2303.12928v3 [cs.LG] 8 Dec 2023

arXiv

LEVERAGING MULTI-TIME HAMILTON-JACOBI PDES FOR
CERTAIN SCIENTIFIC MACHINE LEARNING PROBLEMS

PAULA CHEN*$, TINGWEI MENG'8, ZONGREN zZOU*$, JEROME DARBON*Y, AND
GEORGE EM KARNIADAKIS*#

Abstract. Hamilton-Jacobi partial differential equations (HJ PDEs) have deep connections
with a wide range of fields, including optimal control, differential games, and imaging sciences. By
considering the time variable to be a higher dimensional quantity, HJ PDEs can be extended to the
multi-time case. In this paper, we establish a novel theoretical connection between specific optimiza-
tion problems arising in machine learning and the multi-time Hopf formula, which corresponds to a
representation of the solution to certain multi-time HJ PDEs. Through this connection, we increase
the interpretability of the training process of certain machine learning applications by showing that
when we solve these learning problems, we also solve a multi-time HJ PDE and, by extension, its
corresponding optimal control problem. As a first exploration of this connection, we develop the re-
lation between the regularized linear regression problem and the Linear Quadratic Regulator (LQR).
We then leverage our theoretical connection to adapt standard LQR solvers (namely, those based on
the Riccati ordinary differential equations) to design new training approaches for machine learning.
Finally, we provide some numerical examples that demonstrate the versatility and possible compu-
tational advantages of our Riccati-based approach in the context of continual learning, post-training
calibration, transfer learning, and sparse dynamics identification.

Key words. Multi-time Hamilton-Jacobi PDEs; Hopf formula; machine learning; linear qua-
dratic regulator; linear regression; Riccati equation

MSC codes. 35F21, 49N05, 40N10, 68T05, 35B37

1. Introduction. It is well-known that Hamilton-Jacobi partial differential
equations (HJ PDEs) have deep connections to optimal control [3], differential games
[19], and imaging sciences [12, 16], among many other fields. When the Hamiltonians
are convex and only depend on the momentum, the solution to the HJ PDEs can be
represented by a Hopf formula, which converts the solution of the PDE to the solution
of an optimization problem. Multi-time HJ PDEs were originally introduced in eco-
nomics [42]. The solution to certain multi-time HJ PDEs was then shown to be able
to be represented by a multi-time Hopf formula [33], which is a generalization of the
single-time case and has been shown to have connections with imaging sciences [15].

In this paper, we establish a novel theoretical connection between certain op-
timization problems arising in machine learning and the multi-time Hopf formula
(Section 2). Specifically, we show that there are one-to-one correspondences between
the loss functions in regularized learning problems and the objective function of the
multi-time Hopf formula, which in turn yields connections to optimal control. See Fig-
ure 1 for an illustration of these correspondences. As such, our connection increases
the interpretability of the training process of certain machine learning applications by
showing that when we solve these learning problems, we actually solve a multi-time
HJ PDE and by extension, its corresponding optimal control problem. In this pa-
per, we show that our connection allows us to leverage HJ PDE and optimal control

*Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
(paula_chen@alumni.brown.edu, zongren_zou@brown.edu, jerome_darbon@brown.edu,
george_karniadakis@brown.edu).

TDepartment of Mathematics, UCLA, Los Angeles, CA 90025, USA (tingwei@math.ucla.edu).

fPacific Northwest National Laboratory, Richland, WA 99354, USA

$Paula Chen, Tingwei Meng, and Zongren Zou contributed equally to this work.

9ICorresponding author.


mailto:tingwei@math.ucla.edu

2 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

Y E——

minimal . hyper- data .
= min > o . + regularization
loss value ] parameter  fitting loss
weights { )
A I 7
: e
v / N -2
olution to Fenchel ( )
solution . . . . . .
~| HJPDE = min > time Hamiltonian + | transform of + linear term
momentum .. initial data «e
I A A e S A
: : : :
H . s A Is ... 1
8 Lo - . . . initial
value function = min v J running cost ds+ |terminal cost|: ~ dynamics s
8 position
control time « ) e

Fig. 1: (See Section 2) Ilustration of a connection between a regularized learning
problem (top), the multi-time Hopf formula (middle), and an optimal control prob-
lem (bottom). The colors indicate the associated quantities between each problem.
For example, the optimal weights in the learning problem are equivalent to the mo-
mentum in the HJ PDE, which is related to the control in the optimal control problem
(cyan), and the hyper-parameters for the data fitting terms correspond to the time
variables in the HJ PDE and the time horizon in the optimal control problem (ma-
genta). This color scheme is reused in the subsequent illustrations of our connection.
The solid-line arrows denote direct equivalences. The dotted arrows represent addi-
tional mathematical relations.

theory and algorithms to solve optimization problems arising from machine learning
applications, and we reserve the reverse direction for future work.

As a first exploration of this connection, we focus on the connection between
regularized linear regression problems and the Linear Quadratic Regulator (LQR)
(Section 3). We use this case to gain a deeper understanding of our connection and
illustrate its potential benefits. Linear regression consists of learning a linear predic-
tion model and is one of the fundamental learning problems in supervised machine
learning [43, 37, 49]. LQR [46, 2] is a well-studied optimal control problem with qua-
dratic running and terminal costs and linear dynamics and is typically solved using
the Riccati ordinary differential equations (ODEs) [36, 13, 38]. Through our connec-
tion, we establish that solving regularized linear regression problems is equivalent to
solving particular LQR problems. As a result, we can leverage standard LQR solvers
to design new training approaches for machine learning. In particular, we develop new
methodology for solving regularized linear regression problems by adapting solvers for
the Riccati ODEs to these new settings (Section 4).

To highlight the versatility and possible computational advantages of our new
Riccati-based approach, we apply our methodology to several test problems in ma-
chine learning (Section 5). In the first example, we consider a function approximation
problem to demonstrate the computational and memory advantages of our Riccati-
based approach in the context of continual learning [39, 28, 47]. Specifically, we show
that our Riccati-based approach naturally enables us to continually adapt the learned
model to new data without having to store or retrain on the previous data (which is
especially significant given the rise of big data), while also avoiding catastrophic forget-
ting [28, 39]. In the second example, we demonstrate how our Riccati-based approach
can be used to perform post-training calibrations. In particular, our approach gives
us the flexibility to add or remove data points and tune hyper-parameters to increase
the accuracy of the learned model without having to retrain it entirely, which again



Learning problem

Theoretical connection

Representation

Section 2

LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS

:[ Regularized learning | —FBSpresentatio
problems ':quwaler!t( Multi-time | ™ | Multi-time| :
with general loss | Hopf formula HJ PDEs | :
f : | AW e,
Generalization Generaljzation  : Algorithm
| H Section 3

) -quwalent( Multi-time ] formula r

Hopf formula

P
Regularized linear
:| regression problems |:

Appligations
Change of data and
hyper-parameters

) Algorlthm
LQR e

(Riccati equationJ :

Yields

Flexibility with data streaming
and changing hyp:

> Flow of solutions

Section 4: Methodology
Section 5: Numerics

Fig. 2: Overview of the overall structure of this paper, the learning problems consid-
ered, our new theoretical connection, and our new Riccati-based algorithm. We show
the learning problem in the left (orange), the theoretical connection in the middle
(blue), and the algorithm in the right (green). The top row contains the general
connection between learning problems and HJ PDEs (see Section 2), the middle row
contains the connection between the regularized linear regression problem and LQR
(see Section 3), and the bottom row contains the connection between applications in
machine learning and our Riccati-based algorithm (see Sections 4 and 5).

provides computational and memory advantages over conventional learning methods.
In the third example, we use our Riccati-based methodology to fit the last layer of a
physics-informed neural network (PINN) [41] using transfer learning [52, 18]. In this
application, we demonstrate that as we change the value of the hyper-parameters,
solving the associated Riccati ODEs not only provides the solution to the updated
problem, but also a continuum of solutions along a 1D curve on the Pareto front of
the data fitting losses and regularization. Finally, in the fourth example, we high-
light the versatility of our Riccati-based approach by showing how it can be combined
with existing optimization methods (e.g., the primal-dual hybrid gradient (PDHG)
algorithm [7]) to perform sparse dynamics identification [5].

The main contributions of this work are the development of a new theoretical
connection between learning problems and the Hopf formula and a new Riccati-
based approach for solving regularized linear regression problems. While we demon-
strate promising results, the work presented here has some limitations. For example,
while we establish our theoretical connection between more general learning problems,
multi-time HJ PDEs, and optimal control problems, we have yet to fully explore non-
linear learning models, general convex Hamiltonians, or non-linear control dynamics.
Additionally, as discussed previously, we have also not yet investigated what possible
advantages our connection provides for solving HJ PDEs and optimal control prob-
lems. In particular, many efficient solvers for high-dimensional problems in machine
learning exist [29, 20]; it would be desirable to be able to leverage our connection
to reuse this machinery for HJ PDEs and optimal control. Thus, our novel connec-
tion presents many exciting opportunities. We discuss some other possible future
directions in Section 6. The overall structure of this paper is illustrated in Figure 2.



4 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

2. Generalized Hopf formula. In this section, we provide some mathematical
background on the single- and multi-time Hopf formulas. Specifically, we review the
well-known connections between the Hopf formula, the solution to HJ PDEs with time-
and space-independent Hamiltonians, and the solution to the corresponding optimal
control problems. We then present a novel theoretical connection between the Hopf
formula and regularized learning problems. Through this connection, we establish
that when we solve these learning problems, we actually evaluate the solution to
certain HJ PDEs and their corresponding optimal control problems, and vice versa.

2.1. Introduction to the Hopf formula. The single-time HJ PDE is

05(x,t) B .
(2.1) o TH(VxS(x1)) =0 xeR"t>0,
S(x,0) = J(x) x € R,

where H : R" — R is the Hamiltonian and J : R® — R is the initial condition.
Assume that H and J are convex (although we note that these assumptions could be
relaxed; e.g., see [24]). Then, the viscosity solution to the single-time HJ PDE (2.1)
is given by the Hopf formula [24]:
(2.2)

S(x,t) = sup {(x,p) —tH(p) — J"(p)} = — inf {tH(p)+ J"(p) — (x,P)},

pPER” pPER”

where f* denotes the Fenchel-Legendre transform of the function f; ie., f*(p) =
SupzeRn{<x7p> - f(iE)}
The value function of the following optimal control problem also solves (2.1):
(2.3)
t
S(x,t) = Hl(lI)l {/ L(u(s))ds + J(x(t)): &(s) = f(u(s))Vs € (0,t],x(0) = x} ,
ul- 0
where the running cost L and the source term f of the dynamics are related to the
Hamiltonian H by H(p) = supyerm{(—f(u),p) — L(u)} and, in this context, we
interpret J to be the terminal cost.

A natural generalization of this formulation to the multi-time case is as follows.
Let Hy, ..., Hy be convex Hamiltonians, such that dom H; =R" foralli=1,..., N,
and let J be a convex initial condition. (Again, we note that these assumptions could
be relaxed; e.g., see [33].) Then, the multi-time HJ PDE is given by
(2.4)

W +Hi(vxS(X,t1,...,tN)) =0 forie {17,N} x €R" ty,...,tny >0,
S(x,0,...,0) = J(x) x € R",

and the solution to the multi-time HJ PDE (2.4) can be represented by the following
generalized (multi-time) Hopf formula [33]:

N
S(x,t1,...,ty) = sup {(x, p) — Ztin‘(P) - J*(p)}

peR? i=1

(2.5) N
= — inf {ZtiHi(p) +J*(p) — <X7p>} .

peRn

Moreover, the value function of an optimal control problem in the form of (2.3)
with terminal time ¢t = Z;V=1 t; and where the running cost L and the source term f



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 5

of the dynamics are defined piecewise by L(s,u) = L;(u) and f(s,u) = f;(u), respec-
tively, for s € (E;;ll t;, 22:1 tj} and i =1,..., N also solves the H] PDE (2.4). The
piecewise running costs L; and piecewise source terms f; of the dynamics are related
to the Hamiltonians H; by H;(p) = supycrpm{(—fi(u),p) — L;(u)}.

mingegr £(0) = min le\:l Ai| Li(AF(zi;0),y;) + ‘ k()
x o S,
— | S(x,t1,...,tn) | = min ZLL t; H;(p) .. T ‘ J*(p) ‘ —(x,p) L
peRn N *ﬁ gt
Sectnt)| = iy { FERE ) as+ | (e (SEn) | o0 = s s (05N 4] 20 = x\}

Fig. 3: (See Section 2) Mathematical formulation describing the connection between
a regularized learning problem (top), the multi-time Hopf formula (middle), and
an optimal control problem (bottom). The content of this illustration matches that
of Figure 1 by replacing each term in Figure 1 with its corresponding mathematical
expression. The colors indicate the associated quantities between each problem. The
solid-line arrows denote direct equivalences. The dotted arrows represent additional
mathematical relations.

