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SUMS, PRODUCTS AND DILATES ON SPARSE GRAPHS

OLIVER ROCHE-NEWTON

Abstract. Let A ⊂ R and G ⊂ A×A. We prove that, for any λ ∈ R \ {−1, 0, 1},
max{|A+G A|, |A+G λA|, |A ·G A|} ≫ |G|6/11.

1. Introduction

Given a finite set A ⊂ R and a set G ⊂ A×A, the sum set of A restricted to G is the set

A+G A := {a + b : (a, b) ∈ G}.
The restricted product set A ·G A = {ab : (a, b) ∈ G} is defined similarly. One may consider

the question of finding lower bounds for the quantity

max{|A+G A|, |A ·G A|}.
The case when G = A×A corresponds to the classical sum-product problem over R, where

the current state of the art, due to Rudnev and Stevens [12] is that the bound1

max{|A+ A|, |A · A|} ≫ |A| 43+ 2

1167
−o(1),

holds for all A ⊂ R.

For an arbitrary G ⊂ A×A, the bound

(1) max{|A+G A|, |A ·G A|} ≥ 1√
2
|G|1/2.

holds by a simple argument.2

This trivial bound cannot be improved in general, as there exists A ⊂ R and G ⊂ A× A

such that

max{|A+G A|, |A ·G A|} ≪ |G|1/2.
Consider for instance the following construction of Chang [4]:

(2) A = {
√
i±

√

j : i, j ∈ [n]}, G = {(
√
i+

√

j,
√
i−

√

j) : i, j ∈ [n]}.
1Here and throughout this paper, the notation X ≫ Y , Y ≪ X, X = Ω(Y ), and Y = O(X) are all

equivalent and mean that X ≥ cY for some absolute constant c > 0. X ≈ Y and X = Θ(Y ) denote that
both X ≫ Y and X ≪ Y hold. X ≫a Y means that the implied constant is no longer absolute, but depends
on a. We also use the notation X & Y and Y . X to denote that X ≫ Y/(log

2
Y )c for some absolute

constant c > 0.
2If |A+G A| ≤ 1

√

2
|G|1/2 then by the pigeonhole principle there is some x such that |{(a, b) ∈ G : a+ b =

x}| = t ≥
√
2|G|1/2. We have x = a1 + b1 = · · · = at + bt, (ai, bi) ∈ G But then in the multiset of products

{aibi : 1 ≤ i ≤ t}, each element occurs with multiplicity at most 2. This implies that |A·GA| ≥ t
2
≥ 1

√

2
|G|1/2.
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The sets A and G have cardinality Θ(n2). Meanwhile,

A +G A = {2
√
i : i ∈ [n]}

has cardinality n, and

A ·G A = {i− j : i, j ∈ [n]}
has cardinality O(n). In fact, a slightly different construction shows that the bound (1) is

completely tight, including the multiplicative constant 1√
2
. See the forthcoming section 1.2.

The common vernacular in these restricted sum-product problems is to view the set G

as the edge set of a bipartite graph on A × A. The graph G in example (2) is fairly small,

or sparse. Non-trivial bounds for sufficiently dense graphs are known; see, for instance, the

work of Alon, Ruzsa and Solymosi [2, Theorem 10].

1.1. Introducing a third set. Given the trivial lower bound (1) and the matching con-

struction (2), it seems there is not much more to say about sum-product estimates over R

along arbitrary (possibly sparse) graphs. One can modify the question by considering a third

set, naturally occurring in sum-product type problems. Chang [4] considered the question

of finding a lower bound for

max{|A+G A|, |A−G A|, |A ·G A|}

where A −G A := {a − b : (a, b) ∈ G}. Chang gave a small improvement to the trivial

bound for all A ⊂ Z, proving that max{|A+GA|, |A−GA|, |A ·GA|} ≫ǫ |G|1/2(log |G|)1/48−ǫ.

However, she also showed that a non-trivial bound is impossible for A ⊂ R. Indeed, for the

same example (2) above we have A−G A = {2√j : j ∈ [n]} and thus

(3) |A+G A|, |A−G A|, |A ·G A| ≪ |G|1/2.

The aim of this paper is to show that a non-trivial bound can be obtained for a small

perturbation of this problem. Consider the set

A+G λA := {a + λb : (a, b) ∈ G},

where λ is some non-zero real number. The case λ = −1 corresponds to the restricted

difference set A−G A. The main result of this note shows that this value −1, giving rise to

the situation in (3), is special, and that a non-trivial bound holds for any other λ.

