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Sören Christensen
∗

Asbjørn Holk Thomsen
†

Lukas Trottner
†

November 14, 2023

Abstract

Over the recent past data-driven algorithms for solving stochastic optimal control prob-

lems in face of model uncertainty have become an increasingly active area of research. How-

ever, for singular controls and underlying diffusion dynamics the analysis has so far been

restricted to the scalar case. In this paper we fill this gap by studying a multivariate sin-

gular control problem for reversible diffusions with controls of reflection type. Our contri-

butions are threefold. We first explicitly determine the long-run average costs as a domain-

dependent functional, showing that the control problem can be equivalently characterized as

a shape optimization problem. For given diffusion dynamics, assuming the optimal domain

to be strongly star-shaped, we then propose a gradient descent algorithm based on polytope

approximations to numerically determine a cost-minimizing domain. Finally, we investigate

data-driven solutions when the diffusion dynamics are unknown to the controller. Using

techniques from nonparametric statistics for stochastic processes, we construct an optimal

domain estimator, whose static regret is bounded by the minimax optimal estimation rate of

the unreflected process’ invariant density. In the most challenging situation, when the dy-

namics must be learned simultaneously to controlling the process, we develop an episodic

learning algorithm to overcome the emerging exploration-exploitation dilemma and show

that given the static regret as a baseline, the loss in its sublinear regret per time unit is of

natural order compared to the one-dimensional case.
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1. Introduction and problem formulation

Our underlying processes are Langevin diffusions 𝑋 on ℝ𝑑 for 𝑑 ≥ 2, which is a well studied class

of reversible diffusion processes with drift of potential form. For a C2
-function 𝑉 ∶ ℝ𝑑 → ℝ and

a 𝑑-dimensional Brownian motion 𝑊 , 𝑋 solves the SDE

d𝑋𝑡 = −∇𝑉 (𝑋𝑡) d𝑡 +
√
2 d𝑊𝑡 .

We consider a basic class of stochastic control problems with a clear interpretation: 𝑋 is in-

terpreted as the position of a particle, which we want to be close to a target state, 0, say. The

distance is measured by a locally bounded function 𝑓 ∶ ℝ𝑑 → [0,∞) in such a way that 𝑓 (𝑋𝑡)
stand for the costs associated with being away from the target state. The decision maker can now

control the process by choosing a nonempty bounded domain (= open, connected set) 𝐷 ⊂ ℝ𝑑 of
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class C2
and normally reflecting the process at 𝜕𝐷. We denote the resulting normally reflected

processes by 𝑋𝐷
, which is given as the solution to

d𝑋𝐷
𝑡 = −∇𝑉 (𝑋𝐷

𝑡 ) d𝑡 +
√
2 d𝑊𝑡 + 𝑛(𝑋𝐷

𝑡 ) d𝐿
𝐷
𝑡 ,

where 𝑛 is the unit inward normal vector of 𝐷 at 𝑥 ∈ 𝜕𝐷 and 𝐿𝐷 denotes the local time of 𝑋𝐷
on

𝜕𝐷, that is, a non-decreasing one-dimensional process with continuous paths that increases only

when 𝑋𝐷 ∈ 𝜕𝐷. We assume that controlling the process is associated with costs proportional to

𝐿𝐷 (with proportionality factor 𝜅 > 0), so that for each 𝐷, the total costs associated with 𝐷 until

time 𝑡 are

∫
𝑡

0
𝑓 (𝑋𝐷

𝑠 ) d𝑠 + 𝜅𝐿𝐷𝑡 .

Here, we consider a long-term-average criterion and our problem consists of minimizing

𝐽 (𝐷) ≔ lim inf
𝑡→∞

1
𝑡
𝔼𝑥[∫

𝑡

0
𝑓 (𝑋𝐷

𝑠 ) d𝑠 + 𝜅𝐿𝐷𝑡 ] (1.1)

over all admissible𝐷. The limit is independent of the initial value 𝑥 ∈ 𝐷 due to the ergodic nature

of the reflected diffusion, which will be made precise in Theorem 2.4. For known characteristics of

the underlying process, the problem we consider here is closely connected to singular stochastic

control problems. We discuss this in more detail in Section 1.2 below.

1.1. Contributions

In this paper, we first address the question how the solution to the problem (1.1) can be mean-

ingfully characterized when the characteristics of the underlying process are known. Our main

contribution here is Theorem 2.4 which shows under minimal assumptions that 𝐽 (𝐷) is the 𝐿1-
limit of the average costs and is explicitly given by

𝐽 (𝐷) =
1

∫𝐷 e
−𝑉 (𝑦) d𝑦(∫

𝐷
𝑓 (𝑦)e−𝑉 (𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
e−𝑉 (𝑦)H𝑑−1(d𝑦)), (1.2)

where H𝑑−1
denotes the (𝑑 − 1)-dimensional Hausdorff measure. The formula is interesting in

that the control problem has been transformed into a shape optimization problem.

In Section 3 we give a numerical approach to minimizing 𝐽 (𝐷) based on approximating 𝐷 by

polytopes and then applying a gradient descent method. To this end, we derive explicit formulas

(Theorem 3.1) under the assumption that 𝐷 is star-shaped and then illustrate the method on

problems with underlying Brownian motions and Ornstein–Uhlenbeck processes.

Finally, in Section 4 we show that the approach we present provides a suitable basis for ad-

dressing the problem in the context of model-based reinforcement learning. More precisely, we

show that the problem can be solved when the drift function 𝑏 = −∇𝑉 is unknown to the decision

maker, so that the control has to be purely data driven. Our approach is based on estimating the

stationary density of the uncontrolled process 𝜌 nonparametrically and specifying the exact rate

with techniques from nonparametric statistics for diffusion processes (Theorem 4.4). We use this

via (1.2) to estimate the optimal boundary based on a path of the uncontrolled process and obtain

that the resulting static regret has the same sublinear rate (Proposition 4.6). In the more practi-

cally relevant situation of simultaneous optimization and data collection, we face an exploration

vs. exploitation dilemma. The previous results together with an episodic learning approach lead

to a proof of a sublinear regret rate (Theorem 4.7 and Corollary 4.8).
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1.2. Related literature

Stochastic singular control problems are a class of stochastic control problems that have been ex-

tensively studied, see [23, 40] for textbook treatments. They arise in various applications such as

inventory management in operations research, control of queueing networks, portfolio selection

with transaction costs in finance, equity issuance in insurance mathematics, position control in

engineering, or optimal harvesting in biology. The actions of the agents affect the state and the

costs in proportion to the size of the action. This structure implies that the optimal controls usu-

ally have the following general form: The space is divided into a region where action is required

and a region 𝐷 where no action is required. The optimal control then reflects the controlled

process at the boundary of the no-action region to keep it inside. Therefore, the problem class

is closely related to reflected SDEs [35, 43], as observed for a variate of examples, see e.g., [14,

25, 30, 45] (although this connection is difficult to be made precise in full generality, see the dis-

cussion in [6]). Thus, stochastic singular control can typically be reduced to finding the optimal

no-action region 𝐷 and the optimal reflection direction at the boundary of 𝐷. However, find-

ing the solution is usually only possible explicitly in a few examples, typically with underlying

one-dimensional diffusions, see the following section. Characterizing optimal controls becomes

much harder when the problem has more than one dimension. Some characterizations of the

optimal solutions in special multidimensional cases can be found in [13, 18, 21, 22, 31]. Thus, the

problem (1.1) can be viewed as an optimization problem over a class of strategies typically rele-

vant to general singular control problems. We restrict this, however, by the fact that only normal

reflections are admissible. This assumption may be justifiable in some cases from the real world

problem being modeled. However, we will also see below that in subclasses of problems, such as

the radially symmetric case, this is not a restriction at all. In what follows, we will see that the

assumption of normal reflection simplifies the problem to the point where a deeper analysis can

be performed.

There is a fair amount of literature on the numerical treatment of singular control problems.

The methods range from approaches based on a discretization with discrete Markov chains [33]

over an approximation of the solution of the corresponding Hamilton–Jacobi–Bellman equation

[32], approaches using linear programming [49] up to finite element approximations [48]. How-

ever, all methods have limited applicability, especially in higher dimensions, and care must be

taken in the exact implementation. In this paper, we present a new approach that is structurally

different from the existing ones.

As described above, the approach we have taken allows for data-driven control when the drift

of the process is unknown. This question falls into the currently fast growing field of model based

reinforcement learning (RL), where the agent does not know the system parameters and learns

them by interacting with the environment and getting feedback. The agent chooses policies based

on the current parameter estimation and tries to minimize the regret, which is the gap between

the expected reward of the best policy and the actual reward achieved. Many discrete-time RL

problems have been studied, where sublinear regret bounds have been obtained for different sce-

narios, such as bandit problems, tabular Markov decision problems, and linear quadratic (LQ)

problems [15, 26, 41]. However, for continuous-time RL problems, it is well known that time

discretization does not work satisfactorily in standard approaches such as Deep-Q learning [47].

Therefore, the concrete model must be included here. Most of the previous works only pro-

pose algorithms, and only a few analyze their regrets, mostly for LQ problems. In particular,

[20] proved an asymptotic sublinear regret for regularized least-squares algorithms in an er-

godic continuous-time LQ problem, but without giving the exact order of the bound. Recently,

[5, 24] generalized the least-squares algorithms to finite-time horizon episodic settings and gave

non-asymptotic regret bounds. These works assume a parametric structure of the problem. On

the other hand, [39] considered propagator models and combined exploration and exploitation
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schemes to achieve sublinear regrets with high probability. Closest to this paper are the articles

[11, 12], in which singular and impulse control problems with a nonparametric statistical diffu-

sion structure are considered. However, these papers make heavy use of the one-dimensional

structure of the underlying processes. This leads to the strategy already being described by one

or two values, so only these need to be learned. One of the main contributions of this work is

that we can give exact sublinear rates of regression even for the case where the optimal strategy

is only infinite-dimensional parameterizable. To the best of our knowledge, this work is the first

to provide such results in this context.

2. Optimal reflection as a shape optimization problem for known characteristics

As detailed above, for our approach it is central to find explicit expressions for 𝐽 (𝐷) for known

drift. Before we get to that, we start here with a brief discussion of the one-dimensional special

case, since it serves as the main motivation. The main observation for obtaining explicit solutions

for all singular control problems for underlying linear diffusions is that the values 𝐽 (𝐷) can be

found (semi-)explicitly in terms of speed measure and scale function. In this linear case, solving

(1.1) therefore boils down to a standard optimization problem, see [1, 10] and the references

therein. In the one dimensional ergodic case discussed here, this is realized by the fact that the

stationary density of the reflected diffusion is just the conditional density of the uncontrolled

diffusion. The key observation in this section is that this also holds in the multivariate case with

underlying Langevin diffusions. This turns out to be key to establishing (1.2).

2.1. Ergodicity of the reflected Langevin diffusions

It is well-known that for an (uncontrolled) Langevin diffusion as introduced above, if e−𝑉 is

integrable, then 𝑋 has a stationary density given by

𝜌ℝ𝑑 (𝑥) ≔ 𝜌(𝑥) ≔ 𝑐−1 exp(−𝑉 (𝑥)), where 𝑐 = 𝑐ℝ𝑑 (𝑉 ) = ∫
ℝ𝑑

e−𝑉 (𝑢) d𝑢.

For general diffusions, knowing the distribution on the whole state space does not give any

information about the stationary distributions of the corresponding diffusions with reflection

in a subdomain 𝐷. A main observation for our approach is that for Langevin diffusions, this is

different. Indeed, in this particular situation one can obtain the stationary distribution on 𝐷 by

conditioning:

Lemma 2.1. For a bounded domain 𝐷 ⊂ ℝ𝑑 of class C2, the density 𝜌𝐷 given by

𝜌𝐷(𝑥) = 𝑐−1𝐷 exp(−𝑉 (𝑥)), 𝑥 ∈ 𝐷, where 𝑐𝐷 = ∫
𝐷
e−𝑉 (𝑢) d𝑢,

is a stationary density of the normally reflected process 𝑋𝐷.

This result is well known. For the convenience of the reader, a proof is provided in Appendix

A.

It will be important for our purposes to have sufficiently fast convergence of the reflected dif-

fusion to equilibrium. To this end, we will assume that 𝐷 ⊂ ℝ𝑑 is a bounded domain of class C2

that is sufficiently nice to guarantee that the Markov process (𝑋𝐷, (ℙ𝑥)𝑥∈𝐷) has transition den-

sities (𝑝𝐷𝑡 (𝑥, 𝑦))𝑡>0,𝑥,𝑦∈𝐷—that is, 𝔼𝑥[𝑓 (𝑋𝐷
𝑡 )] = ∫𝐷 𝑝

𝐷
𝑡 (𝑥, 𝑦)𝑓 (𝑦) d𝑦 for any bounded measurable

function 𝑓 ∶ 𝐷 → ℝ and 𝑥 ∈ 𝐷—such that for any 𝑡 > 0, 𝑝𝐷𝑡 is continuous on 𝐷 × 𝐷 and we have

the minorization property

inf
𝑥,𝑦∈𝐷

𝑝𝐷1 (𝑥, 𝑦) ≥ 𝛿, (2.1)
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for some 𝛿 > 0, where necessarily 𝛿𝝀(𝐷) ∈ (0, 1). Let us denote by 𝐃 the class of bounded do-

mains 𝐷 ⊂ ℝ𝑑 of class C2
such that these assumptions hold for the process reflected in 𝜕𝐷. These

can be verified under mild assumptions on the boundary 𝜕𝐷 by general results on fundamental

solutions of parabolic PDEs with Neumann boundary conditions. For instance, continuity of the

transition densities and (2.1) are ensured whenever 𝜕𝐷 is the union of a finite number of hyper-

surfaces of class C3
, cf. [27, p.166]. These assumptions now guarantee uniqueness of the invariant

distribution and exponential ergodicity of the process.

Lemma 2.2. Let 𝐷 ∈ 𝐃 with transition minorization as in (2.1). Then, the unique stationary distri-
bution 𝜋𝐷 of the normally reflected diffusion 𝑋𝐷 is given by

𝜋𝐷(d𝑥) = 𝜌𝐷(𝑥) d𝑥, 𝑥 ∈ 𝐷,

and 𝑋𝐷 is uniformly ergodic, satisfying the bound

‖𝑃𝐷𝑡 (𝑥, ⋅) − 𝜋𝐷‖TV ≤ 2
1−𝛿𝝀(𝐷)e

log(1−𝛿𝝀(𝐷))𝑡 , 𝑥 ∈ 𝐷, 𝑡 > 0.

The proof is deferred to Appendix A. As a consequence we have the following rate in the

ergodic theorem.

Corollary 2.3. Let 𝐷 ∈ 𝐃. There exists a constant 𝐶 = 𝐶(𝐷) > 0 such that for any ℎ ∈ 𝐿∞(𝐷) and
𝑥 ∈ 𝐷 it holds

1
𝑡
𝔼𝑥[

||| ∫
𝑡

0
(ℎ(𝑋𝐷

𝑠 ) − 𝜋𝐷(ℎ)) d𝑠
|||] ≤

𝐶‖ℎ‖𝐿∞(𝐷)√
𝑡

.

Again, the proof can be found in Appendix A.

2.2. Solution of the ergodic control problem

Given the ergodicity assumptions from the previous subsection we can now fully characterize

the ergodic average expected costs 𝐽 (𝐷) from (1.1) in terms of the invariant distribution of the

reflected diffusion𝑋𝐷
. In fact, we will show more: we prove that the bias of the average costs van-

ishes linearly in time and that their stochastic fluctuation measured in terms of the 𝐿1-deviation

from 𝐽 (𝐷) vanishes at square-root rate.

