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COMPUTATIONAL COMPLEXITY OF MINIMAL TRAP SPACES IN
BOOLEAN NETWORKS*

KYUNGDUK MOON', KANGBOK LEE', AND LOIC PAULEVE?

Abstract. A Boolean network (BN) is a discrete dynamical system defined by a Boolean function
that maps to the domain itself. A trap space of a BN is a generalization of a fixed point, which is
defined as the sub-hypercubes closed by the function of the BN. A trap space is minimal if it does not
contain any smaller trap space. Minimal trap spaces have applications for the analysis of attractors
of BNs with various update modes. This paper establishes the computational complexity results
of three decision problems related to minimal trap spaces: the decision of the trap space property
of a sub-hypercube, the decision of its minimality, and the decision of the membership of a given
configuration to a minimal trap space. Under several cases on Boolean function representations, we
investigate the computational complexity of each problem. In the general case, we demonstrate that
the trap space property is coNP-complete, and the minimality and the membership properties are
Hg—comploto. The complexities drop by one level in the polynomial hierarchy whenever the local
functions of the BN are either unate, or are represented using truth-tables, binary decision diagrams,
or double DNFs (Petri net encoding): the trap space property can be decided in a polynomial time,
whereas deciding the minimality and the membership are coNP-complete. When the BN is given as
its functional graph, all these problems are in P.

Key words. Automata network, Trap space, Computational complexity, Boolean function
representation, System dynamics, Attractors
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1. Introduction. A Boolean network (BN) is a dynamical system defined by a
function f of the Boolean domain with a fixed dimension n that maps to the domain
itself, i.e., f : B® — B™ with B = {0,1}. The function mapping to a component
of the image of f is called a local function. We denote the local function mapping
to the i-th component of the image as f; : B® — B for ¢ € {1,...,n}. Given a
Boolean vector x € B™ referred to as a configuration, one can define a set of suc-
ceeding configurations by f following an update mode [3, 12, 23, 31], leading to a
dynamical system. Two popular update modes are the synchronous update mode
and asynchronous update modes. The synchronous update mode associates f(x) as
the unique succeeding configuration of x by f. On the other hand, an asynchronous
update mode may associate multiple configurations of which some components match
to the corresponding local functions evaluated with x; if the i-th component matches,
then y; = fi(x). The fully asynchronous update mode is a specific example that asso-
ciates x with any configuration y which differs from x by exactly one component that
matches to the corresponding local function. BNs are studied in various disciplines
such as discrete mathematics [2, 26] and dynamical system theory [5, 10, 22]. They
also have wide applications to the modeling of complex systems such as biological
systems [1, 13, 16, 28, 34], and social behaviors [11, 25], to name but a few.

The literature addresses a vast zoo of update modes, generating possibly different
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dynamics from the same BN f [24]. In this context, the dynamical properties of BNs
which are independent of the update mode are of particular interest because they
show inherent dynamical properties of a given BN. The prime example is the study of
fixed points of f, i.e., the configurations x such that f(x) = x. Indeed, a fixed point
of f can be assumed to be a stable state of dynamics that does not change after a
transition with any update mode. Conversely, a stable state under the synchronous
or the asynchronous update mode is a fixed point. Nevertheless, some specific update
modes may exhibit additional stable states [24]. The notion of fixed points of f can
be generalized to trap spaces. A trap space is a sub-hypercube (an n-dimensional
sub-graph of the n-dimensional hypercube where some dimensions can be fixed to be
singular values) closed by f such that for any vertex x of the trap space, f(x) is also
one of its vertices. A minimal trap space is a trap space that contains no other trap
spaces. Therefore, a fixed point of f is a specific case of minimal trap spaces where
all dimensions are fixed.

