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The connections between Lyapunov functions for some
optimization algorithms and differential equations.

J. M. Sanz Serna 1 Konstantinos C. Zygalakis2

January 12, 2021

Abstract

In this manuscript we study the properties of a family of a second order differential equations with damping, its
discretizations and their connections with accelerated optimization algorithms for m-strongly convex and L-smooth
functions. In particular, using the Linear Matrix Inequality (LMI) framework developed by Fazlyab et. al. (2018),
we derive analytically a (discrete) Lyapunov function for a two-parameter family of Nesterov optimization methods,
which allows for the complete characterization of their convergence rate. In the appropriate limit, this family of
methods may be seen as a discretization of a family of second order ordinary differential equations for which we
construct (continuous) Lyapunov functions by means of the LMI framework. The continuous Lyapunov functions
may alternatively be obtained by studying the limiting behaviour of their discrete counterparts. Finally, we show that
the majority of typical discretizations of the of the family of ODEs, such as the Heavy ball method, do not possess
Lyapunov functions with properties similar to those of the Lyapunov function constructed here for the Nesterov
method.

1 Introduction
This paper studies Lyapunov functions for differential equations with damping, their discretizations, and optimization
algorithms.

The simplest algorithm for solving
min
x∈Rd

f(x)

is the gradient descent (GD) method
xk+1 = xk − αk∇f(xk),

which is of course the result of applying Euler’s rule, with step-size αk > 0, to the gradient system

dx

dt
= −∇f(x), x(0) = x0.

The value of f decreases along solutions x(t) of this system and, correspondingly, it may be hoped that, for GD,
f(xk+1) ≤ f(xk) for sufficiently small αk. In fact, that is the case for αk < 2/L if f is L-smooth, i.e. if∇f(x) is L-
Lipschitz continuous. In this paper we are mainly interested in problems where f belongs the set Fm,L of m-strongly
convex and L-smooth functions, a class that plays an important role in optimization [19]. For f in this class and the
constant step-size α = 2/(m+ L), GD has a bound [19, Theorem 2.1.15]

f(xk)− f(x?) ≤ L

2

(
1− 1/κ

1 + 1/κ

)2k

‖x0 − x?‖2, (1.1)

where x? is the (unique) minimizer of f and κ = L/m ≥ 1 is the condition number of f .
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The 1−O(1/κ) rate of decay in f in the preceding bound is unsatisfactory because in many applications of interest
one has κ � 1. It is possible to improve on GD by resorting to accelerated algorithms with rates 1 − O(1/

√
κ); for

instance, for the method

xk+1 = yk −
1

L
∇f(yk), (1.2a)

yk = xk +
1−

√
1/κ

1 +
√

1/κ
(xk − xk−1), (1.2b)

introduced by Nesterov, it may be shown [19, Theorem 2.2.3] that, if y0 = x0,

f(xk)− f(x?) ≤
(

1−
√

1/κ
)k (

f(x0)− f(x?) +
m

2
‖x0 − x?‖2

)
. (1.3)

The factor 1 −
√

1/κ here is close to the optimal possible factor (1 −
√

1/κ)2/(1 +
√

1/κ)2 one can achieve for
minimization algorithms when f ∈ Fm,L [19, Theorem 2.1.13]. The algorithm (1.2) is also related to ODEs, because
it may be seen as a discretization of of the Polyak damped oscillator equation [22]

ẍ+ 2
√
mẋ+∇f(x) = 0, (1.4)

whose solutions x(t) approach x? as t→∞ if f is m-strongly convex [32, Proposition 3].
In recent years, there has been a revived interest, beginning with [30], in the connections between differential

equations and optimization algorithms (see also [26]). In particular, there has been several papers (see e.g. [31, 13])
that proposed accelerated algorithms, both in Euclidean and non- Euclidean geometry, based on discretizations of
second order dissipative ODEs. The structure of these ODEs and the fact that they can been viewed as describing
Hamiltonian systems with dissipation, led to a number of research works that tried to construct or explain optimization
algorithms using concepts such as shadowing [20], symplecticity [2, 4, 17, 18, 29], discrete gradients [7], and backward
error analysis [9].

A common feature of the analysis presented in many of the papers mentioned above was the construction of a
discrete Lyapunov function that was used in order to deduce the convergence rate of the underlying algorithm. In [32]
a general analysis of optimization methods based on the derivation of Lyapunov functions that mimic ODE Lyapunov
functions was carried out; that paper presents a Lyapunov function for (1.4). A Lyapunov function for (1.2) may
be seen in [14], where it was also used to study stochastic versions of the algorithm. The paper [28], among other
contributions, constructs a Lyapunov function for a one-parameter family of optimization algorithms that includes (1.2)
as a particular case. Outside the field of optimization, Lyapunov functions are important in establishing ergodicity of
random dynamical systems [25], as well as ergodicity of Markov Chain Monte Carlo algorithms, see for example
[16, 3]. The construction of Lyapunov functions for optimization algorithms from the perspective of control theory
was the subject of study in [8]. The authors extend the work in [15] and derive Linear Matrix Inequalities (LMIs)
that guarantee the existence of suitable Lyapunov functions that may be used to establish the convergence rate of the
algorithm under study. In addition, [8] develops an LMI framework to construct Lyapunov functions for systems of
ODEs. Typically, the LMIs that appear in this context have been solved numerically in the literature.

In this work,

1. For f ∈ Fm,L, we use the LMI framework from [8] to derive analytically Lyapunov functions for a two-
parameter family of Nesterov optimization methods (see (3.1) below); this family includes the one-parameter
family of algorithms in [28]. In this way we find, as a function of the two parameters in (3.1), a convergence
rate for the methods in the family. It turns out that the best convergence rate is achieved when the parameters
are chosen as in (1.2). The relation between the Lyapunov function constructed in the present work and its
counterpart in [28] is discussed in Remark 3.5.

2. By taking an appropriate limit of the parameters as in e.g. [27, 2, 28, 4, 17, 18, 29, 9] the optimization algorithms
in the family may be seen as discretizations of second-order ODEs of the form

ẍ+ b̄
√
mẋ+∇f(x) = 0, (1.5)
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where b̄ > 0 is a friction parameter. We obtain analytically Lyapunov functions for (1.5) and determine, as a
function of b̄, a convergence rate of f to f(x?) along solutions x(t). We prove that the value b̄ = 2 in the Polyak
ODE (1.4) yields the optimal convergence rate if f is m-strongly convex. Additionally we show that if one is
to take explicitly into account the value of L into this calculation, the optimal value of b̄ becomes strictly larger
than 2 and yields slightly better convergence rates.

3. We show that, in the limit where the optimization algorithms approximate the ODEs, the discrete Lyapunov
functions converge to the ODE Lyapunov function. Using this correspondence we show, by means of the Heavy
Ball method [22] and other examples, that typically, optimization algorithms that are discretizations of (1.5)
do not possess discrete Lyapunov functions that mimic the Lyapunov function of the differential equation in
item 2 above and lead to acceleration. This emphasizes the well-known fact that, when designing optimization
methods, it is not sufficient to ensure that the algorithm may be seen as a consistent discretization of a well-
behaved ODE. Unfortunately, discretizations do not necessarily inherit the good long-time properties of the
differential equation, as seen for example in the case of discretization of gradient flows [23], and Hamiltonian
problems [24].

The rest of the paper is organized as follows. In Section 2 we briefly review the approach in [8] that provides
a basis for our constructions. In Section 3 we find analytically Lyapunov functions/rates of convergence for a two-
parameter family of optimization methods that contains (1.2) as a particular case. Section 4 analyzes the ODE (1.5)
and Section 5 studies the connection between the discrete and continuous Lyapunov functions. The Heavy Ball method
and other methods that do not possess suitable Lyapunov functions are discussed in Section 6. Finally, we present in
the appendix the calculations that allows us to deduce that while the choice b̄ = 2 in (1.5) is optimal if f is only
assumed to bem-strongly convex, slightly better rates of convergence may be achieved for f ∈ Fm,L by taking b̄ > 2.

