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Quickest Real-Time Detection of
Multiple Brownian Drifts

P. A. Ernst∗, H. Mei† & G. Peskir‡

Consider the motion of a Brownian particle in n dimensions, whose coordinate
processes are standard Brownian motions with zero drift initially, and then at some
random/unobservable time, exactly k of the coordinate processes get a (known)
non-zero drift permanently. Given that the position of the Brownian particle is being
observed in real time, the problem is to detect the time at which the k coordinate
processes get the drift as accurately as possible. We solve this problem in the most un-
certain scenario when the random/unobservable time is (i) exponentially distributed
and (ii) independent from the initial motion without drift. The solution is expressed
in terms of a stopping time that minimises the probability of a false early detection
and the expected delay of a missed late detection. The elliptic case k = 1 has been
settled in [4] where the hypoelliptic case 1 < k < n resolved in the present paper
was left open (the case k = n reduces to the classic case n = 1 having a known
solution). We also show that the methodology developed solves the problem in the
general case where exactly k is relaxed to any number of the coordinate processes
getting the drift. To our knowledge this is the first time that such a multi-dimensional
hypoelliptic problem has been solved exactly in the literature.

1. Introduction

Imagine the motion of a Brownian particle in n dimensions, whose coordinate processes are
standard Brownian motions with zero drift initially, and then at some random/unobservable
time θ , exactly k of the coordinate processes get a (known) non-zero drift µ permanently.
Assuming that the position of the Brownian particle is being observed in real time, the problem
is to detect the time θ at which the k coordinate processes get the drift µ as accurately as
possible. In the most uncertain scenario, where θ is assumed to be (i) exponentially distributed
and (ii) independent from the initial motion without drift, the solution to the problem when
k = 1 has been derived in [4]. The purpose of the present paper is to derive the solution to
the problem when 1 < k < n that was left open in [4]. (Note that the case k = n reduces to
the classic case n = 1 having a known solution and is therefore excluded throughout.)
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Denoting the position of the Brownian particle in n dimensions by X , the error to be
minimised over all stopping times τ of X is expressed as the the linear combination of the
probability of the false alarm Pπ(τ < θ) and the expected detection delay Eπ(τ−θ)+ where
π ∈ [0, 1] denotes the probability that θ has already occurred at time 0 . This problem
formulation of quickest detection dates back to [15] and has been extensively studied to date
(see [18] and the references therein). The linear combination represents the Lagrangian and
once the optimal stopping problem has been solved in that form this will also lead to the solution
of the constrained problems where an upper bound is imposed on either the probability of the
false alarm or the expected detection delay respectively.

Quickest detection problems related to the present problem have been studied by a number
of authors and we refer to [4, Section 1] for an overview of this literature (see also Remark 9
in [4]). The initial optimal stopping problem in these quickest detection problems is equivalent
to an optimal stopping problem for the posterior probability distribution ratio process Φ of
θ given X . The infinitesimal generator of the Markov/diffusion process Φ (combined with
X when needed) in these optimal stopping problems is of parabolic type. In contrast, this was
no longer the case in the present problem when k = 1 as noted in [4], where the infinitesimal
generator ILΦ of the multi-dimensional Markov/diffusion process Φ is of elliptic type.

The present quickest detection problem when 1 < k < n was left open in [4]. We will
see below that the ellipticity of ILΦ remains valid for k = n−1 but breaks down when
1 < k < n−1 . We show however that ILΦ satisfies the Hörmander condition (cf. [6]) in
this case so that ILΦ is hypoelliptic. This fact may appear somewhat surprising at first glance
given that Φ is governed by a system of N =

(

n
k

)

stochastic differential equations driven by
n Brownian motions. For example, when n = 10 and k = 5 then N = 252 so that the
system governing Φ consists of 252 stochastic differential equations driven by 10 Brownian
motions. Nonetheless, we establish that the structure of this system when 1 < k < n−1 is
sufficiently supported to ensure hypoellipticity as a substitute for the broken ellipticity of k
being either 1 or n−1 . This provides regularity of the value function in the optimal stopping
set. Moreover, the previous conclusions on the space operator ILΦ extend to the backward
time-space operator −∂t+ILΦ as well which in turn imply that Φ is a strong Feller process.
This opens avenues to regularity of the value function at the optimal stopping points and closes
our exploratory analysis of the problem.

In the reminder we show that the hypoelliptic structure of the infinitesimal generator com-
bined with the concavity of the loss functional in the optimal stopping problem is sufficiently
robust to yield the solution. Finding the exact solution to the quickest detection problem for
the observed process X in n dimensions when 1 < k < n is the main contribution of the
present paper. We also show that the methodology developed solves the problem in the general
case where exactly k is relaxed to any number of the coordinate processes getting the drift.
To our knowledge this is the first time that such a multi-dimensional hypoelliptic problem has
been solved exactly in the literature.

2. Formulation of the problem

In this section we formulate the quickest detection problem under consideration. The initial
formulation of the problem will be revaluated under a change of measure in the next section.
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1. We consider a Bayesian formulation of the problem where it is assumed that one observes
a sample path of the standard n-dimensional Brownian motion X = (X1, . . . , Xn) , whose
coordinate processes X1, . . . , Xn are standard Brownian motions with zero drift initially, and
then at some random/unobservable time θ taking value 0 with probability π ∈ [0, 1] and
being exponentially distributed with parameter λ > 0 given that θ > 0 , exactly k of the
coordinate processes X1, . . . , Xn get a (known) non-zero drift µ permanently. The problem
is to detect the time θ at which the k coordinate processes get the drift µ as accurately as
possible (neither too early nor too late). This problem belongs to the class of quickest real-time
detection problems as discussed in Section 1 above.

2. The observed process X = (X1, . . . , Xn) satisfies the stochastic differential equations

(2.1) dX i
t = µI(i∈β, t≥θ)dt+ dBi

t (1≤ i≤n)

driven by a standard n-dimensional Brownian motion B = (B1, . . . , Bn) under the prob-
ability measure Pπ specified below, where the random variable β taking values in the set
Cn
k := {(n1, . . . , nk) | 1 ≤ n1 < . . . < nk ≤ n} satisfies Pπ(β = (n1, . . . , nk)) = pn1,...,nk

for
some pn1,...,nk

∈ [0, 1] with
∑

pn1,...,nk
= 1 given and fixed where the sum is taken over all

(n1, . . . , nk) in Cn
k . With a slight abuse of notation, in (2.1) we write i ∈ β to express the fact

that i belongs to the set {n1, . . . , nk} consisting of the elements which form β = (n1, . . . , nk)
in Cn

k . This means that n1, . . . , nk ∈ β if and only if the coordinate processes Xn1 , . . . , Xnk

get drift µ at time θ with probability pn1,...,nk
for (n1, . . . , nk) ∈ Cn

k . With a similar abuse
of notation, which will be helpful in what follows, we will arrange the elements of Cn

k in a
lexicographic order and identify the i-th element of the ordered set Cn

k by its index i itself
for 1 ≤ i ≤ N where we set N :=

(

n
k

)

to denote the total number of elements in Cn
k . Often

we will write i = (n1, . . . , nk) or i ∈ Cn
k to express this identification explicitly for 1 ≤ i ≤ N

while at other places it will be clear from the context whether the index i belongs to the set Cn
k

in this sense or the set {1, . . . , n} as in (2.1) above. The unobservable time θ , the unknown
coordinates β , and the driving Brownian motion B are all assumed to be independent under
Pπ for π ∈ [0, 1] given and fixed.

3. Standard arguments imply that the previous setting can be realised on a probability space
(Ω,F ,Pπ) with the probability measure Pπ being decomposable as follows

(2.2) Pπ =
∑

i∈Cn
k

pi

(

πP0
i + (1−π)

∫ ∞

0

λe−λt Pti dt
)

for π ∈ [0, 1] where P
t
i is the probability measure under which the coordinate processes

Xn1 , . . . , Xnk of the observed process X get drift µ at time t ∈ [0,∞) for i = (n1, . . . , nk)
in Cn

k and λ > 0 is given and fixed. The decomposition (2.3) expresses the fact that the
unobservable time θ is a non-negative random variable satisfying Pπ(θ = 0) = π and Pπ(θ >
t | θ > 0) = e−λt for t > 0 . Thus P

t
i (X ∈ · ) = Pπ(X ∈ · | β = i, θ = t) is the probability

law of the standard n-dimensional Brownian motion process X whose coordinate processes
Xn1 , . . . , Xnk get drift µ at time t ∈ [0,∞) for i = (n1, . . . , nk) in Cn

k . To remain consistent
with this notation we also denote by P

∞
i the probability measure under which the coordinate

processes Xn1, . . . , Xnk of X get no drift µ at a finite time for i = (n1, . . . , nk) in Cn
k . Thus

P
∞
i (X ∈ · ) = Pπ(X ∈ · | β = i, θ = ∞) is the probability law of the standard n-dimensional
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Brownian motion process for i ∈ Cn
k . Clearly the subscript i is superfluous in this case and

we will often write P
∞ instead of P

∞
i for i ∈ Cn

k . Moreover, by Pi we denote the probability
measure under which the coordinate processes Xn1, . . . , Xnk of X get drift µ at time θ for
i = (n1, . . . , nk) in Cn

k . From (2.2) we see that

(2.3) Pπ =
∑

i∈Cn
k

piPi

where Pi = πP0
i + (1−π)

∫∞
0
λe−λt Pti dt for i ∈ Cn

k and π ∈ [0, 1] . Note that Pi depends on
π ∈ [0, 1] as well but we will omit this dependence from its notation for i ∈ Cn

k .

