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Abstract. We define the k-cut complex of a graph G with vertex set V (G) to be the simplicial complex

whose facets are the complements of sets of size k in V (G) inducing disconnected subgraphs of G. This
generalizes the Alexander dual of a graph complex studied by Fröberg (1990), and Eagon and Reiner (1998).

We describe the effect of various graph operations on the cut complex, and study its shellability, homotopy

type and homology for various families of graphs, including trees, cycles, complete multipartite graphs, and
the prism Kn ×K2, using techniques from algebraic topology, discrete Morse theory and equivariant poset

topology.

1. Introduction

This paper, a companion to [2], deals with a class of graph complexes. In recent years there has been much
interest in the topology of simplicial complexes associated with graphs. A major contribution to this subject
is the book [17] by Jonsson, who considers simplicial complexes defined on edge sets of graphs. Simplicial
complexes defined on vertex sets of graphs include clique complexes (see, e.g., [15]), independence complexes
(see, e.g., [24]), neighborhood complexes (see, e.g., [22]), and dominance complexes (see, e.g., [23]). In this
paper we introduce a new family of simplicial complexes associated to the vertex set of a graph, which we
call cut complexes. We consider only simple graphs. Our work is motivated by a famous theorem of Ralf
Fröberg [13] connecting commutative algebra and graph theory through topology. We investigate our new
complexes in the spirit of Fröberg’s theorem, relating topological properties of the cut complex to structural
properties of the graph.

For a field K and a finite simplicial complex ∆ with vertex set [n] = {1, 2, . . . , n}, the Stanley–Reisner
ideal of ∆ is the ideal I∆ of the polynomial ring K[x1, . . . , xn] generated by the monomials xi1 · · ·xik running
over the inclusion-minimal subsets {i1, . . . , ik} of [n] that are NOT faces of ∆. The Stanley–Reisner ring
K[∆] is the quotient of the polynomial ring K[x1, . . . , xn] by the ideal I∆.

For a graph G, the clique complex ∆(G) is the simplicial complex whose simplices are subsets of vertices
of G, in which every pair of vertices is connected by an edge of G. Fröberg [13] characterized monomial
ideals that have a 2-linear resolution, by first reducing to the case of square-free monomial ideals. The ideal
I∆ is generated by quadratic square-free monomials precisely when the simplicial complex ∆ is ∆(G) for
some graph G (see [12, Proposition 8]). Hence Fröberg’s theorem can be stated as follows:

Theorem 1.1 (Fröberg [13], [12, p. 274]). A Stanley–Reisner ideal I∆ generated by quadratic square-free
monomials has a 2-linear resolution if and only if ∆ is the clique complex ∆(G) of a chordal graph G.

Define the combinatorial Alexander dual of a simplicial complex ∆ [9, p.188] on n vertices to be

∆∨ := {F ⊂ [n] : [n] \ F /∈ ∆}.

The ith homology of ∆ and the (n− i− 3)th cohomology of ∆∨ are isomorphic by Alexander duality in the
sphere Sn−2.

For a graph G, write ∆2(G) for the Alexander dual ∆(G)∨ of the clique complex ∆(G). The facets of
∆2(G) are the complements of independent sets of size 2 in G.

Eagon and Reiner’s reformulation [12, Proposition 8] of Fröberg’s theorem includes the following equiva-
lences.
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Theorem 1.2. The graph G is chordal ⇐⇒ ∆2(G) is shellable ⇐⇒ ∆2(G) is vertex decomposable.

Fröberg’s Theorem deals with ideals generated by monomials of degree two. Consideration of higher
degree monomials leads us to the following generalization of the simplicial complex ∆2(G). Let k ≥ 1.
Define a complex whose facets are complements of sets F of size k in G such that the induced subgraph of
G on the vertex set F is disconnected; we call this the k-cut complex of G, and denote it by ∆k(G). This
complex was first introduced in [10]. A different generalization, the total k-cut complex ∆t

k(G), is treated
in [2]. The two notions coincide for k = 2.

The paper is organized as follows. In Sections 2 and 3, we collect basic definitions and background facts
about simplicial complexes and posets. We begin Section 4 with a construction in Theorem 4.1, showing
that any pure simplicial complex can be realized as the k-cut complex of some graph G, which is in fact
chordal. We examine the topology of the cut complex ∆k(G) in Sections 4 and 5, and consider the effect
of properties of the graph G, and graph constructions such as join and disjoint union. For example, in
analogy with Fröberg’s theorem, Corollary 5.3 asserts that graph chordality implies shellability of the 3-cut
complex ∆3. This result is the best possible: we show that for any k ≥ 4, there is a chordal graph G whose
k-cut complex is not shellable, and is minimal with respect to this property. Section 6 describes the face
lattice of the cut complex, from which we can deduce information about its homology and compute the Euler
characteristic. We also determine completely the homotopy type of ∆2(G) for connected triangle-free graphs
G; see Theorem 6.4. In Section 7 we show that for many common families of graphs, the homotopy type
of ∆k(G) is a wedge of spheres in a single dimension. Often there is a simplicial group action on the cut
complex ∆k(G), which in turn acts on the rational homology. This homology representation is particularly
interesting in the case of complete multipartite graphs; see Section 7.1.

Table 1 summarizes our results for various families of graphs.

Table 1. k-cut complexes for different graphs

Graph Shellable? Homotopy type and Betti numbers Equivariant homology

Complete bipartite, Km,n
Theorem 7.1:

Yes if and only if m < k
Theorem 7.4 Theorem 7.4

Complete multipartite, Km1,...,mr

Theorem 7.6:
Yes if and only if mr−1 < k

Theorems 7.8 & 7.9 Theorems 7.8 & 7.9

Cycle, Cn
Theorem 7.11:
Yes if k ≥ 3

Proposition 7.10 (k = 2),
Proposition 7.13 (k ≥ 3)

Theorem 7.15

Squared cycle, Wn
Proposition 7.27:
No if k = n− 4

Proposition 7.22 (k = 2),
Proposition 7.27 (k = n− 4)

Proposition 7.29
(k = 2 and k = n− 4)

Prism over clique, Kn ×K2
Theorem 7.18:

Yes if and only if k > n (void complex)
Theorem 7.18 (k ≤ n)

Tree
Corollary 4.21:
Yes for all k ≥ 2

Proposition 7.12

Threshold graph
Corollary 4.14:
Yes for all k ≥ 2

Connected & triangle-free
Fröberg’s theorem (Theorem 1.2)

No for k = 2, except trees
Theorem 6.4 (k = 2)
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2. Definitions

General references for simplicial complexes, shellability and related concepts are [3], [18], [29, Chapter II,
Chapter III, Section 2] and [36], and [37] for graph theory. All graphs in this paper are simple (no loops and
no multiple edges) and finite.

Definition 2.1. A simplicial complex ∆ is a collection of subsets such that

σ ∈ ∆ and τ ⊆ σ ⇒ τ ∈ ∆.

The elements of ∆ are called its faces or simplices. If the collection of subsets is empty, i.e., ∆ has no faces,
we call ∆ the void complex. Otherwise ∆ always contains the empty set as a face.

The dimension of a face σ, dim(σ), is one less than its cardinality; thus the dimension of the empty face is
(−1), and the 0-dimensional faces are the vertices of ∆. A d-face or d-simplex is a face of dimension d. The
maximal faces of ∆ are called its facets, and the maximum dimension of a facet is the dimension dim(∆) of
the simplicial complex ∆. The dimension of the void complex is defined to be −∞ (see [18]).

A (nonvoid) simplicial complex is pure if all its facets have the same dimension, which is then the dimension
of the complex. We write ∆ = ⟨F⟩ to denote the simplicial complex ∆ whose set of facets is F . In this
paper all simplicial complexes will be finite, i.e., the vertex set is finite.

We will be using the following constructions.

Definition 2.2 ([18]). Let ∆ be a simplicial complex and σ a face of ∆.

• The link of σ in ∆ is lk∆ σ := {τ ∈ ∆ : σ ∩ τ = ∅, and σ ∪ τ ∈ ∆}.
• The (closed) star of σ in ∆ is st∆ σ := {τ ∈ ∆ : σ ∪ τ ∈ ∆}.
• The deletion of σ in ∆ is del∆ σ := {τ ∈ ∆ : σ ̸⊆ τ}.

(Note that in the deletion, we are not removing proper faces of σ.)
Thus lk∆(∅) = st∆(∅) = ∆, and del∆(∅) is the void complex.
For v a vertex of ∆, we also have the following useful facts (see [18]):

(1) ∆ = st∆(v) ∪ del∆(v) and lk∆(v) = st∆(v) ∩ del∆(v).

Definition 2.3 ([29, Chapter III, Section 2], [3, Section 11.2]). An ordering F1, F2, . . . , Ft of the facets of a
simplicial complex ∆ is a shelling if, for every j with 1 < j ≤ t,(

j−1⋃
i=1

⟨Fi⟩

)
∩ ⟨Fj⟩

is a simplicial complex whose facets all have cardinality |Fj | − 1, where ⟨Fi⟩ is the simplex generated by the
face Fi.

Equivalently, an ordering F1, F2, . . . , Ft of the facets of ∆ is a shelling if and only if for all i, j such that
1 ≤ i < j ≤ t, there exists k < j such that

Fi ∩ Fj ⊂ Fk ∩ Fj and |Fk ∩ Fj | = |Fj | − 1.

If the simplicial complex ∆ has a shelling, it is called shellable.

In combinatorial topology, shellability is an important tool for determining the homotopy type of simplicial
complexes, thanks to the following theorem of Björner.

Theorem 2.4 ([5, Theorem 1.3]). A pure shellable simplicial complex of dimension d has the homotopy type
of a wedge of spheres, all of dimension d. The complex is contractible if there are no spheres in the wedge.

Figure 3 depicts a triangulation of the Möbius strip, a 2-dimensional surface which is homotopy equivalent
to a one-dimensional circle. Thus the triangulation, a pure 2-dimensional complex, is not shellable.

Remark 2.5. By convention, the void complex is shellable. The complex whose only face is the empty
set is vacuously shellable. The complex with a unique nonempty facet (i.e., a simplex) is shellable, and
contractible.
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Definition 2.6. Let G = (V,E) be a graph on |V | = n vertices. If S is a subset of the vertex set V , we
write G[S] to denote the induced subgraph of G whose vertex set is S.

For k ≥ 2 define Dk(G) := {S ⊆ V : G[S] is disconnected and |S| = k}. We call the elements of Dk(G)
disconnected k-sets of G, and the complements of elements of Dk(G) separating (n − k)-sets of G. When
k = 1, we define D1(G) to be the empty set.

See Figure 1.

1 2

34

5

6

(a) F = {2, 3, 4}

1

5

6

(b) G \ F

Figure 1. Example of a separating set

Definition 2.7. Let G = (V,E) be a graph on |V | = n vertices, and let k ≥ 1. Define the k-cut complex of
the graph G to be the simplicial complex

∆k(G) := ⟨F ⊆ V | V \ F ∈ Dk(G)⟩.
The facets of the cut complex ∆k(G) are the separating sets of G of size (n − k). Thus the cut complex
∆k(G) (if not void) has dimension n− k− 1. Equivalently, σ is a face of the cut complex ∆k(G) if and only
if its complement V \ σ contains a subset S of size k such that the induced subgraph G[S] is disconnected.
Note the following inclusion, when k ≥ 2:

(2) ∆k+1(G) ⊆ ∆k(G),

and the fact that the vertices of ∆k(G) may be a proper subset of the vertices of the graph G. See Figure 2
and Figure 6 for contrasting examples.

3

1

4

2

5

(a) The graph G has 3 separating 3-sets:
{1, 2, 4}, {1, 4, 5} and {2, 3, 4}

5

1

4

2

3

(b) The cut complex ∆2(G) = ⟨234, 145, 124⟩

Figure 2. 2-cut complex of graph G

Example 2.8. Let G be a graph on n vertices. We record some easy facts about cut complexes.

(1) ∆k(G) is void if k = 1 or k > n.

(2) ∆n(G) is

{
the void complex, if G is connected,

the (−1)-dimensional complex {∅}, otherwise.

(3) ∆k(G) is void for k ≥ n−r+1 if G is r-connected: at least r vertices must be removed to disconnect
the graph, so n− k ≤ r − 1.

(4) If G is the complete graph Kn, then ∆k(G) is void for all k ≥ 1.
(5) If G is the edgeless graph, then for 2 ≤ k ≤ n− 1, ∆k(G) is the (n− k − 1)-skeleton of an (n− 1)-

dimensional simplex.

Definition 2.9 ([37]). A graph is chordal if it contains no induced cycle of size greater than 3.
4



Recall Eagon–Reiner’s reformulation of Fröberg’s theorem from the Introduction (Theorem 1.2) that
∆2(G) is shellable if and only if G is chordal. This is illustrated in Figures 2 and 3. Figure 2 shows a
chordal graph and its shellable 2-cut complex, whereas Figure 3 is an example of a non-chordal graph, with
nonshellable 2-cut complex.

1

2

34

5

(a) The cycle C5

5

2

4

1

3

5

2

(b) ∆2(C5) = ⟨245, 124, 134, 135, 235⟩

Figure 3. The 2-cut complex for C5 is a Möbius strip

3. Background from topology

The following facts are taken from [3] and [18]. Note that in this paper we assume a nonvoid simplicial
complex always contains the empty set as a face.

Definition 3.1 ([3, Section 9]). The join of two simplicial complexes ∆1 and ∆2 with disjoint vertex sets
is the complex

∆1 ∗∆2 := {σ ∪ τ : σ ∈ ∆1, τ ∈ ∆2}.
Thus the join ∆1 ∗∆2 contains ∆1 and ∆2 as subcomplexes.

The cone over ∆ and the suspension of ∆ are the complexes

cone(∆) := ∆ ∗ Γ1, susp(∆) := ∆ ∗ Γ2 = ∆ ∗ {u} ∪∆ ∗ {v},
where Γ1 is the 0-dimensional simplicial complex with one vertex, and Γ2 is the 0-dimensional complex with
two vertices u, v.

Let Sd−1 = {x ∈ Rd : ||x|| = 1} and Bd = {x ∈ Rd : ||x|| ≤ 1} denote respectively the (d− 1)-sphere and
the d-ball. Then

S−1 = ∅, S0 = {two points}, B0 = {point}.
Furthermore, we have the following homeomorphism for spheres under the join operation:

(3) Sm ∗ Sn ∼= Sm+n+1.

We will consider reduced simplicial homology [14] over the integers Z, or, for representation-theoretic

purposes, over the rationals Q, writing H̃i(∆) for the ith reduced homology of the simplicial complex ∆. We

record the following facts: H̃i(∅) is nonzero if and only if i = −1, in which case it is free of rank one. If ∆ is

nonvoid, H̃i(∆) is nonzero only when 0 ≤ i ≤ dim(∆), and the reduced homology H̃0(∆) is free of rank one
less than the number of connected components of ∆.

Theorem 3.2 ([14], [3, Eqn (9.12)]). Let ∆1 and ∆2 be finite complexes. Assume at least one of H̃p(∆1),

H̃q(∆2) over Z is torsion-free when p+ q = r − 1. Then the reduced homology of the join ∆1 ∗∆2 in degree
r is given by

H̃r(∆1 ∗∆2) ∼=
⊕

p+q=r−1

(
H̃p(∆1)⊗ H̃q(∆2)

)
.

In particular, when the appropriate homology groups are torsion-free, the Künneth Theorem confirms the
well-known group isomorphism

(4) H̃r(susp(∆)) ∼= H̃r−1(∆).
5



Also note that if ∆1 has the homotopy type of a wedge of βp spheres of dimension p, and ∆2 has the
homotopy type of a wedge of βq spheres of dimension q, then the join ∆1 ∗∆2 has the homotopy type of a
wedge of (βpβq) spheres of dimension p+ q + 1.

Definition 3.3 ([29, 30]). Let ∆ be a finite simplicial complex of dimension d, and let

βi := rank H̃i(∆,Z) = dimQ H̃i(∆,Q), i ≥ −1.

The βi are the (reduced) Betti numbers of ∆. Let fi be the number of i-dimensional faces of the d-
dimensional complex ∆. Then (f0, f1, . . . fd) is the f -vector of ∆. The Euler characteristic of ∆ is defined
to be

∑
i≥0(−1)ifi. The reduced Euler characteristic µ(∆) of ∆ is defined to be one less than the Euler

characteristic:

µ(∆) =

(∑
i≥0

(−1)ifi
)
− 1.

Letting f−1 = 1 for the empty face, we have the reduced Euler-Poincaré formula

µ(∆) =
∑
i≥−1

(−1)ifi =
∑
i≥−1

(−1)iβi.

3.1. Poset Topology. In order to determine the homotopy type of a simplicial complex ∆, and in particular
the group representation on the rational homology, it is often helpful to work with the face lattice L(∆) of
∆. We recall some notions about posets and poset topology. See [3], [36] for more details.

A poset Q is bounded if it has a unique maximal element 1̂ and a unique minimal element 0̂. Let Q̄
denote the proper part Q\{0̂, 1̂} of a bounded poset Q. By the order complex of Q, we will always mean the
simplicial complex, denoted ∆(Q̄), of chains in the proper part Q̄ of Q. Let Q1 and Q2 be bounded posets.
It is well known ([3], [36]) that one has the homotopy equivalence

(5) ∆(Q1 ×Q2) ≃ susp
(
∆(Q̄1) ∗∆(Q̄2)

)
≃ S0 ∗∆(Q̄1) ∗∆(Q̄2).

In particular, if the order complex of Qi has the homotopy type of a wedge of qi spheres of dimension di,
i = 1, 2, then the order complex of Q1 ×Q2 is a wedge of q1q2 spheres of dimension d1 + d2 + 2.

Equation (5) generalizes inductively to an r-fold product of bounded posets Qi, i = 1, . . . , r, r ≥ 2, and
we record this homotopy equivalence for later use:

(6) ∆(Q1 × · · · ×Qr) ≃ Sr−2 ∗
(
∆(Q̄1) ∗ · · · ∗∆(Q̄r)

)
.