2 Preliminaries
We will now briefly describe the framework introduced in [8] for the construction of Lyapunov functions of optimiza-
tion methods and differential equations. The presentation here is adapted from the material in [8] to suit our specific
needs.

Remark 2.1. The following material is limited to results needed to study strongly convex optimization. However the
LMI approach in [8] also works in convex optimization.

2.1 Optimization methods
Optimization algorithms can often be represented as linear dynamical systems interacting with one or more static
nonlinearities (see [15]). In this paper we will consider first-order algorithms that have the following state-space
representation

ξk+1 = Aξk +Buk, (2.1a)
uk = ∇f(yk), (2.1b)
yk = Cξk, (2.1c)
xk = Eξk, (2.1d)

where ξk ∈ Rn is the state, uk ∈ Rd is the input (d ≤ n), yk ∈ Rd is the feedback output that is mapped to uk by the
nonlinear map∇f . From the perspective of the optimization, xk is the approximation to the mimimizer x?.

As example, consider algorithms of the well-known form ([15, 8])

xk+1 = xk + β(xk − xk−1)− α∇f(yk), (2.2a)
yk = xk + γ(xk − xk−1), (2.2b)

3



where α > 0, β, γ are scalar parameters that specify the algorithm within the family. For β = γ = 0 we recover GD.
For β = γ, we have Nesterov’s method; (1.2) corresponds to a particular choice of α and β. The Heavy Ball method
has γ = 0, β 6= 0. By defining the state vector ξk = [xTk−1, x

T
k ]T ∈ R2d we can represent (2.2) in the form (2.1) with

the matrices A,B,C,E given by

A =

[
0 Id
−βId (β + 1)Id

]
, B =

[
0
−αId

]
, C =

[
−γId (γ + 1)Id

]
, E =

[
0 Id

]
.

Fixed points of (2.1) satisfy

ξ? = Aξ? +Bu?, y? = Cξ?, u? = ∇f(y?), x? = Eξ?;

in the optimization context u? = 0, and y? = x? is the minimizer sought.
To study the convergence rate of optimization algorithms, [8] considers functions of the form

Vk(ξ) = ρ−2k
(
a0(f(x)− f(x?)) + (ξ − ξ?)TP (ξ − ξ?)

)
, (2.3)

where a0 > 0 and P is positive semi-definite (denoted by P � 0). If along the trajectories of (2.1)

Vk+1(ξk+1) ≤ Vk(ξk), (2.4)

we can conclude that ρ−2ka0(f(xk)− f(x?)) ≤ Vk(ξk) ≤ V0(ξ0) or

f(xk)− f(x?) ≤ ρ2k V0(ξ0)

a0
.

If ρ < 1, we have found a convergence rate for f(xk) towards the optimal value f(x?). The following theorem
defines an LMI that, when f ∈ Fm,L, guarantees that the property (2.4) holds and therefore (2.3) provides a Lyapunov
function for the system .

Theorem 2.2. (Theorem 3.2 in [8].) Suppose that, for (2.1), there exist a0 > 0, P � 0, ` > 0, and ρ ∈ [0, 1) such that

T = M (0) + a0ρ
2M (1) + a0(1− ρ2)M (2) + `M (3) � 0, (2.5)

where

M (0) =

[
ATPA− ρ2P ATPB

BTPA BTPB

]
,

and
M (1) = N (1) +N (2), M (2) = N (1) +N (3), M (3) = N (4),

with

N (1) =

[
EA− C EB

0 Id

]T [L
2 Id

1
2Id

1
2Id 0

] [
EA− C EB

0 Id

]
,

N (2) =

[
C − E 0

0 Id

]T [−m2 Id 1
2Id

1
2Id 0

] [
C − E 0

0 Id

]
,

N (3) =

[
CT 0
0 Id

] [
−m2 Id

1
2Id

1
2Id 0

] [
C 0
0 Id

]
,

N (4) =

[
CT 0
0 Id

] [
− mL
m+LId

1
2Id

1
2Id − 1

m+LId

] [
C 0
0 Id

]
.

Then, for f ∈ Fm,L, the sequence {xk} satisfies

f(xk)− f(x?) ≤ a0(f(x0)− f(x?)) + (ξ0 − ξ?)TP (ξ0 − ξ?)
a0

ρ2k.

4



2.2 Continuous-time systems
We also consider continuous-time dynamical systems in state space form (throughout the paper we often use a bar
over symbols related to ODEs)

ξ̇(t) = Āξ(t) + B̄u(t), y(t) = C̄ξ(t), u(t) = ∇f(y(t)) for all t ≥ 0 (2.6)

where ξ(t) ∈ Rn is the state, y(t) ∈ Rd(d ≤ n) the output, and u(t) = ∇f(y(t)) the continuous feedback input.
Fixed points of (2.6) satisfy

0 = Āξ?, y? = C̄ξ?, u? = ∇f(y?);

in our context u? = 0 and y? = x?. We can replicate the convergence analysis of the discrete case using now functions
of the form

V̄ (ξ(t)) = eλt
(
f(y(t))− f(y?) + (ξ(t)− ξ?)TP̄ (ξ(t)− ξ?)

)
, (2.7)

where λ > 0. If P̄ � 0 and, along solutions, (d/dt)V̄ (ξ(t)) ≤ 0, then we have V̄ (ξ(t)) ≤ V̄ (ξ(0)) which in turns
implies

f(y(t))− f(y?) ≤ e−λtV̄ (ξ(0)).

The following theorem similarly to the discrete time case, formulates an LMI that guarantees the existence of such
a Lyapunov function.

Theorem 2.3. Suppose that, for (2.6), there exist λ > 0, P̄ � 0, and σ ≥ 0 that satisfy

T̄ = M̄ (0) + M̄ (1) + λM̄ (2) + σM̄ (3) � 0 (2.8)

where

M̄ (0) =

[
P̄ Ā+ ĀTP̄ + λP̄ P̄ B̄

B̄TP̄ 0

]
,

M̄ (1) =
1

2

[
0 (C̄Ā)T

C̄Ā C̄B̄ + B̄TC̄T

]
,

M̄ (2) =

[
C̄T 0
0 Id

] [
−m2 Id

1
2Id

1
2Id 0

] [
C̄ 0
0 Id

]
,

M̄ (3) =

[
C̄T 0
0 Id

] [
− mL
m+LId

1
2Id,

1
2Id − 1

m+LId

] [
C̄ 0
0 Id

]
.

Then the following inequality holds for f ∈ Fm,L, t ≥ 0,

f(y(t))− f(y?) ≤ e−λt
(
f(y(0))− f(y?) + (ξ(0)− ξ?)TP̄ (ξ(0)− ξ?)

)
.

3 A Lyapunov function for Nesterov’s optimization algorithm
We study the optimization method (cf. (2.2))

xk+1 = xk + β(xk − xk−1)− α∇f(yk), (3.1a)
yk = xk + β(xk − xk−1), (3.1b)

k = 0, 1, . . ., with parameters α > 0 and β. As noted before, the choice β = 0 gives GD and β 6= 0 corresponds to
Nesterov’s accelerated algorithm.
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3.1 The construction
After introducing

δ =
√
mα,

and the divided difference, k = 0, 1, . . .,

dk =
1

δ
(xk − xk−1), (3.2)

the recursion (3.1) may be rewritten (k = 0, 1, . . .)

dk+1 = βdk −
α

δ
∇f(yk), (3.3a)

xk+1 = xk + δβdk − α∇f(yk), (3.3b)
yk = xk + δβdk. (3.3c)

Remark 3.1. For future reference, it is useful to observe that, from a dimensional analysis point of view, m, L and
1/α have the dimensions of the quotient f/‖x‖2. Therefore δ is a non-dimensional version of

√
α. The parameter β

is non-dimensional. The divided difference (3.2) shares the dimensions of x.