Minimal trap spaces in BNs have been studied as approximations of attractors
with (a)synchronous update modes [15], which are important features of the long-term
dynamical properties of BNs [13]. Given an update mode, an attractor is defined as an
inclusion-wise minimal set of configurations which are closed by transitions. Equiva-
lently, an attractor is a set of configurations satisfying the following two conditions.
First, there exists a sequence of transitions between any pair of its configurations.
Second, if there exists a sequence of transitions from one of its configuration x to
another configuration x’, then they belong to the same attractor. If an attractor is
composed by a single configuration, it is a fixed point; otherwise, it is called a cyclic
attractor. It appears that any minimal trap space necessarily encloses at least one
attractor of any update mode [14, 21, 24]. Moreover, if the minimal trap space is not
a fixed point, the enclosed (a)synchronous attractors are necessarily cyclic. Beside the
synchronous and the asynchronous update mode, minimal trap spaces are exactly the
attractors of BNs under the most permissive update mode [21, 23], which guarantees
to capture all transitions realized by any multi-valued refinement of the BN.

So far, the literature has essentially focused on algorithms and implementations
for enumerating minimal trap spaces of BNs [14, 21, 32]. Nevertheless, whereas these
algorithms indicate upper bounds for the computational complexity of decision prob-
lems related to minimal trap spaces, no lower bound has been characterized. In
this paper, we provide computational complexity results of problems related to the
minimal trap spaces. We focus on three fundamental decisions problems:
TRAPSPACE(/, h) :

Given a BN f and a sub-hypercube h, h is a trap space of f.
MINTRAP(f, h) :

Given a BN f and a sub-hypercube h, h is a minimal trap space of f.
IN-MINTRAP(f, x) :

Given a BN f and a configuration x, x is a vertex of a minimal trap space of

f.

We study the computational complexity of these problems depending on Boolean
function representations and on the unate property of local functions, as summarized
in Table 1.1. In the case of Boolean functions represented as propositional formu-
las, upper bounds of these three decisions problems have been determined in [21]:
TRAPSPACE is in coNP, whereas MINTRAP and IN-MINTRAP are in II5. More-
over, whenever the BN is locally monotone, i.e., each of its local function is unate
(its expression does not contain a variable appearing both positively and negatively),
they showed that TRAPSPACE is in P, whereas MINTRAP and IN-MINTRAP are
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in coNP. We complete the results of [21] by demonstrating the lower bound results for
each corresponding case. We further consider three representations for local functions:
truth tables, binary decision diagrams, and double DNFs. These representations have
practical relevance since binary decision diagrams are frequently employed by soft-
ware [18] and double DNFs are employed by Petri nets [7, 19, 32]. For all three
representations, the same computational complexities are demonstrated as the locally
monotone case. Finally, we also consider a BN represented by its functional graph,
which matches with the state transition graph under the synchronous update mode:
this graph associates each state in B™ to its image by f. Therefore, we consider two
classes of representations of BNs: either by the representation of their local functions,
or by the representation of the global function f.

TABLE 1.1
The computational complexity of decision problems related to trap spaces

Boolean network Problems

Representation Unate property TRAPSPACE MINTRAP

IN-MINTRAP

Representation with local functions

Propositional formula General coNP-completef Y -complete’
Propositional formula Locally monotone pt coNP-completef
Truth table General P coNP-complete
Binary decision diagram General P coNP-complete
Double DNF's General P coNP-complete
Representation with a state transition graph
Functional graph General P P

Y -complete’
coNP-completef
coNP-complete
coNP-complete
coNP-complete

P

Tthe upper bound results are presented in [21]

The rest of this paper is organized as follows. In Sec. 2, we introduce notations
and terminologies that are used to define the problems and explain the results. In
Sec. 3, we provide computational complexity results of these problems in different
BN settings. Sec. 4 provides a concluding remark.

2. Preliminaries. We denote integers ranging from 1 ton by [1,n] := {1,...,n}.
We use an interval subscript of a vector to denote the list of components lying on the
interval’s range. For example, x[; ,,] denotes the vector concatenating the first n,
components of vector x.