Theorem 2.4. Let 𝐷 ∈ 𝐃. Then, there exist constants 𝐶(𝐷), 𝐶′(𝐷) > 0 that depend on 𝐷 but are
independent of 𝑥 ∈ 𝐷 and 𝑡 ≥ 1 such that

𝔼𝑥[
|||
1
𝑡 ( ∫

𝑡

0
𝑓 (𝑋𝐷

𝑠 ) d𝑠 + 𝜅𝐿𝐷𝑡 ) − (∫
𝐷
𝑓 (𝑦)𝜌𝐷(𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
𝜌𝐷(𝑦)H𝑑−1(d𝑦))

|||] ≤
𝐶(𝐷)√

𝑡
, (2.2)

and

|||𝔼
𝑥
[
1
𝑡 ( ∫

𝑡

0
𝑓 (𝑋𝐷

𝑠 ) d𝑠 + 𝜅𝐿𝐷𝑡 )] − ( ∫
𝐷
𝑓 (𝑦)𝜌𝐷(𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
𝜌𝐷(𝑦)H𝑑−1(d𝑦))

||| ≤
𝐶′(𝐷)
𝑡

, (2.3)

where H𝑑−1 denotes the (𝑑 − 1)-dimensional Hausdorff measure. In particular,

𝐽 (𝐷) = ∫
𝐷
𝑓 (𝑦)𝜌𝐷(𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
𝜌𝐷(𝑦)H𝑑−1(d𝑦).

We will need the following basic result for the proof, which we include here for the lack of a

precise reference.

Lemma 2.5. Let 𝑂 ⊂ ℝ𝑑 be a bounded open set of class C𝑘 for some 𝑘 ≥ 2 and let 𝑛 be the unit
inward normal vector on 𝜕𝑂. Then there exists a function 𝜑 ∈ C𝑘(ℝ𝑑) such that ∇𝜑 = 𝑛 on 𝜕𝑂.
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Proof. For a set 𝐴 ⊂ ℝ𝑑 let 𝑑(𝑥, 𝐴) ≔ inf{|𝑥 −𝑦| ∶ 𝑦 ∈ 𝐴} be the distance function to 𝐴 and denote

by 𝐴𝜀 ≔ {𝑦 ∈ ℝ𝑑 ∶ |𝑥 − 𝑦| < 𝜀 for some 𝑥 ∈ 𝐴} its 𝜀-fattening for 𝜀 > 0. Let

𝑠(𝑥) ≔

{
𝑑(𝑥, 𝜕𝑂), 𝑥 ∈ 𝑂,
−𝑑(𝑥, 𝜕𝑂), 𝑥 ∈ ℝ𝑑 ⧵ 𝑂,

be the signed distance to the boundary 𝜕𝑂. By [29, Theorem 3] there exists an open neighborhood

𝑈 of 𝜕𝑂 such that 𝑠 ∈ C𝑘(𝑈 ), and in particular ∇𝑠 is well-defined on 𝜕𝑂. Moreover, we have ∇𝑠 = 𝑛
on 𝜕𝑂. Indeed, for given 𝑦 ∈ 𝜕𝑂, by the above there exists 𝑟 > 0 such that 𝑠|𝐵(𝑦,𝑟)∶ 𝐵(𝑦, 𝑟) →
ℝ is a C𝑘 function and clearly 𝑠|−1𝐵(𝑦,𝑟)({0}) = 𝜕𝑂 ∩ 𝐵(𝑦, 𝑟). By the smoothness of 𝜕𝑂 we have

𝑠(𝑦 + ℎ𝑛(𝑦)) = ℎ for ℎ ≥ 0 small enough, whence

⟨∇𝑠(𝑦), 𝑛(𝑦)⟩ = ∇𝑛(𝑦)𝑠(𝑦) = lim
ℎ→0

𝑠(𝑦 + ℎ𝑛(𝑦)) − 𝑠(𝑦)
ℎ

= 1, (2.4)

and therefore ∇𝑠(𝑦) ≠ 0. The usual argument via the implicit function theorem now shows that

∇𝑠(𝑦) is orthogonal to the hyperplane tangent to 𝜕𝑂 at 𝑦. That is, ∇𝑠(𝑦) ∝ 𝑛(𝑦) and we conclude

from (2.4) that indeed ∇𝑠(𝑦) = 𝑛(𝑦). Now, since 𝑠 ∈ C𝑘(𝑈 ), we must have 𝑠 ∈ C𝑘((𝜕𝑂)𝜀) for some

𝜀 > 0, and since cl((𝜕𝑂)𝜀/2) ⊂ (𝜕𝑂)𝜀 is compact, it follows from the classical Whitney extension

theorem [50] that there exists a function 𝜑 ∈ C𝑘(ℝ𝑑) such that 𝜑 = 𝑠 on cl((𝜕𝑂)𝜀/2). In particular,

on 𝜕𝑂 it holds ∇𝜑 = ∇𝑠 = 𝑛, and we conclude that 𝜑 has the desired properties. ■

Proof of Theorem 2.4. We only prove the claim on 𝐿1(ℙ𝑥)-convergence at square root rate in (2.2),

the statement on convergence in expectation at linear rate in (2.3) follows from similar, but easier

considerations. We first have as in the proof of Lemma 2.1, letting 𝐴 be the differential operator

from (A.1),

∫
𝐷
𝐴𝑓 (𝑥) 𝜋𝐷(d𝑥) = − ∫

𝜕𝐷
⟨∇𝑓 (𝑥), 𝑛(𝑥)⟩𝜌𝐷(𝑥)H𝑑−1(d𝑥), 𝑓 ∈ C2(ℝ𝑑).

In particular, since 𝐷 is of class C2
, by Lemma 2.5 we may choose 𝜑 ∈ C2(ℝ𝑑) such that ∇𝜑(𝑥) =

𝑛(𝑥) for 𝑥 ∈ 𝜕𝐷, whereby we find

∫
𝐷
𝐴𝜑(𝑥) 𝜋𝐷(d𝑥) = − ∫

𝜕𝐷
𝜌𝐷(𝑥)H𝑑−1(d𝑥).

Now by Itô’s formula for 𝑡 ≥ 0 almost surely,

𝜑(𝑋𝐷
𝑡 ) − 𝜑(𝑋𝐷

0 ) = ∫
𝑡

0
𝐴𝜑(𝑋𝐷

𝑠 ) d𝑠 + ∫
𝑡

0
⟨∇𝜑(𝑋𝐷

𝑠 ), 𝑛(𝑋
𝐷
𝑠 )⟩ d𝐿

𝐷
𝑠 + ∫

𝑡

0
⟨∇𝜑(𝑋𝐷

𝑠 ), d𝑊𝑠⟩

= ∫
𝑡

0
𝐴𝜑(𝑋𝐷

𝑠 ) d𝑠 + 𝐿𝐷𝑡 + ∫
𝑡

0
⟨∇𝜑(𝑋𝐷

𝑠 ), d𝑊𝑠⟩,

where we used

∫
𝑡

0
⟨∇𝜑(𝑋𝐷

𝑠 ), 𝑛(𝑋
𝐷
𝑠 )⟩ d𝐿

𝐷
𝑠 = ∫

{𝑠≤𝑡∶𝑋𝐷
𝑠 ∈𝜕𝐷}

⟨∇𝜑(𝑋𝐷
𝑠 ), 𝑛(𝑋

𝐷
𝑠 )⟩ d𝐿

𝐷
𝑠 = ∫

{𝑠≤𝑡∶𝑋𝐷
𝑠 ∈𝜕𝐷}

d𝐿𝐷𝑠 = 𝐿𝐷𝑡 .

Note also that since ∇𝜑 is continuous, it is bounded on 𝐷, and hence ∫ ⋅0⟨∇𝜑(𝑋
𝐷
𝑠 ), d𝑊𝑠⟩ is a 𝐿2-

martingale. Combining these, we find for any 𝑥 ∈ 𝐷,

𝔼𝑥[
|||
1
𝑡
𝐿𝐷𝑡 − ∫

𝜕𝐷
𝜌𝐷(𝑥)H𝑑−1(d𝑥)|||]
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= 𝔼𝑥[
|||
1
𝑡 (
𝜑(𝑋𝐷

𝑡 ) − 𝜑(𝑋𝐷
0 ) − ∫

𝑡

0
(𝐴𝜑(𝑋𝐷

𝑠 ) − 𝜋𝐷(𝐴𝜑)) d𝑠 − ∫
𝑡

0
⟨∇𝜑(𝑋𝐷

𝑠 ), d𝑊𝑠⟩)
|||]

≤ 2
‖𝜑‖𝐿∞(𝐷)

𝑡
+ 𝔼𝑥[

1
𝑡
||| ∫

𝑡

0
(𝐴𝜑(𝑋𝐷

𝑠 ) − 𝜋𝐷(𝐴𝜑)) d𝑠
|||] +

1
𝑡
𝔼𝑥[

||| ∫
𝑡

0
⟨∇𝜑(𝑋𝐷

𝑠 ), d𝑊𝑠⟩
|||]

≲
‖𝜑‖𝐿∞(𝐷) + ‖𝐴𝜑‖𝐿∞(𝐷)√

𝑡
+
1
𝑡
𝔼𝑥[

||| ∫
𝑡

0
⟨∇𝜑(𝑋𝐷

𝑠 ), d𝑊𝑠⟩
|||]

≤
‖𝜑‖𝐿∞(𝐷) + ‖𝐴𝜑‖𝐿∞(𝐷)√

𝑡
+
1
𝑡 (

𝔼𝑥[ ∫
𝑡

0
|∇𝜑(𝑋𝐷

𝑠 )|
2 d𝑠])

1/2

≤
‖𝜑‖𝐿∞(𝐷) + ‖𝐴𝜑‖𝐿∞(𝐷) + ‖|∇𝜑|‖𝐿∞(𝐷)√

𝑡

where we used Corollary 2.3 for the second inequality and Hölder inequality together with Itô-

isometry for the third inequality. Using this, another application of Corollary 2.3 for the contin-

uous cost component yields

𝔼𝑥[
|||
1
𝑡 ( ∫

𝑡

0
𝑓 (𝑋𝐷

𝑠 ) d𝑠 + 𝜅𝐿𝐷𝑡 ) − (∫
𝐷
𝑓 (𝑦)𝜌𝐷(𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
𝜌𝐷(𝑦)H𝑑−1(d𝑦))

|||] ≤
𝐶√
𝑡
,

as claimed. ■

Putting pieces together, we obtain a formula for 𝐽 (𝐷) which is just based on the stationary

density 𝜌 of the uncontrolled process if the latter is ergodic.

Corollary 2.6. For any 𝐷 ∈ 𝐃, it holds that

𝐽 (𝐷) =
1

∫𝐷 e
−𝑉 (𝑦) d𝑦(∫

𝐷
𝑓 (𝑦)e−𝑉 (𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
e−𝑉 (𝑦)H𝑑−1(d𝑦)).

If, moreover, exp(−𝑉 ) ∈ 𝐿1(ℝ𝑑), then

𝐽 (𝐷) =
1

∫𝐷 𝜌(𝑦) d𝑦(
∫
𝐷
𝑓 (𝑦)𝜌(𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
𝜌(𝑦)H𝑑−1(d𝑦)).

We point out that this result is a multidimensional version of [1, Lemma 2.1].

3. Numerical optimization

Corollary 2.6 shows that, for known 𝜅 > 0, 𝑉 and 𝑓 , our problem for known dynamics boils down

to minimizing the functional

𝐽 ∶ 𝐷 ↦
1

∫𝐷 e
−𝑉 (𝑥) d𝑥(∫

𝐷
𝑓 (𝑥)e−𝑉 (𝑥) d𝑥 + 𝜅 ∫

𝜕𝐷
e−𝑉 (𝑥)H𝑑−1(d𝑥))

over a suitable set of bounded domains𝐷 ⊂ ℝ𝑑 . We are therefore faced with a shape optimization

problem. For a general overview on shape optimization we refer to [16]. To approach our partic-

ular problem numerically, we restrict ourselves to bounded domains that are strongly starshaped
at 0. Specifically, we assume that for any 𝐷 the boundary is given by

𝜕𝐷 = {𝑟(𝑞)𝑞 ∶ 𝑞 ∈ 𝑆𝑑−1},

for some suitably smooth radial function 𝑟 ∶ 𝑆𝑑−1 → (0,∞) on the 𝑑-sphere 𝑆𝑑−1. Rather than

optimizing over all such functions, we discretize the problem by considering 𝑁 ∈ ℕ points

placed uniformly (in a suitable sense) on the sphere, say {𝑞𝑖}𝑁𝑖=1 ⊂ 𝑆𝑑−1, and then approximating
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any star-shaped set 𝐷 by the polytope 𝐷̃ with vertices {𝑝𝑖}𝑁𝑖=1 ≔ {𝑟(𝑞𝑖)𝑞𝑖}𝑁𝑖=1. The polytope 𝐷̃
has 𝑁 facets and hence can naturally be split into 𝑁 simplices, each with a vertex at the origin

and the remaining vertices given by 𝑝𝑖1 , 𝑝𝑖2 , … , 𝑝𝑖𝑑 for some appropriate set of indices 𝑖1, 𝑖2, … , 𝑖𝑑 .
Denote for such a set of indices 𝐼 = {𝑖𝑗 }𝑑𝑗=1 by 𝐹𝐼 the facet of the simplex opposite the origin, and

by 𝑆𝐼 the simplex itself. Letting I be the family of such sets of indices, we arrive at the following

approximation of the objective function

𝐽 (𝐷) ≈ 𝐽 (𝐷̃) =
1

∑𝐼∈I ∫𝑆𝐼 e
−𝑉 (𝑥)d𝑥

∑
𝐼∈I

(∫
𝑆𝐼
𝑓 (𝑥)e−𝑉 (𝑥) d𝑥 + 𝜅 ∫

𝐹𝐼
e−𝑉 (𝑥)H𝑑−1(d𝑥)). (3.1)

Note that this approximation depends on 𝑟 (and hence on𝐷) only through the𝑁 lengths {𝑟𝑖}𝑁𝑖=1 ∶=
{𝑟(𝑞𝑖)}𝑁𝑖=1, and hence we may consider 𝐽 as a function of 𝑁 variables, 𝐽 (𝒓) ≔ 𝐽 (𝐷̃). Gradient based

optimization schemes can now be used, since

𝜕𝐽 (𝒓)
𝜕𝑟𝑖

=
1
𝐶
∑
𝐼∈I𝑖

(
𝜕
𝜕𝑟𝑖(∫

𝑆𝐼
𝑓 (𝑥)e−𝑉 (𝑥) d𝑥+𝜅 ∫

𝐹𝐼
e−𝑉 (𝑥)H𝑑−1(d𝑥))−𝐽 (𝒓)

𝜕
𝜕𝑟𝑖(∫

𝑆𝐼
e−𝑉 (𝑥) d𝑥)), (3.2)

where 𝐶 = ∑𝐼∈I ∫𝑆𝐼 e
−𝑉 (𝑥) d𝑥 , and I𝑖 = {𝐼 ∈ I ∶ 𝑖 ∈ 𝐼 }. To evaluate these expressions, we use the

following theorem.