Equation (3.3) can now be written in the form (2.1) with ξk = [dTk , x
T
k ]T ∈ R2d and

A =

[
βId 0
δβId Id

]
, B =

[
−(α/δ)Id
−αId

]
, C =

[
δβId Id

]
, E =

[
0 Id

]
. (3.4)

In the preceding section, as in [8], the state ξk was taken to be [xTk−1, x
T
k ]T rather than [dTk , x

T
k ]T. While both

choices are of course mathematically equivalent, the new ξk is more convenient for our purposes. In addition, when
looking numerically for Lyapunov functions by solving LMIs, it leads to problems that are better conditioned for large
condition numbers κ.

Remark 3.2. For β = 0 (gradient descent), the first equation in (3.3) is a reformulation of the second: it would be
more natural to use the simpler state ξk = xk.

According to Theorem 2.2, in order to find a Lyapunov function of the form (2.3), it is sufficient to find a matrix
P � 0 and numbers a0 > 0, 0 < ρ < 1, ` ≥ 0, such that the matrix T in (2.5) is negative semi-definite. At the outset,
we choose ` = 0 in order to simplify the subsequent analysis. As we will discuss in the Appendix, this simplification
does not have a significant impact on the value of the convergence rate ρ that results from the analysis. With ` = 0,
(2.5) is homogeneous in P and a0 and we may divide accross by a0. In other words, without loss of generality, we
may take a0 = 1. Then T is a function of P and ρ (and the method parameters β and δ).

The matrix A in (3.4) is a Kronecker product of a 2× 2 matrix and Id,

A =

[
β 0
δβ 1

]
⊗ Id;

the factor Id originates from the dimensionality of the decision variable x and the 2× 2 factor is independent of d and
arises from the optimization algorithm. The matrices B, C and E have a similar Kronecker product structure. It is
then natural to consider symmetric matrices P of the form

P = P̂ ⊗ Id, P̂ =

[
p11 p12

p12 p22

]
, (3.5)

and then T will also have a Kronecker product structure

T = T̂ ⊗ Id, T̂ =

t11 t12 t13

t12 t22 t23

t13 t23 t33

 , (3.6)
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where the tij are explicitly given by the following complicated expressions obtained from (3.4) and the recipes for
M (0), M (1) and M (2) in Theorem 2.2:

t11 = β2p11 + 2δβ2p12 + δ2β2p22 − ρ2p11 − δ2β2m/2, (3.7a)

t12 = βp12 + δβp22 − ρ2p12 − δβm/2 + ρ2δβm/2, (3.7b)

t13 = −δ−1αβp11 − 2αβp12 − δαβp22 + δβ/2, (3.7c)

t22 = p22 − ρ2p22 −m/2 + ρ2m/2, (3.7d)

t23 = −δ−1αp12 − αp22 + 1/2− ρ2/2, (3.7e)

t33 = δ−2α2p11 + 2δ−1α2p12 + α2p22 + α2L/2− α. (3.7f)

Our task is to find ρ ∈ [0, 1), p11, p12, and p22 that lead to T̂ � 0 and P̂ � 0 (which imply T � 0 and P � 0 ).
The algebra becomes simpler if we represent β and ρ2 as:

β = 1− bδ, ρ2 = 1− rδ. (3.8)

Note that we are interested in r ∈ (0, 1/δ] so as to get ρ2 ∈ [0, 1). We proceed in steps as follows.
First step. Impose the condition t23 = 0. This leads to

p12 =
m

2
r − δp22. (3.9)

Second step. Impose the condition t13 = 0. This results in

p11 =
m

2
− 2δp12 − δ2p22,

which in tandem with (3.9) yields
p11 =

m

2
−mrδ + δ2p22. (3.10)

Third step. Impose the condition det(P̂ ) = p11p22 − p2
12 = 0. Using (3.9) and (3.10), we have a linear equation

for p22 with solution
p22 =

m

2
r2.

We now take this value to (3.9) and (3.10) and get

P̂ =

[
p11 p12

p12 p22

]
=
m

2

[
(1− rδ)2 r(1− rδ)
r(1− rδ) r2

]
, (3.11)

a matrix that is positive semi-definite (but not positive definite).
Fourth step. Impose t33 ≤ 0. After using (3.11) in the expression for t33 in (3.7), this condition is seen to be

equivalent to α2L− α ≤ 0 or

α ≤ 1

L

(for α = 1/L, t33 actually vanishes). In what follows we assume that this bound on α holds; note that then δ =√
mα ≤

√
m/L < 1.

Fifth step. We impose t22 ≤ 0. This may be written as (p22 −m/2)rδ ≤ 0, which leads to p22 ≤ m/2. From
(3.11)

r ≤ 1,

which sets a lower limit ρ2 ≤ 1− δ for the rate of convergence. For r2 < 1, t22 < 0.
Sixth step. Impose t11t22 − t212 = 0. From (3.11) and (3.7), some algebra yields

t11t22 − t212 = −m
3

4
r(1− rδ) Ξ

7



with
Ξ = Ξδ(r, b) = (r + δ)(1− δ2)b2 − 2(1 + r2)(1− δ2)b+ (r3 − 3r2δ + 3r − δ). (3.12)

Since δ < 1 and, after step five, r ∈ (0, 1], we must have Ξ = 0. For fixed δ ∈ (0, 1), the condition Ξδ = 0 establishes
a relation between the values of r and b or, in other words, the rate of convergence ρ2 and the parameter β in (3.1).
In order to study this relation, we now make a digression and describe, for fixed δ ∈ (0, 1), the algebraic curve of
equation Ξδ(r, b) = 0 in the real plane (r, b); in this description we allow arbitrary real values of r and b (even though
in our problem r ∈ (0, 1]).

The formula for the roots of a quadratic equation yields

b± =
(1 + r2)(1− δ2)± (1− rδ)

√
(1− r2)(1− δ2)

(r + δ)(1− δ2)
. (3.13)

For r2 6= 1 and r 6= −δ there are two distinct real roots b+ and b−. For r = ±1 there is a double root b = 2/(r + δ).
As r ↓ −δ, we have b+ ↑ +∞ and b− ↓ −2δ/(1 − δ2). By using (3.13) it is not difficult to prove that Ξδ(r, b) = 0
defines r as a single-valued function of the variable b ∈ R. (We could find an explicit expression for r in terms of b by
means of the formula for the roots of a cubic equation, but this is not necessary for our purposes.) Figure ?? provides
a plot of the curve Ξδ(r, b) = 0 when δ = 1/2.

We now return to the construction of T . Recall that for our purposes, we need r > 0 (so as to have ρ < 1); this
requirement holds for b ∈ (bmin, bmax), where

bmin =
1− δ2 −

√
1− δ2

δ(1− δ2)
< 0, bmax =

1− δ2 +
√

1− δ2

δ(1− δ2)
> 0,

are the intersections of the curve Ξδ = 0 with the vertical axis. As δ ↓ 0,

bmin ↑ 0, bmax ↑ +∞. (3.14)

The limits on b just found are equivalent to

−
√

1− δ2 < β < +
√

1− δ2. (3.15)

For the maximum value r = 1 found in step five above, the formula (3.13) gives the double root b = 2/(1 + δ) or
β = (1− δ)/(1 + δ). Values r ∈ (0, 1) correspond to two different choices of b ∈ (bmin, bmax).

We are now ready to present the following result.

Theorem 3.3. Consider the minimization algorithm (3.1) (or (3.3)) with parameters subject to

α ≤ 1/L, −
√

1−mα ≤ β ≤
√

1−mα.