2.1. Representations and the unate property of local functions in Bool-
ean networks. A Boolean function on n variables is of the form ¢ : B — B. In this
context, the following decision problems are relevant to our study. The SAT problem
is to decide whether there exists a configuration x € B™ such that ¢(x) = 1. The
TAUTOLOGY problem is to decide if ¢(x) = 1 for all configuration x € B™. The
NOT-TAUTOLOGY problem is to decide if there exists a configuration x such that
¢(x) = 0. We can generalize SAT by partitioning variables and alternately putting
quantifiers ‘3" and ‘v’ on them. Given the number of quantifiers [ € ZT, and the
number of indices of partitions nq,...,n; such that n; < nj41 for each j € [1,1 — 1],
we can define the following generalization to X;SAT:

EZSATZ decide if 3X[17n1]VX[n1+1)n2]3X[nz+17n3] o gf)(X) =1.

Analogously, we can generalize TAUTOLOGY to II;SAT by replacing ‘3" with V’
and vice versa from ¥;SAT. Notably, ¥;SAT and II;SAT are together called the true
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quantified Boolean formula (TQBF) problem, which is well known as a complete
problem in the polynomial hierarchy [29]. The polynomial hierarchy is a generalization
of NP and coNP that can be defined with oracles, imaginary machines that instantly
give an answer to a group of decision problems [4]. Given an oracle for NP, we
can define ¥} as the group of problems of which the answer is verified as true in
a nondeterministic polynomial time. Analogously, we can define II5 as the group
of problems of which the answer is verified as false in a nondeterministic polynomial
time using an oracle for NP. Furthermore, we can define PNY as the group of problems
that are polynomial time solvable using an oracle for NP. Note that XY, TIY, and pNF
can be equivalently defined using an oracle for coNP with no difference. We can
repeat this to define the classes of problems in the polynomial hierarchy, as depicted
in Figure 2.1 where the arrows denote inclusion of the classes. For each class, we
can define complete problems that can be reduced from all problems in the same
class, implying that they are the hardest problems in their classes. In this paper,
we limit our focus to SAT, TAUTOLOGY, NOT-TAUTOLOGY, and II;SAT. The
computational complexity of these three problems depends on the representation of
¢ and can be refined depending on its unate property.

S I
PNP
NP = 2P I = coNP

N

Ny =P =1§
Fic. 2.1. The first two levels of the polynomial hierarchy

As propositional formula. Boolean function ¢ can be represented as a proposi-
tional formula, which consists of Boolean variables x1, ..., X, and logical connectives
A (conjunction), V (disjunction), and — (negation). The size of a formula is its
length, which is proportional to the total count of variables and connectives appear-
ing in the input string. With this representation, SAT and NOT-TAUTOLOGY are
NP-complete, TAUTOLOGY is coNP-complete, and IIoSAT is ITs-complete [29].

As disjunctive normal form (DNF). Boolean function ¢ can be represented as a
propositional formula consisting of a disjunction of conjunctive clauses. Negations are
allowed only on variables and not on clauses. A DNF can be equivalently represented
as a list of sets of literals, where a literal is either a variable or a negated variable.
Any propositional formula can be represented in DNF with clauses consisting of at
most three literals (3DNF), although its size may be exponentially large. When ¢
is represented as a DNF (or 3DNF), SAT is in P because ¢ is satisfiable if and only
if it contains at least one clause and none of the variables appear as both positive
and negative literal in a single clause. TAUTOLOGY is coNP-complete and NOT-
TAUTOLOGY is NP-complete from the fact that 3CNF SAT (given as a conjunctive
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normal form with three literals per clause) is NP-complete [4].
Unate (monotone) case. Boolean function ¢ is unate if there exists an ordering

of components <€ {<, >}" such that Vx,y € B", ((xl 21y A A (X 2 yn)) =

d(x) < ¢(y). In other words, for each component j € [1,n] and every configuration
X € Bn, ¢(X[1)j_1]OX[j+17n]) jj (b(x[l,j—l]lx[j-i-l,n]) holds. When (b is unate and the
ordering of components is provided, SAT, TAUTOLOGY, and NOT-TAUTOLOGY
can be decided in P because only the maximal (or the minimal) assignment to the
ordering needs to be evaluated.

As truth table (TT). Boolean function ¢ can be encoded as binary vector ¢ with
2" rows, where for each row m € [1,2"], t,, is the value of f;(bin(m — 1)) with
bin(m) being the binary representation of m. With the truth table representation,
SAT, TAUTOLOGY, and NOT-TAUTOLOGY are in P because a satisfying or an
unsatisfying assignment can be searched in linear time to the size of the truth table.