Theorem 3.1. Let 𝑞1, … , 𝑞𝑑 ∈ 𝑆𝑑−1 and 𝑟1, … , 𝑟𝑑 > 0 be given and let 𝑝𝑖 = 𝑟𝑖𝑞𝑖 for 𝑖 = 1, … , 𝑑. Denote
by 𝑆 the simplex in ℝ𝑑 spanned by the origin and the points 𝑝1, … , 𝑝𝑑 and by 𝐹 the facet of 𝑆 opposite
the origin. Finally, let 𝑃 denote the 𝑑 ×𝑑 matrix whose 𝑖’th column is 𝑝𝑖 and 𝑃−1 the 𝑑 ×(𝑑−1) matrix
whose 𝑖’th column is 𝑝𝑖+1 − 𝑝1. Then we have the following for 𝑔 ∈ C(ℝ𝑑 , ℝ):

∫
𝑆
𝑔(𝑥) d𝑥 = |𝑃| ∫

1

0
∫
(0,1)𝑑−1

𝑔(𝑟𝜂(𝒕))𝜓(𝒕)𝑟𝑑−1d𝒕 d𝑟 (3.3)

∫
𝐹
𝑔(𝑥)H𝑑−1(d𝑥) =

√
|𝑃 𝑇−1𝑃−1| ∫

(0,1)𝑑−1
𝑔(𝜂(𝒕))𝜓(𝒕) d𝒕 (3.4)

where 𝜓(𝑡1, … , 𝑡𝑑−1) = ∏𝑑−2
𝑖=1 𝑡𝑑−1−𝑖𝑖 , and

𝜂(𝑡1, … , 𝑡𝑑−1) = (1 − 𝑡1)𝑝1 + 𝑡1(1 − 𝑡2)𝑝2 + ⋯ + (
𝑑−2
∏
𝑖=1

𝑡𝑖)(1 − 𝑡𝑑−1)𝑝𝑑−1 + (
𝑑−1
∏
𝑖=1

𝑡𝑖)𝑝𝑑 .

Furthermore, for 𝑖 = 1, … , 𝑑, we have

𝜕
𝜕𝑟𝑖 ∫𝑆

𝑔(𝑥)d𝑥 =
1
𝑟𝑖
|𝑃 | ∫

(0,1)𝑑−1
𝑔(𝜂𝑖(𝒕))𝜓(𝒕) d𝒕, (3.5)

where 𝜓(𝑡1, … , 𝑡𝑑−1) = (1 − 𝑡1)𝜓(𝑡1, … , 𝑡𝑑−1), and 𝜂𝑖 denotes 𝜂 after swapping 𝑝1 and 𝑝𝑖. Finally, if
also 𝑔 ∈ C1(ℝ𝑑 , ℝ),

𝜕
𝜕𝑟𝑖 ∫𝐹

𝑔(𝑥)H𝑑−1(d𝑥) =
1
2
tr ((𝑃

𝑇
−1𝑃−1)

−1 𝜕
𝜕𝑟𝑖

(𝑃 𝑇−1𝑃−1)) ∫
(0,1)𝑑−1

𝑔(𝜂(𝒕))𝜓(𝒕) d𝒕

+
√
|𝑃 𝑇−1𝑃−1| ∫

(0,1)𝑑−1
⟨∇𝑔(𝜂𝑖(𝒕)), 𝑞𝑖⟩𝜓(𝒕) d𝒕. (3.6)

Proof. We first note that 𝜂 is simply repeated linear interpolation. That is, if 𝐿(𝑡; 𝑥, 𝑦) ≔ 𝑥+𝑡(𝑦−𝑥)
for 𝑡 ∈ (0, 1) and 𝑥, 𝑦 ∈ ℝ𝑑 , we have

𝜂(𝑡1, … , 𝑡𝑑−1) = 𝐿(𝑡1; 𝑝1, 𝐿(𝑡2; 𝑝2, 𝐿(𝑡3; 𝑝3…))).
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As such, for any point 𝑥 ∈ int 𝐹 , there exists a unique 𝒕 ∈ (0, 1)𝑑 such that 𝜂(𝒕) = 𝑥 , and similarly

for any 𝑦 ∈ int 𝑆, a unique 𝑟 ∈ (0, 1) such that 𝑟𝜂(𝒕) = 𝑦. As such, to verify (3.3) and (3.4), we only

need to show that the functions

(𝑟, 𝒕) ↦ |𝑃|𝜓(𝒕)𝑟𝑑−1, and 𝒕 ↦
√
|𝑃 𝑇−1𝑃−1|𝜓(𝒕),

denote the Jacobian and Gramian of (𝑟, 𝒕) ↦ 𝑟𝜂(𝒕) and 𝜂, respectively. To this end, we introduce

the following notation: let 𝑡𝑑 ≡ 0, 𝑇1 = 1 and set 𝑇𝑖 = ∏𝑖−1
𝑗=1 𝑡𝑗 for 𝑖 = 2, … , 𝑑. Then we may write

𝜂(𝑡1, … , 𝑡𝑑−1) = ∑𝑑
𝑖=1 𝑇𝑖(1 − 𝑡𝑖)𝑝𝑖, whereby

𝜕
𝜕𝑡𝑖
𝑟𝜂(𝑡1, … , 𝑡𝑑−1) = 𝑟(

𝜂(𝑡1, … , 𝑡𝑑−1) − ∑𝑖−1
𝑗=1 𝑇𝑗 (1 − 𝑡𝑗 )𝑝𝑗 − 𝑇𝑖𝑝𝑖
𝑡𝑖 ), 𝑖 = 1, … , 𝑑 − 1,

while of course
𝜕
𝜕𝑟 𝑟𝜂 = 𝜂. From this it follows by determinant properties that the Jacobian of

(𝑟, 𝒕) ↦ 𝑟𝜂(𝒕) is given by

|J (𝑟, 𝒕)| = 𝑟𝑑−1(
𝑑−1
∏
𝑖=1

1
𝑡𝑖)(

𝑑
∏
𝑖=1

𝑇𝑖)|𝑃| = |𝑃 |𝜓(𝒕)𝑟𝑑−1,

showing (3.3) as desired.

To show (3.4), we note that since 𝐹 lies in a 𝑑−1-dimensional hyperplane, say𝐻 , we may embed

it in ℝ𝑑−1 by an isometry Ψ∶ 𝐻 → ℝ𝑑−1 with Ψ(𝑝1) = 0. Specifically, Ψ can be constructed as

𝑥 ↦ Ψ′(𝐴(𝑥 − 𝑝1)), where 𝐴 is the rotation matrix such that the 𝑑’th coordinate of 𝐴𝑥 is 0 for

all 𝑥 ∈ 𝐻 , and Ψ′∶ ℝ𝑑 → ℝ𝑑−1 simply discards the last coordinate. Then, integrating a function

𝑔 over 𝐹 with respect to H𝑑−1
is equivalent to integrating 𝑔 ◦ Ψ−1

over Ψ(𝐹) with respect to the

𝑑−1-dimensional Lebesgue measure. Now, since Ψ(𝐹) by the above construction of Ψ is a simplex

in ℝ𝑑−1 consisting of the origin and 𝑑 − 1 other points, say 𝑝′1, … , 𝑝′𝑑−1, it follows by the above,

∫
𝐹 ′
𝑔 ◦ Ψ−1(𝑥)d𝑥 = |𝑃 ′| ∫

1

0
∫
(0,1)𝑑−2

𝑔 ◦ Ψ−1(𝑟𝜂′(𝒕))𝜓′(𝒕)𝑟𝑑−1 d𝒕 d𝑟,

where 𝜂′ similarly is linear interpolation between 𝑝′1, … , 𝑝′𝑑−1, 𝜓
′

is the 𝑑 − 1-dimensional equiv-

alent of 𝜓 and 𝑃 ′ is the (𝑑 − 1) × (𝑑 − 1) matrix whose 𝑖’th column is 𝑝′𝑖 . By some elementary

substitutions and renaming of variables, we may write in an abuse of notation Ψ−1(𝑟𝜂′(𝒕)) = 𝜂(𝒕)
and 𝜓′(𝒕)𝑟𝑑−1 = 𝜓(𝒕). Finally, to find |𝑃 ′|, we see

|𝑃 ′| = (𝑑 − 1)! Vol𝑑−1 𝐹 ′ = (𝑑 − 1)! Vol𝑑−1 𝐹 =
√
|𝑃 𝑇−1𝑃−1|,

where we use that Ψ is an isometry and hence preserves volumes.

To show (3.5), let 𝑖 ∈ {1, … , 𝑑} be fixed and consider now for some small ℎ the simplex 𝑆′ with a

vertex at the origin and at the points 𝑝1, … , 𝑝𝑖−1, 𝑟𝑖+ℎ𝑟𝑖 𝑝𝑖, 𝑝𝑖+1, … , 𝑝𝑑 . Since either 𝑆 ⊂ 𝑆′ or 𝑆′ ⊂ 𝑆,

the symmetric difference 𝑆 △ 𝑆′ is another simplex with vertices at 𝑝1, … , 𝑝𝑑 and
𝑟𝑖+ℎ
𝑟𝑖 𝑝𝑖. Assume

without loss of generality that 𝑆 ⊂ 𝑆′. Shifting the coordinate system so that 𝑝𝑖 lies at the origin,

we get a simplex with a vertex at the origin and at the points 𝑝1 − 𝑝𝑖, 𝑝2 − 𝑝𝑖, … , ℎ𝑟𝑖𝑝𝑖, … , 𝑝𝑑 − 𝑝𝑖.
Note that by properties of the determinant, we get

|||[
𝑝1 − 𝑝𝑖 𝑝2 − 𝑝𝑖 ⋯ ℎ

𝑟𝑖𝑝𝑖 ⋯ 𝑝𝑑 − 𝑝𝑖]
||| =

ℎ
𝑟𝑖
|𝑃 |.

Using this and (3.3), we find that

∫
𝑆′
𝑔(𝑥)d𝑥 − ∫

𝑆
𝑔(𝑥)d𝑥 = ∫

𝑆′⧵𝑆
𝑔(𝑥)d𝑥 =

ℎ
𝑟𝑖
|𝑃 | ∫

1

0
∫
(0,1)𝑑−1

𝑔(𝑟𝜂𝑖,ℎ(𝒕) + 𝑝𝑖)𝑟𝑑−1𝜓(𝒕) d𝒕 d𝑟,
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where, using the same notation as earlier,

𝜂𝑖,ℎ(𝑡1, … , 𝑡𝑑−1) = 𝑇𝑖(1 − 𝑡𝑖)
ℎ
𝑟𝑖
𝑝𝑖 +∑

𝑗≠𝑖
𝑇𝑗 (1 − 𝑡𝑗 )(𝑝𝑗 − 𝑝𝑖).

Dividing by ℎ and letting ℎ → 0 (implicitly using dominated convergence and the continuity of

𝑔), we thus find

𝜕
𝜕𝑟𝑖 ∫𝑆

𝑔(𝑥)d𝑥 =
1
𝑟𝑖
|𝑃 | ∫

1

0
∫
(0,1)𝑑−1

𝑔(𝑟𝜂𝑖,0(𝒕) + 𝑝𝑖)𝑟𝑑−1𝜓(𝒕) d𝒕 d𝑟. (3.7)

Noting that

∑
𝑗≠𝑖

𝑇𝑗 (1 − 𝑡𝑗 ) =
𝑑−1
∑
𝑗≠𝑖

(𝑇𝑗 − 𝑇𝑗+1) + 𝑇𝑑 = 𝑇1 − (𝑇𝑖 − 𝑇𝑖+1) = 1 − 𝑇𝑖(1 − 𝑡𝑖),

we find

𝑟𝜂𝑖,0(𝑡1, … , 𝑡𝑑−1) + 𝑝𝑖 = 𝑟(∑
𝑗≠𝑖

𝑇𝑗 (1 − 𝑡𝑗 )(𝑝𝑗 − 𝑝𝑖)) + 𝑝𝑖

= 𝑟(∑
𝑗≠𝑖

𝑇𝑗 (1 − 𝑡𝑗 )𝑝𝑗 − (1 − 𝑇𝑖(1 − 𝑡𝑖))𝑝𝑖) + 𝑝𝑖

= 𝑟𝜂(𝑡1, … , 𝑡𝑑−1) + (1 − 𝑟)𝑝𝑖,

which together with (3.7) yields

𝜕
𝜕𝑟𝑖 ∫𝑆

𝑔(𝑥)d𝑥 =
1
𝑟𝑖
|𝑃 | ∫

1

0
∫
(0,1)𝑑−1

𝑔(𝑟𝜂(𝒕) + (1 − 𝑟)𝑝𝑖)𝑟𝑑−1𝜓(𝒕) d𝒕 d𝑟.

At this point we remark that the ordering of the points 𝑝1, … , 𝑝𝑑 is arbitrary and has no influence

on the value of the above integrals. As such, we may swap the places of two points, say 𝑝1 and

𝑝𝑖, and thus replacing 𝜂 by 𝜂𝑖 in the above integral. From this, we see

𝑟𝜂𝑖(𝑡1, … , 𝑡𝑑−1) + (1 − 𝑟)𝑝𝑖 = (1 − 𝑟𝑡1)𝑝𝑖 + 𝑟𝑡1(1 − 𝑡2)𝑝2 + ⋯ + 𝑟𝑡1(
𝑑−1
∏
𝑗=2

𝑡𝑗)𝑝𝑑 = 𝜂𝑖(𝑟𝑡1, … , 𝑡𝑑−1).

Thus, making the substitution 𝑢 = 𝑟𝑡1 in the above integral, we get

∫
1

0
∫
(0,1)𝑑−1

𝑔(𝑟𝜂(𝒕) + (1 − 𝑟)𝑝𝑖)𝑟𝑑−1𝜓(𝒕) d𝒕 d𝑟 = ∫
1

0
∫
(0,1)𝑑−2

∫
𝑟

0
𝑔(𝜂𝑖(𝑢, 𝒕))𝜓(𝑢, 𝒕)d𝑢 d𝒕 d𝑟

= ∫
(0,1)𝑑−2

∫
1

0
𝑔(𝜂(𝑢, 𝒕))𝜓(𝑢, 𝒕)(1 − 𝑢) d𝑢 d𝒕

= ∫
(0,1)𝑑−1

𝑔(𝜂𝑖(𝒕))𝜓(𝒕) d𝒕,

which shows (3.5). Finally, to show (3.6), we have by Jacobi’s formula,

𝜕
𝜕𝑟𝑖

|𝑃 𝑇−1𝑃−1| = |𝑃 𝑇−1𝑃−1| tr ((𝑃
𝑇
−1𝑃−1)

−1 𝜕
𝜕𝑟𝑖

(𝑃 𝑇−1𝑃−1)),

whereby

𝜕
𝜕𝑟𝑖 ∫𝐹

𝑔(𝑥)H𝑑−1(d𝑥) =
1
2
tr ((𝑃

𝑇
−1𝑃−1)

−1 𝜕
𝜕𝑟𝑖

(𝑃 𝑇−1𝑃−1)) ∫
(0,1)𝑑−1

𝑔(𝜂(𝒕))𝜓(𝒕) d𝒕
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+
√
|𝑃 𝑇−1𝑃−1|

𝜕
𝜕𝑟𝑖(∫

(0,1)𝑑−1
𝑔(𝜂𝑖(𝒕))𝜓(𝒕) d𝒕)

=
1
2
tr ((𝑃

𝑇
−1𝑃−1)

−1 𝜕
𝜕𝑟𝑖

(𝑃 𝑇−1𝑃−1)) ∫
(0,1)𝑑−1

𝑔(𝜂(𝒕))𝜓(𝒕) d𝒕

+
√
|𝑃 𝑇−1𝑃−1| ∫

(0,1)𝑑−1
⟨∇𝑔(𝜂𝑖(𝒕)), 𝑞𝑖⟩𝜓(𝒕) d𝒕,

where we in the last equality used
𝜕
𝜕𝑟𝑖 𝜂𝑖(𝑡1, … , 𝑡𝑑−1) = (1 − 𝑡1)𝑞𝑖. ■

When the dynamics of the process are known, that is we have access to the potential 𝑉 , the

theorem allows us to find explicit expressions for the right hand side of (3.1) and (3.2) given 𝑁
points on the sphere and therefore to numerically optimize within the space of polytope approxi-

mations to star-shaped sets via gradient descent. For the two-dimensional case, strikingly simple

expressions can be derived from this and, given sufficient regularity of the star-shaped domain,

the approximation rate in (3.1) is at most of order 1/𝑁 .