Recall that the face lattice of a simplicial complex ∆ is the poset of faces ordered by inclusion, with the
empty face as the unique bottom element, and an artificially appended top element. This makes the face
lattice L(∆) of a finite simplicial complex ∆ into a bounded poset. Its proper part is the poset consisting of
the nonempty faces of ∆. The order complex of the proper part of the face lattice L(∆) is the barycentric
subdivision of ∆, and hence is homeomorphic to ∆, and therefore has the same homotopy type. See, e.g.,
[3, Section 9.3]. When G is a finite group with a simplicial action on ∆, the representation on the rational
homology of ∆ coincides with the representation on the homology of the face lattice.

Let Bp denote the Boolean lattice of subsets of a set with p elements, and let P (p, k) = B≤p−k
p ∪{1̂} denote

the truncated Boolean lattice, i.e., the subposet of Bp consisting of subsets with at most p−k elements, with

an artificially appended top element 1̂. (This makes P (p, k) a bounded poset with unique top and bottom
elements.) Note that Bp is the face lattice of the boundary of a (p− 1)-simplex, and P (p, k), 0 ≤ k ≤ p− 1,
is the face lattice of the (p − k − 1)-skeleton of a (p − 1)-simplex. The poset P (p, k) is an example of a
rank-selected subposet, and there is a large literature on the topic of rank-selection in posets and group
actions [28], [36].

It is a well-known fact that the poset P (p, k) is lexicographically shellable ([4], [6]), with Möbius number(
n−1
k−1

)
, and hence its order complex is Cohen–Macaulay, and is homotopy equivalent to a wedge of

(
p−1
k−1

)
spheres of dimension p− k − 1. The homotopy type follows from the fact that the order complex of P (p, k)
is the barycentric subdivision of the (p− k − 1)-skeleton of a (p− 1)-simplex, and the latter is shellable by
[7, Theorem 2.9]. See also [6, Corollary 4.4, Theorem 8.1].

Our main tools from poset topology for determining homotopy type are as follows:
6



Theorem 3.4 (Quillen fiber lemma [26], [18, Theorem 15.28], [36, Theorem 5.2.1]). Let P and Q be bounded
posets and f : P̄ → Q̄ a poset map. If for all q ∈ Q̄, the order complex of the fiber f−1

≤ (q) := {p ∈ P̄ :

f(p) ≤ q} is contractible, then the map f induces a homotopy equivalence of order complexes ∆(P̄ ) ≃ ∆(Q̄).
Furthermore, if G is a finite group of automorphisms of P and Q, and the poset map f commutes with the
action of G, then the homotopy equivalence is group equivariant and hence induces a G-module isomorphism
in rational homology.

Recall (see [30]) that the reduced Euler characteristic of a simplicial complex coincides with the Möbius
number of its face lattice. The following result of Baclawski will be useful.

Theorem 3.5 ([1, Lemma 4.6], [30, Lemma 3.16.4]). If P is a bounded poset and Q is a subposet of P

containing 0̂, 1̂, then

µ(Q)− µ(P ) =
∑

0̂<x1<x2<···<xk<1̂
k≥1,xi /∈Q

(−1)kµP (0̂, x1)µP (x1, x2) . . . µP (xk, 1̂),

where the sum runs over all nonempty chains with elements not in Q. Here µP denotes the Möbius function
of the poset P .

When Q is a subposet obtained from P by removing an antichain A, this simplifies to

(7) µ(Q)− µ(P ) =
∑

0̂<x<1̂
x∈A

(−1)µP (0̂, x)µP (x, 1̂).

Finally, given a graph G on n vertices, and k such that the cut complex ∆k(G) is nonvoid, we have the
inclusion of posets

(8) L(∆k(G)) ⊆ P (n, k) = B≤n−k
n ∪ {1̂}.

We now immediately obtain our first nontrivial homotopy result for a cut complex.

Proposition 3.6. Let G be the edgeless graph with n vertices. If k ≥ n, the cut complex ∆k(G) is void. If
2 ≤ k ≤ n− 1, then ∆k(G) is shellable and

∆k(G) ≃
∨
(n−1
k−1)

Sn−k−1.

Proof. If the cut complex ∆k(G) is nonvoid, then 2 ≤ k ≤ n − 1 and Example 2.8, Part (5) tells us that it
is the (n − k − 1)-skeleton of an (n − 1)-simplex, hence shellable by [7, Theorem 2.9]. The homotopy type
and Betti number were given in the discussion above Theorem 3.4. □

In many cases, for example, when every vertex of the graph G is a vertex of the cut complex ∆k(G),
the automorphism group of G induces a simplicial action (one that sends simplices to simplices) on the cut
complex ∆k(G), and hence in turn acts on the rational homology. In subsequent sections, we will use the
face lattice of the cut complex to determine this homology representation.

Finally we will make use of the following.

Proposition 3.7 ([35, Chapter 21, (21.3)], [2, Proposition 2.7]). Let X be a topological space with subspaces
A,B ⊆ X such that X = A ∪ B, A ∩ B ̸= ∅, and A,B are both closed subspaces or both open subspaces.
Then the quotient map A/(A ∩B)→ X/B of the inclusion A ↪→ X is a homeomorphism.

Proposition 3.8 ([14, Proposition 0.17, Example 0.14]). Let (X,A) be a CW pair consisting of a CW
complex X and a subcomplex A.

(1) If the subcomplex A is contractible, then the quotient map X → X/A is a homotopy equivalence.
(2) If A is contractible in the complex X, then there is a homotopy equivalence

X/A ≃ X ∨ susp(A).

4. Constructive Theorems

In this section we consider the effect of some common graph operations on the cut complex. We begin
with the following universality property.
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4.1. Any simplicial complex is a cut complex.

Theorem 4.1 (Natalie Behague). Let ∆ be any pure simplicial complex. There exists some k and some
chordal graph G such that ∆ is equal to the cut complex ∆k(G).

Proof. The idea of the construction is as follows: start with a clique whose vertices correspond to the vertex
set of the complex ∆. For each facet of ∆, add a vertex that is connected to every vertex of that facet. If
n is the number of vertices of ∆, t is the number of facets of ∆ and d is the dimension of ∆, the resulting
graph G has (n+ t) vertices, and our claim is that ∆n+t−(d+1)(G) = ∆. Figure 4 illustrates the procedure.

F1

F2

F3

F4

1

2 3

4

5

(a) A pure simplicial complex ∆

f1

f2

f3

f4

1

2

34

5

(b) A graph G such that ∆ = ∆6(G)

Figure 4. The construction of Theorem 4.1

Let the vertices of ∆ be labelled v1, v2, . . . , vn and let F = {F1, F2, . . . , Ft} be the set of facets of ∆. First
assume t > 1.

Let the vertex set of G consist of n + t vertices labelled u1, u2, . . . , un, f1, f2, . . . , ft. We define the edge
set as follows: uiuj is an edge for all 1 ≤ i, j ≤ n, and for all 1 ≤ i ≤ n, 1 ≤ j ≤ t, we have that uifj is an
edge if and only if vertex vi is contained in facet Fj of ∆.

Let k = n + t − (d + 1). Consider the separating sets of G of size d + 1 = n + t − k. Since each fj has
degree d+ 1, the neighbourhood Γ(fj) is a separating set of size d+ 1 for each 1 ≤ j ≤ t.

In fact, these are the only separating sets of size d+1. Suppose S is a set not containing Γ(fj) for any j.
Given any x, y ̸∈ S, either x = ui for some i or x is adjacent to some ui ̸∈ S. Similarly, either y = uj or y is
adjacent to some uj ̸∈ S. Then either ui = uj or uiuj is an edge, and either way we have a path from x to
y using only vertices outside the set S. Thus S cannot be separating.

The facets of the cut complex ∆k(G) are Γ(fj) = {ui : vi ∈ Fj} for 1 ≤ j ≤ t. The vertices fj are
not in any facets and so the complex ∆k(G) has vertex set {u1, u2, . . . , un}. Identifying ui with vi for each
1 ≤ i ≤ n makes it immediately clear that ∆k(G) = ∆.

Note that if t = 1, then n+ t− (d+ 1) = 1, and we cannot identify ∆ as ∆1(G). In this case n = d+ 1.
If n = 1, then ∆ can be realized as the cut complex ∆m(H) of the star graph K1,m for any m ≥ 2. The

center of the star constitutes the unique separating set of size 1, provided m is at least 2.
If n = d + 1 ≥ 2, then ∆ = {v1, . . . , vn} is a d-simplex, and the above construction for t > 1 is modified

by taking the graph G to be the complete graph on n vertices, and then adding n additional vertices fj ,
each of which is adjacent to each of the vertices of the Kn. Then ∆ will be the cut complex ∆n(G) (note G
has 2n vertices), since the n vertices in the complete graph Kn constitute the only separating set of size n.

Finally, this construction always produces a chordal graph G. Since G contains the clique on the vertex
set V of ∆ as an induced subgraph, and the set of facets F of ∆ gives an independent set of G, any cycle in
G not contained in the clique on V must have at least one vertex f corresponding to a facet F ∈ F , and the
two adjacent vertices must be vertices u, v ∈ F , by construction of G. Thus {u, f, v} is a 3-cycle, and G is
chordal. □

The value of k given by Theorem 4.1 may be very large. In particular the theorem gives us limited
information on which simplicial complexes can arise as cut complexes for a specific fixed value of k.
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Remark 4.2. This theorem gives us an example of a cut complex with torsion in its homology, in contrast
to the other specific cut complexes studied in this paper. Let ∆RP2 be the minimal triangulation of the
projective plane RP2 with 6 vertices, 15 edges and 10 faces. The integral homology is H0 = Z, H1 = Z2,
Hi = 0, i ≥ 2. Theorem 4.1 constructs a graph G on n + t = 16 vertices such that ∆RP2 = ∆13(G), since
k = (n+ t)− (d+ 1) = 13. Hence ∆13(G) is not torsion-free.

4.2. Facets of Cut Complexes.

Definition 4.3. A ridge of a pure simplicial complex is a face of dimension one lower than the dimension
of the complex.

Theorem 4.4. Let k ≥ 2, G = (V,E) a graph. Then the facets of ∆k+1(G) are precisely the ridges of ∆k(G)
that are contained in at least k facets.

Proof. Let K be a facet of ∆k+1(G), so V \K is a disconnected (k+ 1)-set. Let V \K = {v1, v2, . . . , vk+1}.
We write

K =

k+1⋂
i=1

(
K ∪ vi

)
.

If G \K has at least three components, then for all vi, G \ (K ∪ vi) has at least two components. If G \K
has two components, and each of those components has at least two vertices, then for all vi, G \ (K ∪ vi)
has at least two components. Finally, if G \K has two components and one of those components has just
one vertex (say v1), then the other component has k ≥ 2 vertices, and for all i ≥ 2, G \ (K ∪ vi) has at least
two components. Therefore there are at least k vertices vi such that K ∪ vi is a facet of ∆k(G).

On the other hand, suppose K is a ridge of ∆k(G) that is contained in at least k facets. Assume K is not
a facet of ∆k+1(G); then G \K is connected, and so there exists a spanning tree T of G \K. Since k ≥ 2,
this tree has at least two leaves, say, v and w. Since removing a leaf of a spanning tree does not disconnect
the graph, G \ (K ∪ v) and G \ (K ∪ w) are both connected. Since |V \K| = k + 1, there can only be at
most k − 1 facets of ∆k(G) that contain K, which contradicts our assumption. □

The above theorem implies that the faces of the (k+1)-cut complex of a graphG are completely determined
by those of the k-cut complex.

4.3. Links and Induced Subgraphs.

Lemma 4.5. Let k ≥ 2, G = (V,E) a graph, and W ⊆ V . Then ∆k(G \W ) = lk∆k(G) W if W is a face of
∆k(G), and is void otherwise.

Proof. First note that if W is not a face of ∆k, then G \W contains no disconnected induced subgraph with
k vertices, so ∆k(G \W ) is void.

Consider the case of a single vertex v of ∆k(G). Let |V | = n. A subset F ⊂ V is a facet of ∆k(G \ v) if
and only if v /∈ F , |F | = n − k − 1, and (V \ v) \ F is disconnected. Since (V \ v) \ F = V \ (v ∪ F ), this
is equivalent to v /∈ F , |F ∪ v| = n− k and v ∪ F ∈ ∆k(G), i.e., F ∪ v is a facet of ∆k(G), and thus F is a
facet of lk∆k(G){v}. Equivalently, ∆k(G \ v) = lk∆k(G){v}.

The result for an arbitrary face W now follows by repeated application. □

Proposition 4.6. Let k ≥ 2, G = (V,E) a graph, and W ⊆ V . If the k-cut complex ∆k(G) is shellable, so
is ∆k(G \W ). Equivalently, if ∆k(G) is shellable for a graph G, then ∆k(H) is shellable for every induced
subgraph H of G.

Proof. Immediate from Lemma 4.5, since the void complex is shellable, and shellability is preserved by the
operation of taking links of faces; see [8, Proposition 10.14], [36, Theorem 3.1.5]. □

4.4. Disjoint Union of Graphs.

Definition 4.7. If G1, G2 are graphs, their disjoint union is the graph G1 +G2 having vertex set equal to
the disjoint union of the vertex sets of G1 and G2, and edge set equal to the disjoint union of the edge sets
of G1 and G2.

Theorem 4.8. Let k ≥ 2, and G1, G2 graphs. Then ∆k(G1 + G2) is shellable if and only if ∆k(G1) and
∆k(G2) are shellable.
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Proof. ∆k(G1+G2) shellable implies ∆k(G1) and ∆k(G2) are shellable as G1 and G2 are induced subgraphs
of G1 +G2.

Now suppose ∆k(G1) and ∆k(G2) are shellable. We construct a shelling of ∆k(G1 + G2). The facets of
∆k(G1 +G2) are the separating sets of size |V1| + |V2| − k of the graph G1 +G2. There are three types of
facets. Type 1: (|V1| + |V2| − k)-sets containing some, but not all vertices of each of V1 and V2. Type 2:
sets of the form V1 ∪ A, where A is a (|V2| − k)-subset of V2 that disconnects G2. Type 3: sets of the form
B ∪ V2, where B is a (|V1| − k)-subset of V1 that disconnects G1.

We give an ordering of the facets of Type 1, followed by the facets of Type 2, followed by the facets of
Type 3. First, we know that a shelling order of the facets of Type 1 exists, because the complex spanned by
the facets of Type 1 is the (|V1|+ |V2|−k−1)-skeleton of the join of the boundary of the simplex with vertex
set V1 with the boundary of the simplex with vertex set V2. See [7, Theorem 2.9] for the skeleton result; the
join result is due to [25, Corollary 2.9]; see also [8, Remark 10.22]. Also, we know that a shelling order of
the facets of Type 2 exists, because the complex spanned by the facets of Type 2 is the (|V1|+ |V2| − k− 1)-
skeleton of the join of the 1-facet complex consisting of the (|V1|−1)-simplex with vertex set V1 with ∆k(G2).
Similarly, a shelling order of the facets of Type 3 exists, because the complex spanned by the facets of Type
3 is the (|V1| + |V2| − k − 1)-skeleton of the join of the 1-facet complex consisting of the (|V2| − 1)-simplex
with vertex set V2 with ∆k(G1).

It remains to show that the resulting ordering of the facets of Type 1, followed by the facets of Type 2,
followed by the facets of Type 3, is a shelling order. Clearly, the intersection of two facets of the same type
satisfies the shelling condition. Now suppose that Fi is a facet of Type 1 and Fj is a facet of Type 2. Then
(Fi∩Fj)∩V1 ⊆ Fi∩V1 ⊆ V1\{x} for some x ∈ V1, and (Fi∩Fj)∩V2 ⊆ Fj∩V2 ⊆ V2\{y, z} for some y, z ∈ V2

(since k ≥ 2), so Fi∩Fj ⊆ (V1 \{x})∪(Fj∩V2∪{y}), which is a ((|V1|−1)+(|V2|−k+1)) = (|V1|+ |V2|−k)-
subset that is a facet of ∆k(G1 +G2) of Type 1. The same argument shows that the intersection of a facet
of Type 1 with a facet of Type 3 is contained in a facet of Type 1. Finally, suppose Fi is a fact of Type 2
and Fj is a facet of Type 3. Then for some set A ⊂ V1 of size |V1| − k and some set B ⊂ V2 of size |V2| − k,
Fi ∩ Fj = A ∪ B with |A ∪ B| = |V1| + |V2| − 2k. Choose, say, k − 1 elements of V1 \ A and 1 element of
V2 \B to extend A ∪B to a (|V1|+ |V2| − k)-element subset of V1 ∪ V2, not containing all of V1 or all of V2.
This is then a facet of Type 1 that contains Fi ∩ Fj .

Finally, we can conclude that a shelling order of Type 1 facets, followed by a shelling order of Type 2
facets, followed by a shelling order of Type 3 facets is a shelling of ∆k(G1 +G2). □

4.5. Join of Graphs.

Definition 4.9. Given graphs G1 = (V1, E1) and G2 = (V2, E2) on disjoint vertex sets, their join G1 ∗ G2

is their disjoint union with the set of all edges between V1 and V2 added as well.

Theorem 4.10. Let k ≥ 2, and G1, G2 graphs. Then ∆k(G1 ∗G2) is shellable if and only if between ∆k(G1)
and ∆k(G2), one is shellable and the other is the void complex.

Proof. Let k ≥ 2, G1 = (V1, E1), G2 = (V2, E2), F the set of facets of ∆k(G1 ∗G2), and F1,F2 the facets of
∆k(G1) and ∆k(G2), respectively. Furthermore let F+

1 = {F ∪ V2 | F ∈ F1} and F+
2 = {F ∪ V1 | F ∈ F2}.

We consider Dk(G1 ∗ G2). If S induces a disconnected subgraph of G1 ∗ G2, then S ⊆ V1 or S ⊆ V2. So
Dk(G1 ∗ G2) = Dk(G1) ⊔ Dk(G2), and F = F+

1 ⊔F
+
2 . Let F1 ∈ F+

1 and F2 ∈ F+
2 ; then F c

1 ∈ Dk(G1) so
F c
1 ⊆ V1, and similarly F c

2 ⊆ V2. Suppose F1 ∩ F2 ⊆ F ∈ F ; then F c ⊆ (F1 ∩ F2)
c = F c

1 ∪ F c
2 . However F c

has size k and is contained entirely in V1 or V2. So F c = F c
1 or F c = F c

2 , and thus F = F1 or F = F2; so the
only facets to contain F1 ∩F2 are F1 and F2. However, |F1 ∩F2| = |V1 ∪V2|− 2k = |F1|−k < |F1|− 1. Thus
if both F1 and F2 are non-empty, then ∆k(G1 ∗G2) is not shellable. Assume without loss of generality that
F2 = ∅; then F = F+

1 and ∆k(G1 ∗G2) is shellable if and only if ∆k(G1) is shellable. □

In many ways the join of graphs behaves like the opposite of the disjoint union of graphs; see Theorem 4.8.
It destroys cut complex shellability except in very specific boundary conditions. However, the following
special case is worth highlighting.