Theorem 1.1. Let A,B ⊂ R, G ⊂ A×B, and λ ∈ R \ {−1, 0, 1}. Then

max{|A+G B|, |A+G λB|, |A ·G B|} ≫ |G|6/11.

Our primary interest is in the case when A = B, but note that the result also holds in the

asymmetric case when sums and products of two different sets are considered. Furthermore,

the result can be extended to the setting of C by instead using a complex analogue of the

forthcoming Theorem 2.1.
2



1.2. Integers versus reals. The fact that a non-trivial bound holds for

max{|A +G A|, |A −G A|, |A ·G A|} when A ⊂ Z, but does not for A ⊂ R, highlights an

interesting distinction between the sum-product problems in the real and integer settings. A

similar situation occurs for the problem of bounding max{|A +G A|, |A ·G A|}. Conditional

on the Uniformity Conjecture, the non-trivial bound

(4) max{|A+G B|, |A ·G B|} ≫ |G|3/5,
implicit in the work of Shkredov and Solymosi [13], holds for any A,B ⊂ Z and G ⊂ A×B.

This builds on work of Alon et al. [1]. See also [8] for applications of the Uniformity

Conjecture to sum-product problems on sparse graphs.

The previous construction (2) shows that the bound (4) does not hold for all A ⊂ R.

However, one can build such sets by considering the following picture.

Figure 1. n lines, and n hyperbolas of the form xy = c (in this illustration we
just show the positive quadrant). The intersection points make a set G ⊂ A×B
with the property that |A+G B|, |A ·G B| ≪ |G|1/2.

This illustration shows n parallel lines with slope −1, and n hyperbolas with equation

xy = c. Each line intersects each hyperbola in two points, and so these objects intersect

pairwise to give a set G of 2n2 points. We can write G ⊂ A × B for some A,B ⊂ R. A is

simply the projection of the point set G onto the x-axis, and likewise B is the projection

onto the y-axis. However, by construction,

|A+G B| = n.

This is because the elements of A +G B correspond precisely with the n parallel lines in

the picture. Similarly, the elements of A ·G B are in bijection with the n hyperbolas. We
3



conclude that

|A+G B|, |A ·G B| = 1√
2
|G|1/2.

1.3. Structure of the rest of this paper. The next section describes the main tool to be

used throughout this paper, which is a bound for the Elekes-Szabó problem from [11]. In

section 3, the proof of Theorem 1.1 is given. Section 4 describes a non-trivial construction

which shows that the exponent 6/11 in Theorem 1.1 cannot be improved beyond 3/4. Section

5 considers some variants of the main problem using different combinations of three sets.

We give a construction for one such problem, which shows that a non-trivial lower bound is

impossible, and indicate a variant for which an analogue of Theorem 1.1 does hold. Finally,

in section 6, we use a similar argument to prove a new bound for max{|A +G A|, |A ·G A|}.
This result is non-trivial for |G| ≥ |A|3/2, a broader range of values than was previously

known, and improves a result of Alon, Ruzsa and Solymosi [2] for |G| ≤ |A|11/6.

2. The Elekes-Szabó Problem

The proof of Theorem 1.1 uses theory developed to tackle what we call Elekes-Szabó type

problems, first considered in [6] and [7]. Given a polynomial F ∈ R[x, y, z], let Z(F ) denote

the zero set of F ;

Z(F ) := {(x, y, z) ∈ R
3 : F (x, y, z) = 0}.

For arbitrary sets A,B,C of the same cardinality n, Elekes and Szabó proved a non-trivial

bound

|Z(F ) ∩A× B × C| ≪ n2−c

for some positive constant c, provided that F is non-degenerate.

Definition. A polynomial F ∈ R[x, y, z] is degenerate if there exists a one-dimensional sub-

variety Z0 ⊆ Z(F ) such that for all v ∈ Z(F ) \ Z0, there are open intervals I1, I2, I3 ⊆ R

and injective real-analytic functions φi : Ii → R with real-analytic inverses (i = 1, 2, 3) such

that v ∈ I1 × I2 × I3 and for any (x, y, z) ∈ I1 × I2 × I3, we have

(x, y, z) ∈ Z(F ) if and only if φ1(x) + φ2(y) + φ3(z) = 0 .