Set δ =
√
mα and let r > 0 be the value determined by Ξδ(r, b) = 0 (see (3.12)), set ρ2 = 1− rδ < 1 and define the

positive semi-definite matrix P by (3.5) and (3.11). Then the matrix T in (3.6)–(3.7) is negative semi-definite.
As a result, for any x−1, x0, the sequence

ρ−2k
(
f(xk)− f(x?) + [dTk , x

T
k − xT? ]P [dTk , x

T
k − xT? ]T

)
(3.16)

decreases monotonically, which, in particular, implies

f(xk)− f(x?) ≤ Cρ2k

with

C = f(x0)− f(x?) +
m

2

∥∥∥∥1− rδ
δ

(x0 − x−1) + r(x0 − x?)
∥∥∥∥2

.
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Figure 1: The solid curve corresponds to the equation Ξδ(r, b) = 0 when δ = 1/2. It has a vertical asymptote at
r = −δ (not shown). To each real b there corresponds a single value of r. For b ∈ (bmin, bmax), we have 0 < r ≤ 1,
that corresponds to 1 > ρ2 ≥ 1− δ. The best rate ρ2 = 1− δ is achieved for b = 2δ/(1 + δ), i.e. β = (1− δ)/(1 + δ).
The discontinuous curve corresponds to the equation Ξδ(r, b) = 0 in the limit δ → 0; again to each real b there
corresponds a single value of r. This curve is symmetric with respect to the origin (changing b into −b changes r into
−r) and has a vertical asymptote at r = 0. Positive values of b correspond to positive values of r. The maximum value
r = 1 is achieved when b = 2.

Proof. Using Theorem 2.2, we only have to prove that T̂ � 0. The second, first and fourth steps of our construction
respectively ensure that t13 = t23 = 0 and t33 ≤ 0 and therefore we are left with the task of checking that the 2 × 2
matrix T̂ 12 obtained by suppressing the last row and last column of T̂ is � 0. If r < 1, we know from step five that
t22 < 0 and from step six that the determinant of T̂ 12 vanishes and therefore T̂ 12 � 0. For r = 1, t22 = 0, but again
T̂ 12 � 0, because in this case t11 = −(m/2)δ(1− δ)3/(1 + δ) < 0.

For fixed α ≤ 1/L, as noted above, ρ2 is minimized by the choice

β = (1−
√
mα)/(1 +

√
mα);

then
ρ2 = 1−

√
mα.

When α is allowed to vary in the interval (0, 1/L], increasing α results in an improvement of ρ2, so that the best rate
ρ2 = 1−

√
m/L = 1−

√
1/κ is obtained by setting α = 1/L and then (3.1) coincides with (1.2). The parameter values

α = 1/L, β = (1 −
√

1/κ)/(1 +
√

1/κ) in (1.2) are of course the “standard” choice for Nesterov’s algorithm (see

9



e.g. [15, Proposition 12]). For this choice of parameters and x−1 = x0, the bound in Theorem 3.3 exactly coincides
(including the value ofC) with that in (1.3), which is derived in [19, Theorem 2.2.3] without using Lyapunov functions.
Numerical experiments in [15] show that for κ−1 = m/L small the rate of convergence ρ2 = 1−

√
1/κ is essentially

the best that the algorithm achieves.
The theorem may also be applied to the GD algorithm with β = 0 and b = 1/δ, even though (see Remark 3.2) in

this case the preceding treatment is unnatural. One finds r = δ, so that the decay per step in f(xk)− f(x?) provided
by Theorem 3.3 is ρ2 = 1 − δ2 = 1 −mα, for α ≤ 1/L. When α = 2/(m + L), the decay per step guaranteed by
Theorem 3.3 is ρ2 = 1−1/κ

1+1/κ ; this is worse than the bound in (1.1) valid for the same value of α.

Remark 3.4. The decay rate ρ2 provided by the theorem is a non-dimensional quantity that only depends on the non-
dimensional variables b and δ. The bound α ≤ 1/L may be rewritten in the non-dimensional form as δ2 ≤ m/L =
1/κ. These facts guarantee that the theorem is equivariant with respect to changes in scale of f and x. The Lyapunov
function in (3.16) has the dimensions of f because, according to (3.11), P has the dimensions of m, i.e. those of
f/‖x‖2.

Remark 3.5. For the particular choice of α and β leading to (1.2), the Lyapunov function in the theorem above was
derived in [14] by means of an alternative technique (see Remark 5.2). In [28] a Lyapunov function that contains the
gradient∇f(x) is constructed analytically for the situation where the learning rate α in (3.1) is a free parameter and
the momentum parameter is fixed as β = (1−

√
mα)/(1+

√
mα) (i.e. at the value that according to the analysis above

optimizes ρ2). The analysis in [28] requires (see Lemma 3.4 in that reference) α ≤ 1/(4L), while here α ≤ 1/L. In
addition for α = 1/(4L), [28, Theorem 3] proves a rate 1/(1+(1/12)

√
m/L) which, while establishing acceleration,

compares unfavourably with the value 1− (1/2)
√
m/L provided by Theorem 3.3.

3.2 Optimality
The path leading to Theorem 3.3 has a degree of arbitrariness and it may be asked whether, by following an alternative
construction, it is possible to determine the parameters ρ, p11, p12, p22 and in such a way that T̂ � 0, P̂ � 0 and
the value of ρ is larger than the value provided in Theorem 3.3. We conclude this section by presenting a result in
this direction. We fix the parameters in the algorithm at the standard choices i.e. α = 1/L, β = (1 − δ)/(1 + δ),
δ =

√
m/L, and denote by ρ? =

√
1− δ, p?11 = (m/2)(1− δ)2, p?12 = (m/2)(1− δ), p?22 = m/2 the values yielded

by Theorem 3.3. In the space of the decision variables ρ, p11, p22, p33 we pose the convex optimization problem of
minimizing ρ subject to the constraints T̂ � 0, P̂ � 0. We then have the following result that shows that the rate
provided in Theorem 3.3 cannot be improved with an alternative choice of P̂ .

Theorem 3.6. With the notation just described, the unique solution of the minimization problem is (ρ?, p?11, p
?
12, p

?
22).

Proof. We use the notation σ = ρ2, σ? = (ρ?)2 and write σ = σ? + σ̃, p11 = p?11 + p̃11, p12 = p?12 + p̃12,
p22 = p?22 + p̃22. Since the minimization problem is convex, it is sufficient to show that ρ?, p?11, p?12, p?22 provide a
local minimum, i.e. that if the increments σ̃ ≤ 0, p̃11, p̃12, p̃22 are of sufficiently small magnitude and (σ, p11, p12, p22)
is feasible, then σ = σ?, p11 = p?11, p12 = p?12, p22 = p?22.

We study three requirements that feasibility imposes on σ̃, p̃11, p̃12, p̃22.
(1) First, the constraint P̂ � 0 implies that p11p22 − p2

12 ≥ 0 or

p?22p̃11 − 2p?12p̃12 + p?11p̃22 + p̃11p̃22 − (p̃12)2 ≥ 0.

Because we are carrying a local study, we replace the constraint by its linearization

p?22p̃11 − 2p?12p̃12 + p?11p̃22 ≥ 0.

or, after using the known values of the symbols with a star,

p̃11 − 2(1− δ)p̃12 + (1− δ)2p̃22 ≥ 0. (3.17)
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(2) Then, the constraint T̂ � 0 implies t22t33 − t223 ≥ 0 or, using (3.7),

−
(1

2
σ̃ +

δ

m
p̃12 +

δ2

m
p̃22

)2

+
δ3

m2
p̃22

(
p̃11 + 2δp̃12 + δ2p̃22

)
− δ2

m2
σ̃p̃22

(
p̃11 + 2δp̃12 + δ2p̃22

)
≥ 0.