2.2. Connection between the Hopf formula and learning problems. In
this section, we connect the Hopf formulas (2.2) and (2.5) with regularized learning
problems. Consider a learning problem with data points {(z;,y;)}, € RM x R™.
The goal of the learning problem is to find a function F'(z; ) with input z € RM and
unknown parameter 8 € R", such that AF(z;; 0) approximately equals y, at every z;.
Here A is an operator acting on the function F'. For instance, A could be the identity
operator (as in regression problems [49]) or a differential operator (as in PINNs [41]).
Then, the learning problem is given by the following optimization problem:

N
(2.6) min 3" NL(AF(2::0), 3,) + R(6).

i=1
The above loss function consists of two parts: each L£;(AF(z;;0),y;) is a data fitting
term at (z;,vy,;) (where L;(a,b) is a function measuring the discrepancy between
a and b) and R is a regularization term. In this paper, we assume the functions
60— L;(AF(z;;0),y,) are convex for alli =1,..., N.

Then, the connection between the learning problem (2.6), the Hopf formulas (2.2)
and (2.5), and the optimal control problem (2.3) is illustrated in Figure 3. Specifically,
if there is only one data point (N = 1), the learning problem (2.6) is related to
the single-time Hopf formula (2.2) by setting 8 = p, H(p) = L1(AF(21;p), Y1)s
t = A, and R(p) = J*(p) — (x,p) + ¢(x), where ¢(x) is a constant (possibly 0)
that is independent of p but may depend on x. In other words, the variables x,t
in the HJ PDE become hyper-parameters in the learning problem, and we can treat
them as constants when optimizing the learning problem (2.6) with respect to 8 =
p- Hence, when we solve these single-point learning problems, we simultaneously
evaluate the solution to the HJ PDE (2.1) at the point (x,t), or equivalently, we solve
the corresponding optimal control problem (2.3). Conversely, when we solve the HJ



6 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

PDE (2.1), the spatial gradient V4S(x,t) of the solution gives the minimizer 6" to
the single-point learning problem (2.6).

If there are N > 1 data points, then the learning problem (2.6) is related to the
multi-time Hopf formula (2.5) by setting @ = p, H;(p) = L;(AF(z:P),y,), ti = A\,
and R(p) = J*(p) — (x,p) + ¢(x), where ¢(x) is a constant (possibly 0) that is
independent of p but may depend on x. Hence, solving these multi-point learning
problems is equivalent to evaluating the solution to the HJ PDE (2.5) at the point
(x,t1,...,tn), which is also equivalent to solving the corresponding optimal control
problem (2.3) with terminal time ¢t = Z;\le t; and piecewise running costs L; and
dynamics f; related via H;(p) = supycpm{{—fi(u),p) — L;(u)}. Similarly to the
single-time case, when we solve the multi-time HJ PDE (2.4), the spatial gradient
VxS (x,t1,...,tn) of the solution gives the minimizer 8 to the multi-point learning
problem (2.6). We provide a glossary of the mathematical relationships between these
three problem formulations in Appendix A.

3. Linear Quadratic Regulator. In this section, we develop our theoretical
connection from Section 2.2 in the specific case where the optimal control prob-
lem (2.3) corresponds to the LQR problem [46, 2]. We show that solving certain
LQR problems is equivalent to solving learning problems with linear models, qua-
dratic data fitting losses, and quadratic regularization (i.e., an fy-regularized linear
regression problem). Although broader classes of learning problems are of interest, we
restrict to linear regression problems as a starting point for demonstrating the poten-
tial of our theoretical connection. Specifically, we leverage our theoretical connection
to show how established techniques for solving HJ PDEs (e.g., the Riccati ODEs [36])
can be reused to solve this class of learning problems.

3.1. Introduction to the Linear Quadratic Regulator and Riccati equa-
tion. The finite-horizon, continuous-time LQR is given by

(3.1) S(x,t)= Ilrll(ll)l { /0 <;a;(3)TQw(s) + %u(s)TRu(s) + a:(s)TNu(s)) ds

1
+ §m(t)TQfa:(t) c@(s) = Ax(s) + Bu(s)Vs € (0,t],z(0) = x},
where Q,Qf € R"*™ and R € R™*™ are symmetric positive definite, N* € R"*™,

A e R"™"™ and B € R"*™. The corresponding HJ PDE is

0S(x,1)
(3.2) ot
S(x,0) = J(x) x € R",

+ H(x,VxS(x,t)) =0 xe€R" t>0,

where the initial data of the HJ PDE is given by the terminal cost J(x) := %XT Qrx
of the optimal control problem and the Hamiltonian H is defined by

H(x,p) = sup (—f(x,u),p) — L(x,u)

ueRm™

(3.3) 1
= —(Ax,p) — §<X, ox) +

1

5 (B"p + NTx,R"Y(BTp + N"x)),

where f(x,u) = Ax+ Bu is the source term of the dynamics and L(x,u) = 3x7 Ox+
%uTRu + xTNu is the running cost. Note that because of the spatial dependence



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 7

in the Hamiltonian H, the Hopf formula cannot be applied directly to the above
LQR problem without additional assumptions. In Sections 3.2 and 3.3, we discuss
some assumptions under which H is independent of the spatial variable x and the
corresponding learning problems that can be solved via our connection through the
Hopf formula (see, for example, Figure 4).

It is well-known that this LQR problem can be solved using the Riccati equation
as follows [36]. Define Cy, = BR™!BT, Cpp = -NRINT + Q, and C, = A —
BRINT. Then, the solution is also given by S(x,t) = %XTP(i)X, where the function
P :[0,00) = R™ "™ takes values in the space of symmetric positive definite matrices
and solves the following Riccati equation:

(3.4) {P(t) = —P)"CppP(t) + P(t)" Cup + CLP(t) + Cow  t € (0, +00),

P(0) = Qy.

When H does not depend on x, we can use our connection to modify the corre-
sponding LQR problem to consider different HJ PDEs and, hence, to accommodate
different learning problems. For example, adding lower order terms in the running
cost L and/or the source term f of the dynamics corresponds to adding lower order
terms in the Hamiltonian of the HJ PDE or, equivalently, in the data fitting term
of the learning problem. Similarly, adding lower order terms in the terminal cost J
corresponds to adding lower order terms in the initial condition of the HJ PDE or,
equivalently, in the regularization term of the learning problem. In Appendix B, we
present a more general LQR problem with lower order terms that is more amenable
to forming our connection to linear regression problems.

3.2. Connection to single-point regularized linear regression problems.
In this section, we establish a relation between the linear regression problem with only
one data point and the LQR problem (3.1) with A = @ = 0 and A/ = 0. Note that,
to do this, we also add in some lower order terms to the original LQR problem (3.1)
(e.g., see Appendix B). In this case, the LQR problem becomes

(3.5) S(x,t)= 1&1131 { /Ot (;u(s)TRu(s) - aTu(s)> ds

+ %w(t)Twa(t) + bTw(t): #(s) = Bu(s)Vs € (0,t],z(0) = x},

and the corresponding HJ PDE is given by (3.2), where J(x) = %XT Qrx+ b’x is the
initial data/terminal cost whose Fenchel transform is given by

J*(p) = sup (x,p) — J(x) = % HQFW(P’ - b)Hz

and the Hamiltonian H is given by
2

)

1 1
H(p) = sup (—Bu,p) — ~u’Ru+a’u=- HR‘l/Q(BTp - a)’
ucRm™ 2 2

where f(u) = Bu is the source term of the dynamics and L(u) = ju”Ru is the
running cost. Then, using the single-time Hopf formula (2.2), we have that the solution
to the HJ PDE is given by

(36)  S(x,t) = sup {<x,p> - % HR’”Q(BTP*G)HE *% ‘QEW(pb)Hz}'

peR”



8 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

In this case, we can compute the maximizer in the above Hopf formula explicitly,
which can be done numerically using the method of least squares.

Alternatively, this LQR problem can also be solved via the Riccati ODEs, which
are given by

(3.7) P(t)=—-P(t)TBR™'BTP(t), ¢(t)=—-Pt)TBRYBTq(t)—a),

1) = 5 [ (B at) - )

with initial conditions P(0) = Qy, q(0) = b, and r(0) = 0.

The above Hopf formula (3.6) is related to the learning problem (2.6) with qua-
dratic data fidelity term and quadratic regularization. Specifically, let ¢ = A and
p = 0. Then, solving the above maximization problem (3.6) is equivalent to minimiz-
ing the following loss function with respect to 8 = [0, ...,0,]7:

2 2
o a3 ol Yoo o o]

This loss function corresponds to a one-point linear regression problem, where the

2
and the data fitting term
2

regularization term is given by 1 HQ;1/2(0 —(b+ Qfx))‘

is given by 3 HR‘l/Q(BTB - a)Hz; i.e., set N =1 in Figure 4. The minimizer 68" of
L is related to the solution of the Riccati equation via

(3.9) 6" (= p*) = VuS(x, \) = P(\a + q(N),

where p* is the minimizer in the Hopf formula (3.6). Note that if we only need to
recover the minimzer 8, then we only need to solve two ODEs (namely, the ODEs
for P, q) since (3.9) does not depend on r.

mingeg» £(6) | = min

; . 2
oer) 3N, Hrmro-a|,  +

o7 0o}
I A
—|8(x,t1,....tn) | = min

Ai

S
[ ve) R 6 RCBIe-a),  +

t

P
1 lp=22(= _ nlIZ _
. 4o ”)HQJ \ ““”L.,__
v
S(x,t1,. .. tn) | = minur.) {Z;‘KIJ%{/;‘I,’/J ($u(s)"Riu(s) — al'u(s)) ds +

A e x

@(s) = Bu(s)Vs € (T,_1,T}) _Wz(ﬂ)zx‘}

12(Tn)T Qe (Tn) + b (Ty)

Fig. 4: (See Section 3) Mathematical formulation describing the connection between
a regularized linear regression problem (top), the multi-time Hopf formula (middle),
and a piecewise LQR problem with A = Q@ = 0 and A/ = 0 on each piece (bottom).
Note that T; = Z;Zl t;. The content of this illustration is a special case of the con-
nection in Figure 3 using quadratic data fitting losses and quadratic regularization.
The colors indicate the associated quantities between each problem. The solid-line
arrows denote direct equivalences. The dotted arrows represent additional mathemat-
ical relations.

3.3. Connection to multi-point regularized linear regression problems.
If the running cost is piecewise quadratic with @ = 0, = 0 on each piece and
the dynamics are piecewise linear with A = 0 on each piece, then we get a more



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 9

general piecewise LQR problem in the form of (2.3) with piecewise running costs
Li(u) = %uTRiu — al'u, where each R; € R™*™ is symmetric positive definite,
piecewise dynamics f;(u) = B;u, terminal cost J(x) = 2x7 Qrx + b'x, and terminal
time t = Zjvzl t;. Recall that this optimal control problem corresponds to the multi-
time HJ PDE (2.4) with Hamiltonians H;(p) = supyerm{(—fi(u),p) — Li(u)} and
initial data J. Then, the solution to this LQR problem and corresponding HJ PDE
is given by the following multi-time Hopf formula:

(3.10)

N
ti oy — 1, -
S(xt1,...,tx) = sup {<x,p>—22||7zi Y2(Bp — a3 - 2||Qf“2<p—b>||%}.

pek? i=1

Define T; to be

(3.11) T, = t;.

Then, the multi-time HJ PDE and piecewise LQR problem can also be solved using
the following Riccati equation: S(x,t1,-- - ,tn) = 3x7 P(Tn)x + q(Tn)Tx + r(Tw),
where the function P : [0, 00) — R™*"™ takes values in the space of symmetric positive
definite matrices and solves the following piecewise Riccati equation:

(312) {P(s) = —P(s)"B;R;'BTP(s) s€ (Ti_1,T})
P(0) = Qy,
the function q : [0,00) — R"™ solves the following piecewise linear ODE:
d(s) = —P(s)"B/R; (Bl a(s) —ai) s € (Tio1,Th),
{q(O) = —b,

and the function r : [0,00) — R solves the following piecewise ODE:

(3.13)

: 15— 2
is) = =5 R (B als) — @)

r(0) = 0.

€ (Ti-1,T3),
(3.14) s€ (T T)

The above multi-time Hopf formula (3.10) can also be regarded as a linear regres-
sion problem with multiple data points, as illustrated in Figure 4. Let %||Q;1/ 2 (p—
b)||3 be the the regularization term and % R;/*(BTp — a;)|)2 be the data fitting

term at the i-th data point. Then, the multi-time LQR problem (3.10) is equivalent
to the learning problem ming £(0), where the loss function £ : R” — R is given by

2

j n % HQ;W@ —(b+ Qfx))H .

R;V*(BI0 - a;)
2

N \s
(3.15) L£(0) = Z 3

1=

In Section 4.1, we discuss a specific example of the learning problem (3.15), which is
more readily recognizable as the standard linear regression problem. The minimizer
0™ of the learning problem (3.15) (and p* of the Hopf formula (3.10)) is given by

(3.16) 0" (= p*) = VxS(x,t1,...,tx) = P (Tn)x +q(Ty).