Otherwise, we say that F is non-degenerate.

Some simple examples of degenerate polynomials are F (x, y, z) = x+y+z, G(x, y, z) = xyz

and H(x, y, z) = x2 + y3 + z17. Meanwhile, for instance, F (x, y, z) = (x − y)2 + x + z is

non-degenerate (see [9] for a simple construction showing that this polynomial can have a

relatively large intersection with a Cartesian product).

Quantitative advances on the work of Elekes and Szabó have been attained in the inter-

vening years, often motivated by applications in discrete geometry. We will make use of the

following result of Raz, Sharir and de Zeeuw [11].
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Theorem 2.1. Let F ∈ R[x, y, z] be a non-degenerate irreducible polynomial of degree d,

such that none of the partial derivatives ∂F
∂x
, ∂F
∂y
, ∂F
∂z

vanish. Then for all A,B,C ⊆ R we

have

(5) |Z(F ) ∩ (A× B × C)| = Od(|A|1/2|B|2/3|C|2/3 + |A|1/2(|A|1/2 + |B|+ |C|)).

In practice, it is not always easy to check that a given polynomial is non-degenerate. To

help with this task, we will use an idea introduced by Elekes and Rónyai [6], which is that

non-degeneracy can be verified using the following derivative test; see [7, Lemma 33] or [14,

Lemma 2.2].

Lemma 2.2. Let f : R2 → R be a smooth function on some open set U ⊂ R2 with fx and

fy not identically zero. There exist smooth functions ψ, ϕ1, ϕ2 on U such that

f(x, y) = ψ(ϕ1(x) + ϕ2(y)),

if and only if

(6)
∂2 (log |fx/fy|)

∂x∂y

is identically zero on U .

In practice, Lemma 2.2 allows us to test the whether or not the polynomial F (x, y, z) is

degenerate by rearranging the expression F (x, y, z) = 0 into the form z = f(x, y) (if this is

possible), computing the resulting expression (6), and checking whether it is identically zero

on an open set.

For the case when the expression F (x, y, z) = 0 can already be rearranged into the form

z = f(x, y) where f is a polynomial, the definition of non-degeneracy becomes more straight-

forward. See [10, Theorem 2]. For some applications in this paper, [10, Theorem 2] would

be sufficient, and non-degeneracy can instead be checked by some elementary combinatorial

arguments which use less algebraic theory. However, there are some cases where the results

of [10] do not immediately give us what we need, and so we use Theorem 2.1 throughout in

order to present a unified approach.

3. Proof of Theorem 1.1

Write

C := A+G B, D := A+G λB, E := A ·G B.
We will double count solutions to the system of equations

c = a+ b(7)

d = a+ λb(8)

e = ab,(9)

5



such that (a, b) ∈ G and (c, d, e) ∈ C ×D × E. Define S to be the number of solutions to

this system. A simple observation is that

(10) S = |G|

since each pair (a, b) ∈ G gives rise to a unique solution.

We seek to find a complementary upper bound for S via an application of Theorem 2.1.

We can eliminate a and b from the system above. Together, (7) and (8) imply that

b =
1

1− λ
(c− d), a =

1

1− λ
(d− λc).

Note that the assumption that λ 6= 1 is used here to ensure that these expressions are well

defined. Substituting this information into (9) gives

(11) e =

(

1

1− λ

)2

(c− d)(d− λc).

Define

F (X, Y, Z) =

(

1

1− λ

)2

(X − Y )(Y − λX)− Z.

We have thus deduced that every contribution (a, b, c, d, e) to S gives rise to a solution (c, d, e)

to the equation F (c, d, e) = 0. Furthermore, no triple (c, d, e) contributes more than once to

S, since for fixed c and e there exists at most one pair (a, b) which satisfies both (7) and (9).

Therefore, we have

(12) S ≤ |Z(F ) ∩ C ×D ×E|.

Note also that F is irreducible since the Z term appears in isolation.

Claim. F is non-degenerate.

Assuming that the claim is correct, we can apply Theorem 2.1 to obtain the upper bound

|Z(F ) ∩ C ×D × E| ≪ |C|1/2|D|2/3|E|2/3 + |C|1/2(|C|1/2 + |D|+ |E|).