4. Being based upon continuous observation of X = (X1, . . . , Xn) , the problem is to
find a stopping time τ∗ of X (i.e. a stopping time with respect to the natural filtration
FX
t = σ(Xs | 0 ≤ s ≤ t) of X for t ≥ 0 ) that is ‘as close as possible’ to the unknown time

θ . More precisely, the problem consists of computing the value function

(2.4) V (π) = inf
τ

[

Pπ(τ < θ) + cEπ(τ − θ)+
]

and finding the optimal stopping time τ∗ at which the infimum in (2.4) is attained for π ∈ [0, 1]
and c > 0 given and fixed -̌1pt (recalling also that pi ∈ [0, 1] with

∑

i∈Cn
k
pi = 1 are given

and fixed). Note in (2.4) that Pπ(τ < θ) is the probability of the false alarm and Eπ(τ − θ)+

is the expected detection delay associated with a stopping time τ of X for π ∈ [0, 1] . Recall
also that the expression on the right-hand side of (2.4) is the Lagrangian associated with the
constrained problems as discussed in Section 1 above.

5. To tackle the optimal stopping problem (2.4) we consider the posterior probability distri-
bution process Π = (Πt)t≥0 of θ given X that is defined by

(2.5) Πt = Pπ(θ ≤ t | FX
t )

for t ≥ 0 . Note that we have

(2.6) Πt =

N
∑

i=1

Π i
t

where the summands are defined as follows

(2.7) Π i
t = Pπ(β = i, θ ≤ t | FX

t )

for t ≥ 0 and 1 ≤ i ≤ N in Cn
k . The right-hand side of (2.4) can be rewritten to read

(2.8) V (π) = inf
τ

Eπ

(

1−Πτ + c

∫ τ

0

Πt dt
)

for π ∈ [0, 1] .

6. To connect the process Π to the observed process X we define the posterior probability
distribution ratio process Φ = (Φ1, . . . , ΦN) of θ given X by

(2.9) Φit =
Π i
t

Π̄ i
t

4



where the denominator is defined is follows

(2.10) Π̄ i
t = Pπ(β = i, θ > t | FX

t )

for t ≥ 0 and 1 ≤ i ≤ N in Cn
k . By the Girsanov theorem we see that the likelihood ratio

process L = (L1, . . . LN ) can be expressed as follows

(2.11) Lit =
dP0

i,t

dP∞
t

= exp
(

µ

k
∑

j=1

X
nj

t − k
µ2

2
t
)

for t ≥ 0 and 1 ≤ i ≤ N identified with (n1, . . . , nk) in Cn
k where P

0
i,t and P

∞
t denote the

restrictions of the measures P
0
i and P

∞ to FX
t for t ≥ 0 and 1 ≤ i ≤ N in Cn

k . Moreover,
using the same arguments as in [4, Section 2] we find that

(2.12) Φit = eλtLit

(

Φi0 + λ

∫ t

0

ds

eλsLis

)

with Φi0 = π/(1−π) for t ≥ 0 and 1 ≤ i ≤ N in Cn
k . From (2.11) and (2.12) we see that the

process Φ = (Φ1, . . . ΦN ) is an explicit (path-dependent) functional of the observed process
X = (X1, . . . , Xn) and hence observable (by observing a sample path of X we are also seeing
a sample path of Φ both in real time).

3. Measure change

In this section we show that changing the probability measure Pπ for π ∈ [0, 1] to P
∞ in

the optimal stopping problem (2.4) or (2.8) provides crucial simplifications of the setting which
make the subsequent analysis possible. This will be achieved by invoking the decomposition
of Pπ into Pi for i ∈ Cn

k as stated in (2.2) above, changing each probability measure Pi to
P
∞
i , and recalling that each P

∞
i coincides with P

∞ for i ∈ Cn
k .

1. We show that the optimal stopping problem (2.8) admits a transparent reformulation under
the probability measure P

∞ in terms of the process Φ = (Φ1, . . . , ΦN) defined in (2.9) above.
Recall that Φi starts at π/(1−π) and this dependence on the initial point will be indicated
by a superscript to Φi when needed for 1 ≤ i ≤ N in Cn

k .

Proposition 1. The value function V from (2.8) satisfies the identity

(3.1) V (π) = (1−π)
[

1 + c V̂ (π)
]

where the value function V̂ is given by

(3.2) V̂ (π) = inf
τ

E
∞
[

∫ τ

0

e−λt
(

N
∑

i=1

piΦ
i,π/(1−π)
t − λ

c

)

dt
]

for π ∈ [0, 1) and the infimum in (3.2) is taken over all stopping times τ of X .

Proof. A derivation of (3.1) and (3.2) can be reduced to one dimension where the change-
of-measure identity (4.12) from [7] is applicable in exactly the same way as in the proof of
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Proposition 1 in [4]. Given that the present multi-dimensional setting creates no additional
difficulties we will omit details and this completes the proof. �

2. From Proposition 1 we see that the optimal stopping problem (2.4) or (2.8) is equivalent
to the optimal stopping problem (3.2). From (2.11)+(2.12) using Itô’s formula we find that

(3.3) dΦit = λ(1+Φit)dt+
k

∑

j=1

µΦit dB
nj

t (i=(n1, . . . , nk)∈Cn
k )

under P
∞ with Φi0 = ϕi in [0,∞) all being equal to π/(1−π) for 1 ≤ i ≤ N in Cn

k

and π ∈ [0, 1) . Moreover, the system of stochastic differential equations (3.3) has a unique
strong solution given by (2.11)+(2.12) above, where X equals B under P

∞ , so that Φ =
(Φ1, . . . , ΦN) is a strong Markov process (see e.g. [14, pp 158-163]). We will establish further in
Section 5 below that Φ is a strong Feller process but these arguments are more subtle at this
stage. Noticing that W i

t := (1/
√
k)

∑k
j=1B

nj

t defines a standard Brownian motion process for

t ≥ 0 , we see from (3.3) that each Φi is a Shiryaev diffusion process for 1 ≤ i ≤ N identified
with (n1, . . . , nk) in Cn

k . Basic properties of the Shiryaev diffusion processes are reviewed in
[9, Section 2]. In particular, it is known that Φi is recurrent in [0,∞) if and only if λ ≤ kµ2/2
for 1 ≤ i ≤ N in Cn

k . If λ > kµ2/2 then Φi is transient in [0,∞) with Φit → ∞ almost
surely under P

∞ as t→ ∞ for 1 ≤ i ≤ N in Cn
k .

3. To tackle the equivalent optimal stopping problem (3.2) for the strong Markov pro-
cess Φ = (Φ1, . . . , ΦN) solving (3.3) we will enable Φ = (Φ1, . . . , ΦN) to start at any point
ϕ = (ϕ1, . . . , ϕN) ∈ [0,∞)N under the probability measure P

∞
ϕ so that the optimal stopping

problem (3.2) extends as follows

(3.4) V̂ (ϕ) = inf
τ

E
∞
ϕ

[

∫ τ

0

e−λt
(

N
∑

i=1

piΦ
i
t −

λ

c

)

dt
]

for ϕ ∈ [0,∞)N with P
∞
ϕ (Φ0=ϕ) = 1 -̌1pt where the infimum is taken over all stopping times

τ of Φ and we recall that pi ∈ [0, 1] for 1 ≤ i ≤ N in Cn
k with

∑N
i=1 pi = 1 . In this way

we have reduced the initial quickest detection problem (2.4) or (2.8) to the optimal stopping
problem (3.4) for the strong Markov process Φ = (Φ1, . . . , ΦN) solving (3.3) and being explicitly
given by the Markovian flow (2.11)+(2.12) of the initial point (Φ1

0, . . . , Φ
N
0 ) = (ϕ1, . . . ϕN) =: ϕ

in [0,∞)N under P
∞
ϕ . Note that the optimal stopping problem (3.4) is inherently/fully N -

dimensional and the infinitesimal generator of Φ = (Φ1, . . . , ΦN) is of elliptic type when k = 1
or k = n−1 (because N = n and the diffusion matrix in (3.3) is regular in either case) but is
not of elliptic (or parabolic) type when 1 < k < n−1 (because N > n and hence the diffusion
matrix in (3.3) cannot be regular). We will return to this issue in Section 5 below.

4. Mayer formulation

The optimal stopping problem (3.4) is Lagrange formulated. In this section we derive its
Mayer reformulation which is helpful in the subsequent analysis.
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1. From (3.3) we read that the infinitesimal generator of the strong Markov process Φ =
(Φ1, . . . , ΦN) is given by

(4.1) ILΦ =

N
∑

i=1

λ(1+ϕi)∂ϕi
+

1

2

N
∑

i,j=1

µ2ϕiϕj (Ii, Ij)∂ϕiϕj

for (ϕ1, . . . ϕN ) ∈ (0,∞)N where Ii = (Ii1, . . . , Iin) with Iip = 1i(p) which by definition
equals 1 if p belongs to {n1, . . . , nk} for 1 ≤ i ≤ N identified with (n1, . . . , nk) in
Cn
k and 0 otherwise, and similarly Ij = (Ij1, . . . , Ijn) with Ijp = 1j(p) which by defini-

tion equals 1 if p belongs to {m1, . . . , mk} for 1 ≤ j ≤ N identified with (m1, . . . , mk)
in Cn

k and 0 otherwise, while (Ii, Ij) denotes the scalar product of Ii and Ij given by
∑n

p=1 IipIjp for 1 ≤ i, j ≤ N in Cn
k . From (2.12) we see that the topological boundary

{ (ϕ1, . . . , ϕN) ∈ [0,∞)N | ϕi = 0 for some 1 ≤ i ≤ N } of the state space [0,∞)N consists
of entrance boundary points for Φ (meaning that Φ can be started at any boundary point
never to return to the boundary) and clearly the differential operator ILΦ is of elliptic type
when k = 1 or k = n−1 but is not of elliptic (or parabolic) type when 1 < k < n−1 which
is the case of main interest in what follows. We will determine its type when 1 < k < n−1 in
Section 5 below.