For more details, we refer readers to [4]. Note that one could also use the Pontryagin
maximum principle to compute the gradient of the solution to the HJ PDE, which
gives the same result as in (3.16).



10 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

4. Methodology. In the previous section, we established a novel theoretical
connection between multi-time HJ PDEs, LQR problems, and regularized linear re-
gression problems. In this section, we leverage this theoretical connection to design
new algorithms for solving various learning problems. The connection between the
learning problem of interest, the Hopf formula, and the corresponding optimal control
problem is summarized in Figure 5 and Table 1.

mingers £(0) = min . . ) P
-~ Ok 2in 3120 — il + 3 L1 V(0k — 6})

i
i N .
— | S(T6°t,....ty) = min *
t;

K
N 2
ver ) T, Hew-wly  + | 4repf o)
. N WS 171 by n P g
St ty) = mine {z;‘ﬂ@?‘ﬁ, (3u(s)"u(s) —ylu(s)) ds + | 32(Tn) T~ a(Ty) || &(s) = DT u(s)Vs € (i1, T1] . |2(0) =T6° }

Fig. 5: (See Section 4) Mathematical formulation describing the connection between
our model linear regression problem with quadratic regularization (top), the multi-
time Hopf formula (middle), and a piecewise LQR problem (bottom). Note that
T, = Z;Zl tj. The content of this illustration is a special case of the connection in
Figure 4 using R; = I, B; = ®7, a; = y;, Qf = !, b =0, and x = I'9". We use
this connection to develop our Riccati-based methodology (Section 4) and perform
our numerical examples (Section 5). The colors indicate the associated quantities
between each problem. The solid-line arrows denote direct equivalences. The dotted
arrows represent additional mathematical relations.

Terms in the Terms in the Terms in the optimal Learning problems
loss function (4.1) Hopf formula control problem
i,y Hamiltonian Running cost, dynamics Posct?t"rt;innlizlgliz;;t‘:r"aiigle?g:;iig )%2)
A Time Time Post-training calibration (Section 5.2)
Hamiltonian; Running cost, dynamics; Hyper-parameter tuning,
Tk Initial condition Terminal cost flow along the Pareto front (Section 5.3)
92 Spatial variable Initial position Generalized regularization functions (Section 5.4)

Table 1: Summary of the learning problems and corresponding numerical examples
presented in this work. Each row summarizes which terms in the loss function (4.1),
the Hopf formula, and the optimal control problem must be changed to match the
context of various learning problems.

4.1. Solving the regularized linear regression problem using Riccati
ODEs. A linear regression problem with quadratic data fitting loss and quadratic
regularization is formulated as follows. The goal of this learning problem is to fit N
data points (2;,y;) € RM x R™ with the linear prediction model ®;0 ~ y,, where
D; = [1(24), .., Pn(2i)] € R™*™ is the matrix whose columns are the basis functions
¢; :RM - R™, j=1,...,n evaluated at z; and @ = [01,...,0,]T € R are unknown
trainable coefficients. We learn 8 € R™ by minimizing the following loss function:

N n
— 1 2 1 0\2
(4.1) £(0) = 5;Ai||@iofyi||2+5;vk<9k -0,



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 11

where \; > 0,7 = 1,..., N are tunable hyper-parameters for the data fitting losses,
v > 0,k = 1,...,n are tunable hyper-parameters for the regularization terms, and
09 € R is a prior on the unknown coefficients that biases 6 to be close to 69. Note
that the above loss function (4.1) is strictly convex, and hence it has a unique global
minimizer. Since this loss function is quadratic in @, it can be minimized exactly
using the method of least squares. However, we explore a different approach for
minimizing (4.1), which, in certain learning contexts, yields computational advantages
over conventional approaches like the method of least squares.

Note that this learning problem is in the form of (3.15); i.e., set R; = Ixm,
B; = ®' a; = y,, Qf = I'"!, where I' € R™*" is the diagonal matrix whose i-th
entry is v;, b = 0, and x = I'8°. Then, this learning problem is related to an LQR
problem, and we summarize this connection in Figure 5. Thus, this learning problem
can alternatively be solved via the following Riccati ODEs:

42) {P(t) = —P(t)To]®;P(t) te (i, 1),
a(t) = =Pt 0T (dua(t) —y,) te (T, Th),

with initial condition P(0) = '™, q(0) = 0. Note that here we disregard the ODE
for r since, for the learning problem, we are only concerned with the value of the
minimizer 8*, which only requires the values of P, q (e.g., see (3.9), (3.16)), whereas
recovering the minimal objective value £(0*) (which is generally not needed in the
context of learning) would require all three values P, q,r. There are many numerical
methods for solving the Riccati ODEs (4.2) in the literature. In this paper, we use the
4th-order Runge-Kutta method (RK4) [6], but other methods could be used instead.

At first glance, solving this linear regression problem via the Riccati ODEs (4.2)
may seem unnecessary given the existence of other well-established methods for min-
imizing (4.1) (e.g., the method of least squares). However, note that (4.2) is actually
a sequence of Riccati ODEs. Thus, using our theoretical connection (and hence,
these sequential Riccati ODEs to minimize (4.1)) means that we have the flexibil-
ity to handle sequential changes to the learning problem. In the remainder of Sec-
tion 4, we identify several applications in learning (summarized in Table 1), for which
this Riccati-based approach yields computational advantages over traditional learning
methods (especially when the number of data points N is large), and we describe how
standard Riccati solvers can be adapted for these contexts. In Appendix D, we provide
a more detailed comparison of the computational complexity of using RK4 and our
Riccati-based methodology versus the method of least squares for these applications.

4.2. Adding or removing data. Since our theoretical connection gives us ac-
cess to the Riccati ODEs (4.2), which are solved sequentially, we have the flexibility to
handle sequential changes to the learning problem (4.1). In this section, we focus on
the sequential addition or removal of data. Some related machine learning examples
are provided in Sections 5.1 and 5.2.

First, we discuss the addition of one data point; i.e., we increase the number of
data points from N to N + 1. This case corresponds to updating our learned model
as new data is collected, which is crucial for many practical machine learning applica-
tions. To add one data point, we adapt the Riccati ODEs (4.2) as follows. Adding the
(N +1)-th data point corresponds to adding the term $An 1 [|®n410 — Yy |3 in the
loss function (4.1) or, equivalently, to adding the Hamiltonian £||®n416 — yy1[|3 to

1..T

the multi-time HJ PDE and the pieces Ly41(s,u) = 3u’u— gy}, u and f(s,u) =

oT 41w, 8 € (T, Ty41) to the running cost and dynamics, respectively, of the corre-



12 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

sponding piecewise LQR problem. Thus, minimizing this new loss function is equiv-
alent to solving the following Riccati ODE:

3 {ﬁ(t) — —P(t)T®T D, P(1) t>0,

q(t) = —P()Te] (®a(t) —y;) t>0,

where the index j = N + 1 and with initial condition P(0) = P (Ty) and q(0) =
q(Tn), where P (Tv) and q (T) are obtained from solving the learning problem (4.1)
with N data points. Then, the solution to the new learning problem with an additional
point is given by

(4.4) 6" = Pre° +q,

where P = P(An41)(= P(Tn41)) and § = @(An41)(= q(Tn41)) are the solution
to (4.3); i.e., we have evolved the solution of the new corresponding multi-time
HJ PDE in the time variable tx41 from S(x,t1,...,tn,0) to S(X,t1,...,tN, ANF1)-
Equivalently, we can also interpret adding one data point as solving a one-point linear
regression problem (3.8) and its corresponding single-piece LQR problem (3.5).

Removing one data point (i.e., decreasing the number of data points from N to
N — 1) corresponds to calibrating our learned model by removing possible outliers
and/or overly noisy data. To remove one data point, we reverse time and solve a
terminal value Riccati ODE (C.1). The solution to the new learning problem is then
given by (4.4), where P, q are given by the solution to the time-reversed Riccati
ODEs. For more details and the mathematical derivation, see Appendix C.1.

Note that in both cases, the above approach only requires information about the
data point to be added or removed and the results of the previous training. Thus, we
can add and remove data without retraining on the entire dataset or requiring access
to all of the previous data. In contrast, traditional approaches to minimizing (4.1)
(e.g., the method of least squares) would require memory of all previous data and then
retraining on the entire updated data set. Hence, our approach provides promising
computational and memory savings over conventional methods. While, in the nu-
merics, we use RK4 to solve the corresponding Riccati ODEs in both of these cases,
we note that other numerical methods could also be applied to solve these Riccati
ODEs and hence, to achieve these computational and memory savings. For example,
in Appendix E, we discuss how recursive least squares can be applied to these cases.

4.3. Hyper-parameter tuning. In the loss function (4.1), we have three types
of hyper-parameters: the weights \; of the data fitting terms, the weights ~; of the
regularization term, and the bias 0° on the trainable coefficients 6. In this section,
we discuss how we adapt the Riccati ODEs to tune each of these hyper-parameters.

First, we discuss tuning the weights of the data fitting terms; e.g., as in post-
training calibration and federated learning (Section 5.2). Consider changing the
weight on the i-th data fitting term from \; to A;, which corresponds to changing
the time t; = A\; to t; = ;\z in the multi-time HJ PDE and corresponding piecewise
LQR problem. Then, the methodology is similar to that in Section 4.1.

If A; > i, then the solution to the learning problem with the new data fitting
weight ); is given by (4.4), where P = P(X\; — \;) and q = d(Xi — \;) are the solutions
to the Riccati ODEs (4.3) with j = 4, at time (A\; — A;), and with initial condition
P(0) = P (Ty) and §(0) = q(Tn), where P(Ty),q(Ty) are obtained from solving
the original learning problem (4.1) with the original value of A;. Similarly, if \; > 5\1-,



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 13

then the solution to the learning problem with the new data fitting weight A; is given
by (4.4), where P = P(0) and § = §(0) are the solutions to the time-reversed Riccati
ODEs (C.1) with j = i, at time 0, and with terminal condition P(\; — A;) = P (Tx)
and q(\; — i) = q(T), where P (T),q (T) are obtained from solving the original
learning problem (4.1) with the original value of A;.

Next, we discuss tuning the weights of the regularization terms; e.g., as in the
hyper-parameter tuning example in Section 5.3. Note that in the original formulation
of the Riccati ODEs (4.2), the regularization weights appear in the initial condition for
P. Changing a hyper-parameter 7, by changing this initial condition would require
re-solving the entire sequence of Riccati ODEs and hence retraining on the entire
dataset. However, since we have freedom in how we formulate the corresponding
multi-time HJ PDE, we can avoid this retraining as follows. Note that here, instead
of sequentially changing each regularization weight ~; one-by-one, we can actually
update all of the regularization weights at once.

We update the regularization weights in two steps. First, we update the weights
whose values we increase by adding an additional Hamiltonian to the multi-time
HJ PDE. This yields an initial value Riccati ODE (C.2). Second, we update the
remaining weights by reinterpreting the problem as a terminal condition, single-time
HJ PDE. We then evolve this HJ PDE backward in time using a terminal condition
Riccati ODE (C.3). Finally, the minimizer to the new learning problem resulting from
changing all of the regularization weights is given by the solutions to the time-reversed
Riccati ODE (C.3) at time 0. For more details, see Appendix C.2.

Finally, we discuss tuning the bias 0° on the trainable coefficients 6; e.g., as in
the generalized regularization example in Section 5.4. In the context of the learning
problem, we interpret 8° as the center of a Gaussian prior on 8. Using our theoretical
connection, changing 0° is also equivalent to evaluating the corresponding multi-
time HJ PDE and piecewise LQR problem at a different point in space. Specifically,

~0
changing 8° to @ means that instead of evaluating the multi-time HJ PDE and
~0
piecewise LQR problem at x = I'8°, we evaluate them at x = '@ . Then, the
. . . .oox0
solution to the learning problem with the new bias 8 is given by

(4.5) P(Tw)T6" +a(Tw),

where P(Tn) and q(Tx) are obtained from solving the original learning problem (4.1)
with the original value of 8°. In other words, shifting the bias involves neither retrain-
ing nor access to any of the data points nor solving Riccati ODEs. Instead, we only
require some matrix multiplication and addition involving the results of the previous

~0
training and the new bias 6 .

4.4. General convex regularization functions. So far, we have only consid-
ered quadratic regularizations. In this section, we will consider the linear regression
problem with an arbitrary convex regularization term. Specifically, consider the gen-
eral regularization term R(0) — (x, 0), where R : R” — R is a convex function. Then,
the loss function of the learning problem is given by

N
(46) £(0) = 3 M98 — g, + RO) ~ (x.0).
i=1

This learning problem corresponds to a multi-time HJ PDE (2.4), where the i-th
Hamiltonian is H;(p) = 2 \;||®;p — y;,/|3 and the initial condition is .J = R*, which is



14 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

the Fenchel-Legendre transform of R. The corresponding optimal control problem is
1

given by (2.3), with terminal time Zi\;l \i, piecewise running costs L;(u) = 3[[ul|? —
(y;,u) and piecewise dynamics f;(u) = ®Iu on (Z;;ll Ajs 2j=1Aj]s and terminal
cost R*. Then, the solution 8* to the learning problem (4.6) is equivalent to the
spatial gradient VxS (x,A1,...,An) of the solution to the multi-time HJ PDE, and
the minimal value of the loss function (4.6) is equivalent to —S(x, A1, ..., An).