Combining this with (12) and (10), we have

|G| ≪ |C|1/2|D|2/3|E|2/3 + |C|1/2(|C|1/2 + |D|+ |E|)

and it follows that

max{|C|, |D|, |E|} ≫ |G|6/11,
as required. It remains to prove the claim.

Proof of Claim. Proof by contradiction. Suppose that F (X, Y, Z) is degenerate. Then there

is some open neighbourhood I1 × I2 × I3 intersecting Z(F ), such that F (X, Y, Z) = 0 if and

only if ϕ1(X) + ϕ2(Y ) + ϕ3(Z) = 0, for some smooth functions ϕ1, ϕ2 and ϕ3 with smooth

inverses. Then, since ϕ3 has a smooth inverse on I3, we can write ψ(t) = ϕ−1
3 (−t), so that

6



F (X, Y, Z) = 0 is equivalent to Z = ψ(ϕ1(X) + ϕ2(Y )). On the other hand, F (X, Y, Z) = 0

can be rearranged into the form

Z =

(

1

1− λ

)2

(X − Y )(Y − λX),

so there is an open set U ⊂ I1 × I2 on which we have

ψ(ϕ1(X) + ϕ2(Y )) =

(

1

1− λ

)2

(X − Y )(Y − λX).

Write

f(X, Y ) =

(

1

1− λ

)2

(X − Y )(Y − λX).

Lemma 2.2 then informs us that

(13)
∂2 (log |fX/fY |)

∂X∂Y

is identically zero on U . We can calculate (13) directly and obtain a contradiction. Indeed,

log |fX/fY | = log

∣

∣

∣

∣

−2λX + Y + λY

−2Y +X + λX

∣

∣

∣

∣

= log | − 2λX + (1 + λ)Y | − log | − 2Y + (1 + λ)X|,

and so

∂2 (log |fX/fY |)
∂X∂Y

=
∂

∂X

(

1 + λ

−2λX + (1 + λ)Y
+

2

−2Y + (1 + λ)X

)

=
2λ(1 + λ)

(−2λX + (1 + λ)Y )2
− 2(1 + λ)

(−2Y + (1 + λ)X)2
.

A rearrangement of the latter expression is

(14) [2(1 + λ)(4λ− (1 + λ)2)]
Y 2 − λX2

(−2λX + (1 + λ)Y )2(−2Y + (1 + λ)X)2
.

The assumption that λ 6= 1,−1 means that the expression is square brackets is non-zero.

Therefore, (14) equals zero only when Y 2 = λX2, so it does not vanish on any nontrivial

open set. This gives the required contradiction, which completes the proof of the claim and

also the theorem. �

Note that in this proof we did not use the hypothesis that λ 6= 0. In fact, Theorem

1.1 holds for the case λ = 0, if we define A +G 0B to be the set {a + 0b : (a, b) ∈ G} =

{a : ∃b, (a, b) ∈ G}.

4. Small max{|A+G A|, |A+G λA|, |A ·G A|}

The following construction shows that the exponent 6/11 in Theorem 1.1 cannot be im-

proved beyond 3/4. The construction is taken from a recent paper of Alon, Ruzsa and Soly-

mosi [3], where it was used to illustrate limitations to the growth of max{|A+GA|, |A ·GA|}.
It applies verbatim to the problem of bounding max{|A+G A|, |A+G λA|, |A ·G A|}, and we

include the details for the completeness of this paper.
7



Theorem 4.1. For any n ∈ N and λ ∈ Z, there exists a set A ⊂ R with |A| = n and

G ⊂ A× A such that |G| & n8/5 and

(15) max{|A+G A|, |A+G λA|, |A ·G A|} . n6/5.

In particular,

(16) max{|A+G A|, |A+G λA|, |A ·G A|} . |G|3/4.

Proof. Let n ∈ N and define

A :=

{

u
√
v√
w

: u, v, w are distinct primes, v, w ≤ n1/5, u ≤ n3/5

}

.

Note that u
√
v√
w

= u′
√
v
′

√
w′ if and only if (u, v, w) = (u′, v′, w′), and so |A| & n. Define

G :=

{(

u
√
v√
w
,
z
√
w√
v

)

: v, w, u, z are distinct primes, v, w ≤ n1/5, u, z ≤ n3/5

}

and observe that |G| & n8/5. It remains to check that |A+G A|, |A+G λA|, |A ·G A| . n6/5.