Corollary 4.11. Given a graph G, let G ∗ 1 denote the join of the graph G with the graph consisting of a
single vertex. Then ∆k(G ∗ 1) is shellable if and only if ∆k(G) is shellable.
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Definition 4.12. A vertex v of a graph G is a dominating vertex if it is connected by an edge to every
other vertex of G.

Thus the new vertex in G ∗ 1 is a dominating vertex.

Definition 4.13. A threshold graph is a graph constructed from a single vertex by adding a sequence of
isolated and dominating vertices.

Since the cut complex of the graph on one vertex is the void complex for all k ≥ 2, it is trivially shellable.
Hence Corollary 4.11 and Theorem 4.8 immediately give us the following corollary.

Corollary 4.14. If G is a threshold graph, then ∆k(G) is shellable for all k ≥ 2.

We now give a precise structural description of the cut complex of the join of two graphs, which will
allow us to determine the homotopy type from that of the cut complexes of the individual graphs. Passing
to the face lattice gives an alternative proof of the homotopy equivalence, and also shows that it is group-
equivariant, a fact we will need in Section 7.1. We begin with a more general proposition. We write ⟨V ⟩ for
the simplex on the vertex set V .

Proposition 4.15. For i = 1, 2 let ∆i be a simplicial complex on a finite vertex set Vi, such that V1∩V2 = ∅.
Define a new simplicial complex ∆ by

∆ := (∆1 ∗ ⟨V2⟩) ∪ (⟨V1⟩ ∗∆2).

(1) There is a homotopy equivalence ∆ ≃ susp(∆1 ∗∆2).
(2) Moreover, there is a group-equivariant poset map from the product of face lattices

L(∆1)× L(∆2)

to the face lattice of the simplicial complex ∆, thereby inducing a group-equivariant homotopy equiv-
alence of the respective order complexes. That is, if Hi is a group acting simplicially on ∆i, i = 1, 2,
then there is a group equivariant homotopy equivalence

susp(∆1 ∗∆2) ≃H1×H2
∆.

Proof. For Part (1):
For simplicity write A = ∆1 ∗⟨V2⟩ and B = ⟨V1⟩∗∆2. Since ∆ = A∪B, Proposition 3.7 gives a homotopy

equivalence

∆/A ≃ B/(A ∩B).

Note that A and B are contractible. Hence by Proposition 3.8, the space on the left is homotopy equivalent
to ∆, and the space on the right is homotopy equivalent to susp(A ∩B) = susp(∆1 ∗∆2).

For Part (2):
Let Hi be a group acting simplicially on ∆i, i = 1, 2. Recall that the face lattice L(∆i) has an artificially

appended top element 1̂L(∆i). We claim that there is a group-equivariant poset map

ϕ : L(∆1)× L(∆2)→ L(∆)

which induces a (H1 ×H2)-homotopy equivalence of order complexes. More precisely, for faces σi ∈ L(∆i),
define ϕ to be the map sending

(σ1, σ2) 7→ σ1 ⊔ σ2,

(σ1, 0̂) 7→ σ1 ⊔ ∅ = σ1,

(σ1, 1̂L(∆2)) 7→ σ1 ⊔ V2,

(0̂, σ2) 7→ ∅ ⊔ σ2 = σ2,

(1̂L(∆1), σ2) 7→ V1 ⊔ σ2.

One checks that ϕ is a poset map, which clearly commutes with the action of H1 ×H2.
The facets of the complex ∆ are of the form F1 ⊔ V2, V1 ⊔ F2, where Fi is a facet of ∆i, i = 1, 2. Hence

σ = α1 ⊔ α2 is a face of ∆ if and only if αi ⊆ Vi, i = 1, 2 and αi ∈ ∆i for at least one i.
11



We show that the fibers

ϕ−1
≥ (α1 ⊔ α2) =

{
(σ1, σ2) ̸=

(
1̂L(∆1), 1̂L(∆2)

)
: either σi = 1̂L(∆i) or σi ∈ ∆i and σi ⊇ αi, i = 1, 2

}
have a unique minimal element, and hence are contractible.

Suppose αi ∈ ∆i for both i = 1, 2. Then clearly (α1, α2) is in the fiber, and is its unique minimal element.
Otherwise αi ∈ ∆i for only one of i = 1, 2, say for i = 2. Since α1 /∈ ∆1, if (σ1, σ2) is in the fiber, this

forces σ1 = 1̂L(∆1). This is because ∆1 is a simplicial complex, so α1 /∈ ∆1 and σ1 ⊇ α1 implies σ1 /∈ ∆1.

Hence (1̂L(∆k(G1)), α2) is in the fiber, and by the above argument is its unique minimal element.
We have shown that in all cases the fiber is contractible, and hence by Theorem 3.4, ϕ induces a group-

equivariant homotopy equivalence of order complexes

∆(L(∆1)× L(∆2)) ≃ ∆(L(∆)).

But the right-hand side is the barycentric subdivision of ∆, and from (5), the left-hand side is homotopy
equivalent to

susp
(
∆(L(∆1)) ∗∆(L(∆2))

)
,

where again the order complex ∆(L(∆i)) of the face lattice is homeomorphic to the barycentric subdivision
of ∆i, and hence to ∆i, i = 1, 2. Hence the left-hand side is homeomorphic and thus homotopy equivalent
to susp(∆1 ∗∆2), and the claim follows. □

Theorem 4.16. Let k ≥ 1, let Gi be a graph with vertex set Vi, i = 1, 2, where V1∩V2 = ∅. Assume ∆k(Gi)
is nonvoid for at least one i = 1, 2.

(1) We have the decomposition

(9) ∆k(G1 ∗G2) = (∆k(G1) ∗ ⟨V2⟩) ∪ (⟨V1⟩ ∗∆k(G2)).

(2) Assume only one cut complex, say ∆k(G1), is void. Then ∆k(G1 ∗G2) is contractible.
(3) Assume both cut complexes ∆k(Gi), i = 1, 2, are nonvoid. Then there is a homotopy equivalence

(10) susp(∆k(G1) ∗∆k(G2)) ≃ ∆k(G1 ∗G2).

Moreover, there is a group-equivariant poset map from the product of face lattices

L(∆k(G1))× L(∆k(G2))

to the face lattice of the simplicial complex ∆k(G1 ∗G2) which induces a group-equivariant homotopy
equivalence of the respective order complexes. This in turn gives a group-equivariant (H1 × H2)-
homotopy equivalence

susp(∆k(G1) ∗∆k(G2)) ≃H1×H2 ∆k(G1 ∗G2),

where Hi is a group acting simplicially on the cut complex ∆k(Gi) of the graph Gi.

Proof. Recall that σ is a face of the cut complex of a graph G if and only if it is contained in a facet, which by
definition is the complement of a disconnected set of size k, i.e., if and only if the complement of σ contains
a disconnected set of size k.

There is an edge between any vertex of G1 and any vertex of G2 in the join of graphs G1 ∗G2. Hence F
is a face of ∆k(G1 ∗G2) if and only if F = F1 ⊔ F2, Fi ⊂ Vi, where

• the complement of F1 in V1 contains a disconnected set of size k in G1, or
• the complement of F2 in V2 contains a disconnected set of size k in G2.

This shows that ∆k(G1 ∗G2) satisfies the hypotheses of Proposition 4.15. Equation (9) is now immediate,
as are the remaining parts of the theorem. Note that ∆k(Gi) ∗ ⟨V3−i⟩, i = 1, 2, is contractible since the full
simplex is contractible. □

Remark 4.17. We note that exactly the same theorem holds for the total cut complex ∆t
k(G1 ∗G2) of the

join of two graphs, which is studied in [2].

From the Künneth Theorem we now also have:
12



Corollary 4.18. Let Gi, i = 1, 2 be graphs and k be such that the cut complexes ∆k(Gi), i = 1, 2 are nonvoid.
Assume the homology of one of ∆k(G1),∆k(G2) is always free. Then we have the following isomorphism in
homology, which is group-equivariant in rational homology:

H̃d(∆k(G1 ∗G2)) ∼=
⊕

p+q=d−2

H̃p(∆k(G1))⊗ H̃q(∆k(G2)).

Proof. From the isomorphism of face lattices in the preceding theorem and the Künneth Theorem, Theo-
rem 3.2, we have

H̃d(∆k(G1 ∗G2)) ∼= H̃d(susp(∆k(G1) ∗∆k(G2)))

= H̃d−1(∆k(G1) ∗∆k(G2))

∼=
⊕

p+q=d−2

H̃p(∆k(G1))⊗ H̃q(∆k(G2)),

as claimed. □

4.6. Wedge of Graphs.

Definition 4.19. Given graphs G1 and G2, a wedge of G1 and G2, denoted G1 ∨G2, is formed by taking a
vertex from G1 and a vertex from G2 and identifying them.

Note that a wedge of two graphs is not unique in general. See Figure 5.
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Figure 5. Example of different wedges of the same two graphs

Theorem 4.20. Let k ≥ 2, and let G1, G2 be graphs. Then ∆k(G1 ∨G2) is shellable if and only if ∆k(G1)
and ∆k(G2) are shellable.

Proof. We know ∆k(G1∨G2) being shellable implies ∆k(G1) and ∆k(G2) are shellable, since G1 and G2 are
induced subgraphs of G1 ∨G2. Now suppose ∆k(G1) and ∆k(G2) are shellable. If ∆k(G1 ∨G2) is the void
complex, then it is shellable, so assume ∆k(G1 ∨G2) is not the void complex. Let Vi be the vertex set of Gi

and let {v0} = V1 ∩ V2, so that v0 is the common wedge point. We consider the facet set F of ∆k(G1 ∨G2);
they are separating sets of size |V1|+ |V2| − k − 1 of the graph G1 ∨G2. There are four types of facets:

Type 1: Sets of the form v0 ∪A ∪B, where A ⊊ V1 − v0 and B ⊊ V2 − v0.
Type 2: Sets of the form A ∪ B, where ∅ ≠ A ⊊ V1 − v0 and ∅ ≠ B ⊊ V2 − v0, where either A is a

separating set for G1 or B is a separating set for G2, or both.
Type 3: Sets of the form A ∪ (V2 − v0), where A is a (|V1| − k)-subset of V1 whose removal disconnects

G1.
Type 4: Sets of the form (V1 − v0) ∪ B, where B is a (|V2| − k)-subset of V2 whose removal disconnects

G2.
Note that if k ≥ |V1| − 1, then there is no Type 3 facet, and if k ≥ |V2| − 1, then there is no Type 4 facet.
We start the shelling with Type 1 facets. Order the Type 1 facets of ∆k(G1 ∨ G2) first in order of

decreasing size of A, then, among facets with sets A of the same size, in lexicographic order of the sets A,
and then, among facets with fixed A, in lexicographic order of the sets B. Label the facets of Type 1 in the
resulting order F1, F2, . . . , Fr.

Consider Fi = v0∪Ai∪Bi and Fj = v0∪Aj∪Bj , with i < j. Here |Ai| ≥ |Aj |. If Ai = Aj , then |Bi| = |Bj |
and Bi precedes Bj in lexicographic order. By the lexicographic shellability of the (|Bj | − 1)-skeleton of the
simplex on V2− v0, there exists a set B ⊊ V2− v0, with |B| = |Bj |, preceding Bj in lexicographic order such
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that Bi ∩Bj ⊆ B ∩Bj and |B ∩Bj | = |Bj | − 1. Then for F = v0 ∪Aj ∪B, F precedes Fj , Fi ∩Fj ⊆ F ∩Fj ,
and |F ∩ Fj | = |Fj | − 1.

Now suppose Ai ̸= Aj but |Ai| = |Aj |. Then Ai precedes Aj in lexicographic order. By the lexicographic
shellability of the (|Aj | − 1)-skeleton of the simplex on V1 − v0, there exists a set A ⊊ V1 − v0, with
|A| = |Aj |, preceding Aj in lexicographic order such that Ai ∩ Aj ⊆ A ∩ Aj and |A ∩ Aj | = |Aj | − 1. Then
for F = v0 ∪A ∪Bj , F precedes Fj , Fi ∩ Fj ⊆ F ∩ Fj , and |F ∩ Fj | = |Fj | − 1.

Finally, suppose |Ai| > |Aj |. Then |Bi| < |Bj |. Let x ∈ Ai\Aj , y ∈ Bj\Bi, and F = v0∪(Aj∪x)∪(Bj−y).
Then F comes before Fj and

Fi ∩ Fj = v0 ∪ (Ai ∩Aj) ∪ (Bi ∩Bj) ⊆ v0 ∪ (Aj ∪ x) ∪ (Bj − y) = F,

so Fi ∩ Fj ⊆ F ∩ Fj and

|F ∩ Fj | = |(v0 ∪Aj ∪Bj) ∩ (v0 ∪ (Aj ∪ x) ∪ (Bj − y))| = |v0 ∪Aj ∪ (Bj − y)| = |Fj | − 1.

So F1, F2, . . . , Fr is a shelling order of the Type 1 facets.
We now claim that the Type 2 facets can be added to the shelling order in any order. We will demonstrate

this by showing that the intersection of a Type 2 facet and any other Type 2 or Type 1 facet is contained in
a Type 1 facet that differs by only one vertex. Let F be a Type 2 facet and X be a distinct Type 1 or Type 2
facet. As F ̸= X, there exists v ∈ F \X. We claim F ′ = F − v+ v0 is a Type 1 facet. As v0 /∈ F , |F ′| = |F |.
As V1− v0 ⊈ F , then V1− v0 ⊈ F − v, so V1− v0 ⊈ F ′; similarly, V2− v0 ⊈ F ′. Then F ′ = v0 ∪A∪B where
A ⊊ V1− v0 and B ⊊ V2− v0. So F ′ is a Type 1 facet, and |F \F ′| = 1, and thus any order of Type 2 facets
placed after the Type 1 facets will result in a shelling order.

Finally we add the Type 3 and Type 4 facets. As ∆k(G1) is shellable, the join of ∆k(G1) with the simplex
on V2 − v0 is shellable, and we add the Type 3 facets in such a shelling order. We do the same for the Type
4 facets. Now we just need to verify that the intersection of a Type 3 or 4 facet with any facet of a different
type is contained in a Type 1 facet. Without loss of generality, assume F is a Type 4 facet, and X is a
facet of another type. Type 4 facets are the only facets that contain all of V1 − v0, so we know there exists
v ∈ (F \X) ∩ (V1 − v0). We now need to break into two small cases. In the first case, v0 /∈ F , and so we
choose F ′ = F − v + v0. Then |F ′| = |F | − 1 + 1, and V1 − v0 ⊈ F ′ as v /∈ F ′. Now, V2 − v0 ⊈ F ′ as F
was missing k vertices from V2 and we only added one vertex to it. So F ′ = v0 ∪ A ∪B where A ⊊ V1 − v0
and B ⊊ V2 − v0. So F ′ is a Type 1 facet, and |F \ F ′| = 1. The second case has v0 ∈ F ; we choose any
v′ ∈ F c∩V2, and set F ′ = F −v+v′. Then |F ′| = |F |, and still V1−v0 ⊈ F ′ as v /∈ F ′. Also, V2−v0 ⊈ F ′ as
F was missing k vertices from V2 and we only added one vertex to it. So F ′ = v0 ∪A∪B where A ⊊ V1− v0
and B ⊊ V2 − v0. So F ′ is a Type 1 facet, and |F \ F ′| = 1. This demonstrates that the intersection of any
Type 4 facet with a facet of another type is contained in a Type 1 facet with only one vertex different, and
very similar arguments can be used to show the same is true with Type 3 facets. This is the final step in
confirming our shelling order, demonstrating that the complex ∆k(G1 ∨G2) is shellable. □

As an immediate corollary we obtain the next result, which was originally proved in [10] by exhibiting an
explicit shelling order.

Corollary 4.21. If G is a tree, then ∆k(G) is shellable for all k ≥ 2.

Proof. A tree on n vertices is the wedge of n − 1 copies of K2. The cut complex of any complete graph is
the void complex for all k > 2, and so is trivially shellable. Hence the wedge of these shellable graphs is
shellable. For k = 2 the claim follows from Theorem 1.2, since trees are chordal. □

4.7. Minimal nonshellable graphs. Recall that Proposition 4.6 says that if G has a shellable k-cut
complex, then any induced subgraph of G also has a shellable k-cut complex. In light of this result, it is
natural to seek a description of the minimal graphs (with respect to induced inclusion) whose k-cut complex
fails to be shellable. We will call such a graph a minimal nonshellable graph or a minimal forbidden subgraph
for k-cut complex shellability.

Figure 7 shows some minimal nonshellable graphs for k = 3. The first graph in Figure 7 is in fact the
k = 3 case of a family of graphs considered in Lemma 7.19. More generally, for arbitrary k ≥ 4 we have the
following proposition.
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Proposition 4.22. For each k ≥ 4, there is a chordal graph Gk with k + 2 vertices such that ∆k(Gk) is
NOT shellable. Furthermore, Gk is a minimal forbidden subgraph for k-cut complex shellability.

Proof. The graph Gk has k+2 vertices, which we partition into three disjoint subsets according to the parity

of k: {2i− 1 : 1 ≤ i ≤ m = ⌊k/2⌋}, {2i : 1 ≤ i ≤ m = ⌊k/2⌋} and

{
{a} for odd k = 2m+ 1,

{a, b} for even k = 2m.