Since the loss function (4.6) is convex, it can be minimized using any appropriate
convex optimization algorithm. In this paper, we demonstrate how our Riccati-based
approach can be combined with PDHG [7] to solve this learning problem. Note that
PDHG can be applied to this learning problem (4.6) as long as the proximal point of
R or R* is numerically computable. For instance, R could be a quadratic function
(-, M), a quadratic norm /{-, M-}, || - |l1, || - I3, || - ||%, & polynomial function, or
the Fenchel-Legendre transformation of any of these functions [17]. To compute the
solution 8™ of this learning problem, PDHG iterates the following;:

N
1 1
0t = arg min 5 ;21 || @0 —y; |3 + 200 HB — (0" — op(w" — X))H )

OcR™ 2
(47) éf‘i‘l — 202—‘,—1 o 0[7
0+1 <ok 1 ) PVIENIE
w' T = argmin R (w)—&——”w—(w + 04,0 )H ,
wERn 20'w 2

where 0g, 04, are positive step-size parameters satisfying ocgo,, < 1. In each iteration,
we need to solve two minimization problems. Updating 0 is equivalent to solving
the learning problem with quadratic regularization. Specifically, updating 6" is the
same as changing the bias #° in the loss function (4.1). Therefore, we only need to
solve the Riccati ODEs (4.2) once (to compute 8') and every other iterate can be
computed using (4.5). Updating w’ is equivalent to computing the proximal point of
R*. Depending on R*, there may already exist efficient solvers or explicit formulas
for computing its proximal point.

Note that with non-quadratic regularization, if we change the weights Ay of the
data fitting losses, change x (which is related to the bias on 8), or add or remove data
points, then we will need to restart PDHG to solve the resulting learning problem with
these new hyper-parameter values or updated datasets. However, we can reuse some
of the computations between runs. Namely, we only need to solve the full sequence of
Riccati ODEs (4.2) once (to compute ' in the first run of PDHG). Then, the solution
to those Riccati ODEs can be reused in combination with the methods described in
Sections 4.2 and 4.3 (according to how the learning problem is modified) in subsequent
iterations and runs of PDHG.

5. Numerical examples. In this section, we apply the Riccati-based methodol-
ogy presented in Section 4 to four test problems from machine learning to demonstrate
the versatility and potential computational advantages of our new approach. In each
example, we use RK4 with double precision to solve the Riccati ODEs when applying
our Riccati-based methodology. The connections between the examples presented in
this section, the Hopf formula, and the corresponding optimal control problems can be
found in Table 1. We note that in this work we use two metrics to evaluate our results
quantitatively: the ¢;-norm (defined as ||z|; = Y., |z;| for z € R™) for the finite-

dimensional minimizer and the L2-norm (defined as || fll2 = ([, czn |f(1:)|2dx)1/2 for
f : R™ = R) for the inferred functions. The L2-norm for functions is approximated



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 15

using trapezoidal rule with a uniform grid. Supplementary details of the numerical
experiments can be found in Appendix G. Code for all examples will be made publicly
available at https://github.com/ZongrenZou/HJPDE4SciML.

5.1. Function approximation in continual learning. In this section, we test
our Riccati-based approach (as described in Section 5.1) on a pedagogical function
approximation example in continual learning [39, 28, 47] to demonstrate its compu-
tational and memory advantages. Under the continual learning framework, data are
accessed in a stream and the trainable model parameters are updated incrementally
as new data become available. In some cases, the historical data may also become in-
accessible after new data are received, which can often lead to catastrophic forgetting
[28, 39], which refers to the abrupt degradation in performance of learned models on
previous tasks upon training on new tasks. In this example, we show how our Riccati-
based approach naturally coincides with the continual learning framework, while also
inherently avoiding catastrophic forgetting even if the historical data are inaccessible.

Our goal is to regress the function y(z) = sin(10z) given noisy data {x;,y; =
y(z:)}XY,, where the data are corrupted by additive Gaussian noise with relatively
large noise scale. Hence, a large amount of data is required in order to obtain an
accurate inference. In this example, we follow the continual learning framework and
assume that the data are accessed in a stream, so that each new data point must
be incorporated into the learned model as soon as it becomes available. Specifically,
each new data point comes from a uniformly random sample point € [0, 10] and is
corrupted by additive Gaussian noise with noise scale one. We regress y(x) using the
linear model y(z) = >, _; 0xdr(z), where n = 10 and

{én(2)}r_; = {1, 2,2%, 23, sin(7), sin(52), sin(8x), sin(9z), sin(10z), sin(12x)}.

We learn the coefficients 8 = [0y, ...,0,]T by minimizing the following loss function:

Zomk z) -y +5 kalekh

where A\;,i = 1,...,N and v,k = 1,...,n are weights for the data loss and ¢y reg-
ularization terms, respectively, and we update our learned coefficients every time a
new data point is available. In our numerical experiments, we set \; = 1,Vi and
v = 100, Vk.

1
(5.1) L£O) =3 Z

=1

h = 0.001 h = 0.0005 h = 0.0001
01 error of 6* 2.7814 x 10~ 7 | 4.9461 x 1010 | 3.0801 x 10~ 12
¢y relative error of 8 | 2.7196 x 10~7 | 4.8361 x 10~10 | 3.0116 x 10— 12

Table 2: Errors in computing the minimizer 6" of the function approximation loss (5.1)
using our Riccati-based approach. We use RK4 to solve the Riccati ODEs (4.2) and
(4.3) with double precision and various step sizes h. The reference is obtained by
using the method of least squares to minimize the loss function (5.1) directly.

Although this loss function (5.1) could be minimized using conventional machine
learning techniques (e.g., the method of least squares), these methods typically require
access to and training on the entire dataset {(z;,v;)}~;, which conflicts with the
assumptions in continual learning. However, note that this loss function (5.1) is of


https://github.com/ZongrenZou/HJPDE4SciML

16 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

The 50000" data point

The 1000 data p

3

H

-

Exact

he hle wvailable hle
a (inactive)
2 2
.
- — Inference k ¥
1 1 1
- : JV\/V\/\/\]\/\/V\NWW\; : O’V\/\/\]\/W\/\/\[\/VV\A/\'
B 4 4
.
2 2 ;

|

[
] T ARTHINHINE

2

Fig. 6: Evolution and continual learning of the function approximation learned using
our Riccati-based approach as more data becomes available. (a) shows the evolution
of the learned coefficients 6,k = 1,...,n and the relative L? error of the inferred
y as more data is incorporated into the model; the horizontal dotted lines denote
the exact reference values. (b) shows the inferences of y after the 200th, 1,000th, and
50,000th noisy data point becomes available. Our Riccati-based approach allows us to
incrementally update the learned coefficients as more data becomes available without
accessing the previous data or re-training on the entire dataset, which provides both
memory and computational advantages over conventional learning methods.

the form (4.1). Thus, we can instead apply our Riccati-based approach (as described
in Sections 4.1 and 4.2) to solve this learning problem. In particular, the methodology
described in Section 4.2 matches the data streaming paradigm of continual learning;
we incrementally update our learned coefficients by considering each new data point as
the time evolution of a corresponding multi-time HJ PDE. As a result, in contrast to
conventional machine learning methods, our Riccati-based approach does not require
storage of previous data points, and its memory and computational complexity is
constant for each added data point. As such, our Riccati-based methodology may be
well-suited to online learning applications. Additionally, since this time evolution of
the HJ PDE (i.e., the addition of a new data point) requires knowledge about the
solution to the HJ PDE at the previous time (i.e., the results of the previous training),
our Riccati-based approach also inherently avoids catastrophic forgetting.

The results of applying our Riccati-based method to solve this learning prob-
lem (5.3) are shown in Figure 6 and Table 2. Figure 6(a) depicts the evolution of
the coefficients {6y }7_, as more data points become available. We observe that the
learned coefficients 0y, k = 1, ..., n converge to their true values as more data points are



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 17

incorporated into the model. Figure 6(b) displays the inferences obtained when the
200th, 1,000th, and 50, 000th noisy data point become available, which demonstrates
that our Riccati-based approach is capable of real-time inferences without catastrophic
forgetting, even though each inference is made using only one data point. As shown,
the regression using data with high-level noise becomes more accurate as more data
is incorporated into the learning process.

Table 2 displays the numerical errors of the minimizer 8* of the loss function (5.1)
obtained using the Riccati-based methodology from Section 4 after the last data point
becomes available. We observe that the accuracy of our approach increases as we
decrease the step size h of RK4, which indicates that the errors of 8 stem from the
accuracy of RK4 in solving the corresponding Riccati ODEs. The reference solution is
obtained by minimizing (5.1) directly using the method of least squares and assuming
that all N = 50,000 data points are accessible.

5.2. 1D steady-state reaction-diffusion equation and post-training cal-
ibration. In this example, we use our Riccati-based approach to apply post-training
calibrations when solving a PDE. Specifically, we leverage the methodology in Sec-
tion 4.2 to add or remove data and the methodology in Section 4.3 to enforce the
boundary conditions of the PDE without retraining the entire learned model. Con-
sider the following 1D steady-state reaction-diffusion equation:

0%u
(5.2) Do () + ru(z) = f(z),x € 0,1],
u(0) = u(1) =0,
where D = 0.01 is the diffusion coefficient, x = —1, and f(x) is the source term of

which noisy measurements {(z;, f; = f(x;)) iN=1 C R x R are available. We consider
the scenario where regular training has been employed but with either insufficient data
or sufficient data with outliers, both of which yield inaccurate inferences of the solu-
tion. We further assume that extra information is provided after the regular training
and seek to perform post-training calibrations to incorporate this extra information
into the already-trained models without losing information from the original training.
In the literature, it is well-established that post-training calibrations can significantly
increase the performance of deployed machine learning methods [40, 53]. However,
designing computationally efficient methods for performing these post-calibrations is
still of great interest.

In this example, we solve this PDE (5.2) by reformulating the PDE as an op-
timization problem [41, 44, 22]. We use a linear model to approximate the solu-
tion, ie. u(z) = Y}_, Okdr(x), where n = 21 and {¢x(z)}7_; = {1} U {sin(2lrz),
cos(2lmx) l(Z;l)/ ? are the truncated Fourier basis functions on [0,1]. We learn the
coefficients @ = [0y, ...,0,]" of the linear model by minimizing the following loss:

1 N
£O) =3 >N
=1

2

=~ 9% n
D;ek@(ﬂh) + H};‘gk(bk(xi) —

(5.3) ,

2 Lo
2
+§kz_1'7k|0k|v

where \;,¢ = 1,..., N, A\, and v,k = 1,..,n are balancing weights for the PDE
residual, the boundary conditions, and the regularization term, respectively. In our

1 " 1 -
+§>\b ;91@%(0)—0 +§)\b ;91@%(1)—0




18 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

numerical experiments, we assume the exact solution to be u(z) = sin®(27z) (and f to
be defined by (5.2), accordingly) and the noise to be additive Gaussian with zero mean
and standard deviation 0.1. For the regular training, weset \; =1, A\, = 1, and v, =1
and apply our Riccati-based approach (see Section 4.1) to get our original estimate of
the minimizer 8" of the loss function (5.3). Using our Riccati-based approach yields
an ¢; error of 8.9950 x 1071 and relative £; error of 1.4288 x 10~ in 6", where the
reference is obtained by minimizing (5.3) directly using the method of least squares.

In the leftmost column of Figure 7, we see that the accuracy of both u and f as
inferred by the regular training is impaired by a lack of data around the highest peak
and lowest valley of the exact functions. To compensate, we first calibrate our model
by adding some new noisy measurements of f in these regions where the data points
are sparse. This calibration uses the methodology described in Section 4.2, and the
results are shown in the middle column of Figure 7. Next, we note that the inferred
u still disagrees with the exact solution at the boundary points. Hence, we further
calibrate our model by increasing the value of the boundary weight Ay from 1 to 10
to enforce the boundary conditions of the PDE. This calibration is done using the
methodology described in Section 4.3 and the results of this second calibration are
presented in the rightmost column of Figure 7. In both cases, we observe that the
calibrations successfully improve the accuracy of the learned model. These results are
also reflected in the relative L? errors shown in Table 3.

Regular training | First calibration | Second calibration
relative L? error of f 66.40% 7.15% 6.49%
relative L? error of u 57.29% 7.35% 5.57%

Table 3: Errors in solving the 1D steady-state reaction-diffusion equation (5.2) and
regressing f at different stages of training, using our Riccati-based approach. Regular
training is done with insufficient data and provides inaccurate inferences. The first
calibration adds new measurements of f, and the second calibration increases the
weights A\, of the boundary conditions in (5.3). Both calibration steps successfully
improve the accuracy of our inferences without requiring retraining on or access to
the previous data. Qualitative results can be found in Figure 7.