Corollary 3.2. Let 𝑟 ∈ C2([0, 2𝜋], [𝑟min, 𝑟max]) with 0 < 𝑟min ≤ 𝑟max < ∞ be some periodic radial
function, and denote by 𝐷 ⊂ ℝ2 the set with 𝜕𝐷 = 𝑟([0, 2𝜋]). For any 𝑁 ∈ ℕ, let 𝑟𝑖 = 𝑟( 2𝑖𝜋𝑁 ),
𝑞𝑖 = (cos 2𝑖𝜋

𝑁 , sin 2𝑖𝜋
𝑁 ) and 𝑝𝑖 = 𝑟𝑖𝑞𝑖 and denote by 𝐷̃ ⊂ ℝ2 the simplex with vertices {𝑝𝑖}𝑁𝑖=1. Finally,

for 𝑖 = 1, … , 𝑁 and 𝑡 ∈ (0, 1), let 𝜂+𝑖 (𝑡) = 𝑝𝑖 + 𝑡(𝑝𝑖+1 − 𝑝𝑖) and 𝜂−𝑖 (𝑡) = 𝑝𝑖 + 𝑡(𝑝𝑖−1 − 𝑝𝑖), where we
identify 𝑝0 = 𝑝𝑁 and 𝑝𝑁+1 = 𝑝1. Then, there exists a constant 𝐾 ≥ 0 such that

|𝐽 (𝐷) − 𝐽 (𝐷̃)| ≤
𝐾
𝑁
,

where for 𝜌 = e−𝑉 we have the explicit representations

𝐽 (𝐷̃) =
1
𝐶

𝑁
∑
𝑖=1

( sin
2𝜋
𝑁
𝑟𝑖𝑟𝑖+1 ∫

1

0
∫

1

0
(𝑓 𝜌)(𝑟𝜂+𝑖 (𝑡))𝑟 d𝑟 d𝑡 + 𝜅|𝑝𝑖+1 − 𝑝𝑖| ∫

1

0
𝜌(𝜂+𝑖 (𝑡)) d𝑡),

and

𝜕𝐽 (𝐷̃)
𝜕𝑟𝑖

=
1
𝐶 ∫

1

0
(𝜓+(𝑡)𝜌(𝜂+𝑖 (𝑡)) + 𝜓−(𝑡)𝜌(𝜂−𝑖 (𝑡))) d𝑡,

where

𝜓±(𝑡) = ( sin
2𝜋
𝑁
𝑟𝑖±1(𝑓 (𝜂±𝑖 (𝑡)) − 𝐽 (𝐷̃)) − 𝜅|𝑝𝑖±1 − 𝑝𝑖|⟨∇𝑉 (𝜂±𝑖 (𝑡)), 𝑞𝑖⟩)(1 − 𝑡) +

𝜅(𝑟𝑖 − cos 2𝜋
𝑁 𝑟𝑖±1)

|𝑝𝑖 − 𝑝𝑖±1|
,

and

𝐶 =
𝑁
∑
𝑖=1

sin
2𝜋
𝑁
𝑟𝑖𝑟𝑖+1 ∫

1

0
∫

1

0
𝜌(𝑟𝜂+𝑖 (𝑡))𝑟 d𝑟 d𝑡.

Proof. We show only the first claim, the rest is an immediate consequence of Theorem 3.1. To

this end, we assume for convenience that 𝑁 ≥ 4 and introduce the following notation: for 𝜃 ∈
[0, 2𝜋] and any radial function 𝑟̂ ∶ [0, 2𝜋] → (0,∞) which is C2

almost everywhere, let 𝑝(𝜃) =
(cos 𝜃, sin 𝜃) and 𝒓̂(𝜃) = (̂𝑟(𝜃), 𝑟̂ ′(𝜃))when the derivative exists. Also, for any continuous function

𝑔 ∶ ℝ2 → ℝ, write

𝐼 (̂𝑟 , 𝑔) ≔ ∫
2𝜋

0
∫
𝑟̂ (𝜃)

0
𝑔(𝑠𝑝(𝜃))𝑠 d𝑠 d𝜃, and 𝑆(̂𝑟 , 𝑔) ≔ ∫

2𝜋

0
𝑔(𝑟̂(𝜃)𝑝(𝜃))|𝒓̂(𝜃)| d𝜃.
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It is then straightforward to check that

𝐽 (𝐷) =
𝐼(𝑟, 𝑓 𝜌) + 𝜅𝑆(𝑟, 𝜌)

𝐼 (𝑟 , 𝜌)
.

Letting 𝑟̃ ∶ [0, 2𝜋] → [𝑟min, 𝑟max] denote the radial function corresponding to 𝐷̃, we then have

|𝐽 (𝐷) − 𝐽 (𝐷̃)| =
1

𝐼 (𝑟, 𝜌)
|||(𝐼 (𝑟 , 𝑓 𝜌) − 𝐼 (̃𝑟 , 𝑓 𝜌)) + 𝜅(𝑆(𝑟, 𝜌) − 𝑆(̃𝑟 , 𝜌)) + 𝐽 (𝐷̃)(𝐼 (𝑟 , 𝜌) − 𝐼 (̃𝑟 , 𝜌))|||.

By our assumptions on 𝑟 , it follows that 𝐼 (𝑟 , 𝜌) is bounded from below and 𝐽 (𝐷̃) from above.

As such, to show the desired convergence rate, we only need to show that for any continuous

𝑔 ∶ ℝ2 → ℝ,

|𝐼 (𝑟 , 𝑔) − 𝐼 (̃𝑟 , 𝑔)| ∨ |𝑆(𝑟, 𝜌) − 𝑆(̃𝑟 , 𝜌)| ≤
𝐾1

𝑁
(3.8)

for some 𝐾1 ≥ 0. In fact, by dominating with sup𝑥∈𝐵(0,𝑟max) |𝑔(𝑥)|, it suffices to show (3.8) with

𝑔 ≡ 1. This follows if we show for 𝑖 = 1, … , 𝑁

|𝑟(𝜃) − 𝑟̃(𝜃)| ∨ |𝑟 ′(𝜃) − 𝑟̃ ′(𝜃)| ≤
𝐾2

𝑁
, 𝜃 ∈ ( 2(𝑖−1)𝜋𝑁 , 2𝑖𝜋𝑁 ) (3.9)

for some 𝐾2 ≥ 0 independent of 𝑖. Indeed, if this is the case, we have first,

|𝐼 (𝑟 , 1) − 𝐼 (̃𝑟 , 1)| ≤
𝑁
∑
𝑖=1

∫

2𝑖𝜋
𝑁

2(𝑖−1)𝜋
𝑁

||| ∫
𝑟(𝜃)

𝑟̃(𝜃)
𝑠 d𝑠||| d𝜃 ≤ 𝑟max

𝑁
∑
𝑖=1

∫

2𝑖𝜋
𝑁

2(𝑖−1)𝜋
𝑁

|𝑟(𝜃) − 𝑟̃(𝜃)| d𝜃 ≤
2𝜋𝑟max𝐾2

𝑁
,

and similarly, since |𝒓 − 𝒓̃| =
√
(𝑟 − 𝑟̃)2 + (𝑟 ′ − 𝑟̃ ′)2 ≤

√
2𝐾2
𝑁 ,

|𝑆(𝑟 , 𝜌) − 𝑆(̃𝑟 , 𝜌)| ≤
𝑁
∑
𝑖=1

∫

2𝑖𝜋
𝑁

2(𝑖−1)𝜋
𝑁

(|𝒓(𝜃)|||𝜌(𝑟(𝜃)𝑝(𝜃)) − 𝜌(𝑟̃(𝜃)𝑝(𝜃))|| + 𝜌(𝑟̃(𝜃)𝑝(𝜃))|||𝒓(𝜃)| − |𝒓̃(𝜃)|||)d𝜃

≤ 𝐾3

𝑁
∑
𝑖=1

∫

2𝑖𝜋
𝑁

2(𝑖−1)𝜋
𝑁

(|𝑟(𝜃) − 𝑟̃(𝜃)| + |𝒓(𝜃) − 𝒓̃(𝜃)|) d𝜃 ≤
2𝜋(1 +

√
2)𝐾2𝐾3

𝑁
,

where

𝐾3 = (( sup
𝜃∈[0,2𝜋]

|𝒓(𝜃)| sup
𝑥∈cl 𝐵(0,𝑟max)

|∇𝜌(𝑥)|) ∨ sup
𝑥∈cl 𝐵(0,𝑟max)

𝜌(𝑥))

whereby we may choose 𝐾1 = 2𝜋𝐾2(𝑟max ∨ (1 +
√
2)𝐾3). To verify (3.9), we first find by some

straightforward trigonometry, identifying 𝑟0 = 𝑟𝑁 ,

𝑟̃ (𝜃) =
𝑁
∑
𝑖=1

𝑟𝑖(𝑚𝑖 cos 2𝑖𝜋
𝑁 − sin 2𝑖𝜋

𝑁 )
𝑚𝑖 cos 𝜃 − sin 𝜃

𝟏[ 2(𝑖−1)𝜋𝑁 , 2𝑖𝜋𝑁 )(𝜃), where 𝑚𝑖 =
𝑟𝑖 sin 2𝑖𝜋

𝑁 − 𝑟𝑖−1 sin 2(𝑖−1)𝜋
𝑁

𝑟𝑖 cos 2𝑖𝜋
𝑁 − 𝑟𝑖−1 cos 2(𝑖−1)𝜋

𝑁

.

Here, when 𝑟𝑖 cos 2𝑖𝜋
𝑁 = 𝑟𝑖−1 cos 2(𝑖−1)𝜋

𝑁 we set 𝑚𝑖 = ∞ and treat 𝑟̃ in a limiting sense. Now, for

𝑖 ∈ {1, … , 𝑁 } and 𝜃 ∈ ( 2(𝑖−1)𝜋𝑁 , 2𝑖𝜋𝑁 ), let 𝜑𝑖(𝜃) denote the 𝑖’th summand in 𝑟̃ (𝜃). Let also 𝜓𝑖(𝜃) =
𝑚𝑖 sin 𝜃+cos 𝜃
𝑚𝑖 cos 𝜃−sin 𝜃 , such that 𝜑′𝑖 (𝜃) = 𝜑𝑖(𝜃)𝜓𝑖(𝜃). Further, since 𝜓′

𝑖 (𝜃) = 1 + 𝜓𝑖(𝜃)2, we find also 𝜑′′𝑖 (𝜃) =
𝜑𝑖(𝜃)(1+2𝜓𝑖(𝜃)2), whereby to bound 𝑟̃ , 𝑟̃ ′ and 𝑟̃ ′′ (when the latter two exist), we need only bound

𝜑𝑖 and 𝜓𝑖 for all 𝑖. Clearly, we have 𝜑𝑖(𝜃) ≤ 𝑟max, and since 𝜓′
𝑖 (𝜃) > 0, we must have |𝜓𝑖(𝜃)| ≤

|𝜓𝑖( 2(𝑖−1)𝜋𝑁 )| ∨ |𝜓𝑖( 2𝑖𝜋𝑁 )|. Some simple, albeit tedious, applications of trigonometric identities show

that

𝜓𝑖(
2(𝑖 − 1)𝜋

𝑁 ) = −
𝑟𝑖−1 − 𝑟𝑖 cos 2𝜋

𝑁
𝑟𝑖 sin 2𝜋

𝑁
and 𝜓𝑖(

2𝑖𝜋
𝑁 ) =

𝑟𝑖 − 𝑟𝑖−1 cos 2𝜋
𝑁

𝑟𝑖−1 sin 2𝜋
𝑁

,
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and since e.g. |𝑟𝑖−𝑟𝑖−1 cos 2𝜋
𝑁 | ≤ cos 2𝜋

𝑁 |𝑟𝑖−𝑟𝑖−1|+𝑟𝑖(1−cos 2𝜋
𝑁 ), we find by the Lipschitz-continuity

of 𝑟 and cosine,

|𝜓𝑖(𝜃)| ≤
2𝜋

𝑁 𝑟min(
1

tan 2𝜋
𝑁

sup
𝜃∈[0,2𝜋)

|𝑟 ′(𝜃)| + 𝑟max) ≲
sup𝜃∈[0,2𝜋]|𝑟

′(𝜃)|

𝑟min
.

Here we use that
𝑥

tan 𝑥 ∈ [0, 1] for 0 ≤ 𝑥 ≤ 𝜋
2 , and hence

2𝜋
𝑁 tan 2𝜋

𝑁
∈ [0, 1] for 𝑁 ≥ 4. Since this

bound depends neither on 𝑖 nor 𝜃, we find for all 𝜃 ∈ [0, 2𝜋) ⧵ { 2𝑖𝜋𝑁 }𝑁𝑖=1

𝑟̃ (𝜃) ≤ 𝑟max, |̃𝑟 ′(𝜃)| ≲
𝑟max

𝑟min
sup

𝜃∈[0,2𝜋]
|𝑟 ′(𝜃)|, and |̃𝑟 ′′(𝜃)| ≲ 𝑟max(1 + 2[

1
𝑟min

sup
𝜃∈[0,2𝜋]

|𝑟 ′(𝜃)|]
2

).

Thus we have by Lipschitz-continuity for 𝑖 ∈ {1, … , 𝑁 } and 𝜃 ∈ [ 2(𝑖−1)𝜋𝑁 , 2𝑖𝜋𝑁 ), since 𝑟( 2(𝑖−1)𝜋2 ) =
𝑟𝑖−1 = 𝑟̃( 2(𝑖−1)𝜋𝑁 )

|𝑟(𝜃) − 𝑟̃(𝜃)| ≤ |𝑟(𝜃) − 𝑟𝑖−1| + |𝑟𝑖−1 − 𝑟̃(𝜃)| ≤
2𝜋(1 + 𝑟max

𝑟min
) sup𝜃∈[0,2𝜋]|𝑟

′(𝜃)|

𝑁

Furthermore, since 𝑟̃ and 𝑟 agree on { 2𝑖𝜋𝑁 }𝑁𝑖=1, it follows by the mean value theorem that there exist

𝜃∗, 𝜃∗ ∈ ( 2(𝑖−1)𝜋𝑁 , 2𝑖𝜋𝑁 ), such that 𝑟 ′(𝜃∗) = 𝑟̃ ′(𝜃∗). Thus we also have

|𝑟 ′(𝜃) − 𝑟̃ ′(𝜃)| ≤ |𝑟 ′(𝜃) − 𝑟 ′(𝜃∗)| + |̃𝑟 ′(𝜃∗) − 𝑟̃ ′(𝜃)|

≤
2𝜋(sup𝜃∈[0,2𝜋]|𝑟

′′(𝜃)| + 𝑟max(1 + 2( 1
𝑟min

sup𝜃∈[0,2𝜋]|𝑟
′(𝜃)|)2))

𝑁
,

and the proof is finished by setting

𝐾2 = 2𝜋(((1 +
𝑟max
𝑟min

) sup
𝜃∈[0,2𝜋]

|𝑟 ′(𝜃)|) ∨ ( sup
𝜃∈[0,2𝜋]

|𝑟 ′′(𝜃)| + 𝑟max(1 + 2( 1
𝑟min

sup
𝜃∈[0,2𝜋]

|𝑟 ′(𝜃)|)2))).