As binary decision diagram (BDD). A BDD has a directed acyclic graph structure
with a unique root and at most two terminal nodes among 0 and 1 [8]. Each non-
terminal node is associated to a component i € [1,n] and has two out-going edges,
one labeled with 0 and the other with 1. Moreover, any path from the root to a
terminal node crosses at most one node associated to each component. Then, each
configuration x corresponds to a single path from the root to a terminal node such
that the edge emanating from a node associated with component 7 is labeled 1 if and
only if x; = 1. This characterization captures common variants of BDDs, including
reduced ordered BDDs [33]. When function ¢ is given as a binary decision diagram,
SAT, TAUTOLOGY, and NOT-TAUTOLOGY are in P, as they can be solved in
linear time by checking the existence of paths from the root to a terminal node using
graph traversal algorithms [33].

As double DNF (DNF01). Boolean function ¢ can be represented with two DNF's
¢° and ¢! of n variables x1,...,X, such that ¢ is satisfied if and only if ¢(x) = 0,
and ¢! is satisfied if and only if ¢(x) = 1. This representation is typically employed
in Petri nets [6, 7] and automata networks [19]. In this case, SAT, TAUTOLOGY,
and NOT-TAUTOLOGY are in P from the complexity results on DNFs.

Ezample 2.1. We consider propositional formula f = x; A =(x2 A —x3) and show

its different representation schemes and related explanations.

e (x1 A—x2) V (x1 Ax3) is an equivalent DNF representation of f.

e f is unate with < being <><. On the other hand, another Boolean formula
(=x1 A X2) V (x1 A =X3) is not unate.
The truth table representation of f is ¢ = 00001101, assuming that bin(1) =
001.
e One of the double DNF representations of f is (¢°, ¢!) with ¢° = (—=x;) V
(x2 A =x3) and ¢! = (x1 A =X2) V (X1 A X3);
An equivalent BDD representation of f is the graph in Figure 2.2:

Boolean networks (BNs). Recall that a BN of dimension n is defined by a function
f:B™ — B" with its local (Boolean) function of the i-th component f; : B” — B for
i € [1,n]. A BN is locally monotone whenever each of its local functions is unate. In
that case, we assume that the orderings of components leading to their unate property
are given. The local Boolean functions of the BN can be encoded with any of the
aforementioned representations. In the case of truth tables, the dimension of the
truth table a local function follows the number of components which it depends on. A
function f; depends on component j if there exists a configuration y € B™ such that
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Fic. 2.2. A binary decidion diagram representation of the Boolean network f in Example 2.1

iy, —10Yj4+1,n) # fi(¥11,j—111¥[j+1,n])- In practice, we can significantly reduce
the dimension of f; from n in the following way. If k is the number of components
that f; depends on, we define its corresponding integer vector p € [1,n]* to list up
the indices of such components in the BN. Then, a truth table ¢ with 2¥ rows can
be constructed to satisfy f;(x) = bxp, o, for any configuration x € B™ of the BN.
Finally, a BN can be represented by its functional graph, the digraph of the image by
f. It is also known as the synchronous state transition graph. The vertices of such a
graph are all the configurations B™, and there is an edge from x to y if and only if

y =f(x).
Example 2.2. The BN f : B? — B> with

fl (X) = (ﬁXl V ﬁXg) N X3
fg(X) = X1 N\ X3
fg(X) =x1 VX2V X3

is locally monotone since all its local functions are unate. The functional graph of f
is illustrated in Figure 2.3.

100 110

01’0‘ the synchronous transition

001011 |:| minimal trap space

101 11

F1c. 2.3. The functional graph and minimal trap spaces of the Boolean network f in Example 2.2

2.2. Sub-hypercubes and minimal trap spaces of BNs. A sub-hypercube
is an m-dimensional sub-graph of the n-hypercube such that some dimensions can
be fixed to be singular values. It can be represented as a vector h € {0,1,*}",
which specifies for each dimension i € [1,n] whether it is at a fixed value (0 or 1),
or free () in the sub-hypercube. The vertices of a sub-hypercube h are denoted by
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v(h) = {x e B" : Vi € [1,n], (h; # %) = (x; = h;)}. A sub-hypercube h is smaller
than a sub-hypercube space h’ whenever v(h) C v(h"). We also write this condition
ashCh'.