Note that our Riccati-based approach allows us to perform each of these calibra-
tion steps using only the new or changed values in that step and the results of the
previous training step. In other words, each step of this training process (including the
original training and each subsequent calibration step) is done without sharing data
between training steps, which exactly matches the framework of federated learning
[30]. Thus, our methodology may be relevant to distributed training or collaborative
learning applications, where data privacy is of concern.

Next, we discuss another post-training calibration technique. In this case, we
assume the data for the regular training is sufficient but contains outliers due to large
noise. We again assume the regular training is performed using the Riccati-based
approach from Section 4.1. Then, we eliminate these outliers using the methodology
described in Section 4.2, which only requires knowledge about the outliers to be
removed and the results of the regular training. The results of this post-training
outlier removal show that eliminating these points successfully improves the accuracy
of the learned models (see Appendix F, Figure 9). Finally, in Appendix F, Figure 10,
we also provide a large-scale continual learning example for solving (5.2) to further
demonstrate the performance of our Riccati-based approach in large data settings.



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 19

Regular training Calibration with new measurements of f Further calibration with increasing value of A,
3

3 3 3
0 01 02 03 04 05 06 07 08 08 1 0 o1 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1
x x z

Regular training

Further calibration with increasing value of A,

0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 08 1
z z r

(b)

Fig. 7: Results of solving the 1D steady-state reaction-diffusion equation (5.2) with
noisy measurements of the source term f in the domain and noiseless measurements
of the solution u on the boundary. (a) results for f; (b) results for u. Left: re-
sults of regular training; middle: calibrating the results with some additional noisy
measurements of f; right: calibrating the results further by enforcing the bound-
ary conditions by increasing the value of Ay in the loss function (5.3). The regular
training uses our Riccati-based method in Section 4.1 to minimize (5.3), while the
calibrations use the adaptations of our method in Section 4.2. Calibrations are em-
ployed without re-training or access to the data from the previous training, which
demonstrates the advantages in both memory storage and computational complexity
of our Riccati-based approach over conventional machine learning methods.

5.3. Poisson equation using PINNs and transfer learning. In this ex-
ample, we demonstrate the versatility of our Riccati-based method by combining it
with existing machine learning techniques to fit the last layer of a PINN. We also
show that when we perform hyper-parameter tuning by solving the associated Riccati
ODEs (Section 4.3), we not only provide the solution to the updated problem but
also a continuum of solutions along a 1D curve on the Pareto front of the data fitting
losses and regularization. Consider the 2D Poisson equation with Dirichlet boundary
conditions, which is given by

327.L 82u
) —— (2,y) = 0
(5.4) Ox2 (x,y) + dy2 (z,y) = f(z,y) (z,y) €Q,
u@,y) =0 (x.4) € 09,
where € := [0, 1]? and f is a source term. We solve this equation using transfer learn-

ing and PINNs. Consider the scenario where we only have access to measurements
{(zs,yi, fi = f(mi,y:))}, of f at limited sampling points. Transfer learning compen-
sates for this lack of knowledge by transferring the knowledge from models pre-trained



20 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

on similar problems to solve this new problem of interest. Here, we learn the linear
model u(z,y) = Y p_; Oxdr(z,y), where each basis function ¢i(z,y),k = 1,...,n
is the PINN solution of a neural network pre-trained to solve the 2D Poisson equa-
tion (5.4) with similar source terms. Transfer learning using pre-trained neural net-
works as basis functions, as we do here, has recently grown in popularity in the scien-
tific machine learning community [18, 52, 21] and has been shown to provide efficient
yet accurate inferences even given very limited data [52]. We learn the coefficients 6
of our linear model by minimizing the following PINN-type loss:

2
- 32¢k 02¢k 1 = 2
0 — 0
>0 (G + G * gl

k=1
where \; = 1,i=1,...,N and v, = v,k = 1,...,n are weights for the data fitting and
ly-regularization terms, respectively. Note that minimizing (5.5) with respect to 6
is equivalent to fitting the last layer of a neural network given previous, pre-trained
nonlinear layers as the basis functions.

In our numerical experiments, we use transfer learning to solve the 2D Poisson
equation (5.4) with source term f(z,y) = sin(2.57x)sin(2.5my) using n = 100 basis
functions and N = 100 random measurements of f. We use the multi-head PINN
method [52] to obtain the basis functions, which correspond to the shared nonlinear
hidden layers of the pre-trained PINN solutions to (5.4) with source terms f(x,y) =
sin(krz) sin(kmy), k = 1,2, 3,4. We note that the boundary condition is hard-encoded
in the basis functions, and hence, in (4.1), no penalty term involving the boundary
condition is included. We then solve the learning problem (5.5) using our Riccati-
based method from Section 4.1.

In Table 4, we compare the errors of the minimizer 8* of (5.5) and the solution
u of the PDE (5.4) as we decrease the weight (= 7, Vk) of the regularization term
from 1 to le-5. The reference for 8" is obtained from minimizing (5.5) directly for
each value of v using the method of least squares. The reference for u is computed
using a finite difference method with a five-point stencil and a 257 x 257 uniform
grid on Q to solve (5.4). The same grid is used to evaluate our trained models. We
originally minimize (5.5) using v = 1 and the Riccati-based approach in Section 4.1.
We then compute the solutions for the other values of v by incrementally decreasing
v by a factor of 10 and using the methodology from Section 4.3 to reuse the results
of training with the previous value of v to compute the solution for the new value of
. Consequently, we see that the error in 8 increases as we decrease v due to error
accumulation from repeated applications of RK4. However, the error of u generally
decreases as we decrease v with the lowest error being achieved when v = le-4.

1 N
(5:5)  LO)=3 ppr

i=1

> (@i, yi) — fi

v =107 y=10"" y=10"7 y=10"% y=10"1 y=107°
¢1 error of 0% 5.9707 x 10~ 10 | 4.2905 x 10~ 1.0725 x 1070 | 1.7235 x 1077 | 2.0490 x 10~ % | 5.8749 x 10~
L7 relative error of u 6.5247% 5.6793% 3.0390% 1.7280% 1.1662% 1.4736%

Table 4: Errors of the minimizer 8* of (5.5) and the solution u to the 2D Poisson
equation (5.4) using transfer learning and our Riccati-based approach. The reference
for 8™ is given by minimizing (5.5) with the corresponding value of v directly using
the method of least squares, and the reference for u is given by solving (5.4) using a
finite difference method. Since we decrease <y incrementally from 1 to le-5, the error
of 8" accumulates due to successive applications of RK4.

From the results in Table 4, we see that our choice of the hyper-parameter v can



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 21

greatly influence the accuracy of our learned model. Note that since we fix \; =1,V
and v, = v,Vk, we can view (5.5) as a bi-objective loss, where the two objectives

. . 1 N n 8% ¢y, 32 by Do) _2
are the weighted data fitting term 5> ., |, _; Ok | Fz* + 2 (i,9:) — fi| and

the regularization term % > r_110k]?. To better understand the effects of tuning v, in
Figure 8, we explore the Pareto front of these two objectives. Traditional scalarization-
based approaches for computing the Pareto front typically rely on discrete samplings
of the Pareto front corresponding to discrete choices of y [25]. While our Riccati-based
methodology from Section 4.3 also recovers discrete points on the Pareto front corre-
sponding to particular choices of 7, note that when we change v, e.g., from v =1 to
~v = 0.1, we also recover a one-dimensional curve along the Pareto front corresponding
to every v € [0.1,1]. We obtain this 1D curve theoretically via the flow of solutions
obtained from the corresponding Riccati ODEs and numerically via the intermedi-
ate steps of RK4. The left plot of Figure 8 shows the 1D curve along the Pareto
front recovered by our Riccati-based approach (although note that in this example,
the Pareto front is also one-dimensional and hence is equivalent to the exposed 1D
curve), where the flow of solutions corresponding to decreasing -y is represented by
the arrows. Thus, although in general our methodology cannot compute the entire
Pareto front, every time we change the value of the hyper-parameters, our approach
recovers a continuous 1D curve along the Pareto front. In the right plot of Figure 8§,
we also visualize how the L? error of our learned solution u changes as we decrease 7.

Parcto front Error versus regularization weight
10 0.035 -

I? relative error of u

5
4
3
2
1

Datn ﬁtﬁn;\mﬁ ° ) MU-Z K * * m;j(s-,)
Fig. 8: Results of changing the regularization weight « when solving the 2D Poisson
equation using PINNs and transfer learning. We incrementally decrease the value of
~v by evolving the corresponding Riccati ODEs backwards in time. As a result, we
obtain a flow of solutions, the direction of which is represented by the arrows in each
figure. In the left figure, this flow of solutions gives us that each change in the value
of v from 4 to 4 results in the recovery of every point of the Pareto front along the
one-dimensional curve parameterized by v € [%,4].

5.4. Identifying the dynamics of the Kraichnan-Orszag system from
data. In this example, we demonstrate the versatility of our Riccati-based approach
by showing how it can be combined with existing methods to solve more general
problems (see Section 4.4). Consider the Kraichnan-Orszag (K-O) system [48, 53, 51]

dl‘1
— = 2o
dr 243
d
(5.6) 2 s,
dr
d
ars — 27179,

dr



22 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

with initial conditions z1(0) = 1,22(0) = 0.8,23(0) = 0.5. Our goal is to identify the
dynamics (the right-hand side of (5.6)) of the K-O system using measurements of z;
and ‘fi‘i t i =1,2,3 at different times. We identify the dynamics by learning the linear
models ‘ffT" =Y r_,0i¢,i=1,273. Following the general framework of the SINDy

method [5], we use the following quadratic basis functions (n = 10) for the dynamics:

{or(21, 22, 23)} 01 = {1, 21,22, 23,27, 73, 23, ¥1T2, ToT3, T173 },

and impose /1-regularization on @ to promote sparse identification of the dynamics.
Then, we learn each 8° independently and in parallel by minimizing the loss functions

(5.7) Z)\ [(dml> Zka (1), (x2);, (73) +Z%i9k

dx;

where £; denotes the loss function for equation i, (x;); and (%;t); denote the mea-

surements of x; and d:“, respectively, at time 7;, 7 = 1,2,3,5 = 1,..., N. Note that
(5.7) corresponds to setting R = || - ||; and x = 0 in the hnear regression prob-
lem (4.6). Thus, solving this learning problem is equivalent to evaluating the solution
to the corresponding multi-time HJ PDE at (0, A1,...,A,). In our numerical experi-
ments, we generate data points for training and testing by solving (5.6) numerically for
x1, 2,23 € [0,10] using MATLAB ode/5 [35] and then using a central finite difference
scheme to approximate the time derivatives. We set A\; = 1,Vj and v, = 0.1, Vk.
Instead of the sparse regression techniques employed by SINDy, we use PDHG to
minimize (5.7) (see Section 4.4). Each iteration of PDHG involves minimizing a loss
function of the form (5.7), but with fs-regularization instead of ¢;. Hence, this sub-
problem can be solved using our Riccati-based methods. As discussed in Section 4.4,
note that we only need to apply RK4 for the first iteration of PDHG, and every
subsequent iteration can be solved using a change of bias. As such, we do not suffer
from any error accumulation related to repeated applications of RK4. In Table 5, we
see that we do indeed recover a sparse identification of the dynamics. However, we
also incorrectly identify non-zero coefficients for the basis functions xo and x3. We
note that this misidentification may be the result of a lack of unique identifiability of
the system from the data points sampled. In fact, Table 6 shows that the errors in the
solution x1, 9, x3 of the identified system versus the solution of the true system (5.6)
are relatively small, which corroborates that identifiability may have been an issue.

1 x1 ) x3 x% z% a:% Tr1T2 T2T3 113
e+ | o 0 0 0 0 0 0 0 0.9931 0
6%* | o 0 0 0.0160 0 0 0 0 0 0.9761
6>* |0 0 —0.0165 0 0 0 0 —1.9777 0 0

Table 5: Results of sparse identification of the K-O system (5.6) using PDHG to
minimize the ¢;-regularized losses (5.7). The true solution is 0 for all entries, except
0" =1 for zoxs, 0 = 1 for x123, and 0>* = —2 for z122. We recover the dynamics
reasonably well, albeit with some slight misidentification of %*,0%*.