■

This now implies for 𝑑 = 2 that for suitable admissible domain families Θ ∋ 𝐷, the infimum of

𝐷 ↦ 𝐽(𝐷) over Θ is well approximated by the infimum over the polytope approximations.

Corollary 3.3. Let 𝑑 = 2 and let Θ be the family of domains 𝐷 that are strongly starhaped at 0
and are identified by C2 periodic radial functions 𝑟𝐷 ∶ [0, 2𝜋] → (0,∞) such that for some global
constants 𝜆, 𝜆, Λ,

𝜆 ≤ 𝑟𝐷 ≤ 𝜆 and max
𝜃∈[0,2𝜋]

(|𝑟 ′𝐷(𝜃)| + |𝑟 ′′𝐷 (𝜃)|) ≤ Λ.

Then, letting 𝐷̃𝑁 be the polytope approximation of 𝐷 from Corollary 3.2, it holds

|| inf𝐷∈Θ
𝐽 (𝐷̃𝑁 ) − inf

𝐷∈Θ
𝐽 (𝐷)|| ≲ 1/𝑁 .

Proof. For given 𝜀 > 0 choose 𝐷𝜀 ∈ Θ s.t. 𝐽 (𝐷𝜀) ≤ inf𝐷∈Θ 𝐽 (𝐷) + 𝜀. Then, by Corollary 3.2,

inf
𝐷∈Θ

𝐽 (𝐷̃𝑁 )− inf
𝐷∈Θ

𝐽 (𝐷) ≤ inf
𝐷∈Θ

𝐽 (𝐷̃𝑁 )−𝐽 (𝐷𝜀)+𝜀 ≤ 𝐽 (𝐷𝜀𝑁 )−𝐽 (𝐷𝜀)+𝜀 ≤ sup
𝐷∈Θ

(𝐽 (𝐷̃𝑁 )−𝐽 (𝐷))+𝜀 ≲
1
𝑁
+𝜀.

Similarly, letting 𝐷𝜀 ∈ Θ such that 𝐽 (𝐷𝜀𝑁 ) ≤ inf𝐷∈Θ 𝐽 (𝐷̃𝑁 ) + 𝜀, we have,

inf
𝐷∈Θ

𝐽 (𝐷) − inf
𝐷∈Θ

𝐽 (𝐷̃𝑁 ) ≤ 𝐽 (𝐷𝜀) − 𝐽 (𝐷𝜀𝑁 ) + 𝜀 ≤ sup
𝐷∈Θ

|𝐽 (𝐷̃𝑁 ) − 𝐽 (𝐷)| + 𝜀 ≲
1
𝑁

+ 𝜀.

Taking together both bounds and letting 𝜀 ↓ 0 therefore gives the result. ■
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In the simple case of a pure Brownian motion, corresponding to e−𝑉 ≡ 1, and given radially

symmetric costs 𝑓 = |⋅|, one expects the optimal reflection boundary to be a sphere centered

at 0. Optimizing the corresponding cost functional over the space of such balls only, gives the

optimization problem a parametric structure that can be easily solved analytically to reveal the

optimal ball to be 𝐷∗ = 𝐵(0, 𝑟∗), where 𝑟∗ =
√
(𝑑 + 1)𝜅. It is now interesting to test our method

with regard to two questions: does the numerical optimization over the more general class of

star-shaped domains support our intuition by identifying a ball as the optimal reflection domain,

and if so, do we obtain a good approximation of the optimal radius 𝑟∗ =
√
(𝑑 + 1)𝜅 as well? The

result for different choices of 𝜅 is visualized in Figure 3.1, giving an affirmative answer to both

questions.

Figure 3.1: For each value of 𝜅, we use a quasi-Newton method for finding the optimal shape

according to the gradients above. Each time, a ball is indeed identified as the optimal

shape and we plot its radius as a function of 𝜅. Finally the dotted line represents the

optimal line 𝑟∗ =
√
3𝜅.

Our method is also well-equipped for handling more challenging non-symmetric situations,

where it is hard to make an educated guess on the optimal shape. As such, we also test the method

on reflected Ornstein–Uhlenbeck processes with strong correlation, in particular the processes

d𝑋𝐷
𝑡 = 𝐴𝑋𝐷

𝑡 d𝑡 +
√
2 d𝑊𝑡 + 𝑛(𝑋𝐷

𝑡 ) d𝐿
𝐷
𝑡 , 𝐴 = [

1 0.9
0.9 1 ]

−1

,

as well as a skewed cost-function, namely 𝑓 (𝑥, 𝑦) =
√
𝑥2 + 5𝑦2. The found approximately optimal

shapes can be seen in Figure 3.2. Here, for each shape we take 𝑁 = 50, 𝜅 = 1 and use a quasi-

Newton method to find the optimal shape with starting values 𝑟𝑖 = 1 for 𝑖 = 1, … , 50. The found

optimal shapes correspond to, from top-left to bottom-right, Brownian motion with norm cost,

Ornstein–Uhlenbeck process with norm cost, Brownian motion with skewed cost and Ornstein–

Uhlenbeck process with skewed cost. Finally, Figure 3.2 also shows simulations of the above

reflected processes in these approximately optimal shapes to asses the convergence of the realized

costs towards the theoretical objective function. To do this, we use the usual Euler scheme, where

we then project the process onto𝐷whenever it leaves the domain. The distance of this projection

is then the associated simulated increase in local time, cf. [44]. We simulate the relevant processes

with time-steps of 10−4 until time 𝑇 = 100 (but plot only until 𝑇 = 10 for visual clarity). The

average realized cost in comparison to the expected average long run costs are given in Table

3.1.

4. Learning the optimal boundary

We now turn to the challenging situation, when the dynamics of the unconstrained Langevin

diffusion are unknown, which makes it impossible to set the optimization algorithm from the
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Figure 3.2: Simulated optimal shapes and corresponding path realizations of reflected processes.

norm cost function skewed cost function

Brownian motion 2.22 (2.31) 2.83 (2.91)

Ornstein–Uhlenbeck 1.18 (1.15) 1.66 (1.74)

Table 3.1: Average realized costs vs. expected average long term costs (in brackets)

previous section into motion, without feeding it information based on collected data first. As

apparent from the explicit form of the cost functional given in Corollary 2.6, a natural data-

driven reflection procedure can be based on a plug-in approach, provided that we have an efficient

estimator of (functionals of) the invariant density of the unconstrained Langevin diffusion at our

disposal.

4.1. Adaptive nonparametric estimation of the invariant density

As in the scalar case discussed in [11], we employ a kernel estimator of the invariant den-

sity, whose sup-norm risk given appropriate conditions on the diffusion coefficients is well-

understood in a general context by now. In the following, we will concentrate on a class of

potentials 𝑉 s.t. the process satisfies certain functional inequalities. This setting is quite natural

given the reversible nature of Langevin diffusions and is studied in [46], where minimax opti-

mal estimation rates for a Lepski type adaptive kernel estimator are established under anisotropic
Hölder smoothness assumptions on the invariant density. To recall these results, some prelimi-

nary definitions are necessary.

Let 𝜋 be the invariant distribution of 𝑋 with density 𝜌 ∝ exp(−𝑉 ) and let L be the 𝐿2(𝜋)-
generator of 𝑋 with domain D(L). Since −L is self-adjoint and nonnegative on the Hilbert space

𝐿2(𝜋) endowed with the inner product ⟨𝑓 , 𝑔⟩𝜋 ≔ ∫ 𝑓 𝑔 d𝜋, we may define

√
−L via spectral cal-

culus and note that for any 𝑓 ∈ D(
√
−L), we have ‖

√
−L𝑓 ‖2𝜋 = −⟨L𝑓 , 𝑓 ⟩𝜋 , which for 𝑓 ∈ C2

𝑐 (ℝ𝑑)
is equal to ‖∇𝑓 ‖2𝜋 . We treat diffusion models satisfying the following conditions.

Definition 4.1. (PI) 𝑋 satisfies a Poincaré inequality with constant 𝐶P if, for any 𝑓 ∈ D(
√
−L),

Var𝜋(𝑓 ) ≔ 𝜋(𝑓 2) − 𝜋(𝑓 )2 ≤ 𝐶P‖
√
−L𝑓 ‖2𝜋 .
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(NI) 𝑋 satisfies a Nash inequality with constants 𝐶1
N, 𝐶2

N if, for any 𝑓 ∈ D(
√
−L),

‖𝑓 ‖𝑑+2𝜋 ≤ (𝐶
1
N‖𝑓 ‖

2
𝜋 + 𝐶2

N‖
√
−L𝑓 ‖2𝜋)

𝑑/2
‖𝑓 ‖2𝐿1(𝜋).

Denote by Σ(𝐶P, 𝐶1
N, 𝐶2

N) the class of potentials 𝑉 ∶ ℝ𝑑 → ℝ𝑑 s.t. the corresponding Langevin

diffusion satisfies (PI) and (NI).

Remark 4.2. A Nash inequality is called tight if 𝐶1
N = 1, in which case it implies a logarithmic

Sobolev inequality and therefore also a Poincaré inequality.

The combination of a Poincaré inequality with a Nash inequality is particularly attractive from

a statistical point of view. A Poincaré inequality is equivalent to exponential ergodicity in 𝐿2(𝜋).
More precisely, for any 𝑓 ∈ 𝐿2(𝜋) with 𝜋(𝑓 ) = 0, ‖𝑃𝑡𝑓 ‖𝜋 ≲ exp(−𝑡/𝐶P)‖𝑓 ‖𝜋 , which enforces

a fast mixing behavior of the diffusion. A Nash inequality on the other hand is equivalent to

ultracontractivity expressed through the heat kernel bound ‖𝑃𝑡‖𝐿1(𝜋)→𝐿∞(𝜋) ≲ 𝑡−𝑑/2 for 𝑡 ∈ (0, 1],
cf. [4, Theorem 6.3.1]. The key observation for the statistical approach is that the combination of

both yields tight variance bounds for path integrals ∫ 𝑡0 𝑓 (𝑋𝑠) d𝑠 of functionals 𝑓 ∈ 𝐿2(𝜋), which

allows for efficient control of the stochastic fluctuations of kernel estimators.

To control the bias, we impose anisotropic Hölder regularity conditions on the invariant den-

sity.

Definition 4.3. Let 𝜷 = (𝛽1, … , 𝛽𝑑) ∈ (0, ∞)𝑑 , L = (L1, … ,L𝑑) ∈ (0, ∞)𝑑 . A function ℎ∶ ℝ𝑑 → ℝ
is said to belong to the anisotropic Hölder class H𝑑(𝜷,L) if, for all 𝑖 = 1, … , 𝑑,

‖𝐷𝑘
𝑖 𝑔‖∞ ≤ L𝑖, 𝑘 = 1, … , ⌊𝛽𝑖⌋,

‖𝐷⌊𝛽𝑖⌋
𝑖 𝑔(⋅ + 𝑡𝑒𝑖) − 𝐷⌊𝛽𝑖⌋

𝑖 𝑔(⋅)‖∞ ≤ L𝑖|𝑡|𝛽𝑖−⌊𝛽𝑖⌋, 𝑡 ∈ ℝ,

where ⌊𝛽⌋ denotes the largest integer strictly smaller than 𝛽 > 0. Denote by

ℍ𝑑(𝜷,L) = ℍ𝑑(𝜷,L; 𝐶∞, 𝐶P, 𝐶1
N, 𝐶

2
N),

the set of invariant densities 𝜌𝑉 ∈ H𝑑(𝜷 + 𝟏,L) s.t. ‖𝜌𝑉 ‖∞ ≤ 𝐶∞ and 𝑉 ∈ Σ(𝐶P, 𝐶1
N, 𝐶2

N).

Let 𝐾 ∶ ℝ → ℝ be a symmetric Lipschitz kernel function with supp(𝐾) ⊂ [−1/2, 1/2] and

∫ 𝐾(𝑥) d𝑥 = 1. We say that 𝐾 is of order 𝓁 ∈ ℕ if ∫ 𝑥𝑚𝐾(𝑥) d𝑥 = 0 for any 𝑚 = 0, 1, … , 𝓁. For

ℎ > 0 we let 𝐾ℎ(⋅) ≔ ℎ−1𝐾(⋅/ℎ) and for 𝒉, 𝜼 ∈ (0,∞)𝑑 we set

𝕂𝒉(𝑥) ≔
𝑑

∏
𝑖=1

𝐾ℎ𝑖(𝑥𝑖), 𝑥 ∈ ℝ𝑑 ,

and

𝕂𝒉 ⋆ 𝕂𝜼(𝑥) ≔
𝑑

∏
𝑖=1

𝐾ℎ𝑖 ∗ 𝐾𝜂𝑖(𝑥𝑖), 𝑥 ∈ ℝ𝑑 .

We now define the following kernel estimators given a continuous record (𝑋𝑡)𝑡∈[0,𝑇 ] s.t. 𝜌𝑉 ∈
ℍ(𝜷, 𝑳):

𝜌𝒉,𝑇 (𝑥) ≔
1
𝑇 ∫

𝑇

0
𝕂𝒉(𝑥 − 𝑋𝑠) d𝑠, 𝜌𝒉,𝜼,𝑇 (𝑥) ≔

1
𝑇 ∫

𝑇

0
𝕂𝒉 ⋆ 𝕂𝜼(𝑥 − 𝑋𝑠) d𝑠, 𝑥 ∈ ℝ𝑑 .

In order to efficiently estimate 𝜌𝑉 via 𝜌𝒉,𝑇 , the bandwidth 𝒉 has to be carefully chosen to achieve

an optimal balance between bias and variance of the kernel estimator. If the Hölder smoothness

parameter 𝜷 is unknown, the bias cannot be evaluated directly, which poses the fundamental
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challenge to design a fully data-driven/adaptive bandwith selection procedure to obtain a rate-

optimal but possibly random bandwidth 𝒉𝑇 .

As it turns out, in dimension 𝑑 = 2 this problem is significantly simplified since in this case

a tight variance bound of the kernel estimator only depends logarithmically on the bandwidth.

Consequently, the smoothness independent and deterministic bandwith choice

𝒉𝑇 ∼ 𝑇−1/2(1, 1),

yields the optimal sup-norm estimation rate log 𝑇/
√
𝑇 given that the order of 𝐾 is chosen large

enough. In dimension 𝑑 ≥ 3, the situation is significantly more involved and the bandwidth is

chosen according to the following Lepski type selection rule:

Let 𝑞 ≥ 1 and the set of candidate bandwidths H𝑇 = H(𝑞)
𝑇 be given by

H𝑇 ≔
{
𝒉 ∈ (0, 1]𝑑 ∶ 𝑇a2◦ ≥

𝑑
∏
𝑗=1

ℎ(2/𝑑)−1𝑗 log 𝑇
}
.

Here, a◦ = a(𝑞)◦ ≔ (2Λ)−2, where Λ = Λ(𝑞) ≔ 𝛾 ◦2𝑞(𝑑, ‖𝐾‖∞; 𝐶P, 𝐶1
N, 𝐶2

N) and the functional 𝛾 ◦𝑝 , 𝑝 ≥ 1,

is defined in [46, Remark 3.5] based on the functional 𝛾𝑝 in [34]. Denote

𝜍𝑇 ≔ 2(1 ∨ sup
𝒉∈H𝑇

‖‖‖𝑇
−1

∫
𝑇

0
|𝕂𝒉(𝑋𝑠 − ⋅)| d𝑠‖‖‖∞),

and set

Δ̂𝑇 (𝒉) ≔ sup
𝜼∈H𝑇

{
[‖𝜌𝒉,𝜼 − 𝜌𝜼‖∞ − 𝜆𝐴𝑇 (𝜼)]+

}
,

where H𝑇 ⊂ H𝑇 is the dyadic grid in H𝑇 , 𝜆 = 𝜆(𝑞) ≔ (1 ∨ ‖𝐾‖𝑑𝐿1(𝝀))Λ, and

𝐴𝑇 (𝒉) ≔
𝑑

∏
𝑖=1

ℎ1/𝑑−1/2𝑖

√
𝜍𝑇 log 𝑇

𝑇
.