2. For the Mayer reformulation of the problem (3.4) we need to look for a function M :
[0,∞)N → IR solving the partial differential equation

(4.2) ILΦM−λM = L

on (0,∞)N where in view of (3.4) we set

(4.3) L(ϕ1, . . . , ϕN) =

N
∑

i=1

piϕi − λ/c

for (ϕ1, . . . , ϕN) ∈ [0,∞)N . Noting that the mixed derivatives in (4.1) vanish, and ignoring
the constant −λ/c on the right-hand side of (4.2) with (4.3) for now, we see that a possible
attempt to solve the resulting partial differential equation is to separate the variables ϕi by
considering the ordinary differential equations

(4.4) λ(1+ϕi)M
′
i +

µ2

2
ϕ2
i M

′′
i − λMi = ϕi

where Mi = Mi(ϕi) is a function/solution to be found for ϕi ∈ (0,∞) with 1 ≤ i ≤ N in
Cn
k . Note that Mi =Mj for i 6= j in Cn

k so that the subscript to M is superfluous but we
will keep it to distinguish Mi for 1 ≤ i ≤ N in Cn

k from the general function M solving
(4.2) to be defined shortly below. It was shown in [4, Section 4] that the sought solution to
(4.4) is given by

(4.5) Mi(ϕi) =
2

µ2
(1+ϕi)

∫ ϕi/(1+ϕi)

0

(1−v
v

)κ

eκ/v
∫ v

0

uκ−1

(1−u)κ+2
e−κ/u dudv

7



for ϕi ∈ [0,∞) and 1 ≤ i ≤ N in Cn
k where we set κ = 2λ/µ2 . Define a function

M : [0,∞)N → IR by setting

(4.6) M(ϕ1, . . . , ϕN) =

N
∑

i=1

piMi(ϕi) + 1/c

for (ϕ1, . . . , ϕN) ∈ [0,∞)N . The arguments above then show that the function M from (4.6)
solves the equation (4.2) above (notice that the final term 1/c yields the missing constant
−λ/c on the right-hand side of (4.2) with (4.3) as needed).

3. Having defined the function M in (4.6) we can now describe the Mayer reformulation of
the optimal stopping problem (3.4) as follows.

Proposition 2. The value function V̂ from (3.4) can be expressed as

(4.7) V̂ (ϕ) = inf
τ

E
∞
ϕ

[

e−λτM(Φ1
τ , . . . , Φ

N
τ )

]

−M(ϕ)

for ϕ ∈ [0,∞)N where the infimum is taken over all (bounded) stopping times τ of Φ =
(Φ1, . . . , ΦN) and the function M is given by (4.6) using (4.5) above.

Proof. By Itô’s formula using (3.3) we get

(4.8) e−λtM(Φt) =M(ϕ) +

∫ t

0

e−λs
(

ILΦM−λM)(Φs) ds+Nt

for ϕ ∈ [0,∞)N -̌1pt where Nt =
∑

i∈Cn
k

∑k
j=1

∫ t

0
e−λsMϕi

(Φs)µΦ
i
s dB

nj
s is a continuous local

martingale for t ≥ 0 . Making use of a localisation sequence of stopping times for this local
martingale if needed, applying the optional sampling theorem and recalling that M solves
(4.2), we find by taking E

∞
ϕ on both sides in (4.8) that

(4.9) E
∞
ϕ

[

e−λτM(Φ1
τ , . . . , Φ

N
τ )

]

=M(ϕ) + E
∞
ϕ

[

∫ τ

0

e−λtL(Φt) dt
]

for all ϕ ∈ [0,∞)N and all (bounded) stopping times τ of Φ . From (3.4) and (4.9) using
(4.3) we see that (4.7) holds as claimed and the proof is complete. �

4. From Proposition 2 we see that the optimal stopping problem (3.4) is equivalent to the
optimal stopping problem defined by

(4.10) V̌ (ϕ) = inf
τ

E
∞
ϕ

[

e−λτM(Φ1
τ , . . . , Φ

N
τ )

]

for ϕ ∈ [0,∞)N where the infimum is taken over all (bounded) stopping times τ of Φ =
(Φ1, . . . , ΦN) and the function M is given by (4.6) using (4.5) above. The optimal stopping
problem (4.10) is Mayer formulated. From (4.7) and (4.10) we see that

(4.11) V̂ (ϕ) = V̌ (ϕ)−M(ϕ)

for ϕ ∈ [0,∞)N . The Mayer reformulation (4.10) has certain advantages that will be exploited
in the subsequent analysis of the optimal stopping problem (3.4) below.
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5. Hypoellipticity

In this section we show that the differential operator ILΦ from (4.1) satisfies the Hörmander
condition (cf. [6]) and therefore is hypoelliptic. This will provide a needed regularity of the value
function V̂ from (3.4) in the continuation set of the optimal stopping problem. We also show
that the previous conclusions on the space operator ILΦ extend to the backward time-space
operator −∂t+ILΦ which in turn imply that Φ is a strong Feller process. This will provide a
needed regularity of V̂ at the optimal stopping boundary (between the continuation set and
the stopping set). The regularity of V̂ in the continuation set and at the optimal stopping
boundary will be discussed in Sections 6 and 7 below.

1. Hörmander’s condition. To recall what it means that ILΦ satisfies the Hörmander con-
dition, we will connect to Part 6 of Section 4 in [11] from where one reads that ILΦ can be
rewritten as the ‘sum of squares’ as follows

(5.1) ILΦ =

N
∑

i=1

µi∂ϕi
+

1

2

N
∑

i,j=1

(σσt)ij∂ϕiϕj
= D0 +

N
∑

i=1

D2
i

where Di is a first-order differential operator given by

(5.2) Di =
N
∑

j=1

βij∂ϕj

for 0 ≤ i ≤ N with the coefficients βij expressed explicitly as -̌6pt

β0j = µj −
1

2

N
∑

k,l=1

σlk ∂ϕl
σjk (1≤j≤N)(5.3)

βij =
1√
2
σji (1≤ i≤N) (1≤j≤N) .(5.4)

Comparing (4.1) with (5.1) we see that the drift vector µ = (µ1, . . . , µN) and the diffusion
matrix σ = (σ1; . . . ; σN ) of Φ (the latter written as a sequence of its rows) are given by

µi(ϕ) = λ(1+ϕi)(5.5)

σi(ϕ) = µϕiIi(5.6)

for ϕ = (ϕ1, . . . , ϕN) ∈ [0,∞)N and 1 ≤ i ≤ N where Ii = (Ii1, . . . , Iin, 0, . . . , 0) ∈ {0, 1}N
with Iip = 1i(p) which by definition equals 1 if p belongs to {n1, . . . , nk} for 1 ≤ i ≤ N
identified with (n1, . . . , nk) in Cn

k and 0 otherwise (note that we have extended the range
of Ii appearing in the text following (4.1) above by adding N−n zeros to make σ a square
N×N matrix). Identifying Di with (βi1, . . . , βiN) we see that each Di may be viewed as
a function from [0,∞)N (or its subset) to IRN defined by Di(ϕ) = (βi1(ϕ), . . . , βiN(ϕ)) for
ϕ ∈ [0,∞)N and 0 ≤ i ≤ N . The Lie bracket of Di and Dj understood as differential
operators is defined by

(5.7) [Di, Dj] = DiDj−DjDi
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for 0 ≤ i, j ≤ N . The smallest vector space in IRN that (i) contains all D0, D1, . . . , DN

understood as vectors in IRN and (ii) is closed under the Lie bracket operation (5.7) is referred
to as the Lie algebra generated by D0, D1, . . . , DN and is denoted by Lie(D0, D1, . . . , DN) . In
other words Lie(D0, D1, . . . , DN) = span{Di, [Di, Dj ], [[Di, Dj], Dk], . . . | 0 ≤ i, j, k, . . . ≤ N} .
Note that Lie(D0, D1, . . . , DN) may be viewed as a function from [0,∞)N into the family of
linear subspaces of IRN whose (algebraic) dimensions could also be strictly smaller than N .
The Hörmander condition states that

(5.8) dimLie(D0, D1, . . . , DN) = N

on [0,∞)N (or its subset). If (5.8) is satisfied then ILΦ is hypoelliptic on [0,∞)N (or its
subset) by the Hörmander theorem (cf. [6, Theorem 1.1]).

Proposition 3. The differential operator ILΦ from (4.1) satisfies the Hörmander condition
(5.8). Consequently ILΦ is hypoelliptic.

Proof. We need to show that (5.8) holds. For this, we find by direct calculation using (5.3)
with (5.5)+(5.6) that

(5.9) β0j = aϕj + λ (1≤j≤N)

where we set a := λ−kµ2/2 . By (5.4) and (5.6) we see that

βij =
µ√
2
ϕj1j(i) if 1 ≤ i ≤ n(5.10)

= 0 if n < i ≤ N

for 1 ≤ j ≤ N where 1j(i) by definition equals 1 if i belongs to {m1, . . . , mk} for 1 ≤
j ≤ N identified with (m1, . . . , mk) in Cn

k and 0 otherwise. Inserting the right-hand sides
of (5.9) and (5.10) into (5.2) with i & j swapped we find that

D0 =

N
∑

i=1

(aϕi+λ)∂ϕi
∼

N
∑

i=1

(ϕi+b)∂ϕi
if a 6= 0(5.11)

∼
N
∑

i=1

∂ϕi
if a = 0

Dj =
N
∑

i=1

µ√
2
ϕiIij∂ϕi

∼
N
∑

i=1

ϕiIij∂ϕi
(1≤j≤N)(5.12)

where in (5.11) we set b := λ/a and L ∼ R by definition means that R is a constant
multiple of L (making R equivalent to L when searching for the Lie algebra generated by
a set containing L ) and Iij in (5.12) equals 1 if j belongs to {n1, . . . , nk} for 1 ≤ i ≤ N
identified with (n1, . . . nk) in Cn

k and 0 otherwise.
Calculating (iterated) Lie brackets of D0, D1, . . . , DN from (5.11) and (5.12) one arrives at

the following recipe for verifying the Hörmander condition (5.8). For this, let any 1 ≤ j ≤ N
with j = (n1, . . . , nk) ∈ Cn

k be given and fixed. Using (5.11) and (5.12) we find by direct
calculation that

[D0, Dn1] ∼
N
∑

i=1

bIin1∂ϕi
∼

N
∑

i=1

Iin1∂ϕi
if a 6= 0(5.13)
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=

N
∑

i=1

Iin1∂ϕi
if a = 0

for any 1 ≤ n1 ≤ n and thus the specified one in forming j as well. Using (5.12) and (5.13)we
find by direct calculation that

(5.14) [[D0, Dn1], Dn2] ∼
N
∑

i=1

Iin1Iin2∂ϕi

for any 1 ≤ n1 < n2 ≤ n and thus the specified ones in forming j as well. Continuing this
calculation by induction we find that

(5.15) [[[D0, Dn1], Dn2 ], . . . , Dnk
] ∼

N
∑

i=1

Iin1Iin2 . . . Iink
∂ϕi

for any 1 ≤ n1 < n2 < . . . < nk ≤ n and thus the specified ones in forming j as well. By
definition of I recalled following (5.12) above we see that

Iin1Iin2 . . . Iink
= 1 if i = j(5.16)

= 0 if i 6= j .