See Figure 6. The edges are precisely those specified by requiring that the induced subgraph on each 4-
vertex subset {2i−1, 2i, 2i+1, 2i+2} forms a clique for all 1 ≤ i ≤ m = ⌊k/2⌋, as do the induced subgraphs
on the 3-vertex sets {a, 1, 2} and {b, 2m − 1, 2m}, the latter existing only if k = 2m is even. Then ∆k(Gk)
has facets {{2i − 1, 2i} : 1 ≤ i ≤ m = ⌊k/2⌋} (highlighted in the figures), and is thus not shellable since
m = ⌊k/2⌋ ≥ 2. Also ∆2m(G2m) = ∆2m+1(G2m+1), m ≥ 2. Finally, for each k, Gk is minimal nonshellable:
for all vertices v, Gk\v has only k + 1 vertices, and ∆k(Gk\v) is either void or 0-dimensional. □

1

2

3

4

a b

G4

1

2

3

4

∆4(G4)

1 3 5

2 4 6

a

G5

1 3

2 4

∆5(G5)

1 3 5

2 4 6

a b

G6

1 3 5

2 4 6

∆6(G6)

1 3 5 7

2 4 6 8

a

G7

1 3 5

2 4 6

∆7(G7)

Figure 6. Graphs and cut complexes described in Proposition 4.22

We will encounter some more families of minimal nonshellable graphs in this paper: in particular, the
prism over a k-clique discussed in Section 7.3 and the squared cycle on k + 4 vertices in Section 7.4 are
both minimal forbidden subgraphs for k-cut complex shellability, by Lemma 7.19 and Proposition 7.28,
respectively.

5. Some theorems for the case k = 3

In this section we consider an operation which simultaneously generalizes disjoint unions and wedges of
graphs.

Theorem 5.1 (Generalized Wedge). Let G = (V,E), A∪B = V such that if e ∈ E, e is between two vertices
in A or two vertices in B, and ∆3(G[A ∩ B]) is the void complex. Then ∆3(G) is shellable if and only if
∆3(G[A]) and ∆3(G[B]) are shellable.
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Figure 7. Some minimal nonshellable graphs for k = 3

Proof. We know that G having a shellable cut complex implies its induced subgraphs also have shellable cut
complexes. So we assume ∆3(G[A]) and ∆3(G[B]) are shellable. We will now construct a shelling order for
∆3(G) on its set of facets F .

Let S = A∩B. Note that the cases |S| = 0, 1 were settled in Theorem 4.8 and Theorem 4.20, respectively.
Because k = 3, it is more convenient to classify our facets in terms of their complements, the disconnected

3-sets. Let FA = {F ∈ F | F c ⊆ A} be the set of facets whose complement lies entirely in A, and
FB = {F ∈ F | F c ⊆ B} be facets whose complement lies in B. The intersection FA ∩FB is empty because
∆3(G[A ∩B]) is the void complex, so no disconnected 3-sets lie in S = A ∩B. For the remaining facets, we
characterize them by the intersection of their complement with S, F i = {F ∈ F \(FA ∪FB) | |F c ∩S| = i}.
We know S cannot contain a disconnected set of size 3, so F3 = ∅, and if a set of three elements has
2 elements in S, then it is completely contained in either A or B, so F2 = ∅. So only F0 and F1 are
potentially nonempty. This gives a complete classification of facets F = F0 ⊔F1 ⊔FA ⊔FB .

Our shelling order construction starts by ordering the facets in F0, the facets whose complement shares
no elements with S, or, equivalently, the facets of ∆3(G) that contain S. This subcomplex of ∆3(G) is
precisely ∆3(G[V \ S]) ∗ ⟨S⟩ as in Proposition 4.6, since ∆3(G[V \ S]) is the link of ⟨S⟩, but ∆3(G[V \ S]) =
∆3(G[A \ S] + G[B \ S]), and so is shellable from Theorem 4.8. This provides us with a shelling order for
F0, call it S0. (We note in passing that the complex ⟨F0⟩ is contractible.)

Now we append an order of the facets in F1; in this case any order will do. If F ∈ F1 and X ∈ F0 ∪F1,
then either |F ∩ X| = |F | − 1 (in which case X = F ′ suffices for the shellability criterion) or there exists
x ∈ F \(X∪S) as Xc has at most one element in S. In that case, let y ∈ F c∩S, and consider F ′ = F −x+y.
Then F ∩X ⊆ F ′, and |F ∩ F ′| = |F | − 1. Additionally, F ′ ∈ F0 as F ′c ∩ S = ∅, and F ′ ⊈ A, F ′ ⊈ B, so
any order of F1 will do. Choose some order and call it S1.

The facets in FA are the facets of ∆3(G[A]) with the elements of B \ A added, and so can inherit the
shelling order of ∆3(G[A]): call it SA. A similar argument holds for SB . We claim that the order of S0

followed by S1 followed by SA followed by SB is a shelling order. We have already demonstrated that S0

followed by S1 fulfills the shelling criterion, and SA and SB work internally. To complete the proof we will
demonstrate that the intersection of facets of FB with facets outside of FB are always contained in facets
in F0 or F1 that fulfill the shelling criterion, and a similar argument will hold for the facets of FA.

Let F ∈ FB , and X ∈ F \FB . Then there exists x ∈ Xc ∩ Bc. We will choose F ′ = F − x + y so that
F ∩X ⊂ F ′ and |F ∩ F ′| = |F | − 1, but we need to decide which y to add. If |F c ∩ S| = 0, then any y ∈ F c

will do, as then F ′ ∈ F0; if |F c ∩ S| = 1, add the y ∈ F c ∩ S, and again F ′ ∈ F0. If |F c ∩ S| = 2, then
as |F c| = 3 and G[F c] is not connected, the element of F c not in S cannot be connected to both elements
in S. Choose the y ∈ F c ∩ S such that the remaining two elements of F c do not share an edge. Then
F ′ = F − x + y ∈ F1, as the element of F ′ contained in B \ A cannot share an edge with x as x ∈ A \ B,
and also does not share an edge with the element in S, so it is an isolated vertex in G[F ′c] and so F ′ ∈ F1.
In each case |F ∩ F ′| = |F | − 1, F ∩X ⊆ F ′, and F ′ comes before F in the shelling order as F ′ ∈ F0 ∪F1.
A similar argument holds for every facet in FA and every facet not in FA. So every pair of facets in the
shelling order meets the shelling criterion, and S0 + S1 + SA + SB is a shelling order for ∆3(G). □

The construction of Proposition 4.22 shows that the conclusion of Theorem 5.1 is false for k ≥ 4.
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Corollary 5.2. If G contains a separating set S such that ∆3(S) is the void complex, then G is not a
minimal forbidden subgraph for 3-cut complex shellability.

Proof. Let G = (V,E), V = A⊔S⊔B, where S separates A and B, both non-empty. If ∆3(G) is not shellable,
either ∆3(G[A ∪ S]) or ∆3(G[B ∪ S]) is not shellable, so G is not a minimal forbidden subgraph. □

The following is in contrast to Proposition 4.22.

Corollary 5.3. If G is chordal, then ∆3(G) is shellable.

Proof. Suppose G is chordal, but ∆3(G) is not shellable. Let H be a minimal induced subgraph of G with
a nonshellable 3-cut complex. H is chordal as it is an induced subgraph of G, so it has a vertex v whose
neighborhood N(v) = S is a clique. Either H is the complete graph, in which case ∆3(H) is the void complex
and therefore shellable, or S is a separating set such that ∆3(S) is the void complex, so H is shellable. In
either case we have a contradiction, so ∆3(G) is in fact shellable. □

Corollary 5.4. Every minimal forbidden subgraph for 3-cut complex shellability is at least 3-connected.

Proof. If G has a separating set S such that |S| < 3, then ∆3(S) is trivially the void complex, so G is not a
minimal forbidden subgraph for 3-cut complex shellability. □

Corollary 5.5. Suppose G is 3-connected, every vertex of G has a neighbor of degree 3, and ∆3(G) is not
shellable. Then G is a minimal forbidden subgraph for 3-cut complex shellability.

Proof. Assume the hypothesis. Then every proper induced subgraph H of G has a vertex of degree at most
2. So H has a component that is either Ki for 1 ≤ i ≤ 3 or is not 3-connected. So H is not a minimal
forbidden subgraph for 3-cut complex shellability. So G is a minimal forbidden subgraph for 3-cut complex
shellability. □

6. The face lattice of the k-cut complex

In this section we investigate the face lattice of the cut complex. Note that a simplicial complex ∆ is
shellable if and only if its face lattice admits a recursive coatom ordering [6, Theorem 4.3, Corollary 4.4].
Under certain favourable conditions (see Theorem 6.1 below), the face lattice admits a particularly simple
description which allows us to conclude that homology is torsion-free and occurs in at most two dimensions,
and also gives us a way to compute the Betti numbers of the cut complex.

The reduced Euler characteristic of a simplicial complex ∆ is the Möbius number µ(L(∆)) of its face
lattice L(∆) [30]. We exploit the fact that the face lattice of the cut complex is a subposet of the truncated
Boolean lattice, and then use poset topology techniques to determine the Möbius number, using Theorem 3.5.
Recall that the truncated Boolean lattice, by definition, has an artificially appended top element.

For a subset A of the vertex set V (G) of a graph G, we say A is a connected set if the induced subgraph
G[A] is connected. Recall from Section 3 that P (n, k) denotes the truncated Boolean lattice B≤n−k

n , and let

Zk(G) := {Ac : |A| = k,A is a connected subset of V (G)} ⊆ P (n, k),

where Ac denotes the complement of A in the vertex set V (G). Thus Zk(G) is the set of those (n−k)-element
subsets of [n] that are not facets of the cut complex, and the number of facets of ∆k(G) is

(
n
k

)
− |Zk(G)|.

Clearly the face lattice of ∆k(G) is a subposet of P (n, k) \ Zk(G).

Theorem 6.1. Let G be a graph with vertex set V (G) of size n, and let k ≥ 2. Then the face lattice of
∆k(G) coincides with P (n, k) \ Zk(G) if and only if the (n− k − 1)-dimensional complex ∆k(G) contains a
complete (n− k − 2)-skeleton, that is, if and only if either of the following equivalent conditions holds:

for every subset X of a set Ac ∈ Zk(G) with |X| = n− k − 1, Xc contains a disconnected set of size k;

(11)

if Ac ∈ Zk(G) and x /∈ A, there is a y ∈ A such that (A \ {y}) ∪ {x} is disconnected.(12)

If condition (11) holds, the reduced Euler characteristic of ∆k(G) is given by

(−1)n−k−1µ(∆k(G)) =

(
n− 1

k − 1

)
− |Zk(G)| = |{F : F is a facet of ∆k(G)}| −

(
n− 1

k

)
.
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Furthermore, in this case the nonzero homology of ∆k(G) is torsion-free and occurs in at most two dimen-
sions, n− k − 1 and n− k − 2.

If condition (11) holds and ∆k(G) is shellable, then it is homotopy equivalent to{
a point, if µ(∆k(G)) = 0, i.e., if the number of facets of ∆k(G) is

(
n−1
k

)
,

a wedge of
((

n−1
k−1

)
− |Zk(G)|

)
spheres in dimension n− k − 1, otherwise.

Proof. The equivalence of the two conditions, and the fact that ∆k(G) contains a complete (n − k − 2)-
skeleton, follow from the definitions. Either condition ensures that any faces contained in the removed facets
Zk(G) are already faces of ∆k(G), since Xc contains a disconnected set of size k if and only if X is a subset
of a facet of ∆k(G).

For the remaining statements, we apply Theorem 3.5 to P = P (n, k) and Q = P \ Zk(G); note that
A = Zk(G) is an antichain.

Also note that the intervals (0̂, Ac) are Boolean intervals of P (n, k) for all Ac ∈ Zk(G), where A ranges
over all connected k-subsets of V (G). We obtain

µ(P (n, k) \ Zk(G)) = µ(P (n, k))−
∑

Ac∈Zk(G)

µ(0̂, Ac)µ(Ac, 1̂) = µ(P (n, k))− (−1)n−k(−1)|Zk(G)|.

Since µ(P (n, k)) = (−1)n−k−1
(
n−1
k−1

)
, the result follows.

The second equality follows from the discussion preceding the theorem.
The last statement about the homology of ∆k(G) is a consequence of [34, Theorem 2.1, Theorem 2.5],

which applies because we are deleting an antichain from the Cohen–Macaulay poset B≤n−k
n .

Finally, note that a nonzero reduced Euler characteristic gives the dimension of the unique nonvanishing
homology, if the nonzero homology is concentrated in a single degree, as is the case for a shellable complex.
If the Euler characteristic is zero, the shellable complex must be contractible. □

Proposition 6.2. Let G be a graph on n vertices, let k ≥ 2, and assume that G contains no cycles of length
less than or equal to (k + 1). Then ∆k(G) contains a complete (n− k − 2)-skeleton.

Proof. If G has no cycles of length less than or equal to (k+1), any (k+1)-subset of the vertex set induces
a forest, and thus contains a disconnected set of size k. By Definition 2.7, all subsets of size (n− k − 1) are
faces of the cut complex. □

For instance, consider the disjoint union Cn + Cm of two cycle graphs Cn, Cm with n,m ≥ 4 and the
cut complex ∆2(Cn + Cm). There are no triangles, and there are (n + m) connected subsets of size 2, so
the preceding results give the reduced Euler characteristic µ(∆2(Cn + Cm)) = (−1)n+m. Sage code (for
9 ≥ m ≥ n ≥ 4) gives homology of rank 1 in the top dimension and rank 2 in the dimension one below the
top, which is consistent with the Euler characteristic.

The converse of Proposition 6.2 is false, as shown by Theorem 4.1.
Since trees are acyclic, Corollary 4.21 together with Theorem 6.1 and Proposition 6.2 immediately give:

Corollary 6.3. If T is a tree, then ∆2(T ) is contractible.

If the graph G has (k+1)-cycles, the conditions in Theorem 6.1 can be modified to obtain a precise descrip-
tion of the face lattice of ∆k(G), from which we again obtain a formula for the reduced Euler characteristic.
This is described in a forthcoming paper.

6.1. A theorem about ∆2 for connected triangle-free graphs. Theorem 6.1 asserts that if G has n
vertices and e edges and ∆2(G) contains a complete (n− 4)-skeleton, then ∆2(G) has torsion-free homology,
with Euler characteristic (−1)n−4(e−n+1), and the homology is nonzero in at most the top two dimensions.
In this section we refine this result, noting the following special case of Proposition 6.2: if G is triangle-free,
∆2(G) contains a complete codimension 1 skeleton.

Theorem 6.4. Let G be a graph on n vertices with e edges, and assume G is connected and triangle-free.
If G is not a tree, then ∆2(G) is a wedge of e− n+1 spheres in dimension n− 4, that is, in codimension 1.
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We will prove this below.
First, we refer the reader to [17] for the necessary background on discrete Morse matchings. The particular

case of element matchings is described in [11]; a brief summary appears in [2, Appendix]. We begin by showing
that there is a Morse matching on ∆2(T ) for any tree T . If G is a triangle-free connected graph, we can
then choose a spanning tree T of G, and restrict the Morse matching of ∆2(T ) to ∆2(G).

Lemma 6.5. Let T be any tree on n vertices. Then ∆2(T ) admits a perfect Morse matching.

Proof. We construct an element matching for ∆2(T ). First choose a root for T , labelled 1, and then label T
recursively with labels 1, 2, 3, . . . , so that x < y if x is the parent of y in T . We use this recursive labelling
as the order for our element matching. By Proposition 6.2, as T is triangle-free, the (n− 3)-dimensional cut
complex ∆2(T ) has a complete (n− 4)-skeleton.

For each vertex a, denote byMa the set of element matchings

{(σ, σ ∪ a) : a /∈ σ, and σ, σ ∪ a are both faces of ∆2(G) that have not been matched by anyMb, b < a},
and consider the sequenceM1,M2,M3, . . . .

The unmatched faces after M1 are precisely the faces σ not containing 1 such that σ ∪ 1 is not a face;
since ∆2(T ) has a complete (n− 4)-skeleton, σ ∪ 1 must have dimension greater than n− 4, and hence σ is
either a facet or a face of dimension (n− 4).

Suppose σ is a face of dimension (n − 4), so that its (set) complement is σc = {1, x, y}. Since σ ∪ 1 is
NOT a face, xy must be an edge. Also σ must be contained in some facet, and G is triangle-free, so exactly
one of 1x, 1y is not an edge, and exactly one of σ ∪ x, σ ∪ y is a facet. Assume without loss of generality
that x is the parent of y; thus 1x is the edge, and the matchingMx matches the pair (σ, σ ∪ x).

This shows that all (n− 4)-dimensional faces are matched.
Now suppose τ is an unmatched facet afterM1, so that its complement τ c = {x, y} where x ̸= 1, y ̸= 1,

and xy is not an edge. But then x, y have a common ancestor a ̸= 1, and {xya}c will be matched to τ c by
the element matchingMa.

Since a sequence of element matchings is acyclic (see [2, Appendix], [11]), we have exhibited a Morse
matching for ∆2(T ). In fact we have shown that all faces are matched, and hence there are no critical cells,
recovering the result of Corollary 6.3 that ∆2(T ) is contractible. □

Proof of Theorem 6.4. Let G be a connected, triangle-free graph. If G is chordal, it must be a tree, and
hence ∆2(G) is shellable and contractible, and the theorem is verified, since the number of edges is one less
than the number of vertices.

Now assume G is nonchordal, so that G is not a tree. Let T be a spanning tree of G. Then ∆2(G) ⊂ ∆2(T ),
∆2(G) ̸= ∆2(T ). We will show that there is a Morse matching for ∆2(G) with e − n + 1 critical cells in
codimension 1, one below the top.

By the preceding lemma, the cut complex ∆2(T ) has a Morse matchingM with no unmatched cells. The
restrictionM|∆2(G) to the subcomplex ∆2(G) remains acyclic, because there are fewer cells, and hence we
have a Morse matching for ∆2(G). Unmatched faces in M|∆2(G) must be of the form σ \ {b}, where σ is
a face in ∆2(T ) \∆2(G) and (σ \ {b}, σ) was a matched pair under M in ∆2(T ). Since G is triangle-free,
∆2(G) contains a complete skeleton of codimension 1, so σ \ {b} ∈ ∆2(G) and σ ∈ ∆2(T ) \∆2(G) must be
a face in the top dimension.

Hence in the restrictionM|∆2(G), there is exactly one critical cell of codimension 1 corresponding to each
facet of ∆2(T ) \∆2(G). Each of the e− (n− 1) edges not in the spanning tree yields exactly one such facet,
giving e − (n − 1) critical cells, where e is the number of edges of G, and n is the number of vertices. It
follows that ∆2(G) is homotopy equivalent to a wedge of (e− n+ 1) spheres of dimension (n− 4). □

Theorem 6.4 is corroborated by the nonchordal triangle-free families studied in [2], namely complete
bipartite graphs, cycles, and grid graphs. In addition, we have the following examples. Recall that the
Kneser graph K(m, r) [37] has one vertex for each r-subset of [m], with an edge between subsets if and only
if they are disjoint.