We now specify the bandwidth 𝒉𝑇 = 𝒉(𝑞)𝑇 by

Δ̂𝑇 (𝒉𝑇 ) + 𝜆𝐴𝑇 (𝒉𝑇 ) = inf
𝒉∈H𝑇

{
Δ̂𝑇 (𝒉) + 𝜆𝐴𝑇 (𝒉)

}
.

Finally, for 𝑞 ≥ 1, 𝑑 ≥ 2 and 𝒉𝑇 = 𝒉(𝑞)𝑇 given as above, we set

𝜌𝒉𝑇 ,𝑇 (𝑥) =
1
𝑇 ∫

𝑇

0
𝕂𝒉𝑇

(𝑥 − 𝑋𝑠) d𝑠, 𝑥 ∈ ℝ𝑑 .

According to the discussion in [46, Section 3] on the two-dimensional case and [46, Theorem 3.4],

we now have the following uniform sup-norm estimation result.

Theorem 4.4. Suppose 𝜷 ∈ (0, b]𝑑 for some b ∈ ℕ∩ [2,∞) and let 𝐾 have order b+ 1. Then, for any
𝑞 ≥ 1 and L ∈ (0,∞)𝑑 it holds

sup
𝜌𝑉 ∈ℍ𝑑(𝜷,L)

(𝔼
𝜋[‖‖𝜌𝒉𝑇 ,𝑇 − 𝜌𝑉 ‖‖

𝑞
∞])

1/𝑞
= O(Ψ𝑑,𝜷(𝑇 )),

where for the harmonic mean smoothness 𝜷 + 𝟏 ≔ (𝑑−1∑𝑑
𝑖=1

1
𝛽𝑖+1 )

−1, the rate Ψ𝑑,𝜷 is specified by

Ψ𝑑,𝜷(𝑇 ) ≔

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

log 𝑇√
𝑇 , 𝑑 = 2,

(
log 𝑇
𝑇 )

𝜷+𝟏
2𝜷+𝟏+𝑑−2 , 𝑑 ≥ 3.
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4.2. Data-driven estimation of the optimal reflection boundary

In this section we consider a set of domainsΘ ⊂ 𝐃 such that the set of minimizers argmin𝐷∈Θ 𝐽 (𝐷)
is well-defined and let 𝐷∗ ∈ argmin𝐷∈Θ 𝐽 (𝐷). Our data-driven procedure to determine reflection

domains 𝐷̂ whose average costs are close to the optimal ergodic costs 𝐽 (𝐷∗) uses the following

assumption.

Assumption 4.5. (i) For some constants 𝜆, 𝜆, Λ it holds 𝐵(0, 𝜆) ⊂ 𝐷∗ ⊂ 𝐵(0, 𝜆) and H𝑑−1(𝜕𝐷∗) ≤
Λ;

(ii) we are given information on two constants 𝜌, 𝜌 such that 𝜌 ≤ inf𝐵(0,𝜆) 𝜌 ≤ sup𝐵(0,𝜆) 𝜌 ≤ 𝜌.

Accordingly, we define the truncated invariant density estimator 𝜌∗𝑇 ,𝑞 based on data (𝑋𝑡)𝑡∈[0,𝑇 ]
of the uncontrolled diffusion process as

𝜌∗𝑇 ,𝑞(𝑥) ≔ (𝜌𝑇 ,𝑞(𝑥) ∧ 2𝜌) ∨ 𝜌/2, 𝑥 ∈ ℝ𝑑 ,

with 𝜌𝑇 ,𝑞 specified as the adaptive invariant density estimator from the previous subsection with

bandwidth choice 𝒉 = 𝒉(𝑞)𝑇 for 𝑞 ≥ 1. Moreover, we let Θ(𝜆, 𝜆, Λ) ⊂ Θ be the subfamily of

reflection domains satisfying Assumption 4.5.(i). Let

𝐽𝑇 ,𝑞(𝐷) ≔
1

∫𝐷 𝜌
∗
𝑇 ,𝑞(𝑥) d𝑥 (

∫
𝐷
𝑓 (𝑦)𝜌∗𝑇 ,𝑞(𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
𝜌∗𝑇 ,𝑞(𝑦)H𝑑−1(d𝑦)), 𝐷 ∈ Θ,

be the estimator of the asymptotic costs associated to the reflection domain 𝐷 and define the

reflection domain estimator

𝐷̂𝑇 ,𝑞 ∈ argmin
𝐷∈Θ(𝜆,𝜆,Λ)

𝐽𝑇 ,𝑞(𝐷).

Here, we must assume that Θ ⊂ 𝐃 is a metrizable space that is sufficiently nice to allow a mea-

surable choice of 𝐷̂𝑇 ,𝑞 considered as a random mapping into the Borel space associated to Θ. We

now have the following concentration result for the simple regret.

Proposition 4.6. Suppose that 𝑋0 ∼ 𝜇, where 𝜇 ≪ 𝜋 with ‖ d𝜇d𝜋 ‖𝐿𝑞(𝜋) < ∞ for some 𝑞 ∈ (1,∞]. Then,
for any 𝑝 ≥ 1, given the assumptions from Theorem 4.4 we have the regret bound

𝔼𝜇[||𝐽 (𝐷
∗) − 𝐽(𝐷̂𝑇 ,𝑝𝑞)||

𝑝
]
1/𝑝 ≤ 𝐶‖ d𝜇d𝜋 ‖

1/𝑝
𝐿𝑞(𝜋)Ψ𝑑,𝜷(𝑇 ),

where 𝑞 ≔ 𝑞/(𝑞 − 1) is the conjugate Hölder exponent of 𝑞 and 𝐶 depends on 𝜅, 𝑝, 𝑞, 𝑓 and the
constants from Assumption 4.5.

Proof. For fixed 𝐷 ∈ Θ(𝜆, 𝜆, Λ), write (in obvious notation)

𝐽 (𝐷) = 𝐴(𝐷)/𝐵(𝐷), 𝐽𝑇 ,𝑝𝑞(𝐷) = 𝐴𝑇 (𝐷)/𝐵𝑇 (𝐷).

Using

𝐵(𝐷) ∧ 𝐵𝑇 (𝐷) ≥ ∫
𝐵(0,𝜆)

𝜌(𝑥) ∧ 𝜌∗𝑇 ,𝑝𝑞(𝑥) d𝑥 ≥
𝜌
2
𝝀(𝐵(0, 𝜆)) =∶ 𝜛,

it follows

||𝐽 (𝐷) − 𝐽𝑇 ,𝑝𝑞(𝐷)|| ≤
𝐴(𝐷)

𝐵(𝐷)𝐵𝑇 (𝐷)
||𝐵𝑇 (𝐷) − 𝐵(𝐷)|| +

|𝐴𝑇 (𝐷) − 𝐴(𝐷)|
𝐵𝑇 (𝐷)

≤
‖𝑓 ‖𝐿1(𝜋) + 𝜅𝜌Λ

𝜛2 ‖𝜌 − 𝜌∗𝑇 ,𝑝𝑞‖𝐿∞(𝐵(0,𝜆)) +
‖𝑓 ‖𝐿1(𝐵(0,𝜆)) + 𝜅Λ

𝜛
‖𝜌 − 𝜌∗𝑇 ,𝑝𝑞‖𝐿∞(𝐵(0,𝜆)).
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Thus,

𝔼𝜇[ sup
𝐷∈Θ(𝜆,𝜆,Λ)

|𝐽 (𝐷) − 𝐽𝑇 ,𝑝𝑞(𝐷)|𝑝]
1/𝑝

≤ 𝐶(𝜅, 𝜆, 𝜆, 𝜌, 𝜌, 𝑝, 𝑓 )𝔼𝜇[‖𝜌 − 𝜌∗𝑇 ,𝑝𝑞‖
𝑝
𝐿∞(𝐵(0,𝜆))]

1/𝑝

≤ 𝐶(𝜅, 𝜆, 𝜆, 𝜌, 𝜌, 𝑝, 𝑓 )‖ d𝜇d𝜋 ‖
1/𝑝
𝐿𝑞(𝜋)𝔼

𝜋[‖𝜌 − 𝜌∗𝑇 ,𝑝𝑞‖
𝑝𝑞
𝐿∞(𝐵(0,𝜆))]

1/𝑝𝑞 ,
(4.1)

where we used Hölder inequality twice for the last line. The expectation can be bounded as

follows:

𝔼𝜋[‖𝜌 − 𝜌∗𝑇 ,𝑝𝑞‖
𝑝𝑞
𝐿∞(𝐵(0,𝜆))]

1/𝑝𝑞 ≤ 𝔼𝜋[‖𝜌 − 𝜌𝑇 ,𝑝𝑞‖𝑝𝑞∞ ]
1/𝑝𝑞 + 𝔼𝜋[‖𝜌 − 𝜌∗𝑇 ,𝑝𝑞‖

𝑝𝑞
𝐿∞(𝐵(0,𝜆))𝟏{‖𝜌𝑇 ,𝑝𝑞−𝜌‖∞>𝜌/2}]

1/𝑝𝑞

≤ 𝔼𝜋[‖𝜌 − 𝜌𝑇 ,𝑝𝑞‖𝑝𝑞∞ ]
1/𝑝𝑞 + 2𝜌(ℙ𝜋(‖𝜌𝑇 ,𝑝𝑞 − 𝜌‖∞ > 𝜌/2))

1/𝑝𝑞

≤ (1 + 4𝜌/𝜌)𝔼𝜋[‖𝜌 − 𝜌𝑇 ,𝑝𝑞‖𝑝𝑞∞ ]
1/𝑝𝑞

≲ (1 + 4𝜌/𝜌)Ψ𝑑,𝜷(𝑇 ).

For the first inequality we used that on {‖𝜌𝑇 ,𝑝𝑞 − 𝜌‖∞ ≤ 𝜌/2} it holds 𝜌𝑇 ,𝑝𝑞 |𝐵(0,𝜆) ≡ 𝜌∗𝑇 ,𝑝𝑞 |𝐵(0,𝜆). The

last two lines follow from the Markov inequality and Theorem 4.4. Plugging this bound into (4.1)

we find

𝔼𝜇[ sup
𝐷∈Θ(𝜆,𝜆,Λ)

|𝐽 (𝐷) − 𝐽𝑇 ,𝑝𝑞(𝐷)|𝑝]
1/𝑝

≲ ‖ d𝜇d𝜋 ‖
1/𝑝
𝐿𝑞(𝜋)Ψ𝑑,𝜷(𝑇 ). (4.2)

Finally, since 𝐷∗ ∈ argmin𝐷∈Θ(𝜆,𝜆,Λ) 𝐽 (𝐷) and 𝐷̂𝑇 ,𝑝𝑞 ∈ argmin𝐷∈Θ(𝜆,𝜆,Λ) 𝐽𝑇 ,𝑝𝑞(𝐷), we have

𝔼𝜇[||𝐽 (𝐷
∗) − 𝐽(𝐷̂𝑇 ,𝑝𝑞)||

𝑝
]
1/𝑝 ≤ 2𝔼𝜇[ sup

𝐷∈Θ(𝜆,𝜆,Λ)
|𝐽 (𝐷) − 𝐽𝑇 ,𝑝𝑞(𝐷)|𝑝]

1/𝑝
,

which in combination with (4.2) yields the claim. ■

This result may be interpreted in two different ways. On the one hand, it shows for the generic

situation, where the controller has access to a separate diffusion data sample and uses it in on-

line estimation of an optimal reflection boundary, that the regret vanishes at the nonparametric

estimation rate. On the other hand, it demonstrates that a simple explore-then-commit strategy,

where we first estimate an optimal set for 𝑇 time units and afterwards exploit by reflecting the

process at the estimated boundaries, yields a regret bounded by Ψ𝑑,𝛽(𝑇 ).
As a proof of concept, we apply the above methodology to simulated data. In particular, we

consider the Ornstein–Uhlenbeck process 𝑋 in ℝ2
governed by

d𝑋𝑡 = −
𝑋𝑡
10

d𝑡 +
√
2 d𝑊𝑡 ,

and simulate data from this model until time 𝑇end for increasing values of 𝑇end, corresponding to

increasing periods of exploration. For each simulation, we then estimate the invariant density

𝜌 (here a normal density) via a discretized version of the kernel density estimator as well as its

gradient ∇𝜌 via the gradient of the kernel estimator. Finally, setting 𝑓 = |⋅| and 𝜅 = 1, we use

these estimates along with Corollary 3.2 to find approximately optimal star-shaped polygons,

and plot them in Figure 4.2 along with the numerically approximated optimal shape, i.e. the one

found using Corollary 3.2 with the true density 𝜌.
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Figure 4.1: Left: Estimates of the optimal shape (black) using kernel estimates after increasing

periods of exploration. Notably, after only 𝑇 = 150, the estimated optimal shape has

an associated cost only 0.61% higher than the true optimum.

Episodic domain learning Aiming now at strategies with sublinear regret rates without any

simplifying assumptions on the data-collection mechanism, we face a classical exploration vs.

exploitation dilemma in light of the necessity to simultaneously control the process and estimate

its dynamics over time. The key bound from Proposition 4.6 will allow us to do so.

Our episodic learning algorithm separates the time-line into exploration and exploitation phases.

Let 𝑇𝑖 be the start of the 𝑖-th exploration period, where we let the diffusion run freely without re-

flection and 𝑆𝑖 be the start of the 𝑖-th exploitation period, where we reflect the process according

to an estimate of the optimal reflection boundary based on past observations of the exploration

process. We always start with an exploration period, i.e. 𝑇1 = 0, and then alternate between

exploration and exploitation periods. We denote by 𝜏𝑖 = 𝑆𝑖 − 𝑇𝑖 the length of the 𝑖-th exploration

period and by 𝜎𝑖 = 𝑇𝑖+1 − 𝑆𝑖 the length of the 𝑖-th exploitation period.

Contrary to the scalar diffusion case in [12], the multivariate diffusion does not hit points,

which makes it difficult to introduce an appropriate life-cycle decomposition of the exploration

process that allows for elegant renewal theoretic arguments in the analysis. Instead we choose

sequences (𝑎𝑖) ⊂ [1,∞)ℕ, (𝑏𝑖) ⊂ [1,∞)ℕ and simply let 𝑆𝑖 = inf{𝑡 ≥ 𝑇𝑖 + 𝑎𝑖 ∶ 𝑋𝑡 ∈ cl(𝐵(0, 𝜆))} and

𝑇𝑖+1 = 𝑆𝑖+𝑏𝑖, where (𝑋𝑡)𝑡≥0 denotes the process that is controlled according to the above strategy.

This implies that the 𝑖-th exploitation length is deterministically given by 𝜎𝑖 = 𝑏𝑖 and due to the

strongly recurrent behavior of the process the 𝑖-th exploration length is relatively close to 𝑎𝑖 with

high probability. Moreover, the strategy makes sure that at the start of an exploitation period we

have 𝑋𝑆𝑖 ∈ cl 𝐵(0, 𝜆) ⊂ 𝐷 for any 𝐷 ∈ Θ(𝜆, 𝜆, Λ). For the estimator of the reflection boundary 𝐷̂𝑖
in the 𝑖-th exploitation period, we only take into account the observations gathered from the last

exploration period on the time interval [𝑇𝑖, 𝑇𝑖 + 𝑎𝑖] by letting

𝜌∗𝑖 (𝑥) ≔ (𝜌𝑖,2(𝑥) ∧ 2𝜌) ∨ 𝜌/2, 𝑥 ∈ ℝ𝑑 ,

where 𝜌𝑖,2 is the adaptive invariant density estimator based on the diffusion data (𝑋𝑡)𝑡∈[𝑇𝑖,𝑇𝑖+𝑎𝑖] for

20



the parameter choice 𝑞 = 2 in the construction of the stochastic bandwidth, and then set

𝐷̂𝑖 ∈ argmin
𝐷∈Θ(𝜆,𝜆,Λ)

1
∫𝐷 𝜌

∗
𝑖 (𝑦) d𝑦 (

∫
𝐷
𝑓 (𝑦)𝜌∗𝑖 (𝑦) d𝑦 + 𝜅 ∫

𝜕𝐷
𝜌∗𝑖 (𝑦)H𝑑−1(d𝑦)).