This time the leading terms in the right hand-side are quadratic in the increments and we discard the cubic terms to
get:

−
(m

2
σ̃ + δp̃12 + δ2p̃22

)2

+ δ3p̃22

(
p̃11 + 2δp̃12 + δ2p̃22

)
≥ 0. (3.18)

By completing the square in the quadratic form, this may be equivalently rewritten as(m
2
σ̃ + δp̃12 + δ2p̃22

)2

+ δ
(1

2
p̃11 + δp̃12

)2

≤ δ
(1

2
p̃11 + δp̃12 + δ2p̃22

)2

. (3.19)

(3) Finally T̂ � 0 requires t22 ≤ 0 or p̃22(δ − σ̃) ≤ 0; discarding the quadratic term, we get

p̃22 ≤ 0. (3.20)

The proof concludes by applying the lemma below.

Lemma 3.7. If the increments σ̃ ≤ 0, p̃11, p̃12, p̃22 satisfy the constraints (3.17)–(3.20), then σ̃ = 0, p̃11 = 0, p̃12 = 0,
p̃22 = 0.

Proof. The relation (3.19) obviously implies(1

2
p̃11 + δp̃12

)2

≤
(1

2
p̃11 + δp̃12 + δ2p̃22

)2

and therefore, in view of (3.20),
1

2
p̃11 + δp̃12 ≤ 0. (3.21)

We combine this inequality with (3.17) to get

0 ≤ −2p̃12 + (1− δ)2p̃22

so that
p̃12 ≤ 0. (3.22)

Since the three quantities being added in the first bracket in (3.19) are now known to be ≤ 0, it is enough to
consider hereafter the worst case σ̃ = 0.(

δp̃12 + δ2p̃22

)2

≤ δ
(1

2
p̃11 + δp̃12 + δ2p̃22

)2

.

Since δp̃12 + δ2p̃22 ≤ 0, we must have
p̃11 ≤ 0. (3.23)

From (3.17)
p̃11 + 2δp̃12 + δ2p̃22 ≥ 2p̃12 + (−1 + 2δ)p̃22,

which implies (see (3.20), (3.22), (3.23))

p̃22(p̃11 + 2δp̃12 + δ2p̃22) ≤ 2p̃12p̃22 + (−1 + 2δ)p̃2
22.

By combining this inequality and (3.18) (with σ̃ = 0), we obtain a relation

δ2p̃2
12 + δ3(1− δ)p̃2

22 ≤ 0,

that shows that p̃12 = 0. Then comparing (3.17), (3.20) and (3.23), we conclude that p̃11 = p̃22 = 0, which in turn
concludes the proof.
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4 The differential equation
Let us now set h =

√
α (so that δ =

√
mh) and assume that in (3.1), the parameter β = βh changes smoothly with h

in such a way that, for some constant b̄ ∈ R, βh = 1− b̄
√
mh+ o(h) as h ↓ 0. Then, (3.1) may be written as

1

h2
(xk+1 − 2xk + xk−1) +

1− βh√
mh

√
m

1

h
(xk − xk−1) +∇f(yk) = 0,

which, if xk is seen as an approximation to x(kh), provides a consistent discretization of the differential equation
(1.5). An example is provided by the choice β = (1− δ)/(1 + δ) = (1−

√
mh)/(1 +

√
mh), where b̄ = 2 and (1.5)

is the equation (1.4) used by Polyak.

Remark 4.1. In general, this two-step discretization is, not a linear multistep formula. Note:

• ∇f is evaluated at yk, a linear combination of xk and xk−1. In this regard, (3.1) is similar to the one-leg meth-
ods introduced by Dahlquist in his study of the long-time properties of multistep methods applied to nonlinear
differential equations (see e.g. [6, 5, 12])

• The unconventional factor (1−βh)/(
√
mh) that converges to b̄ as h ↓ 0. From the point of view of discretization

methods for ODEs having b̄ instead of this factor, or equivalently having β = 1−b̄
√
mh, would be more natural.

But note that, when β = (1−
√
mh)/(1 +

√
mh), the algorithm (3.1) becomes GD for h = 1/

√
L and κ = 1;

the choice β = 1− b̄
√
mh does not share this favourable property.

4.1 The construction
We now define

v =
1√
m
ẋ

and rewrite (1.5) as a first-order system

v̇ = −b̄
√
mv − 1√

m
∇f(x), (4.1a)

ẋ =
√
mv. (4.1b)

Remark 4.2. In a dimensional analysis as in Remarks 3.1 and 3.4, h has the same units as t. It is then a dimensional
time-step, to be compablue with the non-dimensional δ. The units of v are those of x. Of course, the divided difference
(3.2) is a discrete version of v = ẋ/

√
m.

If we set ξ = [vT, xT]T, then (4.1) is of the form (2.6) with

Ā =

[
−b̄
√
mId 0d√
mId 0d

]
, B̄ =

[
−(1/

√
m)Id

0d

]
, C̄ =

[
0d Id

]
,

Now according to Theorem 2.3, in order to find a Lyapunov function of the form (2.7) it is sufficient to find a
matrix P̄ � 0 and parameters λ > 0, σ ≥ 0 such that the matrix T̄ in (2.8) is negative semi-definite. Similarly to the
discrete case, we will simplify the subsequent analysis by considering the case σ = 0. (The case σ > 0 is studied in
the Appendix.) The Lipschitz constant L only enters T in Theorem 2.3 through M̄ (3); under the assumption σ = 0, T̄
is independent of L. This has an important implication: the analysis in this section applies to f strongly m-convex but
not necessarily L-smooth.

We look for P̄ of the form

P̄ = ̂̄P ⊗ Id, ̂̄P =

[
p̄11 p̄12

p̄12 p̄22

]
, (4.2)

and then T̄ is found to be

T̄ = ̂̄T ⊗ Id, ̂̄T =

t̄11 t̄12 t̄13

t̄12 t̄22 t̄23

t̄13 t̄23 t̄33

 , (4.3)
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where the t̄ij have the following expressions:

t̄11 = −2b̄p̄11 + 2
√
mp̄12 + λp̄11,

t̄12 = −b̄
√
mp̄12 +

√
mp̄22 + λp̄12,

t̄13 = −(1/
√
m)p̄11 +

√
m/2,

t̄22 = λp̄22 − (m/2)λ,

t̄23 = −(1/
√
m)p̄12 + λ/2,

t̄33 = 0.

We now determine λ and ̂̄P . The algebra is simplified if we set λ =
√
m r̄.

First step. Since t̄33 = 0, the requirement ̂̄T � 0 implies t̄13 = 0 and t̄23 = 0 and accordingly

p̄11 = m/2, p̄12 = (m/2)r̄. (4.4)

Second step. We choose p̄22 to ensure det( ̂̄P ) = p̄11p̄22 − p̄2
12 = 0. This yields

p̄22 = (m/2)r̄2,

and leads to ̂̄P =
m

2

[
1 r̄
r̄ r̄2

]
, (4.5)

a matrix that is positive-semidefinite (but not positive definite).
Third step. Since, ̂̄T � 0 implies t̄22 ≤ 0, we may write 0 ≥ p̄22 −m/2 = (m/2)(r̄2 − 1), and therefore we have

r̄ ≤ 1;

this imposes a bound λ ≤
√
m on the convergence rate.

Fourth step. We impose the condition t̄11t̄22 − t̄212 = 0. This results in an equation Ξ̄ = 0,

Ξ̄(r̄, b̄) = r̄b2 − 2(r̄2 + 1)b+ r̄3 + 3r̄, (4.6)

that relates r̄ (or equivalently the rate λ) and the parameter b̄ in the differential equation (1.5).
We observe that the polynomial Ξ̄ is the limit as δ ↓ 0 of the polynomial Ξδ in (3.12) (except of course for the

symbols used to denote the variables: r and b for Ξδ and r̄ and b̄ for Ξ̄). As a consequence, the discontinuous line
in Figure ??, presented there as a limit of curves Ξδ = 0, also describes the curve Ξ̄ = 0 (again after renaming the
variables).