A trap space of a BN f is a sub-hypercube h € {0,1,*}" which is closed by f,
i.e., for each vertex x € v(h), f(x) € v(h) implying the its image by f is also a vertex
of h. Remark that %" is always a trap space. A trap space h is minimal if there is
no different trap space h’ # h within itself; i.e., there exists no trap space h’ such
that v(h’) C v(h). We use T(h) to denote the minimal trap space that contains all
configurations in v(h). In other words, T(h) must satisfy three properties:

e T(h) is a trap space,

e h C T(h),

e There exists no trap space h’ such that h C h’ C T(h).
Remark that if h is a minimal trap space, then, for any configuration x € wv(h),
T(x) = h.

Ezample 2.3. The BN f of Ezample 2.2 has a fixed point {000} and a cyclic
attractor {011, 101, 111}. See Figure 2.3 for its functional graph representation and

minimal trap spaces. It has two minimal trap spaces: 000 and * * 1. Moreover,
T(010) = T(01x) = T(0 % 0) = * * *.

2.3. Upper bounds results to the computational complexity. We present
all the upper bound results when local functions are given. All the polynomial time
solvable cases in Table 1.1 are also discussed here, except the ones with a functional
graph. We later present polynomial time algorithms for the remaining cases in Sec.
3.4. The basic ideas and previous upper bound results are adopted from [21], yet
with some extensions to the representations we are considering. All new results are
summarized in Theorem 2.4.

Consider NOT-TRAPSPACE(f, h), the problem of deciding if the given hyper-
cube h is not closed by f: it is equivalent to deciding if there exists component
i € [1,n] with h; # % and z € v(h) such that f;(z) # h;, which boils down to SAT
if h; = 0 and NOT-TAUTOLOGY if h; = 1. Thus, the complementary problem
TRAPSPACE(f, h) is in coNP for the general case and in P for the locally monotone
case. For the same reason, TRAPSPACE(f, h) is in P when the local functions are
given as truth tables, BDDs, or double DNFs.

Now, consider NOT-MINTRAP(f, h), the problem of deciding if the hypercube h
is either not closed by f or is closed but not minimal. It can be decided by first check-
ing if h is a trap space and then checking the existence of another trap space h’ which
is strictly included in h. This problem is at most NPTRAPSPACE hecayse only the
inclusion h’ C h needs to be decided with an oracle for TRAPSPACE, and it can be
done in a polynomial time. Thus, the complementary problem MINTRAP(f, h) is in
coNPTRAPSPACE 'which is at most coNPNP =TI in the general case. MINTRAP(f, h)
is in coNP for the locally monotone case because TRAPSPACE can be solved in a
polynomial time. For the same reason, MINTRAP(f,h) is in coNP when the local
functions are represented as truth tables, BDDs, or double DNFs.

Finally, consider IN-MINTRAP(f,x) the problem of deciding whether the con-
figuration x is a vertex of a minimal trap space of f. It boils down to decide
MINTRAP(f, T(x)). The computation of T(x) can be performed using the following
algorithm:

1 h:=x
2 repeat n times:
3 for each i € [1,n] with h; # *:
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4 if Jy €ev(h) s.t. fi(y)=1—y;:
5 h; :=x
return h

The procedure to check the existence in line 4 is equivalent to SAT if x; = 0 and
NOT-TAUTOLOGY if x; = 1. Thus, overall, this algorithm is in PN in the general
case, and in P for the locally monotone case. Analogously, T(x) can be computed in
a polynomial time when the local functions are represented as truth tables, BDDs,
or double DNFs. For all cases, the computational complexity for computing T'(x)
does not exceed that of MINTRAP. Therefore, the computational complexity of IN-
MINTRAP is up to the complexity of MINTRAP for each.

THEOREM 2.4. Given hypercube h and BN f with its local functions represented
as truth tables, BDDs, or double DNFs, TRAPSPACE(f,h) can be solved in a poly-

nomial time.

