIAM J. Sci. Comput., 34 (2012), pp. A737–A762.

[20] B. Fornberg and N. Flyer, A Primer on Radial Basis Functions with Applications to the
Geosciences, SIAM, Philadelphia, 2014.

[21] B. Fornberg, E. Larsson, and N. Flyer, Stable computations with Gaussian radial basis
functions, SIAM J. Sci. Comput., 33 (2011), pp. 869–892.

[22] E. J. Fuselier, Improved stability estimates and a characterization of the native space for
matrix-valued RBFs, Adv. Comput. Math., 29 (2008), pp. 269–290.

[23] E. J. Fuselier, Sobolev-type approximation rates for divergence-free and curl-free RBF inter-
polants, Math. Comp., 77 (2008), pp. 1407–1423.

[24] E. J. Fuselier, F. J. Narcowich, J. D. Ward, and G. B. Wright, Error and stability
estimates for surface-divergence free RBF interpolants on the sphere, Math. Comp., 78
(2009), pp. 2157–2186.

[25] E. J. Fuselier, V. Shankar, and G. B. Wright, A high-order radial basis function (RBF)
Leray projection method for the solution of the incompressible unsteady Stokes equations,
Comput. Fluids, 128 (2016), pp. 41–52.

[26] E. J. Fuselier and G. B. Wright, Stability and error estimates for vector field interpolation
and decomposition on the sphere with RBFs, SIAM J. Numer. Anal., 47 (2009), pp. 3213–
3239.

[27] M. Griebel and M. A. Schweitzer, A particle-partition of unity method–part II: Efficient
cover construction and reliable integration, SIAM J. Sci. Comput., 23 (2002), pp. 1655–
1682.

[28] D. Handscomb, Local recovery of a solenoidal vector field by an extension of the thin-plate
spline technique, Numer. Algorithms, 5 (1993), pp. 121–129. Algorithms for approximation,
III (Oxford, 1992).

[29] T. Hangelbroek, F. J. Narcowich, and J. D. Ward, Polyharmonic and related kernels on
manifolds: Interpolation and approximation, Foundations of Computational Mathematics,
12 (2012), pp. 625–670.

[30] D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices
Amer. Math. Soc., 51 (2004), pp. 1186–1194.

[31] U. Harlander, T. von Larcher, G. B. Wright, M. Hoff, K. Alexandrov, and C. Eg-
bers, Orthogonal decomposition methods to analyze PIV, LDA and thermography data of
a thermally driven rotating annulus laboratory experiment, in Modelling Atmospheric and
Oceanic flows: insights from laboratory experiments and numerical simulations, T. von
Larcher and P. D. Williams, eds., American Geophysical Union, Washington D.C., 2014.

[32] E. Larsson, V. Shcherbakov, and A. Heryudono, A least squares radial basis function
partition of unity method for solving PDEs, SIAM J. Sci. Comput., 39 (2017), pp. A2538–
A2563.

[33] D. Lazzaro and L. B. Montefusco, Radial basis functions for the multivariate interpolation
of large scattered data sets, J. Comp. Appl. Math., 140 (2002), pp. 521–536.

[34] S. Lowitzsch, Error estimates for matrix-valued radial basis function interpolation, J. Approx.
Theory, 137 (2005), pp. 238–249.

[35] A. A. Mitrano and R. B. Platte, A numerical study of divergence-free kernel approxima-
tions, Appl. Numer. Math., 96 (2015), pp. 94 – 107.

[36] F. J. Narcowich and J. D. Ward, Generalized Hermite interpolation via matrix-valued con-
ditionally positive definite functions, Math. Comp., 63 (1994), pp. 661–687.

[37] F. J. Narcowich, J. D. Ward, and G. B. Wright, Divergence-free RBFs on surfaces, J.
Fourier Anal. Appl., 13 (2007), pp. 643–663.

[38] P.-O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM Rev., 46 (2004),
pp. 329–345.

[39] C. Rieger and B. Zwicknagl, Sampling inequalities for infinitely smooth functions, with ap-
plications to interpolation and machine learning, Adv. Comput. Math., 32 (2010), pp. 103–

A PUM FOR DIV-FREE OR CURL-FREE RBF APPROXIMATION 25

129.
[40] A. Safdari-Vaighani, A. Heryudono, and E. Larsson, A radial basis function partition of

unity collocation method for convection–diffusion equations arising in financial applica-
tions, J. Sci. Comput., 64 (2015), pp. 341–367.

[41] V. Shankar, R. Kirby, and A. Fogelson, Robust node generation for mesh-free discretiza-
tions on irregular domains and surfaces, SIAM J. Sci. Comput., 40 (2018), pp. A2584–
A2608.

[42] V. Shankar and G. B. Wright, Mesh-free semi-Lagrangian methods for transport on a sphere
using radial basis functions, J. Comput. Phys., 366 (2018), pp. 170–190.

[43] V. Shankar, G. B. Wright, R. M. Kirby, and A. L. Fogelson, A radial basis function
(RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on sur-
faces, J. Sci. Comput., 63 (2014), pp. 745–768.

[44] V. Shcherbakov, Radial basis function partition of unity operator splitting method for pricing
multi-asset American options, BIT, 56 (2016), pp. 1401–1423.

[45] N. Trask, M. Maxey, and X. Hu, A compatible high-order meshless method for the Stokes
equations with applications to suspension flows, J. Comput. Phys., 355 (2018), pp. 310–326.

[46] H. Wendland, Fast evaluation of radial basis functions : Methods based on partition of unity,
in Approximation Theory X: Wavelets, Splines, and Applications, Vanderbilt University
Press, 2002, pp. 473–483.

[47] H. Wendland, Scattered data approximation, vol. 17 of Cambridge Monographs on Applied
and Computational Mathematics, Cambridge University Press, Cambridge, 2005.

[48] H. Wendland, Divergence-free kernel methods for approximating the Stokes problem, SIAM
J. Numer. Anal., 47 (2009), pp. 3158–3179.

[49] G. B. Wright, SpherePts. https://github.com/gradywright/spherepts/, 2017.

https://github.com/gradywright/spherepts/

	1 Introduction
	2 Div/Curl-free RBFs
	2.1 Notation and preliminaries
	2.2 Div-free RBF interpolation
	2.3 Curl-free RBF interpolation

	3 A div-free/curl-free partition of unity method
	3.1 Partition of unity methods
	3.2 Description of the method
	3.3 Implementation details
	3.3.1 Patch centers
	3.3.2 Potential shifts

	4 Error Estimates
	5 Numerical experiments
	5.1 Div-free field on R2
	5.2 Div-free field on S2
	5.3 Curl-free field on the unit ball

	6 Concluding remarks
	References