The curve of equation Ξ̄(r̄, b̄) = 0 in the (r̄, b̄) plane is invariant with respect to the symmetry (r̄, b̄) 7→ (−r̄,−b̄)
(this is a consequence of the fact that changing b̄ into −b̄ in the differential equation is equivalent to reversing the sign
of independent variable t).1 The formula for the roots of a quadratic equation gives

b̄± =
1 + r̄2 ±

√
1− r̄2

r̄
.

From here one may prove that to each real b̄ there corresponds a unique r̄ such that Ξ̄(r̄, b̄) = 0. The maximum value
r̄ = 1 (λ =

√
m) is achieved only for b̄ = 2 (i.e. for Polyak’s (1.4)) and values r̄ ∈ (0, 1) correspond to two different

real values of b̄.
We now have the following result that is proved as in the discrete case.

1The curves Ξδ(r, b) = 0, δ > 0 do not possess any symmetry because in the discrete algorithm (3.1), xk+1 and xk−1 do nor play a symmetric
role (or in the terminology of differential equation integrators we are not dealing with time-symmetric algorithms).
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Theorem 4.3. Consider the differential equation (1.5) (or the equivalent system (4.1)) with parameter b̄ > 0 and
assume that f is m-strongly convex. Let λ =

√
mr̄, where r̄ > 0 is the value determined by the relation Ξ̄(r̄, b̄) = 0

(see (4.6)) and define the positive semi-definite matrix P̄ by (4.2) and (4.5). Then the matrix T̄ in (4.3) is negative
semi-definite.

As a result, if x(t) is a solution of (1.5), the function

exp(λt)
(
f(x(t))− f(x?) + [v(t)T, x(t)T − xT? ] P̄ [v(t)T, x(t)T − xT? ]T

)
(4.7)

decreases monotonically as t increases, which implies

f(x(t))− f(x?) ≤ C̄ exp(−λt)

with

C̄ = f(x(0))− f(x?) +
m

2

∥∥∥∥ 1√
m
ẋ(0) + r̄(x(0)− x?)

∥∥∥∥2

.

Remark 4.4. For b̄ = 0, the construction leading to the theorem yields r = 0, i.e. λ = 0, and,

(ξ(t)− ξ?)TP̄ (ξ(t)− ξ?) =
m

2
‖v‖2.

In addition, T̄ = 0 and therefore the factor in round brackets in (4.7) is an invariant of motion. In this case the system
(4.1) is Hamiltonian and the invariant we have found equals

√
m times the corresponding Hamiltonian function.

Remark 4.5. The value b̄ = 2, in addition to maximizing the decay rate in f(x(t)) in Theorem 4.3 for arbitrary
m-strongly convex f , has another optimality property in the simple one-dimensional case with f(x) = mx2/2, when
(1.5) or (4.1) describe a damped harmonic oscillator. An elementary computation (see e.g. [33]) shows that b̄ = 2 is
the value of the friction coefficient that ensures the fastest dissipation of the energy (ẋ)2/2 +mx2/2.

It will be proved in the Appendix that if f , in addition to being strongly convex has Lipschitz continuous gradient,
then better decay rates in f(x(t)) may be obtained by choosing b̄ to be larger than 2. Therefore (ẋ)2/2+mx2/2 is not
the best Lyapunov function to study the rate of decay of f(x) in the damped harmonic oscillator. This is in agreement
with Theorem 4.6 below.

Reference [21] gives a Lyapunov function for (1.5) or (4.1) that includes a cross-term vT∇f(x) and does not
require the strong convexity of f . However, the presence of the gradient in the Lyapunov function makes it necessary
that f be demanded to be twice-differentiable (the Hessian of f appears when differentiating the Lyapunov function
with respect to t).

4.2 Optimality
Steps 2 and 4 in the construction above imply a degree of arbitrariness and it is of interest to ask whether there are
alternative choices of λ and ̂̄P � 0 that, while ensuring ̂̄T � 0, furnish better decay rates. We conclude this section by
proving that this is not the case.

In the theorem below we use the notation r̄? and ̂̄P ? for the values obtained, for given b̄ > 0, in the construction

leading to Theorem 4.3. (These are functions r̄? = r̄?(b) and ̂̄P ? = ̂̄P ?(b), but the dependence on b̄ will be dropped
from the notation.) In particular, p̄?22 = mr̄?2/2 and Ξ̄(r̄?, b̄) = 0. The symbols λ and ̂̄P are used in the theorem to
refer to an arbitrary real number and an arbitrary 2×2 symmetric matrix. Finally, we set λ? =

√
mr̄? and λ =

√
mr̄.

Theorem 4.6. With the notation as described, for each fixed b̄ > 0, λ? = maxλ, subject to the constraints ̂̄T (λ, ̂̄P ) �
0, ̂̄P � 0.
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Proof. Since we are solving a convex optimization problem, it is sufficient to show that (λ?, ̂̄P ?) provides a local
maximum.

We observed in step 1 above that ̂̄T � 0 determines the values of p̄11, p̄12 as in (4.4). This leaves us with λ (or
equivalently r̄) and p̄22 as decision variables. For simplicity we hereafter omit the subindices in p̄22.

The constraint ̂̄P � 0, implies det( ̂̄P ) ≥ 0 or (after using the values of p̄11, p̄12) p̄ ≥ (m/2)r̄2. The constraint̂̄T � 0 implies t̄11t̄22 − t̄212 ≥ 0. We use (4.4), to write t̄11t̄22 − t̄212 ≥ 0 as a function ∆(r̄, p̄); tedious algebra leads
to the expression:

∆(r̄, p̄) = −m
3

2
r̄4 +

b̄m3

2
r̄3 +

(
m2p̄

2
− 3m3 + b̄2m3

4

)
r̄2 +

bm3

2
r̄ −mp̄2.

We will be done if we prove that the pair (r̄?, p̄?) is a local maximum for the problem

max r̄ subject to p̄−mr̄2/2 ≥ 0, ∆(r̄, p̄) ≥ 0.

At the point (r̄?, p̄?) both constraints are active (in fact they were chosen to be so at steps 2 and 4). If we define
the Lagrangian

L(r̄, p̄) = r̄ + ζ1 (p̄−mr̄2/2) + ζ2 ∆(r̄, p̄),

where ζ1, ζ2 are the multipliers, the proof concludes by showing that the gradient of L at (r̄?, p̄?) may be annihilated
for a suitable choice of positive multipliers.

We impose the requirements

0 =
∂

∂r̄
L
∣∣∣∣? = 1− ζ1mr̄? + ζ2

∂

∂r̄
∆

∣∣∣∣? ,
(|? means evaluation at at (r̄?, p̄?)) and

0 =
∂

∂p̄
L
∣∣∣∣? = ζ1 + ζ2

(
m2

2
r̄?2 − 2mp̄?

)
= ζ1 − ζ2

m2

2
r̄?2,

(which implies that ζ1 and ζ2 have the same sign) and eliminate ζ1 to get

1 + ζ2

(
m3

2
r̄?3 +

∂

∂r̄
∆

∣∣∣∣?) = 0.

In this way we are left with the task of proving that

m3

2
r̄?3 +

∂

∂r̄
∆

∣∣∣∣? < 0,

or, after using the expression for ∆ and some simplification,

−2r̄?3 + 3b̄r̄?2 − (3 + b̄2)r̄? + b̄ < 0.