• Note that

A +G A ⊂
{

uv + zw√
vw

: u, v, w, z ∈ N, v, w ≤ n1/5, u, z ≤ n3/5

}

.

There are at most 2n4/5 possible values for the numerator and at most n2/5 possible

values for the denominator. Thus |A+G A| ≪ n6/5.

• As above,

A+G λA ⊂
{

uv + λzw√
vw

: u, v, w, z ∈ N, v, w ≤ n1/5, u, z ≤ n3/5

}

,

and thus |A+G λA| ≪λ n
6/5.

• We have

A ·G A ⊂ {uz : u, z ∈ N, u, z ≤ n3/5}
and so |A ·G A| ≤ n6/5.

�

5. Other sum-product type questions with three sets along graphs

5.1. Products cannot be replaced with ratios. The statement of Theorem 1.1 is rather

sensitive to apparently small changes. The next result shows that we cannot replace the

product set with the ratio set and still obtain a non-trivial result. Given A,B ⊂ R and

G ⊂ A× B, define the ratio set of A and B along G to be

A/GB := {a/b : (a, b) ∈ G}.
8



Theorem 5.1. For any n ∈ N and λ ∈ R \ {0}, there exists G ⊂ X × Y with |G| = n2 such

that

(17) max{|X +G Y |, |X +G λY |, |X/GY |} ≪ n.

In particular, max{|X +G Y |, |X +G λY |, |X/GY |} ≪ |G|1/2.

Proof. Let A = {2i : i ≤ n} and P = A× A. In the projective plane, we have three pencils

of O(n) lines which cover P ; the pencil of horizontal lines (intersecting at a common point

on the line at infinity) which we label as L1, the pencil of vertical lines, labelled L2, and the

pencil of lines through the origin, labelled L3.

For any two triples p1, p2, p3 and q1, q2, q3 of non-collinear points in the projective plane,

there exists a projective transformation π such that π(pi) = qi for i = 1, 2, 3. We can thus

find a projective transformation π such that

• π(L1) is a pencil of parallel lines with slope −1,

• π(L2) is a pencil of parallel lines with slope −1/λ,

• π(L3) is (still) a pencil of lines through the origin.

Moreover, since projective transformations preserve incidence structure, each of these three

pencils of size O(n) covers the set π(P ). Label G := π(P ) and note that G ⊂ X × Y for

some sets X, Y ⊂ R.

The elements of the pencil π(L1) are in bijection with X +G Y , and so |X +G Y | ≤ n.

Similarly, there is a bijection from π(L2) to X +G λY and from π(L3) to X/GY .

�

By computing the projective transformation π in the previous proof explicitly, we can also

explicitly describe the construction of the sets X , Y and G given by Theorem 5.1. Define

X = {2i + λ2j : i, j ∈ N, i, j ≤ n},
Y = {−2k − 2l : k, l ∈ N, k, l ≤ n},
G = {(2i + λ2j,−2i − 2j) : i, j ∈ N, i, j ≤ n}.

Note that |G| = n2 and |X +G Y |, |X +G λY | = n = |G|1/2. Meanwhile,

X/GY =

{

−1 + λ2j−i

1 + 2j−i
: i, j ∈ N, i, j ≤ n

}

.

There are 2n− 1 values of j − i, and so |X/GY | ≤ 2n− 1 ≪ |G|1/2.

5.2. A variant of Theorem 1.1. Theorem 5.1 shows the limitations to possible generali-

sations of Theorem 1.1. On the other hand, there do exist some natural sum-product type

statements which can be derived by small modifications of the proof of Theorem 1.1. We

present once such an example here.
9



Theorem 5.2. Let A,B ⊂ R and G ⊂ A× B. Let α, β ∈ R with α 6= β. Then

(18) max{|A+G B|, |A ·G B|, |(A+ α) ·G (B + β)|} ≫ |G|6/11

We omit the proof of Theorem 5.2 since it largely repeats the arguments used to prove

Theorem 1.1. The main difference is that the polynomial F (X, Y, Z) in the proof is more

complicated than the corresponding polynomial appearing in the proof of Theorem 1.1, and

so is the task of checking the non-degeneracy conditions for this F .

All three sets are needed to get a non-trivial bound in Theorem 5.2. Consider the following

example, in the same spirit as the construction from section 1.2, for which

max{|A ·G B|, |(A+ α) ·G (B + β)|} < |G|1/2.