Let 𝔽̃ = (F̃𝑡)𝑡≥0 be the filtration generated by the controlled process𝑋 and set𝐶𝑎,𝑏 ≔ ∫ 𝑏𝑎 𝑓 (𝑋𝑠) d𝑠+
𝜅(𝐿𝑏 − 𝐿𝑎) as the costs on the time interval [𝑎, 𝑏] associated to 𝑋 , where 𝐿 is the local time on

the reflection boundaries during the exploitation phases and is set equal to zero during the ex-

ploration phases. We also let 𝐶𝑎,𝑏(𝑥, 𝐷) be the costs on the time interval [𝑎, 𝑏] associated to a

Langevin diffusion 𝑍𝑥,𝐷 that is driven by a Brownian motion independent of 𝔽̃ and that is re-

flected in 𝐷 and is started in 𝑥 . Denote by 𝜏(𝑥, 𝐷) its first hitting time of cl(𝐵(0, 𝜆)). Furthermore,

we set 𝑛(𝑇 ) ≔ min{𝑖 ∈ ℕ ∶ ∑𝑖
𝑗=1(𝑎𝑗 + 𝑏𝑗 ) ≥ 𝑇 } and note that

𝑛(𝑇 ) ≥ min
{
𝑖 ∈ ℕ ∶

𝑖
∑
𝑗=1

(𝜏𝑗 + 𝜎𝑗 ) ≥ 𝑇
}
= min{𝑖 ∈ ℕ ∶ 𝑇𝑖+1 ≥ 𝑇 } = min{𝑖 ∈ ℕ ∶ 𝑇𝑖 ≥ 𝑇 } − 1,

which in particular implies that 𝑆𝑛(𝑇 )+1 > 𝑇𝑛(𝑇 )+1 ≥ 𝑇 .

For technical reasons, we assume that the potential 𝑉 satisfies the following drift condition:

for some constants 𝑟 , 𝑀 > 0 it holds

∀|𝑥| ≥ 𝑀 ∶ ⟨∇𝑉 (𝑥), 𝑥/|𝑥|⟩ ≥ 𝑟. (4.3)

Due to the specific structure of the generator, it is well known, see e.g. [3], that the Langevin

diffusion then satisfies a Poincaré inequality (PI) and that its generator has a Lyapunov function

V ≥ 1 that is locally bounded, is for some 𝑎, 𝑅 > 0 given by V(𝑥) = exp(𝑎|𝑥|) for all |𝑥| ≥ 𝑅,

and satisfies 𝜋(V) < ∞. This implies, see [19, Theorem 5.2, Theorem 7.2], that 𝑋 is V-uniformly

ergodic in the sense that for some constant 𝑏 > 0,

sup
|𝑔|≤V

|𝑃𝑡𝑔(𝑥) − 𝜋(𝑔)| ≲ V(𝑥) exp(−𝑏𝑡), 𝑥 ∈ ℝ𝑑 , (4.4)

and that for any set 𝐶 s.t. 𝝀(𝐶) > 0, it holds

𝔼𝑥[ ∫
𝜏𝐶

0
V(𝑋𝑠) d𝑠] ≤ 𝑐(𝐶)V(𝑥), 𝑥 ∈ ℝ𝑑 , (4.5)

where 𝑐(𝐶) is a constant depending on 𝐶 and 𝜏𝐶 is the first hitting time of 𝐶 (we note that a much

stronger statement than (4.5) is true, but this won’t be needed in our context). We also need

some assumptions on the set of viable reflection domains Θ(𝜆, 𝜆, Λ) that allow sufficient uniform

bounds in the following. More precisely, we assume the constants 𝐶′(𝐷) appearing in Theorem

2.4 to be uniformly bounded in 𝐷, that is,

sup
𝐷∈Θ(𝜆,𝜆,Λ)

𝐶′(𝐷) < ∞. (4.6)

Note that this assumption boils down to uniform lower bounds on the transition densities, cf.

Lemma 2.2, and uniform bounds on the maxima of the functions 𝜑𝐷 and their partial derivatives

described in Lemma 2.5, i.e., certain uniform regularity assumptions on the boundaries. More-

over, we also require a uniform upper bound on the transition densities in the form

sup
𝐷∈Θ(𝜆,𝜆,Λ)

sup
𝑡≥1,𝑥,𝑦∈𝐷

𝑝𝐷𝑡 (𝑥, 𝑦) < ∞. (4.7)
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By continuity of 𝑝𝐷𝑡 , it follows from the Gaussian upper bound on 𝑝𝐷𝑡 (𝑥, 𝑦) given in [42, Corollary

6.15] for a.e. (𝑥, 𝑦) ∈ 𝐷2
that this holds pointwise, i.e., sup𝑡≥1,𝑥,𝑦∈𝐷 𝑝𝐷𝑡 (𝑥, 𝑦) < ∞ for any 𝐷 ∈

Θ(𝜆, 𝜆, Λ). Verifying (4.6) and (4.7) is highly problem specific and is a difficult task with the tools

available in the literature whenΘ(𝜆, 𝜆, Λ) is infinite. Still, these assumptions are not unreasonable

provided that appropriate uniform regularity conditions on the boundaries are in force. With this

technical preparation we can prove our final theorem.

Theorem 4.7. Suppose that the non-reflected Langevin diffusion satisfies (4.3) and (NI) and that its
invariant density satisfies 𝜌𝑉 ∈ H𝑑(𝜷 + 𝟏,L). Assume also that 𝑓 ∈ 𝐿2(𝜋), 𝑓 ≲ V, that the initial
distribution of the first exploration phase 𝜇 satisfies 𝜇 ≪ 𝜋 and d𝜇/d𝜋 ∈ 𝐿2(𝜋) and that (4.6) and
(4.7) hold. Then, the average regret per time unit is bounded by

1
𝑇
𝔼[𝐶0,𝑇 ] − 𝐽 (𝐷∗) ≲

1
𝑇 (

𝑛(𝑇 )

∑
𝑖=1

𝑎𝑖 +
𝑛(𝑇 )

∑
𝑖=1

𝑏𝑖Ψ𝑑,𝜷(𝑎𝑖)).

Proof. Without loss of generality, let 𝑇 ≥ 1. Using that the costs are nonnegative, we have

𝔼[𝐶0,𝑇 ] = 𝔼[∑
𝑇𝑖≤𝑇

𝐶𝑇𝑖,𝑆𝑖∧𝑇 ] + 𝔼[ ∑
𝑆𝑖≤𝑇

𝐶𝑆𝑖,𝑇𝑖+1∧𝑇 ]

≤
𝑛(𝑇 )

∑
𝑖=1

𝔼[𝐶𝑇𝑖,𝑆𝑖] +
𝑛(𝑇 )

∑
𝑖=1

𝔼[𝐶𝑆𝑖∧𝑇 ,𝑇𝑖+1∧𝑇 ]

≤
𝑛(𝑇 )

∑
𝑖=1

(𝔼[𝐶0,𝑎𝑖(𝑋𝑇𝑖 , ℝ
𝑑)] + 𝔼[𝐶0,𝜏(𝑋𝑇𝑖+𝑎𝑖 ,ℝ𝑑)(𝑋𝑇𝑖+𝑎𝑖 , ℝ

𝑑)]) +
𝑛(𝑇 )−1

∑
𝑖=1

𝔼[𝐶0,𝑏𝑖(𝑋𝑆𝑖 , 𝐷̂𝑖)]

+ 𝔼[𝐶0,(𝑇−𝑆𝑛(𝑇 ))∨1(𝑋𝑆𝑛(𝑇 ) , 𝐷̂𝑛(𝑇 ))].

(4.8)

We start by bounding the second term, associated to the exploitation periods until the (𝑛(𝑇 )−1)-
th episode. By conditioning on F̃𝑆𝑖 we see that

|||𝔼[𝐶0,𝑏𝑖(𝑋𝑆𝑖 , 𝐷̂𝑖)] − 𝑏𝑖𝔼[𝐽 (𝐷̂𝑖)]
|||

≤ 𝑏𝑖 ∫
Θ(𝜆,𝜆,Λ)

∫
cl 𝐵(0,𝜆)

|||𝔼
𝑥
[
1
𝑏𝑖 ∫

𝑏𝑖

0
𝑓 (𝑋𝐷

𝑠 ) d𝑠 + 𝜅𝐿𝐷𝑏𝑖 − 𝐽 (𝐷)]
||| ℙ(𝑋𝑆𝑖 ∈ d𝑥, 𝐷̂𝑖 ∈ d𝐷)

≤ sup
𝐷∈Θ(𝜆,𝜆,Λ)

𝐶′(𝐷) < ∞,

(4.9)

where the last two lines follow from Theorem 2.4 and (4.6). Observe now that on the previous

data collection interval [𝑇𝑖, 𝑇𝑖 + 𝑎𝑖] the process 𝑋 is equal in law to the Langevin diffusion with

potential 𝑉 started according to the law ℙ𝑋𝑇𝑖 . For 𝑖 = 1, the latter has, by assumption on 𝜇,

a Radon–Nikodym derivative w.r.t. the invariant distribution 𝜋 that lies in 𝐿2(𝜋). Extend the

transition densities 𝑝𝐷𝑡 from 𝐷2
to ℝ𝑑 ×ℝ𝑑 by setting 𝑝𝐷𝑡 (𝑥, 𝑦) = 0 for 𝑥, 𝑦 ∉ 𝐷. For 𝑖 ≥ 2, we then

observe that for any 𝑦 ∈ cl(𝐵(0, 𝜆)) we have

dℙ(𝑋𝑇𝑖 ∈ ⋅)
d𝝀

(𝑦) = ∫
Θ(𝜆,𝜆,Λ)

∫
cl 𝐵(0,𝜆)

𝑝𝐷𝑏𝑖 (𝑥, 𝑦) ℙ(𝑋𝑆𝑖−1 ∈ d𝑥, 𝐷̂𝑖 ∈ d𝐷)

≤ sup
𝐷∈Θ(𝜆,𝜆,Λ)

sup
𝑡≥1,(𝑥,𝑦)∈𝐷2

𝑝𝐷𝑡 (𝑥, 𝑦) < ∞,

where we used (4.7). Since the Lebesgue density of 𝜋 is bounded away from zero on 𝐵(0, 𝜆), this

now implies

sup
𝑖∈ℕ

‖‖
dℙ(𝑋𝑇𝑖∈⋅)

d𝜋
‖‖𝐿2(𝜋) < ∞. (4.10)
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Proposition 4.6 therefore yields that

𝔼[||𝐽 (𝐷
∗) − 𝐽 (𝐷̂𝑖)||] ≲ Ψ𝑑,𝜷(𝑎𝑖).

In summary, the above estimates and the triangle inequality therefore yield

𝑛(𝑇 )−1

∑
𝑖=1

𝔼[𝐶0,𝑏𝑖(𝑋𝑆𝑖 , 𝐷̂𝑖)] ≲ 𝑛(𝑇 ) +
𝑛(𝑇 )−1

∑
𝑖=1

𝑏𝑖(Ψ𝑑,𝜷(𝑎𝑖) + 𝐽 (𝐷∗)). (4.11)

We turn to the last summand in (4.8). Similarly to (4.9) we see that

|||𝔼[𝐶0,(𝑇−𝑆𝑛(𝑇 )∨1(𝑋𝑆𝑛(𝑇 ) , 𝐷̂𝑛(𝑇 ))] − 𝔼[((𝑇 − 𝑆𝑛(𝑇 )) ∨ 1)𝐽 (𝐷̂𝑛(𝑇 ))]
||| ≤ sup

𝐷∈Θ(𝜆,𝜆,Λ)
𝐶′(𝐷) < ∞,

(4.12)

and using (4.10) and Proposition 4.6 we have

𝔼[((𝑇 − 𝑆𝑛(𝑇 ) ∨ 1)||𝐽 (𝐷
∗) − 𝐽 (𝐷̂𝑛(𝑇 ))||] ≤ 𝑏𝑛(𝑇 )𝔼[||𝐽 (𝐷

∗) − 𝐽 (𝐷̂𝑛(𝑇 ))||] ≲ 𝑏𝑛(𝑇 )Ψ𝑑,𝜷(𝑎𝑛(𝑇 )). (4.13)

Combining (4.11), (4.12) and (4.13) we finally arrive at

𝑛(𝑇 )−1

∑
𝑖=1

𝔼[𝐶0,𝑏𝑖(𝑋𝑆𝑖 , 𝐷̂𝑖)] + 𝔼[𝐶0,(𝑇−𝑆𝑛(𝑇 ))∨1(𝑋𝑆𝑛(𝑇 ) , 𝐷̂𝑛(𝑇 ))]

≤ 𝑛(𝑇 ) +
𝑛(𝑇 )

∑
𝑖=1

𝑏𝑖Ψ𝑑,𝜷(𝑎𝑛(𝑇 )) + 𝐽 (𝐷∗)(

𝑛(𝑇 )−1

∑
𝑖=1

𝑏𝑖 + 𝔼[(𝑇 − 𝑆𝑛(𝑇 )) ∨ 1])

≤ 𝑛(𝑇 ) + 𝑇 𝐽 (𝐷∗) +
𝑛(𝑇 )

∑
𝑖=1

𝑏𝑖Ψ𝑑,𝜷(𝑎𝑖).

(4.14)

Let us now treat the exploration periods. Recall that since the unreflected diffusion satisfies a

Poincaré inequality, we have exponentially fast convergence of its semigroup in 𝐿2(𝜋). Since

moreover 𝑓 ∈ 𝐿2(𝜋), the combined statements of Theorem 3.1 and Corollary 3.2 in [9] imply that

for 𝑓 ≔ 𝑓 − 𝜇(𝑓 ) and 𝑔 ≔ − ∫∞0 𝑃𝑠𝑓 d𝑠, we have 𝑔 ∈ D(L) and

‖‖‖ ∫
𝑡

0
(𝑓 − 𝜋(𝑓 ))(𝑋𝑠) d𝑠

‖‖‖
2

𝐿2(ℙ𝜋 )
≤ 𝐶𝑡‖

√
−L𝑔‖2𝜋 ,

for some constant 𝐶 that is independent of 𝑡 ≥ 0. Using (4.10) and Hölder inequality therefore

implies

|||𝔼[𝐶0,𝑎𝑖(𝑋𝑇𝑖 , ℝ
𝑑)] − 𝑎𝑖𝜋(𝑓 )

||| =
|||𝔼[𝔼

𝑋𝑇𝑖 [ ∫
𝑎𝑖

0
(𝑓 − 𝜋(𝑓 ))(𝑋𝑠) d𝑠]]

|||

≤ ∫
ℝ𝑑

𝔼𝑥[
||| ∫

𝑎𝑖

0
(𝑓 − 𝜋(𝑓 ))(𝑋𝑠) d𝑠

|||]
dℙ(𝑋𝑇𝑖 ∈ ⋅)

d𝜋
(𝑥) 𝜋(d𝑥)

≤ ‖‖‖
dℙ(𝑋𝑇𝑖 ∈ ⋅)

d𝜋
‖‖‖𝐿2(𝜋)

‖‖‖ ∫
𝑎𝑖

0
(𝑓 − 𝜋(𝑓 ))(𝑋𝑠) d𝑠

‖‖‖𝐿2(ℙ𝜋 )
≤ 𝐶′√𝑎𝑖.