6. Summary. In this paper, we established a novel theoretical connection be-
tween regularized learning problems and the multi-time Hopf formula. In doing so, we
showed that when we solve these learning problems, we actually solve certain multi-
time HJ PDEs and their corresponding optimal control problems. In this work, we



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 23

z1 x2 3
relative L? error (%) | 0.2144 | 0.3718 | 0.3152

Table 6: Errors of the solution z1,x2,x3 of the system identified using PDHG com-
pared to the true solution of the K-O system. The reference is obtained by numerically
solving the true system (5.6) using a central finite difference scheme. These errors
indicate that the errors in the system identification in Table 5 may be due to a lack
of unique identifiability of the system using the given data points.

focused on the development of the connection between regularized linear regression
and the LQR problem. By leveraging this connection, we developed new methodol-
ogy based on solving Riccati ODEs that allows us to design new training approaches
for certain machine learning applications, such as continual learning, post-training
calibration, hyper-parameter tuning and exploration of the associated Pareto front,
and sparse dynamics identification. We also showed that our Riccati-based approach
yields some promising computational advantages over conventional learning methods;
after the original training, the models learned using our approach can be continually
updated without having to retrain the entire model or having access to all of the
previous data, which could be particularly useful in continual learning [39, 28, 47]
and federated learning [30, 26]. We note that our connection shares some similarities
to the approach of NeuralODEs [10], which also connects ODEs to machine learning;
however, NeuralODEs focuses on establishing new neural networks architectures using
ODEs, whereas we make connections between (Riccati) ODEs (that arise from opti-
mal control theory) and the training/optimization process of existing machine learning
methods and neural networks. Our connection is also related to [45], which connects
LQR problems with Kalman filters; however, [45] does not make any connections to
PDEs or learning problems.

Thus, our theoretical connection and Riccati-based methodology present many
exciting opportunities. Some possible future directions are as follows. While our
Riccati-based methodology allows us to alter the hyper-parameters and data points
used in the learning problem without having to retrain on all previous data, it also
requires that the original training be done using our Riccati-based methodology. It
would allow for increased versatility if we could more easily combine our Riccati-
based approach with other training methods. Additionally, in Sections 4.4 and 5.4,
we showed that our Riccati-based approach allows computations to be reused when us-
ing non-quadratic regularizations. However, in this case, the training process still had
to be restarted if the hyper-parameters, dataset, or regularization type is changed. It
would allow for more flexibility if we could develop more adaptive processes for chang-
ing these aspects of the learning problem when the regularization is not quadratic.

In Section 3, we focused on LQR problems, where the dynamics are independent of
the trajectory, but it would be worthwhile to investigate what connections LQR prob-
lems with general linear dynamics may yield (e.g., LQR problems with general linear
dynamics may be reformulated as LQR problems with state-independent dynamics
using a change of variable [17]). Another natural extension would be to consider
nonlinear models, which currently pose challenges in both scientific machine learning
and optimal control and hence, connections drawn in this case would benefit both
fields. It would also be interesting to explore applications of our connection between
general learning problems and general optimal control problems (i.e., the connection



24 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

in Section 2.2). In general, these optimal control problems can be tackled by solving
characteristic line equations, which are represented by two-point boundary value prob-
lems (TPBVPs) and thus are more challenging to solve than initial value problems
like the Riccati equation. However, working with these TPBVPs may be bypassed in
some cases by considering numerical solvers such as those in [8, 9, 12, 15, 17, 50].
Alternatively, if we relax our assumption on convexity by allowing for noncon-
vex loss functions (or equivalently, nonconvex Hamiltonians), we could also extend
our connection to be between learning problems and differential games [19] instead
of optimal control. However, even with convex losses, there are already many in-
teresting potential applications in machine learning to pursue. For example, in the
regularized linear regression case, it may be of interest to explore adjusting methods
such as recursive least squares to perform hyperparameter estimation, e.g., similarly
to [11]. More generally, the theoretical connection presented in Section 2.2 for general
convex losses provides a formula for the optimal learning parameters 8™ in terms of
the hyper-parameters. This connection could be leveraged to simplify the bi-level
optimization in meta-learning applications to a single-level, constrained optimization
problem. Finally, we could generalize our theory to instead consider viscous HJ PDEs,
which add a Laplacian term to the right-hand side of the HJ PDEs (2.1) and (2.4).
Then, by leveraging the recently established connection between viscous HJ PDEs
and Bayesian modeling [14], we could extend to applications in Bayesian inference.

Acknowledgments. P.C. is supported by the SMART Scholarship, which is
funded by the Under Secretary of Defense/Research and Engineering (USD/R&E),
National Defense Education Program (NDEP) / BA-1, Basic Research. J.D., G.EK.,
and Z.Z. are supported by the MURI/AFOSR FA9550-20-1-0358 project. We also
acknowledge the support by award DOE-MMICS SEA-CROGS DE-SC0023191.

REFERENCES

[1] M. ABADI, A. AGARWAL, P. BARHAM, AND ET. AL., TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015, https://www.tensorflow.org/. Software available from
tensorflow.org.

[2] B. D. ANDERSON AND J. B. MOORE, Optimal control: linear quadratic methods, Courier Cor-
poration, 2007.

[3] M. BARDI AND I. CAPUZZO-DOLCETTA, Optimal control and viscosity solutions of Hamilton-
Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhauser
Boston, Inc., Boston, MA, 1997, https://doi.org/10.1007/978-0-8176-4755-1, https://doi.
org/10.1007/978-0-8176-4755-1. With appendices by Maurizio Falcone and Pierpaolo So-
ravia.

[4] M. BARDI AND L. EVANS, On Hopf’s formulas for solutions of Hamilton-Jacobi equations,
Nonlinear Analysis: Theory, Methods & Applications, 8 (1984), pp. 1373 — 1381, https:
//doi.org/10.1016,/0362-546X(84)90020-8.

[5] S. L. BRUNTON, J. L. PROCTOR, AND J. N. KUTz, Discovering governing equations from data by
sparse identification of nonlinear dynamical systems, Proceedings of the National Academy
of Sciences, 113 (2016), pp. 3932-3937.

[6] J. C. BUTCHER, Numerical methods for ordinary differential equations, John Wiley & Sons,
2016.

[7] A. CHAMBOLLE AND T. POCK, A first-order primal-dual algorithm for convexr problems with
applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), pp. 120—
145.

[8] P. CHEN, J. DARBON, AND T. MENG, Hopf-type representation formulas and efficient algorithms
for certain high-dimensional optimal control problems, arXiv preprint arXiv:2110.02541,
(2021).

[9] P. CHEN, J. DARBON, AND T. MENG, Laz-oleinik-type formulas and efficient algorithms for cer-
tain high-dimensional optimal control problems, arXiv preprint arXiv:2109.14849, (2021).


https://www.tensorflow.org/
https://doi.org/10.1007/978-0-8176-4755-1
https://doi.org/10.1007/978-0-8176-4755-1
https://doi.org/10.1007/978-0-8176-4755-1
https://doi.org/10.1016/0362-546X(84)90020-8
https://doi.org/10.1016/0362-546X(84)90020-8

[16]

(17]

n =

o

Y

o

H

LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 25

. T. CHEN, Y. RUBANOVA, J. BETTENCOURT, AND D. K. DUVENAUD, Neural ordinary differ-
ential equations, Advances in neural information processing systems, 31 (2018).

. CHuNG, M. CHUNG, J. T. SLAGEL, AND L. TENORIO, Sampled limited memory methods for

massive linear inverse problems, Inverse Problems, 36 (2020), p. 054001.

DARBON, On convex finite-dimensional variational methods in imaging sciences and
Hamilton—Jacobi equations, SIAM Journal on Imaging Sciences, 8 (2015), pp. 2268—
2293, https://doi.org/10.1137/130944163, https://arxiv.org/abs/https://doi.org/10.1137/
130944163.

. DARBON, P. M. DOWER, AND T. MENG, Neural network architectures using min-plus alge-

bra for solving certain high-dimensional optimal control problems and Hamilton-Jacobi
PDEs, Math. Control Signals Systems, 35 (2023), pp. 1-44, https://doi.org/10.1007/
s00498-022-00333-2, https://doi.org/10.1007/s00498-022-00333-2.

. DARBON AND G. LANGLOIS, On Bayesian Posterior Mean Estimators in Imaging Sciences

and Hamilton-Jacobi Partial Differential Equations, J. Math Imaging Vis., 63 (2021),
p. 821-854.

DARBON AND T. MENG, On decomposition models in imaging sciences and multi-
time Hamilton—Jacobi partial differential equations, SIAM Journal on Imaging Sciences,
13 (2020), pp. 971-1014, https://doi.org/10.1137/19M1266332, https://doi.org/10.1137/
19M1266332, https://arxiv.org/abs/https://doi.org/10.1137/19M1266332.

. DARBON, T. MENG, AND E. RESMERITA, On Hamilton-Jacobi PDEs and Image Denoising

Models with Certain Nonadditive Noise, Journal of Mathematical Imaging and Vision, 64
(2022), p. 408-441.

. DARBON AND S. OSHER, Algorithms for overcoming the curse of dimensionality for cer-

tain Hamilton-Jacobi equations arising in control theory and elsewhere, Res Math Sci
Research in the Mathematical Sciences, 3 (2016), pp. 1-26, https://doi.org/10.1186/
$40687-016-0068-7, https://doi.org/10.1186/s40687-016-0068-7.

. DEsar, M. MATTHEAKIS, H. Joy, P. PROTOPAPAS, AND S. ROBERTS, One-shot transfer

learning of physics-informed neural networks, arXiv preprint arXiv:2110.11286, (2021).

. C. Evans AND P. E. SOUGANIDIS, Differential games and representation formulas for so-
lutions of Hamilton-Jacobi-Isaacs equations, Indiana University mathematics journal, 33
(1984), pp. 773-797.

GOODFELLOW, Y. BENGIO, AND A. COURVILLE, Deep learning, MIT press, 2016.

. Goswami, K. KonNTOLATI, M. D. SHIELDS, AND G. E. KARNIADAKIS, Deep transfer oper-

ator learning for partial differential equations under conditional shift, Nature Machine
Intelligence, (2022), pp. 1-10.

. Han, A. JENTZEN, AND W. E, Solving high-dimensional partial differential equations using

deep learning, Proceedings of the National Academy of Sciences, 115 (2018), pp. 8505-8510.
. R. HARris, K. J. MILLMAN, S. J. VAN DER WALT, R. GOMMERS, P. VIRTANEN, D. COUR-
NAPEAU, E. WIESER, J. TAYLOR, S. BERG, N. J. SMITH, ET AL., Array programming with
NumPy, Nature, 585 (2020), pp. 357-362.
. Hopr, Generalized Solutions of non-linear Equations of First Order, Journal of Mathematics
and Mechanics, 14 (1965), pp. 951-973.
. JIN AND B. SENDHOFF, Pareto-based multiobjective machine learning: An overview and case
studies, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38 (2008), pp. 397-415, https://doi.org/10.1109/TSMCC.2008.919172.
Kamrouz, H. B. McMAHAN, B. AvenNT, A. BELLET, M. BENNIS, A. N. BHAGOJI,
K. BoNawITZ, Z. CHARLES, G. CORMODE, R. CUMMINGS, ET AL., Advances and open
problems in federated learning, Foundations and Trends®) in Machine Learning, 14 (2021),
pp. 1-210.
. P. KINéMA AND J. BA, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, (2014).

. KIRKPATRICK, R. PAscaNU, N. RABINOWITZ, J. VENESS, G. DESJARDINS, A. A. Rusu, K. M1-

LAN, J. QuaN, T. RAMALHO, A. GRABSKA-BARWINSKA, ET AL., Overcoming catastrophic
forgetting in neural networks, Proceedings of the National Academy of Sciences, 114 (2017),
pp- 3521-3526.
. LECuN, Y. BENcIO, AND G. HINTON, Deep learning, Nature, 521 (2015), pp. 436-444.
. L1, A. K. SAHU, A. TALWALKAR, AND V. SMITH, Federated learning: Challenges, methods,
and future directions, IEEE Signal Processing Magazine, 37 (2020), pp. 50-60.
P. Liavas AND P. A. REGALIA, Numerical stability issues of the conventional recursive
least squares algorithm, in Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), vol. 3, IEEE,
1998, pp. 1409-1412.


https://doi.org/10.1137/130944163
https://arxiv.org/abs/https://doi.org/10.1137/130944163
https://arxiv.org/abs/https://doi.org/10.1137/130944163
https://doi.org/10.1007/s00498-022-00333-2
https://doi.org/10.1007/s00498-022-00333-2
https://doi.org/10.1007/s00498-022-00333-2
https://doi.org/10.1137/19M1266332
https://doi.org/10.1137/19M1266332
https://doi.org/10.1137/19M1266332
https://arxiv.org/abs/https://doi.org/10.1137/19M1266332
https://doi.org/10.1186/s40687-016-0068-7
https://doi.org/10.1186/s40687-016-0068-7
https://doi.org/10.1186/s40687-016-0068-7
https://doi.org/10.1109/TSMCC.2008.919172

26

32]

33]

(34]

P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

A. P. Liavas AND P. A. REGALIA, On the numerical stability and accuracy of the conven-
tional recursive least squares algorithm, IEEE Transactions on Signal Processing, 47 (1999),
pp- 88-96.