3. Results. In this section, we demonstrate computational complexity results
for the TRAPSPACE, MINTRAP and IN-MINTRAP problems in BNs with different
representations and the unate property. In Sec. 3.1, we present the exact computa-
tional complexity for BNs with local functions given as propositional formulas, which
is the most general case under our consideration. Results for the special case of locally
monotone BNs are presented in Sec. 3.2. Those results are used in Sec. 3.3 to derive
the computational complexity in the case of BNs with local functions represented
with truth tables, binary decision diagrams, and double DNFs. The computational
complexity for the BNs given as a functional graph is presented in Sec. 3.4.

3.1. Local functions given as propositional formulas. Theorem 3.1 demon-
strates that TRAPSPACE is coNP-hard when local functions are represented as gen-
eral propositional formulas, which is the lower bound to the computational complexity.
Combined with the previous upper bound results of [21], the completeness is shown.

THEOREM 3.1. Given hypercube h and BN f with its local functions represented
as propositional formulas, TRAPSPACE(f,h) is coNP-hard.

Proof. Consider a Boolean function ¢ : B"* — B for n; € Z* and the associ-
ated TAUTOLOGY problem of deciding Yy ¢(y) = 1, which is coNP-complete. We
construct BN f : B+l — Bl a9

Vi € [1,711], fl(x)
fn1+1(x) = (b(x[l,nl])

and hypercube h = %"11. We prove this theorem by showing that the TAUTOLOGY
problem is true if and only if TRAPSPACE(f,h) is true. If TRAPSPACE(f,h) is
true, then Vz € v(h), #(z[1 »,1) = 1. Since z[; ,,,) can have an arbitrary configuration
in B", Vy ¢(y) must be true. On the other hand, if TRAPSPACE(f, h) is false, we
can find configuration z € B"* that satisfies f,,11(z1) = ¢(z) = 0. This can be used
as a certificate that Vy ¢(y) is not true, and it can be verified in a polynomial time.
Hence, the theorem holds. a

Theorem 3.6 and Theorem 3.7 demonstrate that MINTRAP and IN-MINTRAP
are I15-hard, respectively. Combined with the previous upper bound results in [21],
their completeness is shown. Our proofs show that MINTRAP and IN-MINTRAP
can be used to solve II5 SAT based on several tricks. First, a component x; with
its local function f; = —x; always becomes free in a minimal trap space; see Remark
3.2. We use this trick to encode Boolean variables quantified with V to the BN we

X,
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construct. Second, given a Boolean formula ¢ to be proven its satisfiability, we employ
two auxiliary components that have a full control to override other local functions as
either 0 or 1 whenever ¢ is true. We use this trick to construct a BN that has
the full dimensional hypercube as its unique minimal trap space if and only if ¢ is
satisfied. Note that those auxiliary components will be always presented as the last
two components of the BN we construct; see Remarks 3.3-3.4 for details.

Remark 3.2. Let f : B® — B" with n € ZT be a BN. Given T C [1,n], suppose

fi(x) = —=x; for Vi € [1,n]. Then, any hypercube h € {0, 1, *}" must satisfy T'(h), = *
for all i € Z.

Proof. For all ¢ € 7, component x; can be updated to —x; and realized as both 0
and 1. Therefore, T(h), = * for all i € T to ensure that T(h) is closed by f. O

Remark 3.3. For a given Boolean function ¢ : B® — B with n € Z*, let f :
fnJrl(X) = ¢(X[1,n]) N T Xp 42
fn+2(x) = Xn+1 N Xn42 '

percube h € {0,1,%}"*2 contains z € v(h) that satisfies ¢(zf ) = 1. Then,
T(h),,, = T(h)

B"t2 — B"*2 be a BN satisfying { Suppose hy-

n+2 — *.