Combining (5.15) and (5.16) we find that

(5.17) [[[D0, Dn1 ], Dn2], . . . , Dnk
] ∼ ∂ϕj

.

Since 1 ≤ j ≤ N was arbitrary this shows that the iterated Lie brackets (5.17) span the entire
IRN so that the Hörmander condition (5.8) is satisfied as claimed. The final claim follows by
the Hörmander theorem as recalled following (5.8) above. This completes the proof. �

2. Parabolic Hörmander’s condition. To recall what it means that −∂t+ILΦ satisfies the
(parabolic) Hörmander condition, we will connect to Part 3 of Section 5 in [11] from where one
reads that −∂t+ILΦ can be rewritten as the ‘sum of squares’ as follows

(5.18) −∂t+ILΦ = −∂ϕ0 +

N
∑

i=1

µi∂ϕi
+

1

2

N
∑

i,j=1

(σσt)ij∂ϕiϕj
= D̄0 +

N
∑

i=1

D̄2
i

where D̄i is a first-order differential operator given by

(5.19) D̄i =
N
∑

j=0

βij∂ϕj

for 0 ≤ i ≤ N with the coefficients βij expressed explicitly as

(5.20) β00 = −1 & βi0 = 0 (1≤ i≤N)

in addition to (5.3) and (5.4) above. Viewing D̄i as functions from [0,∞)N+1 (or its subset)
to IRN+1 this amounts to setting

(5.21) D̄0 = (−1, β01, . . . β0N ) & D̄i = (0, βi1, . . . , βiN) (1≤ i≤N) .
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Note that Lie(D̄0, D̄1, . . . , D̄N) can be viewed as a function from [0,∞)N+1 into the family
of linear subspaces of IRN+1 whose (algebraic) dimensions could also be strictly smaller than
N+1 . The (parabolic) Hörmander condition states that

(5.22) dimLie(D̄0, D̄1, . . . , D̄N) = N+1

on [0,∞)N+1 (or its subset). If (5.22) is satisfied then −∂t+ILΦ is hypoelliptic on [0,∞)N+1

(or its subset) by the Hörmander theorem (cf. [6, Theorem 1.1]).

Proposition 4. The backward time-space differential operator −∂t + ILΦ of Φ satisfies
the parabolic Hörmander condition (5.22). Consequently Φ is a strong Feller process.

Proof. 1. We need to show that (5.22) holds. For this, note from (5.12) that with a slight
abuse of notation we have

(5.23) D̄0 = (−1, D0) & D̄i = (0, Di) (1≤ i≤N)

where D0 and Di are defined in (5.2) with (5.3)+(5.4) above followed by the more explicit ex-
pressions in (5.11)+(5.12) above. Since the first coordinates −1 and 0 in (5.23) are constants,
and ∂ϕ0 = ∂t plays no role because µ and σ are time independent, we see that calculating
the (iterated) Lie brackets of D̄0, D̄1, . . . , D̄N reduces to calculating the (iterated) Lie brackets
of D0, D1, . . . , DN . More specifically, letting any 1 ≤ i ≤ N with i = (n1, . . . , nk) ∈ Cn

k be
given and fixed, and proceeding in the same way as in the proof of Proposition 3, we find by
(5.17) above that

(5.24) [[[D̄0, D̄n1], D̄n2], . . . , D̄nk
] ∼ [[[D0, Dn1], Dn2], . . . , Dnk

] ∼ ∂ϕi
.

Viewed as a function from [0,∞)N+1 to IRN+1 we see that the differential operator (5.24) is
identified with ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ IRN+1 where the number 1 is placed on the i+1
coordinate. Enlarging (5.24) by

(5.25) D̄0 = (−1, D0) = −∂ϕ0 +

N
∑

i=1

(aϕi+λ)∂ϕi

which viewed as a function from [0,∞)N+1 to IRN+1 is identified with e0 = (−1, aϕ1+
λ, . . . , aϕN +λ) for (ϕ1, . . . , ϕN) ∈ [0,∞)N , we see that the vectors ei for 0 ≤ i ≤ N
are linearly independent in IRN+1 and clearly span the entire IRN+1 so that the parabolic
Hörmander condition (5.22) is satisfied as claimed.

2. To see that Φ is a strong Feller process, let any bounded measurable function f :
[0,∞)N → IR be given and fixed. Then by Corollary 9 in [11] we know that

(5.26) ∂tPtf
w
= ILΦPtf in (0,∞)×[0,∞)N

where Ptf(ϕ) = E
∞
ϕ f(Φt) for t ≥ 0 and ϕ ∈ [0,∞)N . Since −∂t+ ILΦ satisfies the Hörman-

der condition (5.22) we know that −∂t + ILΦ is hypoelliptic by the Hörmander theorem as
recalled following (5.22) above. It follows therefore that the weak solution (t, ϕ) 7→ Ptf(ϕ)
in (5.26) is C∞ on (0,∞)× [0,∞)N . In particular, the mapping ϕ 7→ Ptf(ϕ) is C∞ and
therefore continuous as well on [0,∞)N for every t > 0 given and fixed. This shows that Φ
is a strong Feller process as claimed and the proof is complete. �
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6. Properties of the optimal stopping boundary

In this section we establish the existence of an optimal stopping time in the problem (3.4)
and derive basic properties of the optimal stopping boundary.

1. Looking at (3.4) we may conclude that the (candidate) continuation and stopping sets in
this problem need to be defined as follows

C = {ϕ ∈ [0,∞)N | V̂ (ϕ) < 0 }(6.1)

D = {ϕ ∈ [0,∞)N | V̂ (ϕ) = 0 }(6.2)

respectively. Since the integral in the optimal stopping problem (3.4) is uniformly bounded
from below by −1/c , it follows by [16, Theorem 6(2), p. 137] that the first entry time of the
process Φ into the closed set D defined by

(6.3) τD = inf { t ≥ 0 | Φt ∈ D }

is optimal in (4.3). Within this general existence result one formally allows that the optimal
stopping time τD takes the value ∞ as well, however, we will now show that this is not the
case in the present problem.

Proposition 5. We have

(6.4) P
∞
ϕ (τD <∞) = 1

for all ϕ ∈ [0,∞)N .

Proof. Since τD is optimal in (3.4) it follows from the result and proof of Proposition
1 above that τD is optimal in (2.8) as well. The result of Lemma 1 in [7] identifies the
Radon-Nikodym derivative corresponding to the measure change from Pπ to P

∞ to be

(6.5)
dPπ,τ
dP∞

τ

= e−λτ
1−π
1−Πτ

for all stopping times τ of X and all π ∈ [0, 1) , where P
∞
τ and Pπ,τ denote the restrictions of

measures P
∞ and Pπ to FX

τ for π ∈ [0, 1) respectively. Using (6.5) we recognise eλt(1−Πt)
as a constant multiple of the Radon-Nikodym derivative dP∞

t /dPπ,t and hence the process is
a martingale under Pπ for t ≥ 0 whenever π ∈ [0, 1) is given and fixed. Moreover, from the
fact that the probability measures Pπ and P

∞ are singular, we can conclude that

(6.6) eλt(1−Πt) → 0

and hence Πt → 1 both almost surely under Pπ as t→ ∞ for π ∈ [0, 1) (cf. Theorem 2 in [17,
p. 527]). Using the latter fact on the right-hand side of (2.8) with τD in place of τ we see that
Pπ(τD < ∞) = 1 since otherwise 1−π ≥ V (π) = ∞ for π ∈ [0, 1) which is a contradiction.
Since the set {τD <∞} belongs to FX

τD
and by (6.5) above the probability measures Pπ and

P
∞ restricted to FX

τD
are equivalent (i.e. Pπ(F ) = 0 if and only if P

∞(F ) = 0 for F ∈ FX
τD

)
for π ∈ [0, 1) , it follows that P

∞
ϕ (τD <∞) = 1 for all ϕ ∈ [0,∞)N as claimed. �

2. The topological boundary between the sets C and D in [0,∞)N is referred to as the
optimal stopping boundary in the problem (3.4). We will denote it by ∂C although we could
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also use ∂D without altering its meaning. To derive an upper bound on the size of ∂C , recall
that the optimal stopping boundary/point ϕ∗ in the one-dimensional problem (3.4) (i.e. when
N = 1 ) can be characterised as a unique solution to

(6.7)
eκ(1+ϕ∗)/ϕ∗

ϕκ∗

∫ ϕ∗/(1+ϕ∗)

0

uκ−1

(1−u)κ+2
e−κ/u du =

µ2

2c

on (λ/c,∞) where we set κ = 2λ/µ2 (cf. [4, Section 5] & [12, Section 22]). Note from (6.7)
that we have ϕ∗ = ϕ∗(λ/µ

2, λ/c) and set

(6.8) ϕ∗
i := ϕ∗

(

λ
kµ2
, λ
pic

)

for λ > 0 , µ ∈ IR , c > 0 and pi ∈ [0, 1] for 1 ≤ i ≤ N with
∑N

i=1 pi = 1 . Recall that
ϕ∗
i ∈ (λ/(pic),∞) for 1 ≤ i ≤ N . We can now expose basic properties of the the value

function and the continuation/stopping set in the problem (3.4) as follows.