Corollary 6.6. For each of the following graphs G, ∆2(G) is a wedge of spheres in codimension 1.

(1) Let G be the Kneser graph K(m, r), m < 3r. Then ∆2(G) is a wedge of 1
2

(
m
r

)(
m−r
r

)
−
(
m
r

)
+1 spheres

in dimension
(
m
r

)
− 4.
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(2) In particular, for the Petersen graph G = K(5, 2), ∆2(G) is a wedge of 6 spheres in dimension 6.
(3) Let G be the Cartesian product H1 × H2 of two triangle-free connected graphs H1 and H2, with

ni = |V (Hi)| ≥ 2 and mi = |E(Hi)|. Then ∆2(G) is a wedge of n1m2 + n2m1 − n1n2 +1 spheres in
dimension n1 + n2 − 4.

Proof. The Kneser graph is connected and, by the pigeonhole principle, it is triangle-free if and only if
m < 3r. It has

(
m
r

)
vertices and 1

2

(
m
r

)(
m−r
r

)
edges, so the result follows.

One can check that Cartesian products preserve connectedness and the triangle-free property. □

Remark 6.7. The hypotheses in Theorem 6.4 are necessary. If G is not triangle-free, the conclusion is false,
the counterexample being multipartite graphs with three or more parts. (These contain a 4-cycle without
a chord as an induced subgraph.) The smallest counterexample is the multipartite graph with r ≥ 4 parts
each with 2 vertices: we will prove in Proposition 7.7 that ∆2(G) has dimension (2r − 3), but is homotopy
equivalent to one sphere Sr−2 in dimension (r − 2).

Likewise, if G is triangle-free but not connected, the conclusion of Theorem 6.4 is again false. Sage
computations show that the disjoint union ∆2(Cm + Cn) has homology of rank 1 in the top dimension and
rank 2 in codimension 1, for m ≥ n ≥ 4. Again, we already know homology is torsion-free and concentrated
in the top two dimensions.

6.2. Applications to computing Betti numbers of cut complexes. In this subsection we show how to
use Theorem 6.1 to compute the reduced Euler characteristic for cut complexes for some families of graphs.
This in turn determines the Betti number if the homotopy type is a wedge of spheres in a single dimension,
as is the case for the families studied in the next section.

Proposition 6.8. Fix k ≥ 2 and let Gi be a graph on ni vertices, 1 ≤ i ≤ r, such that for all i, the
k-cut complex ∆k(Gi) satisfies condition (11) of Theorem 6.1. Let N =

∑r
i=1 ni. Then the disjoint union

G1 + · · ·+Gr also satisfies the condition, and has Euler characteristic equal to

(−1)N−k−1

((
N − 1

k − 1

)
−

r∑
i=1

|Zk(Gi)|

)
.

If, in addition, ∆k(G1 + · · · + Gr) is nonvoid and shellable, its Betti number is given by (−1)N−k−1 times
the above formula.

In the special case when each ∆k(Gi) is nonvoid and shellable with Betti number βi, ∆k(G1 + · · · + Gr)
is shellable with Betti number given by(

N − 1

k − 1

)
−

r∑
i=1

(
ni − 1

k − 1

)
+

r∑
i=1

βi.

Proof. This is clear from Theorem 6.1, since A is a connected subset of the disjoint union if and only if it is
a connected subset of some Gi. In particular the last two statements are a consequence of the shellability
condition, by the final statement of Theorem 6.1. Note that |Zk(Gi)| = 0 if ni < k. □

For instance, for paths Pni , 1 ≤ i ≤ r, where each Pni has ni vertices, we can use Proposition 7.12 in
the next section to compute that the rank of the unique nonvanishing homology group of Pn1

+ · · ·+ Pnr
is

given by the explicit formula
(
N−1
k−1

)
−
∑

i∈{1,...,r},ni≥k(ni − k + 1).

Next we consider the wedge of two graphs, as defined in Section 4.6. Examples are the wedge of two trees
(also a tree), two paths end-to-end (also a path), two cycles (a figure 8), a cycle and a tree, a cycle and a
path (balloon).

Proposition 6.9. Let Gi be a graph on ni vertices, i = 1, 2. Let k ≥ 2, k ≤ n1 + n2 − 3. Let G1 ∨w0
G2

be the wedge of the two graphs at some vertex w0. If Gi, i = 1, 2 satisfy the condition (11), then so does
G1 ∨w0 G2. Furthermore, its Euler characteristic µ(G1 ∨w0 G2) satisfies

(−1)n1+n2−k−2µ(G1 ∨w0 G2) =

(
n1 + n2 − 2

k − 1

)
− |Zk(G1)|δk≤n1 − |Zk(G2)|δk≤n2 − ξ̄k(G1, G2, w0),

where δA is the Kronecker delta, equal to 1 or 0 according as the statement A is true or false, and

ξ̄k(G1, G2, w0) = |{(A1, A2) ∈ V (G1)× V (G2) : w0 ∈ Ai, Ac
i ∈ Zri(Gi), r1 + r2 = k + 1, Ai \ {w0} ≠ ∅}|.
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In particular, if ∆k(Gi) is shellable for i = 1, 2, then so is ∆k(G1 ∨w0 G2), with Betti number given by

(−1)n1+n2−k−2µ(G1 ∨w0
G2) =

(
n1 + n2 − 2

k − 1

)
− ξk(G1, G2, w0),

where

ξk(G1, G2, w0) = |{(A1, A2) ∈ V (G1)× V (G2) : w0 ∈ Ai, Ac
i ∈ Zri(Gi), r1 + r2 = k + 1}|.

Proof. Denote the vertex set of Gi by V (Gi), i = 1, 2. We assume V (G1) ∩ V (G2) = {w0}, the wedge point.
The connected subsets of the wedge G1 ∨w0 G2 fall into three categories (some of which may be empty):

(1) Connected subsets A1 of V (G1) of size k such that A1 ∩ V (G2) ⊆ {w0}, provided k ≤ n1; thus
Ac

1 ∈ Zk(G1) ⊂ Zk(G1 ∨w0
G2).

(2) Connected subsets A2 of V (G2) of size k such that A2 ∩ V (G1) ⊆ {w0}, provided k ≤ n2; thus
Ac

2 ∈ Zk(G2) ⊂ Zk(G1 ∨w0 G2).
(3) Connected sets in G1∨w0

G2 of size k, of the form A1∪A2 where for i = 1, 2 we have w0 ∈ Ai ⊂ V (Gi)
and Ai \ {w0} ̸= ∅; thus Ai ∩ V (G3−i) = {w0} and |A1 ∪ A2| = k = |A1| + |A2| − 1. Note that
(A1 ∪A2)

c ∈ Zk(G1 ∨w0
G2).

Clearly these account for all the connected subsets of size k of G1∨w0
G2. We claim that condition (12) is

satisfied for all three cases. For Case (3) it is clear that removing w0 from A1∪A2 results in two disconnected
components, and hence makes ((A1 ∪A2) \ {w0}) ∪ {x} disconnected for any x /∈ A1 ∪A2.

For Case (1), let X = A1 ∪ {x}, x /∈ A1. If x ∈ V (G1) we are done since G1 satisfies condition (12).
Otherwise x ∈ V (G2) \ V (G1). If w0 /∈ A1, then A1 ∪ {x} is itself disconnected and we are done. If

w0 ∈ A1, then clearly (A1 \ {w0}) ∪ {x} results in a disconnected set of size k. Case (2) follows similarly.
Since the number of vertices of the wedge is n1+n2−1, the dimension of the cut complex ∆k(G1∨w0

G2)
is n1 + n2 − 2− k and the expression for the Euler characteristic follows from Theorem 6.1. □

For instance, the wedge of two paths Pn1 and Pn2 wedged at a leaf is the path Pn1+n2−1. Assume
k ≤ min(n1 − 2, n2 − 2); one can check that in this case ξk(Pn1 , Pn2 , w0) = k − 2, and hence the formula of
Proposition 6.9 agrees with Proposition 7.12 in the next section.

We record the following computation that will be needed to write down a formula for the Betti numbers
for wedges of cycles and paths.

Lemma 6.10. Assume k ≥ 1.

(1) Let n ≥ 1. Then |Zk(Pn)| = n− k + 1 if k ≤ n and |Zk(Pn)| is zero otherwise.
(2) Let n ≥ 3. Then |Zk(Cn)| = n if k < n, |Zn(Cn)| = 1, and |Zk(Cn)| is zero otherwise.
(3) Let ξn(a) denote the number of connected subsets of size a in the cycle Cn passing through a fixed

vertex w0. Then ξn(a) = a if a < n, ξn(n) = 1, and ξn(a) is zero if a > n.
(4) Let n1 ≥ 3, n2 ≥ 1. Let w0 be a leaf of Pn2

and let G be the wedge G = Cn1
∨w0

Pn2
. Then

(13) ξ̄k(G) =

min(n1,k−1)∑
a=max(2,k+1−n2)

ξn(a)

Proof. Only Equation (13) requires comment. By definition of ξ̄k(G), we are counting connected subsets A
of size k, passing through w0, consisting of a ≥ 2 vertices in Cn1

through w0 and k − a + 1 ≥ 2 vertices in
Pn2

, also passing through w0. Thus a ≤ n1 and k − a+ 1 ≤ n2. Since the set A is uniquely determined by
its intersection with Cn1 , the expression follows. □

Now define ξk(Cn1
, Pn2

, w0) to be the sum

ξk(Cn1
, Pn2

, w0) :=

min(n1,k)∑
a=max(1,k+1−n2)

ξn(a).

Proposition 6.11. Let G = Cn1
∨w0

Pn2
where Cn is the cycle graph on n vertices and Pn is the path on

n vertices, and w0 is a leaf of the path. Then G has n1 + n2 − 1 vertices. If k = n1 + n2 − 2, ∆k(G) is a
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single point {w0}. Assume 2 ≤ k ≤ n1 + n2 − 3. If k ̸= n1 − 1, then G satisfies condition (12) and ∆k(G)
has reduced Euler characteristic µ(∆k(G)) where

(−1)n1+n2−1−kµ(∆k(G)) =

(
n1 + n2 − 2

k − 1

)
− |Zk(Cn1

)| − (n2 − k + 1)δk≤n2
− ξ̄k(Cn1

, Pn2
, w0)

=

(
n1 + n2 − 2

k − 1

)
− ξk(Cn1

, Pn2
, w0).

If k ≥ 3, k ̸= n1−1, , ∆k(G) is shellable, and has the homotopy type of a wedge of (−1)n1+n2−1−kµ(∆k(G))
spheres in dimension n1 + n2 − 2− k.

If k = 2, k ̸= n1 − 1, we obtain (−1)n1+n2−3µ(∆k(G)) = −1. Nonzero homology can only be in the top
two dimensions.

Proof. First we observe that the k-cut complex of the cycle graph Cn satisfies the condition (12) provided
k ≤ n− 1. If k = n− 1, the condition fails because all subsets of Cn of size n− 1 are connected.

By definition, ξ̄k(Cn1
, Pn2

, w0) counts connected k-subsets passing through the wedge point w0, and these
consist of a path with k = a + 1 ≥ 2 vertices in Pn2

starting at w0, attached to a path in Cn1
through w0

with a ≥ 2 vertices. The precise counts are provided in Lemma 6.10.
When 3 ≤ k, we know from Proposition 6.2 that ∆k(Cn1) and ∆k(Pn2) satisfy condition (12), and hence

so does ∆k(G), by Proposition 6.9. The Betti number follows from the general expression for the reduced
Euler characteristic. □

A completely analogous argument gives us the following for a wedge of two cycles.

Proposition 6.12. Consider the wedge G = Cn1 ∨w0 Cn2 where Cn is the cycle graph on n vertices, and w0

is a common vertex of both Cn1 and Cn2 . Then G has n1 + n2 − 1 vertices. If k = n1 + n2 − 1, ∆k(G) is a
point {w0}. Assume 2 ≤ k ≤ n1 + n2 − 3. If k ̸= ni − 1, i = 1, 2, then G satisfies condition (12) and ∆k(G)
has reduced Euler characteristic µ(∆k(G)) where

(−1)n1+n2−1−kµ(∆k(G)) =

(
n1 + n2 − 2

k − 1

)
− |Zk(Cn1)| − |Zk(Cn2)| − ξ̄k(Cn1 , Cn2 , w0)

=

(
n1 + n2 − 2

k − 1

)
− ξk(Cn1

, Cn2
, w0),

where

ξk(Cn1
, Cn2

, w0) =

min(n1,k)∑
a=max(1,1+k+1−n2)

ξn1
(a)ξn2

(k + 1− a).

If k ≥ 3, ∆k(G) is shellable, and has the homotopy type of a wedge of (−1)n1+n2−1−kµ(∆k(G)) spheres
in dimension n1 + n2 − 2− k.

If k = 2 we obtain (−1)n1+n2−3µ(∆k(G)) = −1. Nonzero homology can only be in the top two dimensions.

Proof. We invoke Proposition 6.9 again, noting that the caveat k ̸= ni − 1, i = 1, 2, still applies. It remains
to observe that

ξk(Cn1
, Cn2

, w0) =

min(n1,k)∑
a=max(1,1+k+1−n2)

ξn1
(a)ξn2

(k + 1− a),

but this follows since we are counting connected subsets of size k passing through the wedge point w0;
these separate into two parts, one in each cycle, intersecting in w0. Again Lemma 6.10 provides the precise
counts. □

7. Families of graphs

7.1. Complete Multipartite Graphs. In this section we determine the homotopy type of the cut complex
∆k(G) for various families of graphs G. With the exception of squared cycle graphs, the families we consider
have the property that their homology is concentrated in a single dimension.

Let En denote the edgeless graph on n vertices. The complete bipartite graph Km,n is the join of two
edgeless graphs Em and En. In this section we will first determine completely the equivariant homotopy
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type for cut complexes of Km,n, and then proceed to do the same for multipartite graphs. Note that the
automorphism group of a complete multipartite graph acts simplicially on the cut complexes.

Let G = Km,n be the complete bipartite graph with 1 ≤ m ≤ n. We point out for clarity that if we label
the vertices with the sets [m] and m+ [n] := {m+ 1, . . . ,m+ n}, so that the edges are (i, j) for 1 ≤ i ≤ m
and m+1 ≤ j ≤ m+n, then for each k ≥ 2, the nonvoid cut complex ∆k(G) has facets F of size (m+n−k)
where F must contain the vertex subset [m] or the vertex subset m+ [n].

Theorem 7.1 was proved in [2, Theorem 3.3] by different methods. Here we deduce it from the structure
theorems of Section 4. From Theorem 4.10, Theorem 4.16 and Proposition 3.6, we have the following, since
Km,n = Em ∗ En:

Theorem 7.1. Let 1 ≤ m ≤ n and 2 ≤ k.

(1) ∆k(Km,n) is shellable if and only if m < k. Furthermore, if m < k ≤ n, then ∆k(Km,n) is
contractible, and if k > n, the cut complex is void and hence shellable.

(2) If k ≤ m ≤ n, the (m+n−k−1)-dimensional complex ∆k(Km,n) is homotopy equivalent to a wedge

of
(
m−1
k−1

)(
n−1
k−1

)
spheres of dimension m+ n− 2k.

Proof. From Theorem 4.10, ∆k(Km,n) is shellable if and only if one of ∆k(Em), ∆k(En) is shellable and the
other is void. Since 1 ≤ m ≤ n, the first statement follows from Proposition 3.6. The contractibility when
m < k ≤ n follows from Part (3) of Theorem 4.16.

If k > n both ∆k(Em), ∆k(En) are void and again the result follows from Theorem 4.10.
Now let k ≤ m ≤ n. From Proposition 3.6 and Equation (10) of Theorem 4.16, the cut complex is

homotopy equivalent to

susp(∆k(Em) ∗∆k(En)) ≃
∨

(m−1
k−1)(

n−1
k−1)

S0 ∗ (Sm−k−1 ∗ Sn−k−1) ≃
∨

(m−1
k−1)(

n−1
k−1)

Sm+n−2k. □

Thus bipartite graphs are an obstruction to shellability: if a graph H contains a bipartite graph Km,n

such that k = m = n or k ≤ m < n as an induced subgraph, then ∆k(H) is not shellable.
In order to describe the homology representation for the case k ≤ m ≤ n, we will need a well-known result

of Solomon, as well as a result about group actions on products of posets.

Theorem 7.2 ([27], [28]). The Sp-representation on the unique nonvanishing homology module of the order
complex of P (p, k) is the irreducible Vλ indexed by the integer partition λ = (k, 1p−k).

Note that a special case of this is the classical result that Sp acts on the homology of the boundary of a
(p− 1)-simplex like the sign.

Theorem 7.3 ([32, Proposition 2.3]). Let Q be any poset. Assume the nonzero reduced homology of Q is
concentrated in dimension d. Then the r-fold product of Q has nonzero reduced homology concentrated in
dimension dr + 2r − 2, and the symmetric group Sr acts on this unique nonvanishing homology module like

(sgnSr
)
d
, the dth power of the sign representation of Sr.

By Theorem 7.2, the representation ofSn on the unique nonvanishing reduced homology H̃n−k−1(∆k(En))
is the irreducible V(k,1n−k), for 2 ≤ k ≤ n.

Denote by Sm[Sn] the wreath product group of Sm with Sn, with Sm acting on m copies of Sn, so
that its order is m!(n!)m. Let V , W be Sm- and Sn-modules, respectively. The wreath product module
V [W ] is the tensor product of vector spaces W⊗m ⊗ V , equipped with a canonical action of Sm[Sn]. See
[16, Section 4.3].