Let us denote by Λ = Λ(r̄?, b̄) the left hand-side of this inequality. When b̄ = 2 and r̄? = 1, we have Λ = −1. On the
other hand, we know that

Ξ̄ = b̄2r̄ − 2(r̄?2 + 1)b̄+ r̄?3 + 3r̄? = 0,

and this relation makes it impossible for Λ to change sign as b̄ > 0 and the corresponding r̄?(b) ∈ (0, 1] vary. In fact,
if Λ were to vanish, we would have

Λ + Ξ̄ =
(
r̄?2 − 1

)
b̄− r̄?3 = 0,

something that cannot happen because r̄? < 1 for b̄ 6= 2.
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5 Connecting the differential equations with optimization algorithms
The second-order differential equation (1.5) provides a limit for the algorithm (3.1) when β changes smoothly with
h =

√
α in such a way that βh = 1 − b̄

√
mh + o(h) as h ↓ 0. In this section we study this limit when b̄ > 0. As in

(3.8) write βh = 1− bhδ = 1− bh
√
mh. Clearly, bh → b̄ and, in addition, for h sufficiently small bh ∈ (bhmin, b

h
max)

(see (3.14)). The application of Theorem 3.3 then gives a rate ρ2
h = 1 − rhδ = 1 − rh

√
mh. As noted before, the

polynomial Ξ̄ in (4.6) is the limit of Ξδ in (3.12) as h (or δ) approaches zero, and, accordingly, rh → r̄, where r̄ solves
Ξ̄(r̄, b̄) = 0. Then Theorem 3.3 guarantees that, over one step k 7→ k + 1 of the algorithm, f(xk) − f(x?) decays
by a factor ρ2

h = 1 −
√
mr̄h + o(h). Over k steps the decay factor will be (1 −

√
mr̄h + o(h))k, a quantity that in

the limit kh → t converges to exp(−
√
mr̄t) = exp(−λt). This is exactly the decay guaranteed by Theorem 4.3 for

f(x(t))− f(x?) over an interval of length t.
In addition, the matrices Ph in the discrete Lyapunov function converge to the matrix P̂ in the differential equation,

because from the expression for the entries in (3.11) and (4.5)

ph11 → p̄11, ph12 → p̄12, ph22 → p̄22.

The above discussion and standard results on the convergence of discretizations of ordinary differential equations
imply the following result.

Theorem 5.1. Fix the parameter b̄ > 0 and the initial conditions x(0), ẋ(0) for the differential equation (1.5). For
small h > 0, consider the optimization algorithm (3.1) with parameters α = h2 and β = βh = 1 − b̄

√
mh + o(h).

Assume that the initial points x−1, x0 are such that, as h ↓ 0, x0 → x(0) and (1/h)(x0 − x−1)→ ẋ(0). Then, in the
limit kh→ t,

1. xk → x(t) and (1/h)(xk+1 − xk)→ ẋ(t).

2. The discrete Lyapunov function in (3.16) converges to the Lyapunov function in (4.7).

Remark 5.2. As a consequende of this theorem, the Lyapunov function of the differential equation could have been
derived alternatively by first finding the Lyapunov function for the discrete optimization algorithm and then taking
limits. In our research we first investigated the discrete case and then studied the differential equations; in hindsight we
saw it would have been easier to first deal with the differential equation and then carry out the analysis of the algorithm
by mimicking the treatment of the continuous case. References [28, 29, 14] find Lyapunov functions for different
optimization algorithms by first constructing Lyapunov functions for suitable so-called high-resolution differential
equations. In our context, this would mean perturbing (4.1) with suitable h-dependent terms so as to obtain an
(h-dependent) differential equation for which the algorithm has a high order of consistency. The idea behind those
high-resolution equations is very old in the numerical analysis of ordinary and partial differential equations, where
they are known as modified equations, see e.g. [11] or [24, Chapter 10] and, for the stochastic case, [34].

6 Heavy Ball and other methods
The paper [30] has given rise to a number of contributions that aim to understand the behaviour of optimization
methods by seeing them as discretizations of differential equations. However it is well known that the long-time
properties of a differential equation are not automatically inherited by their discretizations, regardless of the value of
the step-size chosen. A very simple example is provided by the application of Euler’s rule to the harmonic oscillator:
for all step-sizes the discrete trajectories grow while the continuous solutions stay bounded. A more relevant example
in an optimization context may be seen in [23]. On the other hand properties of the discretizations may often be
extrapolated to the continuous limit; a general discussion of these points in different settings may be seen in [1].

In the setting of the preceding section, it is not true that discretizing a dissipative differential equation with a
known a Lyapunov function will always yield an optimization algorithm with a “suitable” Lyapunov function. We
now illustrate this fact by means of the Heavy Ball algorithm obtained by choosing γ = 0 and β 6= 0 in (2.2).

We proceed as in Section 3, rewrite the algorithm in terms of dk and xk and then cast it in the general format
(2.1). We will presently prove that a discrete Lyapunov with properties similar to the Lyapunov function for Nesterov’s
method in Theorem 3.3 does not exist. We argue by contradiction. With the notation as in Section 3, we consider
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• pij = mφij(β, δ), (i, j) = (1, 1), (1, 2), (2, 2), such that P̂ � 0,

• r = ψ(β, δ) > 0,

• c > 0,

and suppose that the corresponding T (λ, P ) is � 0 for each δ < c/
√
κ. As in Remark 3.4 to ensure equivariance with

respect to changes of scale, the number c and functions φij and ψ are assumed to be independent of the constants m
and L associated with f and the values of the parameters α and β in the Heavy Ball algorithm.

For future reference, the element t11 is found to have the expression:

t11 = (β2 − ρ2)p11 + 2δβ2p12 + δ2β2p22 + δ2(L−m)β2/2.

This has to be ≤ 0 for δ < c/
√
κ.

Next, as in the preceding section, we assume that β changes smoothly with h in such a way that, for some b̄ > 0,
β = βh = 1 − b̄δ + o(h) = 1 − b̄

√
mh + o(h). Clearly the algorithm is then a consistent discretization of the

differential equation (1.5), and we assume that rh, phij converge to their differential equation counterparts r̄ and p̄ij .2

In this situation:

0 ≥ δ−1th11 =
β2
h − ρ2

h

δ
ph11 + 2β2

hp
h
12 + δβ2

hp
h
22 +

c

2

√
m

L
(L−m)β2

h,

and, taking limits,

0 ≥ −2
b̄− λ√
m
p̄11 + 2p̄12 +

c

2

√
m

L
(L−m). (6.1)

This cannot happen because L may be arbitrarily large.

Remark 6.1. The Heavy Ball algorithm is a “more natural” discretization of (1.5) than Nesterov’s, in that, as con-
ventional linear multistep methods, it does not evaluate∇f at a linear combination of xk, xk−1 (cf. Remark 4.1).

Remark 6.2. The contradiction in (6.1) arises because we insisted in T being � 0 for “large” non-dimensional
stepsizes δ =

√
mh < c/

√
κ. For optimization algorithms that, in the limit h ↓ 0, approximate a differential equation

with decay exp(−λh) = exp(−r̄δ) in a time-interval of length h, such large stepsizes seem to be necessary to achieve
accelerated rates 1−O(

√
κ) rather than rates 1−O(κ).

The reference [28] constructs a Lyapunov function for the Heavy Ball method, but it only operates for δ = O(1/κ)
and, while useful in showing convergence, does not provide acceleration. For an additional convergence proof of the
Heavy Ball algorithm see [10]; again this reference does not prove acceleration.

The three-parameter family of methods (2.2) contains algorithms, like Nesterov’s, that “inherit” the ODE Lyapunov
function for stepsizes δ < c/

√
κ and algorithms, like the Heavy Ball, that do not. In fact the situation for the Heavy

Ball is arguably the rule rather than the exception. For (2.2),

t11 = (β2 − ρ2)p11 + 2δβ2p12 + δ2β2p22 + δ2(L−m)(β − γ)2/2−mγ2δ2/2;

where we observe the unwelcome presence of the factor L−m that created the difficulties in the analysis of the Heavy
Ball algorithm. If we look at a situation where β changes with h as above and in addition γ is also allowed to change
with h and approaches a limit, a Lyapunov function that has the form envisaged and works for δ < c/

√
κ may only

exist if βh − γh vanishes (at least in the limit h ↓ 0) to offset the factor, i.e. if the algorithm is not far away from
Nesterov’s.