P. L. LioNns AND J.-C. ROCHET, Hopf Formula and Multitime Hamilton-Jacobi Equations,
Proceedings of the American Mathematical Society, 96 (1986), pp. 79-84, http://www.
jstor.org/stable/2045657.

S. LiuNG AND L. LJuNG, Error propagation properties of recursive least-squares adaptation
algorithms, Automatica, 21 (1985), pp. 157-167.

MATHWORKS INC., Matlab version: 9.18.0 (r2022b), 2022, https://www.mathworks.com.

W. MCENEANEY, Maz-plus methods for nonlinear control and estimation, Springer Science &
Business Media, 2006.

M. MOHRI, A. ROSTAMIZADEH, AND A. TALWALKAR, Foundations of machine learning, MIT
press, 2018.

T. NAKAMURA-ZIMMERER, Q. GONG, AND W. KANG, QRnet: optimal regulator design with
LQR-augmented neural networks, IEEE Control Syst. Lett., 5 (2021), pp. 1303-1308.

G. I. PArisl, R. KEMKER, J. L. PART, C. KANAN, AND S. WERMTER, Continual lifelong learning
with neural networks: A review, Neural networks, 113 (2019), pp. 54-71.

A. F. Psaros, X. MENG, Z. Zou, L. Guo, AND G. E. KARNIADAKIS, Uncertainty quantification
in scientific machine learning: Methods, metrics, and comparisons, Journal of Computa-
tional Physics, (2023), p. 111902.

M. Raissi, P. PERDIKARIS, AND G. KARNIADAKIS, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics, 378 (2019), pp. 686-707.

J.-C. ROCHET, The tazation principle and multi-time Hamilton-Jacobi equations, Journal of
Mathematical Economics, 14 (1985), pp. 113-128.

S. J. RUSSELL, Artificial intelligence: A modern approach, Pearson Education, Inc., 2010.

J. SIRIGNANO AND K. SPILIOPOULOS, DGM: A deep learning algorithm for solving partial dif-
ferential equations, Journal of Computational Physics, 375 (2018), pp. 1339-1364.

E. Toporov, General duality between optimal control and estimation, in 2008 47th IEEE
Conference on Decision and Control, IEEE, 2008, pp. 4286-4292.

H. L. TRENTELMAN, A. A. STOORVOGEL, AND M. HAuTUS, Control Theory for Linear Systems,
Springer-Verlag London, 2001.

G. M. VAN DE VEN AND A. S. ToLIAS, Three scenarios for continual learning, arXiv preprint
arXiv:1904.07734, (2019).

X. WAN AND G. E. KARNIADAKIS, Multi-element generalized polynomial chaos for arbitrary
probability measures, SIAM Journal on Scientific Computing, 28 (2006), pp. 901-928.

S. WEISBERG, Applied linear regression, vol. 528, John Wiley & Sons, 2005.

I. YEGOROV AND P. M. DOWER, Perspectives on characteristics based curse-of-dimensionality-
free numerical approaches for solving Hamilton—Jacobt equations, Applied Mathematics &
Optimization, (2017), pp. 1-49.

Z. ZHANG, Z. Zou, E. KuHL, AND G. E. KARNIADAKIS, Discovering a reaction-diffusion model
for Alzheimer’s disease by combining PINNs with symbolic regression, arXiv preprint
arXiv:2307.08107, (2023).

Z. Zou AND G. E. KARNIADAKIS, L-HYDRA: Multi-Head Physics-Informed Neural Networks,
arXiv preprint arXiv:2301.02152, (2023).

Z.Zou, X. MENG, A. F. PsAroS, AND G. E. KARNIADAKIS, NeuralUQ: A comprehensive library
for uncertainty quantification in neural differential equations and operators, arXiv preprint
arXiv:2208.11866, (2022).


http://www.jstor.org/stable/2045657
http://www.jstor.org/stable/2045657
https://www.mathworks.com

LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 27

Appendix A. Glossary of related terms in each problem.

Learning Problem ‘ Multi-Time HJ PDE ‘ Optimal Control ‘ Relation
minimal loss function solution value function . g y
mingepn £(6) S(x,t1,...,tn) S(x,t1,...,tn) mingegn L(6) = —S(x, 11, tn) +(x)
spatial gradient 0" = p* = VxS(x.t1,....tx);
optimal parameters 6* vxxii’;r’rﬁuer b"f”: optimal control u*(-) u’(s) € arg Ulaxucu_ml{<*fz(u)>P*> - Li(w)},
a > i i
in the Hopf formula i (ZJ:I 4> ZJ:I t]}
N=ti=1.

data fitting weights A time ¢ piecewise time horizons T .
' ' ’ Ty =33 tij heed
running cost L;(u), Li(AF(zi;-).y;) = Hi(:)

data fitting loss Hamiltonian H;(-)

Li(AF(zi:),y,) dynamics f;(u) supyepm {(—fi(n),) — Li(u)}
. initial data J(-), terminal cost J(-), (p) = J (p) — {x.p) + ((x)
regularization R(-) ) . R L. where ¢(x) is a constant (possibly 0)

spatial variable x initial position x
that may depend on x
# of learnable L . dimension of
spatial dimension n same number n
parameters n state space n
# of data points N # of times N # of time intervals N same number N
dimension of measured data m . . dimension of .
Hamiltonian H;(-) H;i(-) = supyepm {(—fi(u),-) — Li(u)}

(e.g., AF(:;0),y; € R™)

control space m

Table 7: Glossary of the mathematical relations between the quantities in the regular-
ized learning problem (2.6), the multi-time HJ PDE (2.4), and the associated optimal
control problem (2.3). These mathematical relations allow us to form our theoreti-
cal connection in Section 2.2. Note that the variables x,¢ in the HJ PDE become
hyper-parameters in the learning problem, and we can treat them as constants when
optimizing the learning problem (2.6) with respect to 8 = p.

Appendix B. A more general version of LQR. In Section 3.1, we presented
a concise overview of the LQR problem in its canonical form. However, this paper
establishes a linkage between regression problems and LQR problems with lower-order
terms. Thus, in this section, we discuss an LQR problem with lower-order terms that
more closely aligns with those used to establish our connections. We note that the
notation employed in this section differs slightly from the notation utilized in the main
body of the paper. The finite-horizon, continuous-time LQR with lower-order terms
can be expressed as follows:

b1 1
(B.1) S(x,t) = Hl(lr)l / (iw(s)TQw(s) + iu(s)TRu(s) + (s)" Nu(s)
u(: 0
1
—alu(s) - af:c(s))ds + im(t)TQfm(t) +blx(t) :
(s) = Ax(s) + Bu(s)¥s € (0,t],z(0) = x p,
where Q, Qy € R"*™ and R € R™*™ are symmetric positive definite, N' € R"*"™,

AeR"™™ BeR"™™ a, beR" and a, € R™. The corresponding HJ PDE is

0S(x,1t) B .
(B.2) - THEVXSx,1)=0 xeR"t>0,

S(x,0) = J(x) x € R",

where the initial data of the HJ PDE is given by the terminal cost J(x) := %XT Qrx+



28 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

b” x of the optimal control problem (B.1) and the Hamiltonian H is defined by
(B.3)
H(x,p) = sup (=f(x,u),p) — L(x,u)

ucR™

= —(Ax,p) — 1(x ox) + alr + 1(BTp +NTx — au,R’l(BTp +NTx — ay)),

277 x 2
where f(x,u) = Ax+ Bu is the source term of the dynamics and L(x,u) = $x7 Ox+
su’Ru +x'Nu — alu — alz is the running cost.

It is well-known that this LQR problem can be solved using the Riccati equation
as follows. Define Cp, = BR™!BT, Cp,, = -NRNT + Q, C,, = A— BRINT,
v, = ay — NR7la,, and v, = BR 'a,. Then, the solution is given by S(x,t) =
ixT P(t)x+q(t)Tx+7(t), where the function P : [0, 00) — R™ ™ which takes values in
the space of symmetric positive definite matrices, q: [0,4+00) — R™, and r: [0, +00) —
R solve the following Riccati ODE system:

P(t) = —P(t)" CppP(t) + P(t)" Cup + C1,P(t) + Cuw  t € (0, 400),

q(t) = —P( )" Copa(t) + Copa(t) — vz + P(t) vy t € (0,+00),
(B'4) 1/2/ T 2

7(t) = HR (B q(t) — au)|| t € (0,+00),

P(0) = va‘l( ) =b,7(0) = 0.
Appendix C. Details of the methodology.

C.1. Algorithm for deleting one data point. Here, we provide details for
the algorithm for deleting one data point from Section 4.2. Removing the j-th data
point corresponds to removing the term %)\j |®,;0 —y,|3 in the loss function (4.1) or,
equivalently, removing the Hamiltonian ||®;6 — y,13 from the multi-time HJ PDE
and removing the pieces L;(s,u) = 1uTu —y; and f(s,u) = fI)]Tu from the running
cost and dynamics, respectively, of the corresponding piecewise LQR problem. Hence,
numerically, we can remove the j-th data point by solving the following Riccati ODE

1) {P(t) = —P(t)TeT®,P(t) t< A,

a(t) = -PH)" el (@;a(t) —y,) t<

with terminal condition P()\;) = P (Ty) and q()\;) = q(Tw), where P (Ty) and
q (Tn) are obtained from solving the learning problem (4.1) with all N data points.
Then, the solution to the new learning problem with the j-th point removed is given
by (4.4), where P = P(0) and q = q(0) are the solution to (C.1).

C.2. Algorithm for tuning the regularization weights. Here, we provide
details for the algorithm for tuning the regularization weights from Section 4.3. We
consider the case where we change each regularization parameter 7y to 7. This change
can be regarded as two steps: first, we change all parameters «y; for the indices & such
that 45 > v, and then we change the other parameters. Define the index set IC to be
K= {k: 9% >} i

The first step is equivalent to adding the term Y, . 2252 (0 — 67)? to the loss
function (4.1). We can interpret this as adding an (N + 1)-th Hamiltonian 16", 0
with corresponding time variable ¢txyy1 = 1 to the multi-time HJ PDE, where I'} is
a diagonal matrix whose k-th diagonal element is 4 — v if £ € K and 0 otherwise.




LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 29

Therefore, the solution to this new multi-time HJ PDE can be solved by the following
Riccati equation:

(C.2) {P+<t> =P, ()TTL P (t) te(0,1),

a(t) = =P (1) Ta(t) te(0,1),

with initial condition Py (0) and q4(0), which are the corresponding solutions to the
Riccati equations before changing the weights v,k € K. In other words, we set
P,.(0) =P (Tn) and q+(0) = q(Tn), where P(Tx),q(Tn) are obtained from solving
the original learning problem (4.1) with the original values of 7.

The second step is equivalent to removing the term -, o, 257 (05 — 67)? from
the loss function (4.1). This is equivalent to solving a single-time HJ PDE with
a terminal condition at time 1 and Hamiltonian %BTI‘,B, where T'_ is a diagonal
matrix whose k-th diagonal element is v, — 7 if £ € K and 0 otherwise. Then, the
solution can be obtained by solving the following Riccati equation:

P.(t)y=—-P_t)TT_P_(t) te(0,1),
q-(t)=—-P-(t)'T_q-(t) te(0,1)

(C.3)

with terminal condition P_(1) = P;(1) and q_(1) = q4(1), where P;,q4 are ob-
tained from the solution to (C.2).

Finally, the minimizer of the new learning problem after changing all of the
weights 7 in the regularization term is given by P_ (O)f‘HO +q-(0), where P_,q_ are
obtained from the solution to (C.3) and [ is a diagonal matrix whose k-th diagonal
element is the new regularization parameter .

Appendix D. Computational complexity of the methodology. In this
section, we compare the computational complexity of our Riccati-based methodology
(using RK4) from Section 4 to that of the method of least squares.

D.1. Initial training. First, we consider solving the learning problem (4.1) with
N points, which may be considered as an initial training step with N data points.

In this case, our Riccati-based methodology requires us to solve a sequence of N
Riccati ODEs of the form (4.2). Using RK4 to solve each ODE involves computing
®T®; (recall that ®; € R™*"), which requires O(mn?) operations, and multiplying
several n x n matrices together, which requires O(n?) operations. In other words,
solving one step of Riccati ODEs (i.e., adding one data point to our training set)
requires O(mn? 4+ n3) operations. Thus, the overall computational complexity of our
Riccati-based methodology for training on N points is O(Nmn? + Nn?).

In contrast, using the method of least squares to solve (4.1) with N points involves
computing ®7 ®; for each point, which requires O(mn?) operations for each point or
O(Nmn?) operations for all N points, and then solving an n x n linear system, which
requires O(n?) operations. Thus, the overall computational complexity of the method
of least squares for training on N points is O(Nmn? + n?).

As expected, the method of least squares beats our Riccati-based methodology
in this case, but as we discussed previously, our methodology is advantageous when
changing the training set or hyper-parameters.

D.2. Continual learning. In this section, we discuss adding data points to the
training set (as in Section 4.2), where we update our learned models as soon as a new
data point becomes available (e.g., as in continual learning). We consider the initial
training set to have N points and then sequentially incorporate K more data points.