We compute the equivariant homotopy type of the cut complex ∆k(Km,n) = ∆k(Em ∗En) of the complete
bipartite graph in the case k ≤ m using Theorem 4.16. In fact that theorem immediately gives:

Theorem 7.4. Let G = Km,n be the complete bipartite graph with 1 ≤ m ≤ n. Let 2 ≤ k ≤ m. Recall that
P (p, k) is the face lattice of the (p − k − 1)-skeleton of a (p − 1)-simplex. Then there is a poset map from
the face lattice L(∆k(G)) of the cut complex to the product of posets P (m, k) × P (n, k), which induces a
group-equivariant homotopy equivalence between the respective order complexes:

∆(P (m, k)× P (n, k)) ≃ susp(∆(P (m, k)) ∗∆(P (n, k))) ≃ ∆k(G).
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Hence the (m+n− k− 1)-dimensional cut complex ∆k(G) has the homotopy type of a wedge of
(
m−1
k−1

)(
n−1
k−1

)
spheres in dimension m+ n− 2k. In particular, it is not shellable.

If m < n, the automorphism group is Sm×Sn, and the representation on the homology is the irreducible
V(k,1m−k) ⊗ V(k,1n−k), indexed by the pair of integer partitions ((k, 1m−k), (k, 1n−k)).

If m = n, the automorphism group is the wreath product S2[Sn], and the representation on the homology
of the cut complex is ΦS2 [V(k,1n−k)], where the one-dimensional representation ΦS2 equals sgnn−k−1, and
sgn is the sign representation of S2.

Proof. The only statement that needs to be verified is the homology representation, since the homotopy type
was determined in Theorem 7.1. (Alternatively, it follows immediately from Theorem 4.16 and Equation 5.)
The homology representation is clear for the automorphism group Sm×Sn, because the poset map induces
an equivariant isomorphism in homology.

Note that when k = m < n, ∆m(Em) is the empty complex, and ∆k(G) ∼ susp∆(P (n, k)).
When m = n, the full automorphism group is the wreath product group S2[Sn] of order 2(n!)

2 (with S2

acting on two copies of Sn), and the action of S2 is given as stated, by Theorem 7.3. □

The equivariant homotopy and homology representation determined in Theorem 7.4 bear a striking re-
semblance to that of a complex studied by Linusson, Shareshian and Welker [20]. In that paper, the authors
consider the following simplicial complex of graphs. For positive integers k,m, n, they define Bk(m,n) to be
the simplicial complex consisting of (edge-sets of) all bipartite graphs, with bipartite vertex set [m] ∪ [n],
that do not contain a matching of size k. Clearly we may assume k ≤ m ≤ n. Their result is the following.

Theorem 7.5 ([21, Theorem 1.4]). The complex Bk(m,n) has the homotopy type of a wedge of
(
m−1
k−1

)(
n−1
k−1

)
spheres of dimension 2k − 3.

They then make the conjecture [21, Conjecture 1.15] that (implicitly, for k < m < n) the representation of
the group Sm×Sn on the unique nonvanishing homology is, in our notation, (sgnSm

⊗V(k,1m−k))⊗(sgnSn
⊗

V(k,1n−k)). It would be interesting to know if there is a topological connection between their complex and
ours.

We turn now to multipartite graphs, where the results are similar. Let G be the complete multipartite
graph Km1,...,mr , r ≥ 3. We may assume m1 ≤ · · · ≤ mr−1 ≤ mr. Then G = Em1 ∗ · · · ∗ Emr , and by
associativity, G = G1 ∗G2 where G1 = Km1,...,mt and G2 = Kmt+1,...,mr for any t, 1 ≤ t ≤ r − 1.

Theorem 7.6. Let m1 ≤ · · · ≤ mr−1 ≤ mr, r ≥ 3. Let G be the complete multipartite graph Km1,...,mr .
Then

(1) If mr < k, then ∆k(G) is void and hence shellable.
(2) If mr−1 < k ≤ mr, then ∆k(G) is contractible and shellable.
(3) If m1 < k ≤ mr−1, then ∆k(G) is contractible and not shellable.
(4) If k ≤ m1, then ∆k(G) is not shellable.

Proof. Item (1) is clear.
So assume k ≤ mr, and consider Item (2). Take G1 = Km1,...,mr−2

and G2 = Kmr−1,mr
, so G = G1 ∗G2.

If k ≤ mr−1, Theorem 7.1 tells us that the cut complex ∆k(G2) of the bipartite graph is not shellable, and
hence Theorem 4.10 shows that ∆k(G) is not shellable. On the other hand, if mr−1 < k ≤ mr, then ∆k(G1)
is void and ∆k(G2) is shellable and not void, so by Theorem 4.16 ∆k(G) is contractible and shellable.

Next consider Item (3). If mt < k ≤ mt+1 for 1 ≤ t ≤ r− 2, now write G = G1 ∗G2 with G1 = Km1,...,mt

and G2 = Kmt+1,...,mr . Since ∆k(G1) is void, and ∆k(G2) is not void, Part (2) of Theorem 4.16 says that
∆k(G) is contractible (but by above not shellable).

Finally, for Item (4), if k ≤ m1, let G1 = Km1,m2
and G2 = Km3,...,mr

, so that G = G1 ∗G2. Then Part
(1) of Theorem 7.1 says that ∆k(G1) is not shellable, and hence Theorem 4.10 shows that ∆k(G) is not
shellable. □

For complete bipartite graphs, Theorem 7.4 asserts that ∆n(Kn,n) ≃ S0. The next result generalizes this
to complete multipartite graphs.
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Proposition 7.7. Let G = Kn,n,...,n︸ ︷︷ ︸
r

be the complete multipartite graph whose vertex set is a disjoint union

of r sets of size n, r ≥ 2. Then the (nr − n− 1)-dimensional cut complex ∆n(G) is homotopy equivalent to
a single sphere Sr−2 in dimension r − 2. The automorphism group is the wreath product Sr[Sn], with Sr

permuting the r copies of Sn. The one-dimensional representation afforded by the unique nonzero homology
module in degree r − 2 is

sgnSr
[1Sn

].

Proof. We have G = En ∗ · · · ∗ En, and ∆n(En) = {∅} ≃ S−1. Iterating Theorem 4.16 gives the equivariant
isomorphism of face lattices

L(∆n(G)) ∼= L(∆n(En))× · · · × L(∆n(En))︸ ︷︷ ︸
r

;

using the fact that Sa ∗ Sb = Sa+b+1, this (with Equation 6) gives the homotopy equivalence

∆n(G) ≃ S0 ∗ · · · ∗ S0︸ ︷︷ ︸
r−1

∗∆n(En) ∗ · · · ∗∆n(En)︸ ︷︷ ︸
r

≃ Sr−2 ∗ S−1 ≃ Sr−2.

The equivariant isomorphism of face lattices makes the homology of ∆n(G) isomorphic to the r-fold

tensor product of H̃−1(∆n(En)). Clearly Sn acts trivially on each factor, and Sr acts like (sgn)−1 = sgn by
Theorem 7.3. This finishes the proof. □

For the remainder of this section, we record the following notational conventions, which will be helpful in
describing the homology representations. Assume M = {m1, . . . ,mr} is the multiset consisting of ri indices
equal to i. The automorphism group of the complete multipartite graph G = Km1,...,mr is the group GM ,
where GM is the product of wreath products GM =×i Sri [Si].

The next case is a straightforward generalization of the bipartite case, Theorem 7.4. Recall that P (n,m)

is the truncated Boolean lattice B≤n−m
n ∪ {1̂}, and it is the face lattice of the (n −m − 1)-skeleton of an

(n− 1)-simplex. From Part (1) of Theorem 4.16 and Theorem 7.3, we obtain:

Theorem 7.8. Let 2 ≤ k < m1 ≤ m2 ≤ · · · ≤ mr, and let G be the complete multipartite graph G =
Km1,··· ,mr

. There is a group-equivariant homotopy equivalence

∆k(G) ≃ ∆(P (m1, k)× · · · × P (mr, k)).

Hence the ((
∑r

i=1 mi) − k − 1)-dimensional cut complex ∆k(G) has the homotopy type of a wedge of∏r
i=1

(
mi−1
k−1

)
spheres in dimension

∑r
i=1(mi − k) + (r − 2).

The homology representation of the automorphism group GM is then the tensor product of wreath product
representations ⊗

i≥k+1

ΦSri
[V(k,1i−k)],

where ΦSri
is the one-dimensional representation of Sri equal to (sgn )i−k−1.

We end this section with the last case of multipartite graphs that needs to be examined. If m1 = . . . =
mt = m andm < mt+1 ≤ · · · ≤ mt+r, for convenience we writeKmt,mt+1,...,mt+r

for the complete multipartite
graph Km,...,m︸ ︷︷ ︸

t

,mt+1,...,mt+r . Once again the theorem follows immediately from Part (1) of Theorem 4.16 and

Theorem 7.3, invoking in addition Proposition 7.7 and Theorem 7.8. The case r = 1 is listed separately only
for clarity.

Theorem 7.9. Let m = m1 = · · · = mt < mt+1 ≤ · · · ≤ mt+r, where t ≥ 1.

(1) Let r ≥ 2. Then we have the equivariant homotopy equivalence of cut complexes

∆m(Kmt,mt+1,...,mt+r
) ≃ susp (∆m(Kmt) ∗∆m(Kmt+1,...,mt+r

) )

which in turn is homotopy equivalent to St−1 ∗ ∆m(Kmt+1,...,mt+r ). Let N =
∑r

i=1 mt+i. The
((t− 1)m+N − 1)-dimensional cut complex ∆m(Kmt+1,...,mt+r ) is homotopy equivalent to a wedge
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of
∏r

i=1

(
mi−1
m−1

)
spheres in dimension t + N − rm + (r − 2). The homology representation of the

automorphism group St[Sm]×GM , where GM is the automorphism group of Kmt+1,...,mt+r , is

V(1t)[V(m)]⊗
⊗

i≥m+1

ΦSri
[V(m,1i−m)].

(2) Let r = 1. Then we have the equivariant homotopy equivalence of complexes

∆m(Kmt,mt+1
) ≃ susp(∆m(Kmt) ∗∆(P (mt+1,m))),

which in turn is homotopy equivalent to St−1 ∗∆(P (mt+1,m) ). The order complex ∆(P (mt+1,m)) is
the barycentric subdivision of the (mt+1−m−1)-skeleton of an (mt+1−1)-dimensional simplex. The
((t− 1)m+mt+1 − 1)-dimensional cut complex ∆m(Kmt,mt+1

) is homotopy equivalent to a wedge of(
mt+1−1
m−1

)
spheres in dimension t+mt+1−m− 1. The homology representation of the automorphism

group St[Sm]×Smt+1 is
V(1t)[V(m)]⊗ V(m,1mt+1−m).

7.2. Cycle Graphs. For the cycle graph Cn, we may assume n ≥ 4 and 2 ≤ k ≤ n − 2. If n = 4, the
cut complex ∆2(C4) is 1-dimensional with two facets {1, 3} and {2, 4}, and is homotopy equivalent to the
0-sphere S0; it is thus NOT shellable. In fact ∆2(C4) = ∆2(K2,2).

Recall from Figure 3 that the 2-dimensional cut complex ∆2(C5) is in fact a Möbius strip, and hence
it is homotopy equivalent to the one-sphere S1. This holds more generally for the (n − 3)-dimensional cut
complex ∆2(Cn): it was shown in [2] that:

Proposition 7.10 ([2, Theorem 3.9]). Let Cn be a cycle graph, n ≥ 5. Then the (n − 3)-dimensional cut
complex ∆2(Cn) is homotopy equivalent to the sphere Sn−4.

For k ≥ 3, we have the following:

Theorem 7.11 (Dane Miyata). For all n−1 ≥ k ≥ 3, the k-cut complex of the cycle graph Cn on n vertices,
∆ := ∆k(Cn), is shellable.

Proof. When k = n− 1, ∆k(G) is void and thus trivially shellable, so assume k ≤ n− 2.
Fix k > 2 and n, and let s = n−k. Order the vertices of Cn by going clockwise around the cycle, starting

at some initial vertex and, for simplicity, identify the vertex set of Cn with [n] := {1, . . . , n} with the usual
order. The facets of ∆ are exactly the size s separating sets of Cn. We will identify each facet of ∆ with the
unique increasing sequence of its vertices. We claim that the lexicographic ordering on the facets of ∆ gives
a shelling order for ∆.

Let A and B be facets of ∆ such that A < B in the lexicographic order. Suppose A is given by the sequence
a1, . . . , as of vertices of Cn and B is given by the sequence b1, . . . , bs of vertices of Cn. Since A < B, there is
a unique index i, such that ai ⪇ bi, and aj = bj for all j < i. Furthermore, there is a minimum index ℓ such
that bℓ /∈ A. Let C = (B ∪ {ai}) \ {bℓ}. In other words, C is given by the sequence

b1, . . . , bi−1, ai, bi, . . . , b̂ℓ, . . . bs.

(Here the hat means we omit that element from the sequence). Intuitively, C is obtained from B by taking
the smallest element of B that is not in A and replacing it with the smallest element of A that is not in B.
Now there are two cases; either C gives a separating set or it does not.

In the case where C gives a separating set, C is a facet of ∆. Notice C < B in the lexicographic order,
since the ith term in C is ai which is less than bi. Furthermore, C ∩ B = B \ {bℓ} and bℓ /∈ A ∩ B, which
means A ∩B ⊆ B ∩ C and |B ∩ C| = s− 1. Thus, in this case, the shelling order condition is satisfied.

In the case where C is not a separating set, it must either be an interval, or the complement of an interval.
If C is an interval, we conclude that bℓ = bs, meaning bℓ is the largest element of B. Otherwise bs > bℓ > ai,
and because C contains ai and bs but not bℓ, it would not be an interval. Since bℓ = bs is the smallest
element of B \ A, we conclude b1, . . . , bs−1 are all in A. In our construction of C, we took B and replaced
bℓ = bs with ai and so all elements of C are in A, which means C = A. This is a contradiction because A is
a separating set but C is not. Therefore, C is not an interval, so it must be the complement of an interval,
namely,

C = [n] \ [p, q]
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where [p, q] is some interval of size k. In this case, we can immediately deduce the following from the
construction of C:

B ∩ [p, q] = {bℓ} and p > ai.

Since A is a facet, it is distinct from C so there exists some a′ ∈ A such that a′ ∈ [p, q]. We know that
a′ /∈ B since it cannot be equal to bℓ and B ∩ [p, q] = {bℓ}. Thus, B is missing at least two elements of A,
namely ai and a′. We know |B| = |A| so B must contain an element b′ distinct from bℓ such that b′ /∈ A.
We defined bℓ to be the minimum element of B \ A so b′ > bℓ. This implies b′ > q as B ∩ [p, q] = {bℓ}. In
particular, we have shown that b′ is greater than all elements of [n] \B since [n] \B = ai ∪ [p, q] \ bℓ.

Note that B = [1, ai − 1] ∪ [ai + 1, p− 1] ∪ {bℓ} ∪ [q + 1, n] and so [n] \B = {ai} ∪ [p, bℓ − 1] ∪ [bℓ + 1, q].
Now recall that k ≥ 3, which means [n]\B has cardinality at least 3. Let x, y, z be three distinct elements

of [n] \ B and without loss of generality assume x < y < z. Now we have four cases, bℓ < x, x < bℓ < y,
y < bℓ < z, and bℓ > z.

Case 1. (bℓ < x) In this case, let D =
(
B ∪ {y}

)
\ {b′}.

Notice D must necessarily be a separating set since bℓ < x < y < b′ and bℓ, y ∈ D, but x, b′ /∈ D.

Case 2. (x < bℓ < y) In this case, let D =
(
B ∪ {z}

)
\ {b′}.

Notice D must necessarily be a separating set since bℓ < y < z < b′ and bℓ, z ∈ D, but y, b′ /∈ D.

Case 3. (y < bℓ < z) In this case, let D =
(
B ∪ {x}

)
\ {b′}.

Notice D must necessarily be a separating set since x < y < bℓ < b′ and bℓ, x ∈ D, but y, b′ /∈ D.

Case 4. (z < bℓ) In this case, let D =
(
B ∪ {y}

)
\ {b′}.

Notice D must necessarily be a separating set since y < z < bℓ < b′ and bℓ, y ∈ D, but z, b′ /∈ D.

In each case, we see that D is a facet of ∆ and since it is constructed by taking B and replacing b′ with a
smaller element, we have that D < B in the lexicographic order. Furthermore, the only element of B \D is
b′ so |B ∩D| = s− 1. Finally, as b′ /∈ A, we see that B ∩ A ⊆ B ∩D and so the shelling order condition is
satisfied. □

The results of Section 6 can be applied to compute Betti numbers for cut complexes of trees and cycles.
These belong to families of graphs whose cut complexes satisfy the condition (11) of Theorem 6.1. Recall
from that theorem that for a forest Fn with n vertices, |Zk(Fn)| is the number of subgraphs of Fn that are
trees.

In this case |Zk(Fn)| = n − c, where c is the number of connected components of the forest Fn. Also if
the tree is a path Pn, then |Zk(Pn)| = (n− k + 1).

Proposition 7.12. Let Fn be a forest on n vertices. Then ∆k(Fn) is homotopy equivalent to a wedge of((
n−1
k−1

)
− |Zk(Fn)|

)
spheres in dimension n − k − 1 if this number is nonzero, and contractible otherwise.

In particular, if Fn is a tree Tn on n vertices, we have

∆k(Tn) ≃

{
{a point}, k = 2,∨
(n−1
k−1)−|Zk(Tn)| Sn−k−1, k ≥ 3.

Proof. It is immediate from Proposition 6.2 that condition (11) in Part (3) of Theorem 6.1 is satisfied, since
forests are acyclic. Since forests are shellable by Corollary 4.21 and Theorem 4.8, the result follows. □

Observe that when k = 2, |Zk(Fn)| is just the number of edges in the forest, namely, n−c if the forest has
c connected components, and the Betti number is thus c− 1. In the special case when the forest is a single
tree, this makes the reduced Euler characteristic zero, and so the 2-cut complex of a tree is contractible,
recovering the result of Corollary 6.3.

For the cycle graph Cn, we may assume n ≥ 4 and 2 ≤ k ≤ n − 2. If n = 4, the one-dimensional cut
complex ∆2(C4) has two facets {1, 3} and {2, 4}, and is homotopy equivalent to the 0-sphere S0; it is thus
not shellable.

The cut complex ∆k(Cn) has dimension n − k − 1. When k = 2, we already know that the cut complex
∆2(Cn) has the homotopy type of one sphere in codimension 1, i.e., in dimension n− 4.
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Proposition 7.13. Let Cn be the cycle graph on n ≥ 5 vertices. For n−2 ≥ k ≥ 3, the shellable cut complex
∆k(Cn) is homotopy equivalent to a wedge of

(
n−1
k−1

)
− n spheres in (top) dimension n− k − 1.