Proposition 6.

The value function V̂ is concave and continuous on [0,∞)N .(6.9)

If ϕ1 ≤ ψ1, . . . , ϕN ≤ ψN then V̂ (ϕ1, . . . , ϕN) ≤ V̂ (ψ1, . . . ψN ) .(6.10)

If (ϕ1, . . . , ϕN) ∈ D and ψ1 ≥ ϕ1, . . . , ψN ≥ ϕN then (ψ1, . . . ψN) ∈ D .(6.11)

The stopping set D is convex and the polytope { (ϕ1, . . . ϕN) ∈ [0,∞)N |(6.12)
∑N

i=1 ϕi/ϕ
∗
i−1 ≥ 0 } is contained in D .

The simplex { (ϕ1, . . . , ϕN) ∈ [0,∞)N |
∑N

i=1 piϕi−λ/c < 0 } is contained(6.13)
in the continuation set C .

Proof. (6.9): Combining the fact that the Markovian flow (2.12) is linear as a function of
its initial point with the fact that the integral in (3.4) is a linear function of its argument, and
using that the infimum of a convex combination is larger than the convex combination of the
infima, we find that V̂ is concave on [0,∞)N as claimed. Hence we can also conclude that V̂
is continuous on the open set (0,∞)N . To see that V̂ is continuous at the boundary points of
[0,∞)N we may recall the well-known (and easily verified) fact that the concave function V̂
is lower semicontinuous on the closed and convex set [0,∞)N . Moreover, recalling that (2.12)
defines a Markovian functional of the initial point Φi0 := ϕi in [0,∞) of the process Φi for
1 ≤ i ≤ N , we see that the expectation in (4.10) defines a continuous function of the initial
point ϕ = (ϕ1, . . . , ϕN) of the process Φ = (Φ1, . . . , ΦN) for every (bounded) stopping time
τ of Φ given and fixed. Taking the infimum over all (bounded) stopping times τ of Φ we
can thus conclude from (4.11) that the value function V̂ is upper semicontinuous on [0,∞)N .
Being also lower semicontinuous it follows that V̂ is continuous on [0,∞)N as claimed.

(6.10): This is a direct consequence of the fact that the Markovian flow (2.12) is increasing
as a function of its initial point being used in (3.4) above.

(6.11): By (6.10) we have V̂ (ϕ1, . . . , ϕN) ≤ V̂ (ψ1, . . . , ψN) ≤ 0 so that (ϕ1, . . . , ϕN) ∈ D
i.e. V̂ (ϕ1, . . . , ϕN) = 0 implies that V̂ (ψ1, . . . , ψN) = 0 i.e. (ψ1, . . . , ψN ) ∈ D as claimed.
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Figure 1. The optimal stopping surface b in the problem (3.4) when n = 3
and k = 2 with µ = λ = c = 1 and p1,2 = p1,3 = p2,3 = 1/3 .

(6.12): To see that D is convex, take any ϕ and ψ from D and note by (6.9) that 0 ≥
V̂ (αϕ+(1−α)ψ) ≥ αV̂ (ϕ)+(1−α)V̂ (ψ) = 0 so that V̂ (αϕ+(1−α)ψ) = 0 i.e. αϕ+(1−α)ψ ∈ D
for every α ∈ [0, 1] as claimed. To see that the polytope is contained in D , note that pulling
pj in front of the infimum in (3.4) with any 1 ≤ j ≤ N given and fixed shows that the point
(0, . . . , 0, ϕ∗

j , 0, . . . , 0) belongs to D because ϕ∗
j as defined in (6.8) above (with j in place of

i ) is -̌1pt an optimal stopping point in the one-dimensional problem obtained by removing the
non-negative term

∑N
i=1,i 6=j(pi/pj)Φ

i
t from the integral with respect to time in (3.4) with pj

in front of -̌1pt the infimum (note that the appearance of k in (6.8) follows from the fact that
(1/

√
k)

∑k
j=1B

nj

t is a standard Brownian motion for t ≥ 0 ). It follows therefore by (6.11)
that the set {(0, . . . , 0, ϕj, 0, . . . , 0) | ϕj ≥ ϕ∗

j } is contained in D for every 1 ≤ j ≤ N . But
then the entire polytope is contained in D due to its convexity.

(6.13): Taking any point ϕ from the (open) simplex and replacing τ in (3.4) by the first
exit time of Φ from a sufficiently small ball around ϕ that is strictly contained in the simplex,
we see that the integrand in (3.4) remains strictly negative so that V̂ takes a strictly negative
value at ϕ itself, showing that ϕ belongs to the continuation set C as claimed. �

3. From the results of Proposition 6 we see that the stopping set in the problem (3.4) can
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be described as follows

(6.14) D = { (ϕ1, . . . , ϕN) ∈ [0,∞)N | ϕN ≥ b(ϕ1, . . . , ϕN−1) }

where b : [0,∞)N−1 → [0,∞) is a convex, continuous, decreasing function (in the sense that
b(ϕ1, . . . , ϕN−1) ≥ b(ψ1, . . . , ψN−1) whenever ϕ1 ≤ ψ1, . . . , ϕN−1 ≤ ψN−1 ) satisfying

(6.15) −
N−1
∑

i=1

pi
pN

ϕi +
λ

pNc
≤ b(ϕ1, . . . , ϕN−1) ≤ −

N−1
∑

i=1

ϕ∗
N

ϕ∗
i

ϕi + ϕ∗
N

for ϕ1 ∈ [0, λ/(p1c)], . . . , ϕN−1 ∈ [0, λ/(pN−1c)] and ϕ1 ∈ [0, ϕ∗
1], . . . , ϕN−1 ∈ [0, ϕ∗

N−1] in
the first and second inequality respectively (see Figure 1). Note that the optimal stopping
boundary in the problem (3.4) can be described as follows

(6.16) ∂C = { (ϕ1, . . . , ϕN) ∈ [0,∞)N | ϕN = b(ϕ1, . . . , ϕN−1) } .

We address the question of characterising/determining b in the remaining two sections. To
this end we conclude this section by establishing a key regularity result of ∂C for D .

4. Recall that a point ϕ ∈ [0,∞)N is said to be probabilistically regular for D if

(6.17) P
∞
ϕ (σD=0) = 1

where σD is the first hitting time of Φ to D defined by σD = inf { t > 0 | Φt ∈ D } (see
Sections 2 and 3 in [2] for fuller details). If every point at ∂C is probabilistically regular for
D we say that ∂C is probabilistically regular for D . We now show that this is the case in
the optimal stopping problem (3.4).

Proposition 7. The optimal stopping boundary ∂C is probabilistically regular for the
stopping set D in the problem (3.4).

Proof. Let any point ϕ = (ϕ1, . . . , ϕN) at ∂C be given and fixed. We need to show that
(6.17) holds. For this, note that

P
∞
ϕ

(

σD=0) = P
∞
ϕ (∩∞

n=1 ∪t∈(0,1/n) {Φt∈D}
)

= lim
n→∞

P
∞
ϕ

(

∪t∈(0,1/n) {Φt∈D}
)

(6.18)

≥ lim
n→∞

sup
t∈(0,1/n)

P
∞
ϕ (Φt∈D) = lim sup

t↓0
P
∞
ϕ (Φt∈D)

≥ lim sup
t↓0

P
∞
ϕ

(

Φ1
t ≥ ϕ1, . . . , Φ

N
t ≥ ϕN

)

≥ lim sup
t↓0

P
∞(

L1
t ≥ 1, . . . , LNt ≥ 1

)

= lim sup
t↓0

P
∞
(

∑k
j=1X

n1
j

t ≥ k µ
2
t, . . . ,

∑k
j=1X

nN
j

t ≥ k µ
2
t
)

≥ lim sup
t↓0

P
∞(

X1
t ≥ µ

2
t, . . . , Xn

t ≥ µ
2
t
)

= lim sup
t↓0

P
(

B1
t ≥ µ

2
t, . . . , Bn

t ≥ µ
2
t
)

= lim sup
t↓0

(

P
(

B1
t ≥ µ

2
t
))n

= lim
t↓0

(

P
(

B1
1 ≥ µ

2

√
t
))n
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=
(

P(B1
1>0)

)n
= 1/2n > 0

where in the second inequality we use that [ϕ1,∞)× . . . × [ϕN ,∞) ⊆ D by (6.11) above, in
the third inequality we use (2.12) above, and in the fourth equality we use (2.11) above (upon
assuming that µ > 0 without loss of generality). From (6.18) we see that P

∞
ϕ

(

σD =0) > 0 .
As the latter probability can only be either zero or one by the Blumenthal 0-1 law (cf. [1, p.
30]), it follows that (6.17) holds as claimed. �

Remark 8. Note that if we replace all inequalities under the probability measures in (6.18)
by strict inequalities, then the same proof shows that ∂C is probabilistically regular for the
interior of the stopping set D in the problem (3.4). Although this stronger probabilistic regu-
larity plays no role in the present setting because the process Φ is strong Feller by Proposition
4 above, this observation may be useful in the settings where the process Φ is only known to
be strong Markov (see [2] for fuller details).

7. Free-boundary problem

In this section we derive a free-boundary problem that stands in one-to-one correspondence
with the optimal stopping problem (3.4). Using the results derived in the previous sections
we show that the value function V̂ from (3.4) and the optimal stopping boundary b from
(6.16) solve the free-boundary problem. This establishes the existence of a solution to the free-
boundary problem. Its uniqueness in a natural class of functions will follow from a more general
uniqueness result that will be established in Section 8 below. This will also yield an explicit
integral representation of the value function V̂ expressed in terms of the optimal stopping
boundary b .