It therefore follows by the triangle inequality that

𝑛(𝑇 )

∑
𝑖=1

𝔼[𝐶0,𝑎𝑖(𝑋𝑇𝑖 , ℝ
𝑑)] ≲

𝑛(𝑇 )

∑
𝑖=1

𝑎𝑖. (4.15)
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Furthermore, using (4.5) and the assumption 𝑓 ≲ V, we can write

𝔼[𝐶0,𝜏(𝑋𝑇𝑖+𝑎𝑖 ,ℝ𝑑)(𝑋𝑇𝑖+𝑎𝑖 , ℝ
𝑑)] = ∫

ℝ𝑑
𝔼𝑥[ ∫

𝜏cl(𝐵(0,𝜆))

0
𝑓 (𝑋𝑠) d𝑠] ℙ(𝑋𝑇𝑖+𝑎𝑖 ∈ d𝑥) ≲ 𝔼[V(𝑋𝑇𝑖+𝑎𝑖)].

Now since 𝑋𝑇𝑖+𝑎𝑖 has the same law as 𝑋𝑎𝑖 with 𝑋 started according to the law ℙ𝑋𝑇𝑖 which, by

construction, is supported on cl(𝐵(0, 𝜆)), it follows from (4.4) that

𝔼[V(𝑋𝑇𝑖+𝑎𝑖)] ≤ sup
𝑥∈cl(𝐵(0,𝜆))

𝔼𝑥[V(𝑋𝑎𝑖)] ≤ 𝜋(V) + sup
𝑥∈cl(𝐵(0,𝜆))

|𝑃𝑎𝑖V(𝑥) − 𝜋(V)|

≤ 𝜋(V) + 𝐶‖V‖𝐿∞(cl(𝐵(0,𝜆))) < ∞,

for some constant independent of 𝑖 ∈ ℕ. This allows us to conclude that

𝑛(𝑇 )

∑
𝑖=1

𝔼[𝐶0,𝜏(𝑋𝑇𝑖+𝑎𝑖 ,ℝ𝑑)(𝑋𝑇𝑖+𝑎𝑖 , ℝ
𝑑)] ≤ (𝜋(V) + 𝐶‖V‖𝐿∞(cl(𝐵(0,𝜆))))𝑛(𝑇 ). (4.16)

Taking together the bounds (4.14), (4.15) and (4.16) now shows that the average regret per time

unit is bounded by

1
𝑇
𝔼[𝐶0,𝑇 ] − 𝐽 (𝐷∗) ≲

1
𝑇 (

𝑛(𝑇 )

∑
𝑖=1

𝑎𝑖 +
𝑛(𝑇 )

∑
𝑖=1

𝑏𝑖Ψ𝑑,𝜷(𝑎𝑖)).

■

As a consequence, we obtain the following explicit rates for a strategy that doubles exploration

times and chooses subsequent exploitation times inverse proportionally to the nonparametric

estimation rate.

Corollary 4.8. Let 𝑎𝑖 = 2𝑖 and 𝑏𝑖 = 𝑎𝑖/Ψ𝑑,𝜷(𝑎𝑖) for 𝑖 ∈ ℕ. Given the assumptions of Theorem 4.7 it
holds

1
𝑇
𝔼[𝐶0,𝑇 ] − 𝐽 (𝐷∗) ≲

⎧⎪⎪
⎨⎪⎪⎩

(
(log 𝑇 )2

𝑇 )
1
3 , 𝑑 = 2,

(
log 𝑇
𝑇 )

𝜷+𝟏
3𝜷+𝟏+𝑑−2 , 𝑑 ≥ 3,

for the corresponding reflection strategy with exploration periods of length 𝑎𝑖 and exploitation periods
of length 𝑏𝑖.

Proof. Let 𝑑 ≥ 3 and denote 𝛼 ≔ 𝜷 + 𝟏/(2𝜷 + 𝟏 + 𝑑 − 2). Let 𝑇 ∈ [∑𝑛
𝑖=1(𝑎𝑖 + 𝑏𝑖),∑𝑛+1

𝑖=1 (𝑎𝑖 + 𝑏𝑖)].
Then, 𝑇 ∼ 2𝑛(𝛼+1)/𝑛𝛼 and

𝑛(𝑇 )

∑
𝑖=1

𝑎𝑖 +
𝑛(𝑇 )

∑
𝑖=1

𝑏𝑖Ψ𝑑,𝜷(𝑎𝑖) ≤ 2
𝑛
∑
𝑖=1

𝑎𝑖 ∼ 2𝑛,

which, by Theorem 4.7 yields

1
𝑇
𝔼[𝐶0,𝑇 ] − 𝐽 (𝐷∗) ≲ (𝑛2−𝑛)𝛼 = (𝑛𝑛𝛼2−𝑛(𝛼+1))𝛼/(𝛼+1) ∼ (log 𝑇/𝑇 )𝛼/(𝛼+1) = (log 𝑇/𝑇 )

𝜷+𝟏
3𝜷+𝟏+𝑑−2 .

The claim for 𝑑 = 2 is proved analogously. ■

The rate loss of the strategy’s regret per time unit relative to the static regret from Propo-

sition 4.6 provides a natural analogue to the regret bounds from [12, Theorem 2.5] in the one-

dimensional case, even though the construction of the strategies substantially differs. Let us also

remark that doubling tricks in the strategy design that make sure that the number of episodes at
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time 𝑇 is of order log 𝑇 , are commonly encountered in algorithms with verifiable optimal regret

rates for undiscounted reinforcement learning problems. For instance, the popular UCRL2 al-

gorithm in [2] recomputes policies as soon as the occurrence of a state-action pair has doubled.

Such strategies have the drawback of choosing suboptimal policies for arbitrarily long periods of

time (here, not reflecting at all), see [8]. Recently, [7] have proposed the regret of exploration as an

appropriate measure to capture such inefficiencies. It is an interesting and challenging question

for future work to adapt reflection strategies based on the nonparametric approach advocated in

this paper to such finer-grained performance measures.

A. Remaining proofs

Proof of Lemma 2.1. We show this using [28, Theorem 1]. Since we consider only smooth sets 𝐷
and normal reflections, the set of test functions H as defined in [28] simplifies to

H = {𝑓 ∈ C2
𝑐 (𝐷) ⊕ ℝ ∶ ⟨𝑛(𝑥), ∇𝑓 (𝑥)⟩ ≥ 0 for 𝑥 ∈ 𝜕𝐷}.

Letting 𝜋(d𝑥) = 𝜌𝐷(𝑥)d𝑥 , we note 𝜋(𝜕𝐷) = 0, and thus it suffices to check

∫
𝐷
𝐴𝑓 (𝑥) 𝜋(d𝑥) ≤ 0, 𝑓 ∈ H,

where 𝐴 is the differential operator given by

𝐴𝑓 (𝑥) = −⟨∇𝑉 (𝑥), ∇𝑓 (𝑥)⟩ + Δ𝑓 (𝑥), 𝑓 ∈ C2(ℝ𝑑), 𝑥 ∈ ℝ𝑑 . (A.1)

To this end, let 𝑓 ∈ H be given, and we find using the divergence theorem

∫
𝐷
𝐴𝑓 (𝑥) 𝜋𝐷(d𝑥) = ∫

𝐷
−⟨∇𝑉 (𝑥), ∇𝑓 (𝑥)⟩𝜌𝐷(𝑥) d𝑥 + ∫

𝐷
Δ𝑓 (𝑥)𝜌𝐷(𝑥) d𝑥

= ∫
𝐷
⟨∇𝑓 (𝑥), ∇𝜌𝐷(𝑥)⟩ d𝑥 + ∫

𝐷
Δ𝑓 (𝑥)𝜌𝐷(𝑥) d𝑥

= ( − ∫
𝜕𝐷
⟨∇𝑓 (𝑥), 𝑛(𝑥)⟩𝜌𝐷(𝑥)H𝑑−1(d𝑥) − ∫

𝐷
Δ𝑓 (𝑥)𝜌𝐷(𝑥) d𝑥)

+ ∫
𝐷
Δ𝑓 (𝑥)𝜌𝐷(𝑥) d𝑥

= −∫
𝜕𝐷
⟨∇𝑓 (𝑥), 𝑛(𝑥)⟩𝜌𝐷(𝑥)H𝑑−1(d𝑥),

where H𝑑−1
denotes the (𝑑 − 1)-dimensional Hausdorff measure. Since 𝑓 ∈ H, we have ⟨∇𝑓 , 𝑛⟩ ≥

0, and hence ∫𝐷 𝐴𝑓 (𝑥) 𝜋𝐷(d𝑥) ≤ 0 as desired. ■

Proof of Lemma 2.2. Since 𝑝𝐷𝑡 is continuous on 𝐷2
, the process 𝑋𝐷

is a strong Feller process and,

if we denote by 𝝀𝐷 the restriction of the Lebesgue measure to 𝐷, (2.1) ensures that

𝑃𝐷1 (𝑥, ⋅) ≥ 𝛿𝝀𝐷, 𝑥 ∈ 𝐷. (A.2)

Consequently, the compact state space 𝐷 is small and hence petite in the sense of [38]. Using

[36, Theorem 1.1], it follows that 𝑋𝐷
is Harris recurrent. This implies that 𝑋𝐷

has a unique

invariant distribution 𝜋𝐷, s.t. 𝜋𝐷(d𝑥) = 𝜌𝐷(𝑥) d𝑥 follows from Lemma 2.1. Moreover, the Doeblin

recurrence property (A.2) implies by [37, Theorem 16.2.4] uniform ergodicity of the 1-skeleton

with explicit constants, that is

‖𝑃𝐷𝑛 (𝑥, ⋅) − 𝜋𝐷‖TV ≤ 2elog(1−𝛿𝝀(𝐷))𝑛, 𝑥 ∈ 𝐷.
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By stationarity of 𝜋𝐷 it is easy to see that ‖𝑃𝐷𝑡 (𝑥, ⋅) − 𝜋𝐷‖TV is decreasing in 𝑡, whence,

‖𝑃𝐷𝑡 (𝑥, ⋅) − 𝜋𝐷‖TV ≤ ‖𝑃𝐷⌊𝑡⌋(𝑥, ⋅) − 𝜋𝐷‖TV ≤ 2elog(1−𝛿𝝀(𝐷))⌊𝑡⌋ ≤ 2
1−𝛿𝝀(𝐷)e

log(1−𝛿𝝀(𝐷))𝑡 .

■

Proof of Corollary 2.3. Due to the exponential ergodicity of 𝑋𝐷
, it follows from [17, Corollary

3.3] that

1
𝑡
𝔼𝜋𝐷[

||| ∫
𝑡

0
(ℎ(𝑋𝐷

𝑠 ) − 𝜋𝐷(ℎ)) d𝑠
|||] ≲

‖ℎ‖𝐿∞(𝐷)√
𝑡

. (A.3)

To get the result for deterministic initial condition 𝑋𝐷
0 = 𝑥 ∈ 𝐷, we note that for 𝑡 ≥ 1 and

ℎ̃ ≔ ℎ − 𝜋𝐷(ℎ) and 𝑔𝑡(𝑦) ≔ 𝑡−1𝔼𝑦[|∫ 𝑡−
√
𝑡

0 ℎ(𝑋𝐷
𝑠 ) d𝑠|], we obtain

|||𝔼
𝑥
[
|||
1
𝑡 ∫

𝑡

0
ℎ̃(𝑋𝐷

𝑠 ) d𝑠
|||] − 𝔼𝜋𝐷[

|||
1
𝑡 ∫

𝑡

0
ℎ̃(𝑋𝐷

𝑠 ) d𝑠
|||]
|||

≤ 2‖ℎ̃‖𝐿∞(𝐷)
1√
𝑡
+ |||𝔼

𝑥
[
|||
1
𝑡 ∫

𝑡−
√
𝑡

0
ℎ̃(𝑋𝐷

𝑠+
√
𝑡) d𝑠

|||] − 𝔼𝜋𝐷[
|||
1
𝑡 ∫

𝑡−
√
𝑡

0
ℎ̃(𝑋𝐷

𝑠+
√
𝑡) d𝑠

|||]
|||

= 2‖ℎ̃‖𝐿∞(𝐷)
1√
𝑡
+ ||𝔼

𝑥[𝑔𝑡(𝑋√
𝑡)] − 𝜋𝐷(𝑔𝑡)||

≤ 2‖ℎ̃‖𝐿∞(𝐷)(
1√
𝑡
+ ‖𝑃𝐷𝑡1/2(𝑥, ⋅) − 𝜋𝐷‖TV)

≲ ‖ℎ‖𝐿∞(𝐷)
1√
𝑡
,

(A.4)

where we used the Markov property and stationarity of 𝜋𝐷 for the second line, ‖𝑔𝑡‖∞ ≤ ‖ℎ̃‖𝐿∞(𝐷)
for the third line and Lemma 2.2 for the last line. The claim now follows from combining (A.3)

and (A.4) with the triangle inequality. ■
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[44] L. Słomiński. “On approximation of solutions of multidimensional SDEs with reflecting

boundary conditions”. In: Stochastic Process. Appl. 50.2 (1994), pp. 197–219. doi: 10.1016/

0304-4149(94)90118-X.

[45] H. M. Soner and S. E. Shreve. “Regularity of the value function for a two-dimensional

singular stochastic control problem”. In: SIAM J. Control Optim. 27.4 (1989), pp. 876–907.

doi: 10.1137/0327047.

[46] C. Strauch. “Adaptive invariant density estimation for ergodic diffusions over anisotropic

classes”. In: Ann. Statist. 46.6B (2018), pp. 3451–3480. doi: 10.1214/17-AOS1664.

[47] C. Tallec, L. Blier, and Y. Ollivier. “Making deep q-learning methods robust to time dis-

cretization”. In: International Conference on Machine Learning. PMLR. 2019, pp. 6096–6104.

[48] M. G. Vieten and R. H. Stockbridge. “Convergence of finite element methods for singular

stochastic control”. In: SIAM J. Control Optim. 56.6 (2018), pp. 4336–4364. doi: 10.1137/

17M1155119.

[49] M. G. Vieten and R. H. Stockbridge. “On the solution structure of infinite-dimensional

linear problems stemming from singular stochastic control problems”. In: SIAM J. Control
Optim. 58.6 (2020), pp. 3363–3388. doi: 10.1137/19M1297415.

[50] H. Whitney. “Analytic extensions of differentiable functions defined in closed sets”. In:

Trans. Amer. Math. Soc. 36.1 (1934), pp. 63–89. doi: 10.2307/1989708.

29

https://doi.org/10.1016/0304-4149(94)90118-X
https://doi.org/10.1016/0304-4149(94)90118-X
https://doi.org/10.1137/0327047
https://doi.org/10.1214/17-AOS1664
https://doi.org/10.1137/17M1155119
https://doi.org/10.1137/17M1155119
https://doi.org/10.1137/19M1297415
https://doi.org/10.2307/1989708

	Introduction and problem formulation
	Contributions
	Related literature

	Optimal reflection as a shape optimization problem for known characteristics
	Ergodicity of the reflected Langevin diffusions
	Solution of the ergodic control problem

	Numerical optimization
	Learning the optimal boundary
	Adaptive nonparametric estimation of the invariant density
	Data-driven estimation of the optimal reflection boundary

	Remaining proofs