Proof. Proposition 6.2 shows that condition (11) in Part (3) of Theorem 6.1 is satisfied, since Cn has no
cycles of length less than n. The trees on k vertices may be described as the intervals [i, i+k− 1], 1 ≤ i ≤ n,
but now with arithmetic modulo n, so that there are n such trees in all, i.e., |Zk(Cn)| = n.

Since ∆k(Cn) is shellable for k ≥ 3 by Theorem 7.11, the statement follows. For the cut complex ∆2(Cn),
we already know that it has the homotopy type of one sphere in dimension n− 4, by Proposition 7.10; this
is confirmed by the value (−1) of the reduced Euler characteristic µ(∆2(Cn)). □

Corollary 7.14. The subposet P (n, k)\Zk(Cn), where Zk(Cn) is the antichain of n complements of trees
on k vertices [i, i+ k − 1] (modulo n), 1 ≤ i ≤ n, as above, is homotopy equivalent to a wedge of

(
n−1
k−1

)
− n

spheres in the top dimension n− k− 1 if k ≥ 3, and to a single sphere in dimension one less than the top if
k = 2.

The Euler characteristic computation of Proposition 7.13 can be made equivariant. The cycle graph Cn

and its cut complexes are invariant under the action of the cyclic subgroup Cn of the symmetric group Sn,
generated by the n-cycle (1, 2, . . . , n). We have the following result.

Theorem 7.15. The cyclic group Cn of order n acts on the unique nonvanishing homology of the cut complex
∆k(Cn), 2 ≤ k ≤ n− 2, as follows:

If k = 2, the action of Cn is the 1-dimensional module given by{
the trivial representation, n odd,

the sign representation, n even.

If k ≥ 3, the action of Cn is given by V(k,1n−k)

ySn

Cn
−RegCn

, where V(k,1n−k) is the Sn-irreducible indexed

by the partition (k, 1n−k), the down arrow indicates restriction to the subgroup Cn, and RegCn
is the regular

representation of Cn.

Proof. Recall from Theorem7.2 that the homology module of the subposet P (n, k) affords the representation
V(k,1n−k) of Sn. In [33], tools were developed to compute the group action on the Lefschetz module of
the order complex of a poset, in particular when an antichain is deleted. Applying [33, Theorem 1.10] to
Corollary 7.14 and the antichain Zk(Cn) consisting of complements of trees of size k, we obtain the following
Cn-equivariant versions of Equation (7):

(14) H̃n−4(∆2(Cn)) =
⊕

0̂<x<1̂

x∈Zk(Cn)

H̃(0̂, x)⊗ H̃(x, 1̂)− V(2,1n−2)

ySn

Cn
,

and for k ≥ 3,

(15) H̃n−k−1(∆k(Cn)) = V(k,1n−k)

ySn

Cn
−

⊕
0̂<x<1̂

x∈Zk(Cn)

H̃(0̂, x)⊗ H̃(x, 1̂), k ≥ 3.

We have omitted the homology degrees in the right-hand side since the intervals involved are Boolean lattices,
and it is clear where the unique nonvanishing homology occurs.

To see that these decompositions are indeed group-equivariant, we observe that the n elements of the
antichain Zk(Cn) are transitively permuted by the cyclic group Cn. This is also true of the one-dimensional

homology modules H̃(0̂, x), x ∈ Zk(Cn). Since the stabilizer of an x ∈ Zk(Cn) is clearly the trivial group,

the cyclic group transitively permutes the summands H̃(0̂, x) ⊗ H̃(x, 1̂), and hence acts like the regular

representation on the direct sum ⊕ 0̂<x<1̂

x∈Zk(Cn)

H̃(0̂, x) ⊗ H̃(x, 1̂). Note also that the homology of (x, 1̂) is the

one-dimensional trivial module for all x ∈ Zk(Cn). Hence Equation (15) becomes

H̃n−k−1(∆2(Cn)) = V(k,1n−k)

ySn

Cn
− RegCn

,

as claimed.
In the case k = 2, Equation (14) becomes H̃n−4(∆2(Cn)) = RegCn

− V(2,1n−2)

ySn

Cn
.
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We can determine the restriction of the Sn-irreducible V(2,1n−2) to Cn precisely as follows.
The permutation action of the cyclic group Cn on the set [n] is the restriction of the natural action of Sn

on [n]. It is well known that the latter decomposes into two irreducible components, the trivial representation
and the reflection representation, see e.g., [31, Example 7.18.8]: V(n) ⊕ V(n−1,1).

Since V(n) is the one-dimensional trivial representation of Sn, we obtain

V(n−1,1)

ySn

Cn
= RegCn

− 1Cn
.

Now observe that V(2,1n−2) is the sign representation of Sn tensored with V(n−1,1). It is easy to see that the
sign representation restricted to Cn is the trivial representation 1Cn if n is odd, and the sign representation
otherwise. The regular representation is invariant with respect to tensoring with the sign, and the result
follows. □

7.3. Prism over a clique.

Definition 7.16. The prism over a clique is the graph Gn with vertex set {1+, . . . , n+, 1−, . . . , n−} for a
given integer n, and an edge between i+ and j+, between i− and j−, and between i+ and i−, for every
i, j ∈ {1, . . . , n}. Note that this is the Cartesian product, Gn = Kn ×K2.

Remark 7.17. If n < k, then ∆k(Gn) is the void complex, since there are no separating sets of size 2n− k,
which is less than n. So ∆k(Gn) is shellable.

We determine the homotopy type of ∆k(Gn) when n ≥ k precisely in Theorem 7.18 below. The case
k = 2 was also proved in [2].

Theorem 7.18. Let n ≥ k ≥ 2. The (2n− k − 1)-dimensional cut complex ∆k(Gn) has homotopy type

∆k(Gn) ≃
∨
(n−1
k−1)

S2n−k−2,

one lower than full dimension. Thus for n ≥ k, ∆k(Gn) is not shellable.

Proof. We prove this theorem by using discrete Morse theory, precisely by constructing a sequence of element
matchings [2, Appendix, Theorems 7.2, 7.5]. Let V = {1+, . . . , n+, 1−, . . . , n−} be the vertex set, V + =
{1+, . . . , n+} and V − = {1−, . . . , n−}. For an arbitrary X ⊂ V let X+ = X ∩ V +, and X− = X ∩ V −.
We observe that if X ⊂ V +, X ⊂ V −, or if there is an i such that {i+, i−} ⊂ X, then X is connected.
Pairs {i+, i−} will be called columns. Thus the complement of a disconnected set (in particular, a facet of
∆k(Gn)) must contain at least one element of each column. A set of vertices X contains a disconnected set
of size m if and only if there are m columns indexed by i1 < i2 < · · · < im such that for each j ∈ {1, . . . ,m},
X ∩ {i+j , i

−
j } ≠ ∅, X ∩ {i

+
1 , . . . , i

+
m} ≠ ∅, and X ∩ {i−1 , . . . , i−m} ≠ ∅. We will denote by d(X) the maximal

cardinality of a disconnected set contained in X.
First, we perform an element matchingM1+ using vertex 1+. Faces σ ∈ ∆k(Gn) that remain unmatched

satisfy 1+ /∈ σ and σ∪{1+} /∈ ∆k(Gn). Then we perform an element matchingM1− using vertex 1−. There
are two possible types of unmatched faces after the sequenceM1+ followed byM1− :

(1) Faces σ ∈ ∆k(Gn) that satisfy:

1+, 1− /∈ σ, σ ∪ {1+} /∈ ∆k(Gn), and σ ∪ {1−} /∈ ∆k(Gn).

(2) Faces σ ∪ {1−} ∈ ∆k(Gn) that satisfy:

1+, 1− /∈ σ, σ ∪ {1+} ∈ ∆k(Gn), and σ ∪ {1+, 1−} /∈ ∆k(Gn).

To see that there are actually no faces of type (1), note that every face σ is in a facet, and every facet
has to contain either 1+ or 1−. So either σ ∪ {1+} or σ ∪ {1−} is in ∆k(Gn). Therefore, there are only
unmatched faces of type (2). Denote by K the set of all unmatched faces after the sequence of matchings
M1+ followed byM1− .

Let σ ∪{1−} be an arbitrary face in K. Conditions from (2) imply that d(V \ (σ ∪{1+})) ≥ k, d(V \ (σ ∪
{1−})) ≥ k, while d(V \ (σ ∪ {1+, 1−})) ≤ k − 1. Consequently,

d(V \ (σ ∪ {1+})) = k = d(V \ (σ ∪ {1−})), and d(V \ (σ ∪ {1+, 1−})) = k − 1.
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Because of its repeated use, we write

Xσ = V \ (σ ∪ {1+, 1−}).
We conclude that the unmatched faces are all those σ∪{1−} which satisfy the condition that there are k−1
indices i1 < i2 < · · · < ik−1 (i1 ≥ 2) such that:

(a) Xσ ⊂ {i+1 , i
−
1 } ∪ · · · ∪ {i

+
k−1, i

−
k−1};

(b) For each j ∈ {1, . . . , k − 1}, Xσ ∩ {i+j , i
−
j } ≠ ∅;

(c) Xσ ∩ {i+1 , . . . , i
+
k−1} ≠ ∅;

(d) Xσ ∩ {i−1 , . . . , i
−
k−1} ≠ ∅.

The set {i1, i2, . . . , ik−1} of indices will be called the support of Xσ, and the individual ij the supporting
indices.

Further, we perform a sequence of element matchings M2+ , . . . ,Mn+ , where each Mi+ denotes the
element matching using vertex i+. We claim that the set of unmatched faces after all these element matchings
will be

C = {V \ {1+, i+1 , i
−
1 , i

−
2 , . . . , i

−
k−1} : {i1, . . . , ik−1} ⊂ {2, 3, . . . , n} and i1 < i2 < . . . < ik−1},

i.e., the set of all σ ∪ {1−} satisfying Xσ = {i+1 , i
−
1 , i

−
2 , . . . , i

−
k−1} for an arbitrary subset {i1, . . . , ik−1} ⊂

{2, 3, . . . , n} and order i1 < i2 < . . . < ik−1. See Figure 8 for an example of such a matched face, and
Figure 9 for an example of an unmatched face.

Let us explain which pairs are made by these element matchings. For each face σ ∪ {1−} ∈ K, consider
the set of supporting indices for Xσ: i1 < i2 < · · · < ik−1 (i1 ≥ 2). Consider the smallest j ∈ {1, . . . , k − 1}
such that i−j ∈ Xσ (it exists because of condition (d)). We have two possibilities:

(P1) If i+j ∈ σ, we claim that σ ∪ {1−} will be matched with (σ \ {i+j }) ∪ {1−} in the element matching

Mi+j
. One can easily check that if σ ∪ {1−} ∈ K, then (σ \ {i+j }) ∪ {1−} ∈ K as well. Also, j is the

smallest index for (σ \ {i+j }) ∪ {1−} ∈ K such that i−j ∈ Xσ\{i+j }.

(P2) If i+j /∈ σ, and if (σ∪{i+j })∪{1−} ∈ K, we claim that σ∪{1−} will be matched with (σ∪{i+j })∪{1−}
in the element matchingMi+j

. Again, the smallest negative entry j is the same for σ and σ ∪ {i+j }.

Consider an arbitrary σ for which (σ ∪ {i+j }) ∪ {1−} /∈ K. Then Xσ satisfies conditions (a)–(d), while

Xσ∪{i+j } does not satisfy all of them. The only condition which can be violated is condition (c), i.e.,

Xσ∪{i+j } ∩ {i
+
1 , · · · , i

+
k−1} = ∅. From this relation, and from (a)–(d) for Xσ, we conclude that Xσ = {i+j } ∪

{i−1 , i
−
2 , · · · , i

−
k−1}. Further, since j is the smallest negative entry in Xσ, then j = 1, and Xσ = {i+1 } ∪

{i−1 , i
−
2 , · · · , i

−
k−1}. This means that σ ∪ {1−} belongs precisely to C. Therefore we have proved that all faces

in K \ C are divided into “pairs” of type

σ ∪ {1−} ←→ (σ ∪ {i+j }) ∪ {1
−}

by considering that smallest negative entry j.
It remains to prove that for each i ≥ 2, the element matching Mi+ makes exactly the pairs in K \ C

(based on the minimal negative entry), as stated in (P1) and (P2), while it does not match any other face,
and it does not match any of the faces from C. We prove this by induction on i.

First we prove the base case i = 2 (one can observe that the base case is just a simplified version of the
induction step, but we include it for completeness). If σ ∪ {1−} is an arbitrary face in K \ C such that
2− ∈ Xσ, then σ ∪ {1−} is paired in M2+ as explained in (P1) and (P2). Next, let σ ∪ {1−} ∈ C, and
let Xσ = {i+1 } ∪ {i

−
1 , i

−
2 , · · · , i

−
k−1}. If 2+ /∈ σ (i.e.,i1 = 2), then 2+ cannot be added to σ ∪ {1−} because

Xσ∪{2+} would not satisfy condition (c). If 2+ ∈ σ (i.e.,i1 ≥ 3), then σ ∪ {1−} cannot be paired by using

2+ because d(Xσ\{2+}) = k, contradicting the condition of exactly k − 1 supporting indices. So we have
proved that M2+ does not match any of the faces in C. It remains to be proved thatM2+ does not make
any other pairs. Consider an arbitrary σ ∪ {1−} ∈ K \ C, with supporting indices i1 < i2 < · · · < ik−1

for Xσ, and let j be the smallest index such that i−j ∈ Xσ. Now ij > 2, so 2− ∈ σ (2− /∈ Xσ). We claim

that the corresponding addition/removal of 2+ would change the cardinality of the maximal disconnected
set in the complement (which has to be k − 1). Indeed, if 2+ /∈ σ, then (σ ∪ {2+}) ∪ {1−} /∈ K because
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1−

1+

2−

2+

3−

3+

4−

4+

5−

5+

6−

6+

7−

7+

8−

8+

9−

9+

σ = {2+, 2−, 3−, 4+, 4−, 5+, 7+, 7−, 8+, 9+, 9−} ̸∈ C.

∈ σ

× ∈ Xσ

1+, 1− /∈ σ

i1 = 3 i2 = 5 i3 = 6 i4 = 8

k − 1 = 4 supporting indices = # of columns with × boxes

Xσ = {3+,5−, 6+, 6−, 8−}
j = 2, i−2 = 5− – smallest negative in Xσ

1−

1+

2−

2+

3−

3+

4−

4+

5−

5+

6−

6+

7−

7+

8−

8+

9−

9+

5+ ∈ σ, hence σ ∪ {1−} will be matched with
(
σ\{5+}

)
∪ {1−} inM5+

σ\{5+} :

Figure 8. An example of a matched pair (σ ∪ {1−}, σ \ {5+} ∪ {1−})

1−

1+

2−

2+

3−

3+

4−

4+

5−

5+

6−

6+

7−

7+

8−

8+

9−

9+

σ = {2+, 2−, 4+, 4−, 5+, 6+, 7+, 7−, 8+, 9+, 9−} ∈ C.
n = 9, k = 5

∈ σ

× ∈ Xσ

1+, 1− /∈ σ

σ ∪ {1−} cannot be matched inM3+ , because σ ∪ {1+, 1−} ∪ {3+} is not a face by condition (c).

σ ∪ {1−} is not matched inM5+ with the following face τ , because τ is matched with τ ∪ {3+}.

1−

1+

2−

2+

3−

3+

4−

4+

5−

5+

6−

6+

7−

7+

8−

8+

9−

9+

τ = {1−, 2+, 2−, 4+, 4−, 6+, 7+, 7−, 8+, 9+, 9−}.

∈ τ

Figure 9. An unmatched face σ ∪ {1−} and an example showing why it is unmatched.

d(Xσ∪{2+}) < k − 1. Otherwise, if 2+ ∈ σ, (σ \ {2+}) ∪ {1−} /∈ K because d(Xσ\{2+}) = k. This confirms
thatM2+ does not make any other pairs, and finishes the proof for the base case.

Now assume that the statement holds for all 2, . . . , i−1 (i ≥ 3), and we prove it for the element matching
Mi+ using i+.

First, consider an arbitrary σ ∪ {1−} ∈ K, with the supporting indices for Xσ: i1 < i2 < · · · < ik−1

(i1 ≥ 2), for which the smallest j ∈ {1, . . . , k − 1} such that i−j ∈ Xσ satisfies ij = i. By the induction

hypothesis, σ∪{1−} has not been matched yet, and its pair defined in (P1)/(P2) has not been matched yet.
Therefore this pair is formed precisely inMi+ .
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The next fact we need to prove is thatMi+ does not match any of the faces from C. Consider an arbitrary
σ ∪ {1−} ∈ C, Xσ = {i+1 , i

−
1 , i

−
2 , . . . , i

−
k−1}, 2 ≤ i1 < i2 < . . . < ik−1. Obviously, no vertex i+ can be

added to σ ∪ {1−}, because then Xσ∪{i+} would not satisfy condition (c). The only possibility is that

σ∪{1−} is matched with (σ \ {i+})∪{1−}, where i1 < i ≤ ik−1. However, by induction hypothesis, the face
(σ \ {i+}) ∪ {1−} was matched with ((σ \ {i+}) ∪ {i+1 }) ∪ {1−} when we performed the element matching
Mi+1

. Therefore,Mi+ does not match any face from C.
Finally, we claim thatMi+ does not match any other face besides the faces described in (P1) and (P2).

Again, consider a face σ ∪ {1−} ∈ K \ C, where Xσ has supporting indices i1 < i2 < · · · < ik−1, and the
smallest j ∈ {1, . . . , k− 1} such that i−j ∈ Xσ. If ij < i then this face was already matched by the induction

hypothesis, so we can assume that ij > i (for ij = i we already know how this face is paired). There are two
possibilities: either i is a supporting index for Xσ, or not. If i ∈ {i1, . . . , ij−1}, then i− /∈ Xσ, i.e., i

− ∈ σ, so
i+ /∈ σ from condition (b). The only option would be to match σ∪{1−} with (σ∪{i+})∪{1−}, but this is not
possible because then Xσ∪{i+} would not contain a disconnected (k−1)-set (because Xσ∪{i+}∩{i+, i−} = ∅).
The second possibility for i is that i /∈ {i1, . . . , ij−1}, i.e., i is not a supporting index for Xσ. Then i+, i− ∈ σ,
so the only option would be to match σ ∪ {1−} with (σ \ {i+}) ∪ {1−}. But the addition of i+ to the
complement would increase the size of a maximal disconnected set, i.e., it would imply d(Xσ\{i+}) = k,
which is not possible.