1. Consider the optimal stopping problem (3.4) where the Markov process Φ = (Φ1, . . . , ΦN)
solves the system of stochastic differential equations (3.3) driven by a standard n-dimensional
Brownian motion B = (B1, . . . , Bn) under the probability measure P

∞ . Recall that the
infinitesimal generator of Φ is the second-order hypoelliptic differential operator ILΦ given
in (4.1) above (cf. Proposition 3). Looking at (3.4) and relying on other properties of V̂ and
b derived above, we are naturally led to formulate the following free-boundary problem for
finding V̂ and b :

ILΦV̂ −λV̂ = −L in C(7.1)

V̂ (ϕ) = 0 for ϕ ∈ D (instantaneous stopping)(7.2)

V̂ϕi
(ϕ) = 0 for ϕ ∈ ∂C and i = 1, . . . , N (smooth fit)(7.3)

where L is defined in (4.3) above, C is the (continuation) set from (6.1) above, D is the
(stopping) set from (6.2)+(6.14) above, and ∂C is the (optimal stopping) boundary between
the sets C and D from (6.16) above.

2. To formulate the existence and uniqueness result for the free-boundary problem (7.1)-
(7.3), we let C denote the class of functions (U, a) such that

U belongs to C2(Ca) ∩ C1(C̄a) and is continuous & bounded on [0,∞)N(7.4)

a is continuous & decreasing on [0,∞)N−1 (in the sense that a(ϕ1, . . . , ϕN−1)(7.5)
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≥ a(ψ1, . . . , ψN−1) whenever ϕ1 ≤ ψ1, . . . , ϕN−1 ≤ ψN−1) and satisfies
∑N−1

i=1 piϕi + pNa(ϕ1, . . . , ϕN−1)−λ/c ≥ 0 for (ϕ1, . . . , ϕN−1) ∈ [0,∞)N−1

where we set Ca = {(ϕ1, . . . , ϕN) ∈ [0,∞)N | ϕN < a(ϕ1, . . . , ϕN−1)} and C̄a = { (ϕ1, . . . , ϕN)
∈ [0,∞)N | ϕN ≤ a(ϕ1, . . . , ϕN−1) with (ϕ1, . . . , ϕN−1) belonging to the closure of the set
{ (ψ1, . . . , ψN−1) | a(ψ1, . . . , ψN−1) > 0 } in [0,∞)N−1 } .

Theorem 9. The free-boundary problem (7.1)-(7.3) has a unique solution (V̂ , b) in the
class C where V̂ is given in (3.4) and b is given in (6.16) above.

Proof. We first show that the pair (V̂ , b) belongs to the class C and solves the free-
boundary problem (7.1)-(7.3). For this, note that the optimal stopping problem (3.4) is La-
grange formulated and recall that the infimum in (3.4) is attained at τD from (6.3) above. It
follows therefore by the result of Corollary 6 in [11] that V̂ from (3.4) is a weak solution to
the equation (7.1) in the sense of Schwartz distributions. By the result of Proposition 3 above
we know that the differential operator ILΦ is hypoelliptic and hence ILΦ−λI is hypoelliptic
too. It follows therefore that the weak solution V̂ to (7.1) belongs to C∞ on C (cf. [11,
Corollary 8]). This shows that V̂ belongs to C2(C) and satisfies (7.1) as claimed. Moreover,
from (6.9) we know that V̂ is continuous on [0,∞)N and from (3.4) we readily find that

(7.6) −1

c
≤ V̂ (ϕ) ≤ 0

for all ϕ ∈ [0,∞)N . Furthermore, recall from Proposition 4 above that the process Φ =
(Φ1, . . . , ΦN) is strong Feller while by Proposition 7 we know that ∂C is probabilistically
regular for D . Finally, from (2.12) we see that the process Φ can be realised as a continuously
differentiable stochastic flow of its initial point so that the integrability conditions of Theorem
8 in [2] are satisfied. Recalling that V̂ satisfies (7.2), and applying the result of that theorem,
we can conclude that

(7.7) V̂ is continuously differentiable on [0,∞)N .

In particular, this shows that (7.3) holds as well as that V̂ belongs to C1(C̄) as required
in (7.4) above. The fact that b satisfies (7.5) was established in (6.14)-(6.15) above. This
shows that (V̂ , b) belongs to C and solves (7.1)-(7.3) as claimed. To derive uniqueness of the
solution we will first see in the next section that any solution (U, a) to (7.1)-(7.3) from the
class C admits an explicit integral representation for U expressed in terms of a , which in
turn solves a nonlinear Fredholm integral equation, and we will see that this equation cannot
have other solutions satisfying the required properties. From these facts we can conclude that
the free-boundary problem (7.1)-(7.3) cannot have other solutions in the class C as claimed.
This completes the proof. �

8. Nonlinear integral equations

In this section we show that the optimal stopping boundary b from (6.16) can be char-
acterised as the unique solution to a nonlinear Fredholm integral equation. This also yields
an explicit integral representation of the value function V̂ from (3.4) expressed in terms of
the optimal stopping boundary b . As a consequence of the existence and uniqueness result
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for the the nonlinear Fredholm integral equation we also obtain uniqueness of the solution to
the free-boundary problem (7.1)-(7.3) as explained in the proof of Theorem 9 above. Finally,
collecting the results derived throughout the paper we conclude our exposition by disclosing
the solution to the initial problem.

1. Let p = p(t;ϕ1, . . . , ϕN , ψ1, . . . , ψN ) denote the transition probability density function
of the Markov process Φ = (Φ1, . . . , ΦN) in the sense that

(8.1) P
∞
ϕ1,...,ϕN

(

Φt∈A
)

=

∫

...

∫

A

p(t;ϕ1, . . . , ϕN , ψ1, . . . , ψN) dψ1 . . . dψN

for any measurable A ⊆ [0,∞)N with (ϕ1, . . . , ϕN) ∈ [0,∞)N and t ≥ 0 given and fixed.
Having p we can evaluate the expression of interest in the theorem below as follows

Kb(t;ϕ1, . . . , ϕN) := E
∞
ϕ1,...,ϕN

[

L(Φ1
t , . . . , Φ

N
t )I

(

ΦNt <b(Φ
1
t , . . . , Φ

N−1
t )

)]

(8.2)

=

∫

...

∫

{ψN<b(ψ1,...,ψN−1)}
L(ψ1, . . . , ψN ) p(t;ϕ1, . . . , ϕN , ψ1, . . . , ψN ) dψ1 . . . dψN

for t ≥ 0 and (ϕ1, . . . , ϕN) ∈ [0,∞)N where L is defined in (4.3) above.

Theorem 10 (Existence and uniqueness). The optimal stopping boundary b in (3.4)
can be characterised as the unique solution to the nonlinear Fredholm integral equation

(8.3)

∫ ∞

0

e−λtKb(t;ϕ1, . . . , ϕN−1, b(ϕ1, . . . , ϕN−1)) dt = 0

in the class of continuous & decreasing (convex) functions b on [0,∞)N−1 satisfying
∑N−1

i=1 pi
ϕi + pNb(ϕ1, . . . , ϕN−1)−λ/c ≥ 0 for (ϕ1, . . . , ϕN−1) ∈ [0,∞)N−1 . The value function V̂ in
(3.4) admits the following representation

(8.4) V̂ (ϕ1, . . . , ϕN) =

∫ ∞

0

e−λtKb(t;ϕ1, . . . , ϕN) dt

for (ϕ1, . . . , ϕN) ∈ [0,∞)N . The optimal stopping time in (3.4) is given by

(8.5) τb = inf { t ≥ 0 | ΦNt ≥ b(Φ1
t , . . . , Φ

N−1
t ) }

under P
∞
ϕ1,...,ϕN

with (ϕ1, . . . , ϕN) ∈ [0,∞)N given and fixed.

Proof. (i) Existence. We first show that the optimal stopping boundary b in (3.4) solves
(8.3). Recalling that b satisfies the properties stated following (6.14) above, this will establish
the existence of a solution to (8.3) in the specified class of functions.

For this, to gain control over the (individual) second partial derivatives V̂ϕiϕj
close to

the optimal stopping boundary within C for 1 ≤ i, j ≤ N (see [5] for general results of
this kind in the elliptic case), consider the sets Cn := {ϕ ∈ [0,∞)N | V̂ (ϕ) < −1/n } and
Dn := {ϕ ∈ [0,∞)N | V̂ (ϕ) ≥ −1/n } for n ≥ 1 (large). Note that Cn ↑ C and Dn ↓ D as
n ↑ ∞ . Moreover, using the same arguments as for the sets C and D above, we find that
the set Dn is convex, and the boundary bn = bn(ϕ1, . . . , ϕN−1) between Cn and Dn is a
convex, continuous, decreasing function of (ϕ1, . . . , ϕN−1) in [0,∞)N−1 . This also shows that
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bn ↑ b uniformly on [0,∞)N−1 as n→ ∞ (where the functions bn and b take zero value at
(ϕ1, . . . , ϕN−1) by definition whenever (ϕ1, . . . , ϕN−1, 0) belongs to Dn and D respectively
for n ≥ 1 ). Approximate the value function V̂ in (3.4) by functions V̂ n defined as V̂ on
Cn and −1/n on Dn for n ≥ 1 . Note that V̂ n ↑ V̂ uniformly on [0,∞)N as n → ∞ .
Moreover, letting n ≥ 1 be given and fixed in the sequel, clearly V̂ n is a continuous function
on [0,∞)N and V̂ n restricted to Cn and Dn belongs to C2(C̄n) and C2(D̄n) respectively.
Finally, since bn is convex we know that bn(Φ

1, . . . , ΦN−1) is a continuous semimartingale.
This shows that the change-of-variable formula with local time on surfaces [10, Theorem 2.1]
is applicable to V̂ n composed with Φ = (Φ1, . . . , ΦN) and using (7.1) this gives

e−λt V̂ n(Φt) = V̂ n(Φ0) +

∫ t

0

e−λs
(

ILΦV̂
n−λV̂ n

)