30 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

As discussed in Section D.1, adding one data point using our Riccati-based
methodology requires O(mn? +n?3) operations. Thus, the overall computational com-
plexity of using our methodology to perform the initial training and then to retrain K
times is O((N + K)mn?+ (N + K)n?). Adding the i-th data point using the method
of least squares requires O((N + i)mn? + n3) operations. Thus, the overall computa-
tional complexity of using the method of least squares to perform the initial training
and then to retrain K times is 31 O((N +i)mn?+n?) = O((K N + K2)mn?+ Kn?).

Thus, our Riccati-based methodology becomes increasingly more advantageous over
the method of least squares as the number of points added K increases.

D.3. Tuning the bias. As discussed in Section 4.3, tuning the bias 8° using
our Riccati-based methodology is accomplished via the update (4.5). This update
only involves a matrix-vector multiplication (recall that I is diagonal) and vector
addition. Thus, tuning the bias using our methodology requires O(n?) operations.
In contrast, tuning the bias using the method of least squares requires retraining
on the entire dataset. Thus, if the training set has size N, then the computational
complexity of the method of least squares in this case is O(Nmn? + n3). Hence, our
methodology is much more efficient than the method of least squares in this case.
Note that these same calculations also apply to using our methodology vs the method
of least squares to perform the first step in each iteration of PDHG (4.7), which, as
discussed previously, is equivalent to performing a change of bias.

Appendix E. Riccati ODEs and Recursive Least Squares. In Section 4.2,
we discuss adding or removing data using our Riccati-based methodology. However,
data points could also be added or removed incrementally using recursive least squares.
In this section, we discuss the connections between our Riccati-based methodology
and recursive least squares. Namely, we show that the recursive least squares method
for this problem can be considered as a special case of our Riccati-based methodology.
Note that in this section, we focus on adding data points, but the results for removing
data points can be derived similarly. For generality, we consider the more general
learning problem (3.15) in Section 3.3, and the results for the more specific learning
problem in Section 4.2 can be recovered using the identifications listed in Section 4.1.

The analytical solution to the Riccati ODEs (3.12), (3.13) is given by

N —1
Py = (Qfl + ZtiBiRilBiT> )

i=1

N -1 N
av = <Qf1 +Y tiBR; "B ) (Qf1b+2tiBiRilai>,
i=1 1=1
where Py = P (vazl ti) and qy = q (Zivzl ti). Then, using the Woodbury matrix

identity, the recursive least squares solution is given by
(E.1)

—1
Py =Pn_1—tnPv_1By (Ry +tnByPyv_1Bn) ~ By Pn_1,

_ -1
av =dqn-1 +tnPyByRy'an —tnPyv_1By (Ry +tnByPyv-1Bn)  Bhan-i.

PROPOSITION E.1. The recursive least squares solution (E.1) is a discretization
of the Riccati ODEs (3.12), (3.13).



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 31

Proof. We begin by proving the result for P. Let P(:) be the solution to the
Riccati ODEs. Then P(s) is invertible for all s € {0, Zf\il tz}, which gives us that

dlzs_l = —P~14E p=1 Plugging this identity into (3.12), we have that

dP~1(s)
ds
The solution to this ODE is given by

(E.2) = BR;'Bf se[l;1,T;), P '(0)=9Q;"

P (s)=Q; '+ Y t;B/R;'B] + (s — T,.1)BiR; ‘Bl Vs € [T;_1,T}),i =0,...,N.

Jj=1

If we only consider the values of P~1(s) at the discrete times s = Tp, T, . .., T, then
this solution can be defined recursively as

PNT;,) = P"Y(T;—1) + ;B;R; ' B,
or, in other words, we have that
P(T;) = (P YTi1) + ; B/R; ' B~

By applying the Woodbury matrix identity, we recover the recursive least squares
solution for P in (E.1). Next, we prove the result for q. Consider
d(P~'q)
ds

dP—1! dq dq
= P'—==BR;'Blq+P '— =BR;a
(s) = ——a+ P = =BR; Bia+ P = =BR; a;

for s € [T;_1,T;) and with initial condition (P~1q)(0) = —Q;lb, where the second
equality follows from (E.2) and the third equality follows from multiplying (3.13) by
P! on the left. Then, the solution to this ODE gives us that

a(s) = P(s)P~H(Ti-1)a(Ti-1) + (s = Ti-1) P(s) B/R; '@, ¥s € [T;-1,T7),i = 0,..., N,

which defines q(s) recursively. If we only consider the values of q(s) at the discrete
times s = Ty, 11, ..., T, then using this recursive definition of q simplifies to

a(T;) = P(T;) (P~ (Ti—)a(Ti—1) + :BiR; 'a;) .

Finally, applying the recursive least squares solution for P(T;) in (E.1) to the definition
of q(T;) above gives us the recursive least squares solution for q in (E.1). O

Thus, we have shown that the recursive least squares solution represents a special
case (in the form of a discretization) of the Riccati ODEs, and hence, we may regard
the recursive least squares update (E.1) as an alternative method for solving the
Riccati ODEs (3.12), (3.13), if we only care about the solution at the discrete times s =
Ty, ..., Tn. For instance, in Section 5.3, we show how using more general numerical
methods like RK4 naturally expose 1D curves along the Pareto front of solutions,
which aligns with the Riccati ODEs as a continuous formulation; in contrast, the
discretization used by the recursive least squares update would only allow for discrete
points on the Pareto front. Moreover, we note that there are some cases in which
recursive least squares is known to be numerically unstable [34, 31, 32], whereas
Runge-Kutta methods have well-established stability and accuracy results [6].



32 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

Appendix F. Additional results for example 2. In Section 5.2, we consider
a 1D steady-state reaction-diffusion equation (5.2) and discuss three different types of
post-training calibrations: adding new data points to compensate for a lack of knowl-
edge in the regular training, enforcing the fitting of some data points by increasing
the weights A; of their respective terms in the loss function (5.3), and removing some
data points so that their effects are eliminated. In this section, we present the re-
sults for the last case and then provide a large-scale continual learning example for
solving (5.2). In Figure 9, we remove two outliers one-by-one and observe that their
removal does successfully increase the accuracy of the learned model. Again, using
our Riccati-based approach, the removal of these points is done using only knowledge
about the point to be removed and the results of the previous training step.

Regular training Calibration by deleting one measurement of f Further calibration by deleting another measurement of f
s st

4 \ /
IV

al F
0 o1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1

Regular training Calibration by deleting one measurement of f Further calibration by deleting another measurement of f

N\

0 o1 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 08 1
x z r

(b)

Fig. 9: Results of solving the 1D steady-state reaction-diffusion equation (5.2) with
noisy measurements of the source term f in the domain and noiseless measurements
of the solution u on the boundary. (a) results for f; (b) results for u. Left: results
of regular training using our Riccati-based method in Section 4.1; middle and right:
calibrating the results of regular training by eliminating two outlier measurements of
f using the methodology described in Section 4.2. Calibrations are employed without
re-training or access to the data from the previous training.

Next, we provide a large-scale continual learning example for solving the 1D
steady-state reaction-diffusion equation (5.2). Similar to Section 5.1, the measure-
ments of the source term f are corrupted by additive Gaussian noise with a relatively
large noise scale. Hence, we need a large amount of data to solve (5.2) accurately.
We again follow the continual learning setup and assume that the measurements of
f must be accessed in a stream, such that the historical data is not available after it
is incorporated into our learned model. Specifically, each new data point of f comes
from uniformly randomly sampling a point « € [0, 1] and is corrupted by additive
Gaussian noise with noise scale two. The same basis functions and loss function listed
in Section 5.2 are used in this case. The results are presented in Figure 10 and Table 8.



LEVERAGING MULTI-TIME HJ PDES FOR CERTAIN SCIML PROBLEMS 33

N =100 | N =1000 | N = 50000
Error of u 72.59% 22.55% 1.76%
Error of f 89.65% 29.76% 3.35%

Table 8: Errors of v and f when solving the 1D steady-state reaction-diffusion equa-
tion (5.2) with different numbers N of noisy measurements of f using our Riccati-
based approach. The errors represent the relative L? errors on a uniform grid of [0, 1].
New measurements are incorporated following the continual learning framework, and,
using our Riccati-based methodology, incorporating new data points does not require
retraining on or access to any of the previous data points. Qualitative results can be
found in Figure 10.

The 100™* data point of f is available The 1000** data point of f is available The 50000 data point of f is available
Historical data (inactive)
# Data (active)
Exact

~ = Inference
7

"o 01 02 03 04 05 06 07 08 09 1 O 01 02 03 04 05 06 07 08 09 1 O 01 02 03 04 05 06 07 08 09 1

(a)

The 100" data point of f is available The 1000 data point of f is available The 50000 data point of f is available

0 01 02 03 04 05 06 07 08 09 1 O 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1

(b)

Fig. 10: Continual learning of the source term f and solution u to the 1D steady-state
reaction-diffusion equation (5.2) our Riccati-based approach as more data becomes
available. Measurements of the source term f are corrupted by additive Gaussian noise
with noise scale two. Our Riccati-based approach allows us to incrementally update
the learned coefficients as more data becomes available without requiring access to
the previous data or re-training on the entire dataset, which provides advantages in
both memory and computations over conventional learning methods.

We observe that the accuracy of our inferences of u and f is improved continuously as
new measurements of f are incorporated. This process does not require storage or use
of historical data, which again highlights the computational and memory advantages
of our Riccati-based approach.

Appendix G. Details of the hyper-parameters in the numerical exam-
ples. In this section, we include additional details of the numerical examples from
Section 5. Recall that RK4 is used to numerically solve the associated Riccati ODEs.
The step size of RK4, denoted as h, is chosen based on three principles: high accu-



34 P. CHEN, T. MENG, Z. ZOU, J. DARBON, G.E. KARNIADAKIS

racy, efficient computations, and avoiding computational overflow. Unless otherwise
stated, we use Python, the NumPy library [23], the TensorFlow library [1], and double
precision in all of the numerical examples.

In the first example (Section 5.1), \; = 1,Vi, % = 0.1, Vk, and the step size h of
RKA4 is set to be 0.001,0.0005,0.0001. A uniform grid with size 1001 on [0, 10] is used
for evaluation (computing relative L? error). In the second example (Section 5.2), we
change A\, from 1 to 10 and the rest of the hyper-parameters remain the same as the
regular training. The time step of RK4 is h = 0.0001. A uniform grid with size 257 on
[0,1] is used for evaluation. In the third example (Section 5.3), the multi-head PINN
used to obtain the basis functions has three hidden layers, each of which is equipped
with hyperbolic tangent activation functions and 100 neurons. The multi-head PINN
is trained with the Adam optimizer [27], where the learning rate is 1 x 1073 and
the other hyperparameters are set to their default TensorFlow values. The training
data for f are evaluated on a 33 x 33 uniform grid on [0,1]? and the inference of
u is evaluated on a 257 x 257 uniform grid. The results of the regular training are
obtained using \; = 1,Vi, 7, = 1,Vk, and h = 0.001. When tuning v and visualizing
the Pareto front, we use the values of v and the step size h of RK4 listed in Table 9.
In the last example (Section 5.4), we set \; = 1,Vi, 7, = 0.1,Vk, and h = 0.001.
In our implementation of the PDHG method, we set 09 = 0, = 0.5. The solution
x1,T9, 23 of the system identified is evaluated on a uniform grid of 10001 on [0, 10].

y[1—=10T]10T-102[10%2—=103]103—=10%]10%—=10"°
h 10—2 1073 10~4 106 10=7

Table 9: Step size h of RK4 when tuning ~ in the hyper-parameter tuning/Pareto
front visualization example in Section 5.3. 79 — 71 represents the case when tuning
v from g to 1.



	Introduction
	Generalized Hopf formula
	Introduction to the Hopf formula
	Connection between the Hopf formula and learning problems

	Linear Quadratic Regulator
	Introduction to the Linear Quadratic Regulator and Riccati equation
	Connection to single-point regularized linear regression problems
	Connection to multi-point regularized linear regression problems

	Methodology
	Solving the regularized linear regression problem using Riccati ODEs
	Adding or removing data
	Hyper-parameter tuning
	General convex regularization functions

	Numerical examples
	Function approximation in continual learning
	1D steady-state reaction-diffusion equation and post-training calibration
	Poisson equation using PINNs and transfer learning
	Identifying the dynamics of the Kraichnan-Orszag system from data

	Summary
	References
	Appendix A. Glossary of related terms in each problem
	Appendix B. A more general version of LQR
	Appendix C. Details of the methodology
	Algorithm for deleting one data point
	Algorithm for tuning the regularization weights

	Appendix D. Computational complexity of the methodology
	Initial training
	Continual learning
	Tuning the bias

	Appendix E. Riccati ODEs and Recursive Least Squares
	Appendix F. Additional results for example 2
	Appendix G. Details of the hyper-parameters in the numerical examples