By induction, we have proved that after the sequence M1+ ,M1− , and then M2+ ,M3+ , . . .Mn+ , the
unmatched faces are exactly the faces in C. There are exactly

(
n−1
k−1

)
faces in C, and each of them contains

exactly 2n− k − 1 vertices. By [2, Appendix, Theorems 7.5], a sequence of element matchings is an acyclic
matching of the face poset, so we conclude that the complex ∆k(Gn) is homotopy equivalent to a CW-
complex with

(
n−1
k−1

)
cells of dimension 2n − k − 2 and one additional 0-cell [2, Appendix, Theorems 7.2].

Consequently, ∆k(Gn) ≃
∨
(n−1
k−1)

S2n−k−2. □

The description in the proof shows that ∆k(Gk) is isomorphic to the boundary of a k-dimensional
crosspolytope with two opposite facets removed.

Lemma 7.19. The prism over a clique, Gk, is a minimal forbidden subgraph for k-cut complex shellability.

Proof. We must examine what happens to the cut complex when a vertex of Gk is deleted. By symmetry,
we may assume this vertex is k+.

According to Lemma 4.5, we have ∆k(Gk \ {k+}) = lk∆k(Gk)(k
+). The link of k+ in the k-dimensional

crosspolytope is the (k−1)-dimensional crosspolytope on vertex set {1+, . . . , (k−1)+, 1−, . . . , (k−1)−}. Next,
consider what happens when the facets {1+, . . . , k+} and {1−, . . . , k−} are deleted from the k-dimensional
crosspolytope: the vertex k+ does not appear in the second of these facets, and deleting the first of them
results in the facet {1+, . . . , (k − 1)+} being removed from the link of k+. Therefore, ∆k(Gk \ {k+}) is a
(k − 1)-dimensional crosspolytope with a single facet removed.

Every polytope is shellable, so in particular the (k−1)-dimensional crosspolytope is shellable. By symme-
try, there is a shelling order in which the facet {1+, . . . , (k − 1)+} appears last, so removing this facet from
the shelling order gives us a shelling order for the crosspolytope without this facet. Thus ∆k(Gk \ {k+}) is
shellable, so Gk is a minimal forbidden subgraph for k-cut complex shellability. □

7.4. Squared Cycle Graphs.

Definition 7.20. The squared cycle graph Wn is the graph with vertex set [n], and edge-set {(i, i + 1
mod n), (i, i+ 2 mod n)}, i = 1, . . . , n.

Clearly, Wn contains the cycle graph Cn. If n ≤ 5, Wn is the complete graph Kn. For n ≥ 6 and n > k+3,
the cut complex ∆k(Wn) has dimension n− k − 1.

Proposition 7.21. For n ≤ k + 3, ∆k(Wn) is void (there are no faces) and therefore shellable.

Proof. Clearly ∆k(Wn) = ∅ if n ≤ k + 1. If n = k + 2, a separating 2-set must be of the form {1, j},
j /∈ {2, 3, k + 1, k + 2}, so 4 ≤ j ≤ k. Since there is an edge between j − 1 and j + 1, and paths from 2 to
j − 1, and from j + 1 to k, this is impossible.
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Let n = k + 3. Consider the set S = {1 < i < j}. If j < k + 3 and i < j − 1, then i− 1, i− 2, . . . , 2, k +
3, . . . , j+1, j−1, . . . , i+1 is a path in Wn\S. If j = k+3 and 2 < i < k+2, then 2, 3, . . . i− 1, i+ 1, . . . , k + 2
is a path in Wn \ S. So Wn does not have a separating set of size 3. □

Proposition 7.22 ([2, Theorem 3.11]). The (n − 3)-dimensional cut complex ∆2(Wn) has the homotopy
type of Sn−4, one sphere in dimension one lower than the top, for all n ≥ 7. If n = 6, ∆2(W6) is homotopy
equivalent to S1. Hence for n ≥ 6, the cut complex ∆2(Wn) is not shellable.

Sage computations suggest the following conjectures:

Conjecture 7.23. For k ≥ 3, the 4-dimensional cut complex ∆k(Wk+5) has the homotopy type of S3 ∨∨
β(k) S4 (a wedge of spheres in dimensions 3 and 4) for positive integers β(k), and is therefore not shellable.

Its nonzero homology is H̃3 = Z, H̃4 = Zβ(k).

Conjecture 7.24. For 15 ≥ k ≥ 3, the number of 4-spheres β(k) in ∆k(Wk+5) is given by the formula

β(k) =
(k − 3)(k − 2)(k + 5)

6
.

These numbers match OEIS sequence A006503.

Conjecture 7.25. For k ≥ 3 the cut complex ∆k(Wn) is shellable for n ≥ k + 6 (supported by Sage for
n ≤ 13 and k ≤ 5). For k = 3 and n ≥ 9, the Betti numbers are

(
n−4
2

)
− 9 = {1, 6, 12, 19, 27, . . . }. This is

OEIS A051936.

Sage computations also suggest that for k ≥ 3, the 3-dimensional cut complex ∆k(Wk+4) has the homotopy
type of S1 and is therefore not shellable. The following results enable us to prove this. Let n = k + 4, and
label the vertices of Wk+4 = Wn with the indices 1, . . . , n, with arithmetic done modulo n.

Lemma 7.26. The facets of the 3-dimensional cut complex ∆k(Wk+4), for k ≥ 2, are the sets of the form

S = {i, i+ 1, j, j + 1}
with i and j chosen so that i ̸= j and so that i+ 2 and j + 2 are not elements of this set. In other words, S
consists of two pairs of consecutive vertices, {i, i+1} and {j, j+1}, with a gap of at least one vertex between
the pairs in both directions.

Proof. First, suppose S is a set of this form. Then Wn \ S has two components, specifically {i + 2, i +
3, . . . , j − 1} and {j + 2, . . . , i − 1}: there are no edges between these components, since the gaps between
these two sets are size 2. So S is a facet of ∆k(Wn).

Conversely, suppose S is any facet, so S has size 4 and Wn \ S is disconnected into two non-empty
subgraphs U and V with no edges between them. Let u and v be vertices of U and V , respectively. Consider
the list of vertices u, u+ 1, . . . , v − 1, v, read cyclically. Suppose x is the first vertex in this list that is in V .
Then both x − 2 and x − 1 cannot be in V , and they cannot be in U because (x − 2, x) and (x − 1, x) are
edges in Wn but by construction there are no edges between U and V ; therefore, both x− 2 and x− 1 must
be elements of S. Similarly, if we consider the list v, v + 1, . . . , u − 1, u and take y to be the first element
of U in this list, then y − 2 and y − 1 must be elements of S. But since S has size 4, S must be exactly
{x − 2, x − 1, y − 2, y − 1}. Since (x − 2) + 2 = x and (y − 2) + 2 = y are not elements of S, as they are
elements of V and U respectively by construction, we conclude that S is a set of the desired form. □

A routine count shows that the number of facets of ∆k(Wk+4) is (k + 4)(k − 1)/2.

Proposition 7.27. The complex ∆k(Wk+4) is homotopy equivalent to the circle S1. Consequently the 3-
dimensional cut complex ∆k(Wk+4) is not shellable.

Proof. In view of Proposition 7.22, we need only consider the case k ≥ 3.
Given a facet F = {i, i+ 1, j, j + 1} in ∆k(Wk+4), define its smallest gap size to be the number

min (#{i+ 2, i+ 3, . . . , j − 1},#{j + 2, . . . , i− 1}) = min (j − i− 2 mod n, i− j − 2 mod n)

with arithmetic modulo n. Now, for g = 1, . . . , ⌊k/2⌋, define Xg to be the complex generated by all facets
of ∆k(Wk+4) with smallest gap size at least g. Note that all facets of ∆k(Wk+4) have smallest gap size at
least 1, so X1 is ∆k(Wk+4) itself.
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Figure 10. The nerve of the facets F r
r+2, . . . , F

r
n in Xr in the odd case of the proof of

Proposition 7.27

Now we claim that Xg is always homotopy equivalent to Xg+1, for g < ⌊k/2⌋. For this we use the method
of collapsible complexes, see [3, Section 11] and [19]. The difference between the two complexes Xg and
Xg+1 is the set of facets with smallest gap size exactly g, i.e., the facets F g

i = {i, i+ 1, i+ g + 2, i+ g + 3}.
Recall [19, Chapter 9] that a free face in a simplicial complex is one that is contained in a unique facet. The
face {i+ 1, i+ g + 2} is a free face in Xg: the only facets of ∆k(Wk+4) that contain it are

{i, i+ 1, i+ g + 2, i+ g + 3} = F g
i ,

{i+ 1, i+ 2, i+ g + 2, i+ g + 3},
{i, i+ 1, i+ g + 1, i+ g + 2},
{i+ 1, i+ 2, i+ g + 1, i+ g + 2}

and all of these facets but F g
i have a smallest gap size less than g, so are not present in Xg. Therefore we

can remove {i+1, i+ g+2} from Xg by a sequence of elementary collapses without changing the homotopy
type. The remaining faces of F g

i are {i, i+g+1, i+g+3} and {i, i+1, i+g+3} and their subfaces, but these
two faces are contained respectively in the facets {i−1, i, i+ g+2, i+ g+3} and {i, i+1, i+ g+3, i+ g+4},
which each have gap size g + 1. Therefore we can remove all facets F g

i with smallest gap size g from Xg, in
any order, without changing the homotopy type, producing Xg+1.

Thus ∆k(Wk+4) = X1 is homotopy equivalent to X⌊k/2⌋. We consider the cases where k is even or odd
separately.

If k = 2r is even, then X⌊k/2⌋ = Xr consists of the facets F r
i = {i, i + 1, i + r + 2, i + r + 3} for

i = 1, . . . , r + 2, where the gaps between the pairs of vertices are size r in both directions. (Note that
F r
r+2+i = {i+ r+2, i+ r+3, 2r+4+ i, 2r+5+ i} = F r

i , since 2r+4 = k+4 = n and arithmetic takes place
modulo n.) Two facets F r

i and F r
j intersect each other if and only if i and j are consecutive modulo r + 2;

therefore, the nerve of this set of facets is the cycle graph Cr+2. By the nerve theorem [14, Corollary 4G.3],
Xr is homotopy equivalent to the nerve of its facets; thus ∆k(Wk+4) is homotopy equivalent to a circle when
k is even.

When k = 2r + 1 is odd, then X⌊k/2⌋ = Xr consists of the facets F r
i = {i, i + 1, i + r + 2, i + r + 3} for

i = 1, . . . , n, where the two gaps between the pairs of vertices are size r and r + 1.
We claim we can continue using free faces and elementary collapses to remove the facets F r

i where
i = 1, . . . , r+1. The face {i+1, i+r+2} is a free face in F r

i , since all other facets of ∆k(Wk+4) that contain
it have a smallest gap size less than r. Its elementary collapse leaves behind the faces {i, i+1, i+ r+3} and
{i, i+ r + 2, i+ r + 3}, which are shared respectively with the facets {i, i+ 1, i+ r + 3, i+ r + 4} = F r

i+r+3

and {i− 1, i, i+ r + 2, i+ r + 3} = F r
i+r+2, which are not in the list of facets we are removing.

This leaves the facets F r
i for i = r + 2, . . . , n. This time, the nerve of these facets is the complex shown

in Figure 10, which is homotopy equivalent to a circle. Thus ∆k(Wk+4) is homotopy equivalent to a circle
for all k. □
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Proposition 7.28. Fix k ≥ 3 and let G be a proper induced subgraph of Wk+4. Then ∆k(G) is shellable.
Hence Wk+4 is a minimal nonshellable graph for k-cut complex shellability.

Proof. It suffices to prove the case where G is Wk+4 minus a single vertex. In this case, G may be described
as the graph with vertex set {a, b, 1, 2, . . . , k + 1}, and edge set{

{a, b}{a, 1}, {a, 2}, {b, k + 1}, {b, k}
}
∪
{
{i, i+ 1}

}k
i=1
∪
{
{j, j + 2}

}k−1

j=1
.

Figure 11 shows G when k = 4. Since G has k + 3 vertices, the facets of ∆k(G) are the separating sets of
size 3. Thus, from Lemma 7.26, we conclude that the facets of ∆k(G) are exactly the sets

{a, 2, 3}, . . . , {a, k, k + 1}, {b, 2, 3}, . . . , {b, k − 1, k}, {b, 1, 2}.
We claim that the order of the facets as listed above gives a shelling order for ∆k(G). To see this, let
F1, . . . , F2k−2 be the facets of ∆k+3(G) listed in the order as above. Then we need to show that for each
i = 2, . . . , 2k − 2, the set

Si = {F : F ⊆ Fi, F ̸⊆ Fj for all j < i}
has a unique minimal element with respect to inclusion. Indeed, for i ∈ {2, . . . , k − 1} (when a ∈ Fi), we
see that the unique minimal element of Si is {i+ 1}. When i = k, Fi = {b, 2, 3} and we see that the unique
minimal element of Si is {b}. For i ∈ {k + 1, 2k − 1} (when b ∈ Fi but 2 ̸∈ Fi), we see that the unique
minimal element of Si is {b, i+1}. Finally, when i = 2k− 2, we have that the unique minimal element of Si

is {1}. □

Figure 11. The graph W8 minus a vertex.

ab

1

2
3

4
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The cyclic group Cn acts as a group of automorphisms of the squared cycleWn, and hence on the homology
of its cut complex ∆k(Wn). We have the following:

Proposition 7.29. Let k ≥ 2. The one-dimensional homology module H̃1(∆k(Wk+4) affords the trivial
representation of the cyclic group Ck+4.

If n ≥ 7, the cyclic group Cn acts on the one-dimensional homology module H̃n−4(∆2(Wn)) like{
the trivial representation, if n is odd,

the sign representation, if n is even.

Proof. We apply the Hopf trace formula [14] to the face lattice of the cut complex. In the present context,
the precise fact that we need is as follows [32]. Suppose the nonzero homology of a bounded poset P is
concentrated in a single degree r − 2, and suppose g is an automorphism of P . Let P g denote the subposet
of P consisting of all elements fixed by g. Then one has the formula [32, p. 282, Eqn. (1.2)]

µ(P g) = (−1)rtr(g, H̃r−2(P )).

Now take P to be the face lattice of ∆k(Wk+4). From Proposition 7.27 the homology is concentrated in
degree 1, and has vector space dimension one. In order to determine this one-dimensional representation
of Ck+4, it suffices to compute the trace of the (k + 4)-cycle g = (1, 2, . . . , k + 4) which generates Ck+4.

But the fixed point subposet P g is clearly the trivial poset consisting of {0̂, 1̂}, and thus µ(P g) = −1 =

(−1)3tr(g, H̃1(P )).

Hence tr(g, H̃1(P )) = 1, confirming that the action of the cyclic group Ck+4 on the homology is trivial.
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Now let n ≥ 7. Proposition 7.22 tells us that the nonzero homology of ∆2(Wn) occurs only in degree
n− 4, and has dimension 1 as a vector space. By the Hopf trace formula above applied to the face lattice P
of ∆2(Wn), for the n-cycle g = (1, 2, . . . , n) ∈ Cn, we have

µ(P g) = (−1)n−2tr(g, H̃n−4(P )).

Again it is easy to see that P g = {0̂, 1̂}. This time we obtain tr(g, H̃n−4(P )) = (−1)n−1. The claim
follows. □

8. Conclusion and Further Directions

In this paper we introduced a new graph complex, the k-cut complex for k > 2, which generalizes the
(2-cut) complex in the Eagon–Reiner proof of Fröberg’s Theorem. We investigated how shellability and
homotopy type of the k-cut complex are affected by the following graph operations: induced subgraphs,
disjoint union, joins and wedges. We were able to extend one direction of Fröberg’s result for chordal graphs
and the 2-cut complex to the 3-cut complex. Our results for k = 3 are best possible: we showed that for
any k ≥ 4, there are examples of chordal graphs for which ∆k(G) is not shellable. We also studied the face
lattice of the cut complex, giving a formula for the reduced Euler characteristic for a broad family of graphs.
We completely determined the homotopy type of the 2-cut complex in the case of connected triangle-free
graphs.

The families of graphs we considered include trees, complete multipartite graphs, cycles, prisms over
cliques, and squared cycles. In all cases except the latter, we determined completely the homotopy type of
the k-cut complex. Our tools encompassed a broad range: shellability, poset topology and discrete Morse
theory.

We continue the investigation of k-cut complexes in a subsequent paper, where we apply these methods
to the families of grid graphs, and squared paths. We also undertake a more detailed study of how the k-cut
complex behaves under the disjoint union operation of graphs, including an analysis of the face vectors and
h-vectors.
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[13] Ralf Fröberg. On Stanley-Reisner rings. In Topics in algebra, Part 2 (Warsaw, 1988), volume 26 of Banach Center Publ.,
pages 57–70. PWN, Warsaw, 1990.

[14] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[15] Aleksandr Vadimovich Ivashchenko. Contractible transformations do not change the homology groups of graphs. Discrete

Math., 126(1-3):159–170, 1994.

[16] Gordon James and Adalbert Kerber. The representation theory of the symmetric group, volume 16 of Encyclopedia of
Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn,
With an introduction by Gilbert de B. Robinson.

36



[17] Jakob Jonsson. Simplicial complexes of graphs, volume 1928 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
2008.

[18] Dmitry Kozlov. Combinatorial algebraic topology, volume 21 of Algorithms and Computation in Mathematics. Springer,

Berlin, 2008.
[19] Dmitry N. Kozlov. Organized collapse: an introduction to discrete Morse theory, volume 207 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, [2020] ©2020.

[20] Svante Linusson and John Shareshian. Complexes of t-colorable graphs. SIAM J. Discrete Math., 16(3):371–389, 2003.
[21] Svante Linusson, John Shareshian, and Volkmar Welker. Complexes of graphs with bounded matching size. J. Algebraic

Combin., 27(3):331–349, 2008.
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