(Φs) ds(8.6)

+

N
∑

i=1

k
∑

j=1

∫ t

0

e−λs V̂ n
ϕi
(Φs)µΦ

i
s dB

nj(i)
s −

∫ t

0

e−λs V̂ n
ϕN

(Φs−) dℓbns (Φ)

= V̂ n(Φ0)−
∫ t

0

e−λsL(Φs)I(Φs∈Cn) ds+Mn
t −

∫ t

0

e−λs V̂ϕN
(Φs) dℓ

bn
s (Φ)

where Mn
t =

∑N
i=1

∑k
j=1

∫ t

0
e−λs V̂ϕi

(Φs)µΦ
i
s I(Φs ∈Cn) dB

nj(i)
s is a continuous martingale for

t ≥ 0 and ℓbn(Φ) is the local time of Φ on the curve bn given by

ℓbnt (Φ) = P-lim
ε↓0

1

2ε

∫ t

0

I(−ε < ΦNs −bn(Φ1
s, . . . , Φ

N−1
s ) < ε)(8.7)

d〈ΦN−bn(Φ1, . . . , ΦN−1), ΦN−bn(Φ1, . . . , ΦN−1)〉s

for t ≥ 0 . To gain control over the final term in (8.6), note that the Itô-Tanaka formula (cf.
[13, pp 222-223]) yields

(

bn(Φ
1
t , . . . , Φ

N−1
t )−ΦNt

)+
=

(

bn(Φ
1
0, . . . , Φ

N−1
0 )−ΦN0

)+
(8.8)

+

∫ t

0

I(bn(Φ
1
s, . . . , Φ

N−1
s )−ΦNs >0) d(bn(Φ

1, . . . , ΦN−1)−ΦN)s +
1

2
ℓbnt (Φ)

=
(

bn(Φ
1
0, . . . , Φ

N−1
0 )−ΦN0

)+
+

∫ t

0

I(bn(Φ
1
s, . . . , Φ

N−1
s )−ΦNs >0)

(

N−1
∑

i=1

∂bn
∂ϕi

(Φ1
s, . . . Φ

N−1
s )dΦis +

1

2

N−1
∑

i=1

N−1
∑

j=1

∂2bn
∂ϕi∂ϕj

(Φ1
s, . . . Φ

N−1
s ) d〈Φi, Φj〉s − dΦNs

)

+
1

2
ℓbnt (Φ)

for t ≥ 0 where we use that bn is C2 by the implicit function theorem since the smooth
fit fails at bn due to its suboptimality in the problem (3.4). Since bn is convex we know
that the Hessian matrix of bn is non-negative definite and recalling from (3.3)+(4.1) that
d〈Φi, Φj〉s = µ2ΦisΦ

j
s(Ii, Ij) ds for 1 ≤ i, j ≤ N −1 we see that the integral associated with the

double sum in (8.8) is non-negative. It follows therefore from (8.8) using (3.3) above that

1

2
ℓbnt (Φ) ≤

(

bn(Φ
1
t , . . . , Φ

N−1
t )−ΦNt

)+
(8.9)
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−
N−1
∑

i=1

∫ t

0

I(bn(Φ
1
s, . . . , Φ

N−1
s )−ΦNs >0)

∂bn
∂ϕi

(Φ1
s, . . . , Φ

N−1
s )λ(1+Φis) ds

+

∫ t

0

I(bn(Φ
1
s, . . . , Φ

N−1
s )−ΦNs >0)λ(1+ΦNs ) ds+Nn

t

where -̌2pt Nn
t = −∑N−1

i=1

∑k
j=1

∫ t

0
I(bn(Φ

1
s, . . . , Φ

N−1
s )−ΦNs >0)(∂bn/∂ϕi)(Φ

1
s, . . . , Φ

N−1
s )µΦisdB

nj(i)
s

+
∑k

j=1

∫ t

0
I(bn(Φ

1
s, . . . , Φ

N−1
s )−ΦNs >0)µΦNs dB

nj(N)
s is a continuous local martingale for t ≥ 0 .

Let (τm)m≥1 be a localising sequence of stopping times for Nn , define the stopping time

(8.10) σm = inf { t ≥ 0 | (Φ1
t , . . . , Φ

N−1
t ) /∈ ( 1

m
,∞)N−1 }

and set ρm := τm ∧ σm for m ≥ 1 . Fixing ϕ ∈ [0,∞)N we then find from (8.9) that

1

2
E
∞
ϕ

[

ℓbnt∧ρm(Φ)
]

≤ ϕ∗
N −

N−1
∑

i=1

∂bn
∂ϕi

( 1
m
, . . . , 1

m
)

∫ t

0

λ
(

1+E
∞
ϕ (Φ

i
s)
)

ds(8.11)

+

∫ t

0

λ
(

1+E
∞
ϕ (Φ

N
s )

)

ds ≤ Km(t)

for t ≥ 0 and m ≥ 1 where the positive constant Km(t) does not depend on n ≥ 1 because
each bn is convex and bn ↑ b on [0, 1/m]N−1 as n → ∞ so that (∂bn/∂ϕi)(1/m, . . . , 1/m)
must stay bounded from below over n ≥ 1 for 1 ≤ i ≤ N−1 if bn is to stay below b
on [0, 1/m]N−1 for all n ≥ 1 . In addition, by (7.7) we know that V̂ϕN

is continuous on C̄
and hence uniformly continuous too because C̄ is a compact set. -̌1pt It follows therefore
that 0 ≤ V̂ϕN

(ϕ1, . . . , ϕN−1, bn(ϕ1, . . . , ϕN−1)) ≤ ε for all (ϕ1, . . . , ϕN−1) ∈ [0,∞)N−1 and all
n ≥ nε with nε ≥ 1 large enough depending on the given and fixed ε > 0 . Combining this
fact with (8.11), upon replacing t with t∧ ρm in the final integral of (8.6) and taking E

∞
ϕ of

the resulting expression, we see that

(8.12) 0 ≤ E
∞
ϕ

[
∫ t∧ρm

0

e−λs V̂ϕN
(Φs) dℓ

bn
s (Φ)

]

≤ 2εKt(m)

for all n ≥ nε with t ≥ 0 and m ≥ 1 given and fixed. This shows that the expectation in
(8.12) tends to zero as n tends to infinity for every t ≥ 0 and m ≥ 1 given and fixed. Using
this fact in (8.6) upon replacing t with t∧ ρm , taking E

∞
ϕ on both sides, and letting n tend

to infinity, we find by the monotone convergence theorem upon recalling (7.6) that

(8.13) V̂ (ϕ) = E
∞
ϕ

[

e−λ(t∧ρm) V̂ (Φt∧ρm)
]

+ E
∞
ϕ

[
∫ t∧ρm

0

e−λsL(Φs)I(Φs∈C) ds
]

for all t ≥ 0 and all m ≥ 1 . Letting m → ∞ and using that ρm → ∞ because 0 is an
entrance boundary point for each Φi with 1 ≤ i ≤ N−1 , we see from (8.13) upon recalling
(7.6) and using the dominated convergence theorem that

(8.14) V̂ (ϕ) = E
∞
ϕ

[

e−λt V̂ (Φt)
]

+ E
∞
ϕ

[
∫ t

0

e−λsL(Φs)I(Φs∈C) ds
]
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for all t ≥ 0 . Finally, letting t → ∞ in (8.14) and using the dominated and monotone
convergence theorems upon recalling (7.6), we find that

(8.15) V̂ (ϕ) = E
∞
ϕ

[
∫ ∞

0

e−λsL(Φs)I(Φs∈C) ds
]

for all ϕ ∈ [0,∞)N . Recalling (6.14) and (8.2) above we see that this establishes the
representation (8.4) as claimed. Moreover, the fact that τb from (8.5) is optimal in (3.4)
follows by (6.14) above. Finally, inserting ϕN = b(ϕ1, . . . , ϕN−1) in (8.4) and using that
V̂ (ϕ1, . . . , ϕN−1, b(ϕ1, . . . , ϕN−1)) = 0 , we see that b solves (8.3) as claimed.

(ii) Uniqueness. To show that b is a unique solution to the equation (8.3) in the specified
class of functions, one can adopt the four-step procedure from the proof of uniqueness given
in [3, Theorem 4.1] extending and further refining the original uniqueness arguments from [8,
Theorem 3.1]. Given that the present setting creates no additional difficulties we will omit
further details of this verification and this completes the proof. �

2. The nonlinear Fredholm integral equation (8.3) can be used to find the optimal stopping
boundary b numerically (using Picard iteration). Inserting this b into (8.4) via (8.2) we
also obtain a closed form expression for the value function V̂ . Collecting the results derived
throughout the paper we now disclose the solution to the initial problem.

Corollary 11. The value function in the initial problem (2.4) is given by

(8.16) V (π) = (1−π)
[

1 + c V̂
( π

1−π , . . . ,
π

1−π
)]

for π ∈ [0, 1] where the function V̂ is given by (8.4) above. The optimal stopping time in the
initial problem (2.4) is given by

τ∗ = inf
{

t ≥ 0
∣

∣ eµ
∑k

j=1X
nj (N)

t +(λ−k µ2

2
)t
(

π
1−π+λ

∫ t

0

e−µ
∑k

j=1X
nj (N)
s −(λ−k µ2

2
)s ds

)

(8.17)

≥ b
(

eµ
∑k

j=1X
nj (1)

t +(λ−k µ2

2
)t
(

π
1−π+λ

∫ t

0

e−µ
∑k

j=1X
nj (1)
s −(λ−k µ2

2
)s ds

)

, . . . ,

eµ
∑k

j=1X
nj (N−1)

t +(λ−k µ2

2
)t
(

π
1−π+λ

∫ t

0

e−µ
∑k

j=1X
nj (N−1)
s −(λ−k µ2

2
)s ds

))}

where b is a unique solution to (8.3) above (see Figure 1).
Proof. The identity (8.16) was established in (3.1) above. The explicit form of the optimal

stopping time (8.17) follows from (8.5) in Theorem 10 combined with (2.11)+(2.12) above. The
final claim on b was derived in Theorem 10 above. This completes the proof. �

9. General case

In the general case of the quickest detection problem (2.4) we no longer insist that exactly
k of the coordinate processes X1, . . . , Xn get a (known) non-zero drift µ but instead allow
that any number of them get such a drift with prescribed probabilities. In this section we show
that the methodology developed in the previous sections to solve the problem for exactly k
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coordinate processes can be used to solve the problem in the general case for any number of
coordinate processes. This extension of the solution will also enable us to reduce the dimension
of the problem to its minimal value which is of fundamental importance in real applications.