Acknowledgement. We are thankful to an anonymous referee for helping us to improve the discussion of our
results.

2This hypothesis is not necessarily in the argument that follows. It is enough to suppose that rh, phij have finite limits.
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Appendix
In Theorem 4.6 we proved that, for each b̄ > 0, the rate of decay λ provided by Theorem 4.3 is the best one may obtain
by using Theorem 2.3 if one chooses σ = 0. In this Appendix we investigate whether λ may be improved by a suitable
choice of σ > 0. Since for σ 6= 0, the matrix M̄ (3) that contains the constant L contributes to T , the following results
require that f , in addition to being m-strongly convex (as in Theorem 4.3) is L-smooth, i.e. they hold for f ∈ Fm,L.

When σ 6= 0 the expressions for the tij in Section 4 have to be replaced by:

t̄11 = −2b̄p̄11 + 2
√
mp̄12 + λp̄11,

t̄12 = −b̄
√
mp̄12 +

√
mp̄22 + λp̄12,

t̄13 = −(1/
√
m)p̄11 +

√
m/2,

t̄22 = λp̄22 − (m/2)λ− σmL/(m+ L),

t̄23 = −(1/
√
m)p̄12 + λ/2 + σ/2,

t̄33 = −σ/(m+ L).

As in Section 4, we set λ =
√
m r̄ and, in addition, σ = ms̄ (the variable s̄ is, as r̄, non-dimensional). We shall show

that it is possible, for given m and L, to find values of the six parameters p̄11, p̄12, p̄22, b̄, s̄, r̄, in such a way that the
constraints ̂̄T � 0, ̂̄P � 0, s̄ ≥ 0 are satisfied and, at the same time, r̄ > 1, so that by using the matrix M̄ (3) it is
possible to improve on the best value r̄ = 1 (associated with b̄ = 2 and leading to λ =

√
m) that may be achieved in

Theorem 4.3.
For given m and L, we determine the values of the six parameters as follows:
First step. We impose t̄22 = 0, a requirement that leads to the relation

p̄22

m
=

1

2
+
s̄

r̄

κ

κ+ 1
.

Second step. We impose t̄23 = 0 and get
p̄12

m
=
r̄ + s̄

2
.

Third step. We require det( ̂̄P ) = 0. Therefore

p̄11

m
=

(p̄12/m)2

p̄22/m
.

Note that for r̄, s̄ ≥ 0 we have p̄22 > 0 and thus the third step guarantees that ̂̄P � 0.
Fourth step. We next demand that t̄12 = 0 and obtain

b̄ = r̄ +
p̄22/m

p̄12/m
.

The four preceding displayed formulas allow us to express the parameters p̄12, p̄22, and b̄ as known functions of s̄ and
r̄.

Fifth step. At this stage, we have ensublue that t̄12, t̄22, t̄23 vanish. As a result, the condition ̂̄T � 0 is equivalent

to ̂̄T 13
� 0 where ̂̄T 13

is the 2 × 2 matrix obtained by suppressing from ̂̄T its second row and column. Furthermore

t̄33 < 0 for s̄ > 0 and then we shall have ̂̄T 13
� 0 if we impose that det( ̂̄T 13

) = 0, or

t̄11t̄33 − t̄213 = 0.

By using the displayed formulas above, the last equation becomes a relation F (r̄, s̄) = 0, between r̄ and s̄, with

F =
r̄2s̄(r̄ + s̄)2

2(κ+ 1)r̄ + 4κs̄
− 1

4

(
(κ+ 1)r̄(r̄ + s̄)2

(κ+ 1)r̄ + 2κs̄
− 1

)2

.
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κ b̄− 2 r̄ − 1 s̄ p̄11
m −

1
2

p̄12
m −

1
2

p̄22
m −

1
2

101 3.5(-1) 8.6(-2) 4.1(-1) 1.6(-1) 2.5(-1) 3.4(-1)
102 2.2(-1) 1.8(-2) 1.3(-1) 2.7(-2) 7.6(-2) 1.3(-1)
103 1.0(-1) 3.9(-3) 5.5(-2) 5.2(-3) 2.9(-2) 5.5(-2)
104 4.7(-2) 8.2(-4) 2.4(-2) 1.1(-3) 1.3(-2) 2.4(-2)
105 2.1(-2) 1.8(-4) 1.1(-2) 2.3(-4) 5.5(-3) 1.1(-2)
106 9.9(-3) 3.8(-5) 5.0(-3) 5.0(-5) 2.5(-3) 5.0(-3)
107 4.6(-3) 8.1(-6) 2.3(-3) 1.1(-5) 1.2(-3) 2.3(-3)
108 2.2(-3) 1.7(-6) 1.1(-3) 2.3(-6) 5.4(-4) 1.1(-3)
109 9.9(-4) 3.8(-7) 5.0(-4) 5.0(-7) 2.5(-4) 5.0(-4)

Table 1: Value of the dissipation parameter b̄ in the differential equation that leads to the best rate of decay r̄ for
different choices of the condition number κ. The table also gives the values of the parameters to construct the matriceŝ̄T � 0, ̂̄P � 0.

We next show that the rational curve F (r̄, s̄) = 0 in the (r̄, s̄) real plane has points with s̄ > 0 and r̄ > 1.
It is easily checked that the point r̄ = 1, s̄ = 0 lies on the curve F = 0 and has b̄ = 0. This could have been

anticipated because, if s̄ = 0 and b̄ = 2, the construction in this appendix just reproduces the construction in Section 4,
which yields r̄ = 1.

By removing the denominator in the rational function F so as to have a polynomial equation for the curve and
looking at the Newton diagram at r̄ = 1, s̄ = 0, one sees that in the neighbourhood of this point the curve consists of
a single branch that may be parameterized by r̄. A Taylor expansion reveals that

s̄ = 2(κ+ 1)(r̄ − 1)2 +O((r̄ − 1)3).

In this way, choosing a sufficiently small value of the parameter s̄ > 0, there are two possible values of the rate r̄

r̄ ≈ 1±
√

s̄

2(κ+ 1)
,

one of which is > 1. In conclusion we have proved analytically that the introduction of σ and M̄ (3) in T makes it
possible to achieve rates r̄ > 1 (or λ >

√
m).

We next determined the value of s̄ that leads to the largest possible r̄ on the curve F = 0. In view of the involved
expression of F , we proceeded numerically and found this largest value by continuation along the curve, starting from
r̄ = 1, s̄ = 0. The results, for different values of κ, are given in Table ??. For the small condition number κ = 10, the
table shows that it is possible to achieve a decay ≈ exp(−1.086

√
mt) by fixing the dissipation coefficient at the value

b̄ ≈ 2.35 rather than at b̄ = 2 as in Polyak’s (1.4)—this is a marginal improvement on the best decay exp(−
√
mt) that

one may insure without using M̄ (3). In addition the improvement quickly decreases as the condition number grows:
for κ = 103 the decay is exp(−1.0039

√
mt). In fact, we observe in the table that, as κ ↑ ∞, r̄ ≈ 1 + 0.38κ−2/3. Of

course as κ increases, r̄ and b̄ approach the values 1 and 2 that correspond to the situation studied in Section 4, where
f is not assumed to possess Lipschitz gradients. A similar convergence obtains for the matrix ̂̄P � 0. Also note that
s̄ ≈ 0.50κ−1/3: as the condition number increases the parameter σ =

√
ms̄ that multiplies M̄ (3) decreases, as it may

have been expected.
The results in the appendix and the connection between discrete and continuous Lyapunov functions strongly

suggest that there would have been no substantial gain in the rate ρ2 found in Section 3 if we had allowed ` 6= 0 there.
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