Let C,D ⊂ R be arbitrary sets of cardinality n, and consider two sets of hyperbolae

H1 := {xy = c : c ∈ C}, H2 := {(x+ α)(y + β) = d : d ∈ D}.

Let G be the set of all intersection points of two hyperbolas, one from each of the two

families. For suitable choices of C and D, all of these pairs of hyperbolas intersect in two

points, and so |G| = 2n2. We have G ⊂ A× B for some A,B ⊂ R. By construction,

A ·G B = C, and (A+ α) ·G (B + β) = D,

so that |A ·G B|, |(A+ α) ·G (B + β)| = 1√
2
|G|1/2.

On the other hand, the condition in Theorem 5.2 that α 6= β may not be necessary. It

is conceivable that the more relaxed condition that at least one of α or β is non zero is

sufficient to reach the conclusion (18) of Theorem 5.2.

6. Just sums and products

There exist unconditional non-trivial lower bounds for max{|A +G A|, |A ·G A|} for suffi-

ciently dense graphs G. Alon, Ruzsa and Solymosi [2] proved that

(19) max{|A+G A|, |A ·G A|} ≫ |G|3/2
|A|7/4 ,

and it follows from this that max{|A+GA|, |A·GA|} ≫ |G|1/2+ǫ provided that |G| ≫ |A|7/4+ǫ′.

The argument in [2] is a modification of Elekes’s [5] proof of a sum-product estimate using

a single application of the Szemerédi-Trotter Theorem.

We can also use Theorem 2.1 to give an alternative bound for max{|A +G A|, |A ·G A|}.
In the case when A = B, the following result gives an improvement to (19) when |G| =
o(|A|11/6), and extends the range of sizes of G for which we can obtain a non-trivial bound

max{|A+G B|, |A ·G B|} ≥ |G|1/2+c.
10



Theorem 6.1. Let A,B ⊂ R and let G ⊂ A× B. Then

(20) max{|A+G B|, |A ·G B|} ≫ |G|3/4
|A|3/8 .

In particular, for any ǫ > 0,

(21) |G| ≥ |A|3/2+ǫ ⇒ max{|A+G B|, |A ·G B|} ≫ |G|1/2+ǫ′,

where ǫ′ = 4ǫ
24+16ǫ

.

Proof. The statement of (21) follows from (20), and hence it suffices to prove (20). Also, we

may assume that |G| ≥ c|A|, where c is a (sufficiently large) fixed constant. This is because

the bound (20) is worse than trivial when |G| ≪ |A|, and so certainly true.

Write

C := A+G B, D := A ·G B.
We will double count solutions to the system of equations

c = a+ b(22)

d = ab,(23)

such that (a, b) ∈ G and (c, d) ∈ C × D. Define S to be the number of solutions to this

system. Once again,

(24) S = |G|,
since each pair (a, b) ∈ G gives rise to a unique solution.

We can eliminate b from the system above, and deduce that every contribution (a, b, c, d)

to S gives rise to a solution (a, c, d) to the equation F (a, c, d) = 0, where

F (X, Y, Z) = X(Y −X)− Z.

We thus have S ≤ |Z(F ) ∩ A × C × D|. Note that F is irreducible, since Z appears only

as an isolated linear term. We claim that F is non-degenerate. Assuming the claim, it then

follows from Theorem 2.1 and (24) that

(25) |G| ≪ |A|1/2|C|2/3|D|2/3 + |A|+ |C||A|1/2 + |D||A|1/2.
If the first term from the right hand side of (25) is dominant then

max{|C|, |D|} ≫ |G|3/4
|A|3/8 ,

as required. The assumption that |G| ≥ c|A| implies that |A| cannot dominate the right-hand

side. We are then left with the case whereby one of the last two terms of (25) dominates.

But then

max{|C|, |D|} ≫ |G|
|A|1/2 ≫ |G|3/4

|A|3/8 ,

where the last inequality follows (with room to spare) from the assumption that |G| ≥ c|A|.
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It remains to check that F is non-degenerate. Define f(X, Y ) = X(Y − X). As in the

proof of Theorem 1.1, we need to show that

∂2 (log |fX/fY |)
∂X∂Y

is not identically zero on any open set. It can be calculated that

∂2 (log |fX/fY |)
∂X∂Y

=
2

(Y − 2X)2
.

This is never zero, and therefore F is indeed non-degenerate. �
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