1. The key issue in extending the solution from exactly k to any number of the coordi-
nate processes is whether the hypoelliptic structure established in Section 5 above using the
Hörmander theorem remains preserved. For this, we first note that this is the case if we me-
chanically increase the problem dimension to a size which however could be alarmingly high.
For example, returning to the case when n = 10 and k = 5 as discussed in Section 1 above,
and allowing any (one or several) tagged 4 coordinate processes to get the drift as well, we
would increase the problem dimension from N1 =

(

10
5

)

= 252 to N2 =
(

10
5

)

+
(

10
4

)

= 462 .
Clearly, the larger the number of the tagged 4 coordinate processes involved, the more justified
increase of the problem dimension would be, and vice versa. This raises the question of estab-
lishing a minimal dimension of the problem given all the tagged coordinate processes that can
get such a drift with prescribed probabilities. On closer inspection of the previous arguments
we then note that the Hörmander condition, and hence the hypoelliptic structure established
in Section 5 above as well, remain valid in the case of a minimal dimension of the problem.
This makes the results derived in the previous sections applicable in the general case where the
number of the tagged coordinate processes is firstly enlarged to an arbitrary value and then
trimmed down to the value of a minimal problem dimension.

2. To describe the solution to the quickest detection problem (2.4) in the general case with a
minimal problem dimension, we will return to the beginning of Section 2 and replace the number
1 ≤ k ≤ n by the numbers 1 ≤ k1 < · · · < km ≤ n with m ≤ n . This means that any kl of
the coordinate processes X1, . . . , Xn get a (known) non-zero drift µ at time θ for 1 ≤ l ≤ m
instead of exactly k of them. Setting Cn

k1,...,km
:= ∪ml=1C

n
kl

we see that that the random variable
β in (2.1) taking values in the set Cn

k1,...,km
satisfies Pπ(β = (n1, . . . , nkl)) = pn1,...,nkl

-̌1pt for

some pn1,...,nkl
∈ [0, 1] with

∑m
l=1

∑

pn1,...,nkl
= 1 given and fixed where the second sum is

taken over all (n1, . . . , nkl) ∈ Cn
kl
. It is important in this setting that at least one among

pn1,...,nkl
when (n1, . . . , nkl) runs through Cn

kl
is assumed to be strictly positive for every

1 ≤ l ≤ m given and fixed. If this would not be the case for some 1 ≤ l ≤ m then Ckl could
be omitted from the setting. As before, with a slight abuse of notation, in (2.1) we write i ∈ β
to express the fact that i belongs to the set {n1, . . . , nkl} consisting of the elements which
form β = (n1, . . . , nkl) in Cn

kl
for 1 ≤ l ≤ m . This means that n1, . . . , nkl ∈ β if and only if

the coordinate processes Xn1, . . . , Xnkl get drift µ at time θ with probability pn1,...,nkl
for

(n1, . . . , nkl) ∈ Cn
kl

with 1 ≤ l ≤ m . With a similar abuse of notation, which will be helpful in
what follows as before, we will first arrange the elements of Cn

k1,...,km
in a lexicographic order

starting first with Cn
k1

and moving forward until we reach Cn
km

, then remove all (n1, . . . , nkl)
from the ordered set Cn

k1,...,km
for which pn1,...,nkl

= 0 when 1 ≤ l ≤ m and denote -̌3pt the

remaining (ordered) set by Ĉn
k1,...,km

, and finally identify the i-th element of the ordered set

Ĉn
k1,...,km

by its index i itself for 1 ≤ i ≤ N where we let N denote the total number of

elements in Ĉn
k1,...,km

. -̌3pt Thus as before we write i = (n1, . . . , nkl) ∈ Ĉn
k1,...,km

for 1 ≤ l ≤ m
to express this identification explicitly for 1 ≤ i ≤ N . Note that

(9.1) Ĉn
k1,...,km

= { (n1, . . . , nkl) ∈ Cn
kl
| pn1,...,nkl

> 0 for 1 ≤ l ≤ m }

and -̌1pt hence N ≤
(

n
k1

)

+ . . . +
(

n
km

)

with equality being attained if pn1,...,nkl
> 0 for all
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(n1, . . . , nkl) ∈ Cn
k1,...,km

with 1 ≤ l ≤ m .

3. The rest of the analysis in Sections 2-4 above can then be carried out in exactly the same
way. The only difference is notational in that the index set Cn

k needs to be firstly enlarged and
then trimmed down to the index set Ĉn

k1,...,km
as explained above. In particular, from the en-

larged/trimmed identities (2.11)+(2.12) using Itô’s formula we find that the enlarged/trimmed
system of stochastic differential equations (3.3) reads as follows

(9.2) dΦit = λ(1+Φit)dt+

kl
∑

j=1

µΦit dB
nj

t (i=(n1, . . . , nkl)∈ Ĉn
k1,...,km

with 1 ≤ l ≤ m)

under P
∞ with Φi0 = ϕi in [0,∞) all being equal to π/(1−π) for 1 ≤ i ≤ N in Ĉn

k1,...,km

and π ∈ [0, 1) . Similarly, we see that the enlarged/trimmed optimal stopping problem (3.4)
remains unchanged and reads

(9.3) V̂ (ϕ) = inf
τ

E
∞
ϕ

[

∫ τ

0

e−λt
(

N
∑

i=1

piΦ
i
t −

λ

c

)

dt
]

for ϕ ∈ [0,∞)N with P
∞
ϕ (Φ0=ϕ) = 1 -̌1pt where the infimum is taken over all stopping times

τ of Φ and we recall that pi ∈ (0, 1] for 1 ≤ i ≤ N in Ĉn
k1,...,km

with
∑N

i=1 pi = 1 .

4. This raises the question whether the hypoelliptic structure established using the Hörman-
der theorem in Section 5 above is preserved in the enlarged/trimmed system (9.2) above. We
now show that the answer is affirmative.

Corollary 12. The results of Proposition 3 and Proposition 4 above remain valid for the
enlarged/trimmed system (9.2) above.

Proof. We show that the Hörmander condition (5.8) is satisfied using backward induction
over k1 < . . . < km . Setting k = km and connecting to the conclusion (5.17) in the proof of
Proposition 3 above, we see that ∂ϕj

∈ Lie(D0, D1, . . . , DN) for Nm−1+1 ≤ j ≤ Nm where Nl

denotes the number of elements from Ĉn
k1,...,km

that belong to Cn
kl

for 1 ≤ l ≤ m . Note that

for that conclusion we did not use that Nl must be equal to its general bound
(

n
kl

)

but could
also be any strictly smaller number as well for 1 ≤ l ≤ m . Recall also that the lexicographic
order of Ĉn

k1,...,km
is without loss of generality assumed to start with Cn

k1
and end with Cn

km
.

The induction step can therefore be realised by setting k = km−1 . Then the same arguments
as in (5.13)-(5.15) show that

(9.4) [[[D0, Dn1], Dn2], . . . , Dnkm−1
] ∼

N
∑

i=1

Iin1Iin2 . . . Iinkm−1
∂ϕi

for j = (n1, . . . , nkm−1) ∈ Ĉn
k1,...,km

given and fixed. This reveals a crucial difference in compar-
ison with (5.16) above because this time we have

Iin1Iin2 . . . Iinkm−1
= 1 if i = j or i ∈ Ĉn

km(j)(9.5)

= 0 otherwise
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where Ĉn
km

(j) denotes the set of all i ∈ Cn
km

in Ĉn
k1,...,km

which include j in the sense that
n1, . . . , nkm−1 belong to i understood as the set of its elements. It follows therefore from (9.4)
and (9.5) that we have

(9.6) [[[D0, Dn1], Dn2], . . . , Dnkm−1
] ∼ ∂ϕj

+
∑

i∈Ĉn
km

(j)

∂ϕi
.

Recalling however that ∂ϕi
∈ Lie(D0, D1, . . . , DN) for every i ∈ Ĉn

km
(j) as established in the

previous step, we see from (9.6) that ∂ϕj
∈ Lie(D0, D1, . . . , DN) for Nm−2+1 ≤ j ≤ Nm−1 .

Continuing this procedure by backward induction until reaching k = k1 we find that ∂ϕj
∈

Lie(D0, D1, . . . , DN) for all 1 ≤ j ≤ N so that the Hörmander condition (5.8) is satisfied as
claimed. The remaining arguments are identical to those presented in the proofs of Proposition
3 and Proposition 4 above. This completes the proof. �

5. The rest of the analysis in Sections 6-8 above can then be carried out in exactly the same
way with the index set Cn

k replaced by the enlarged/trimmed index set Ĉn
k1,...,km

. This yields
the solution to the initial problem when the number of coordinate processes getting a (known)
non-zero drift µ with prescribed (non-zero) probabilities is no longer fixed to be k exactly
but could be any number instead.

Corollary 13. The results of Theorem 10 and Corollary 11 remain valid in the general
case described by (9.1)-(9.3) above.

Proof. Having established the hypoelliptic structure of (9.1)-(9.3) in Corollary 12 above
we can carry out the proofs of Theorem 10 and Corollary 11 in exactly the same way. Note
that this also applies to all other results in Sections 6-8 (as well as to those in Sections 2-4).
This completes the proof. �
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