Proof. Consider the transitions of z under the fully asynchronous update mode
given as follows:

Z[Ln]OO fn41 z[l,n]lﬂ fr42 Z[l)n]ll frnt1 Z[Ln]()]. fr+2 Z[l)n]OO frn41

where the label of an arrow corresponds to the local function used to update a config-
uration. Given any value of z[, 11, y9), components x, 41 and X,42 are evaluated to
be both 0 and 1 during the transition. Therefore, T(h), ., = T(h), , = * to ensure
that T'(h) is closed by f. O

Remark 3.4. Let f : B"™2 — B"*2 with n € Z* be a BN. For some i € [1,n]
and a given Boolean function ¢; : B — B, suppose the local function f;(x) is in the
form of (¢;(X[1,n]) A—Xpn41) VXni2. If hypercube h € {0,1, x}"*2 satisfies T(h),,,, =
T(h), , = *, then T(h), = *.

Proof. Since T(h), ., = T(h), , = *, there exists a configuration z € v(T(h))
such that (2,41, 2Zn+2) = (1,0), which can be evaluated as f;(z) = 0. In addition, there
exists another configuration z’ € v(T(h)) such that z,,, , = 1, which can be evaluated
as fi(z) = 1. Hence, the image of f; can be both 0 and 1, implying T(h), = * to
ensure that T'(h) is closed by f. O

LEMMA 3.5. Consider ni,ny € ZT with n1 < ng and a Boolean function ¢ :
B"2 — B given as a propositional formula. Boolean formula Yy »,13Y [, +1,n,]0(Y)
is true if and only if BN f : B"2%2 — B"2%2 with the local functions defined by
(3.1)~(3.4) has the unique trap space x"272.

Vi€ lnl], fi(x)=
Vi€ [m+1no, fi(x)
(x)
(x)

Xj A " Xny 1) V X, 42
A(X[1,n5]) A "Xy 2

Xng+1 N\ T Xpy 42

»

f’llz-‘rl X

fn2+2 X

@ W W w
— Nt N

1
2
3
4

~ o~~~
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Proof. If Vy[1 n,13Y [n1+1,ns)@(¥) is true, any hypercube h € {0, 1, *}n2+2 satisfies

T(h) DT (hy1 0, ¥ ™ hypyi1n,42)) -* Remark 3.2
DT (b ™7™ F2) " Remark 3.3
QT(*"2+2) . Remark 3.4
:*n2+2

no+2

Therefore, * is the unique (and thus minimal) trap space. For the remaining case
where 3y(1 .YV [y +1,n2)70(Y), x¥"212 is not a minimal trap space because a smaller
trap space h' = Vi) ¥2 ™ 02 exists. This completes the proof. a

THEOREM 3.6. Given hypercube h and BN f with its local functions represented
as propositional formulas, MINTRAP(f,h) is 11} -hard.

Proof. Given ni,ny € Z* with n; < ns and a Boolean function ¢ : B"2 — B,
consider the associated Iy SAT problem that deciding whether Yy, .13V 1, +1,n.]0(Y)
is true, which is IT5 -complete. By Lemma 3.5, this [I;SAT problem is true if and only
if MINTRAP (f, "272) is true for f defined by (3.1)(3.4). Hence, the theorem holds.O

THEOREM 3.7. Given configuration x and BN f with its local functions repre-
sented as propositional formulas, IN-MINTRAP(f,x) is I15-hard.

Proof. Given ni,no € Z* with n; < ny and a Boolean function ¢ : B2 — B,
consider the associated Iy SAT problem that deciding whether Yy 1,13V 1, +1,n.]0(Y)
is true, which is I1-complete. We prove the theorem by showing that the ITIoSAT is
true if and only if IN-MINTRAP(f,1"2%2) is true for f defined by (3.1)-(3.4).

If YY[(1,003Y [y +1,m2]2(Y)s x"2+2 ig the unique minimal trap space by Lemma
3.5 and thus 1"2%2 belongs to a minimal trap space. For the remaining case where
Y101 YY1 4 1,n0] 70(Y), We have

T(172+2) DT(1™ *m2~ ™ 12) " Remark 3.2
DT s mmt2) L Xpprz = 1
2T(*"2+2) " Remark 3.4

no+2 .

= %

However, *™2%2 is not a minimal trap space because there is a smaller trap space
h' =y ) ™7™ 02. This completes the proof. a

3.2. Locally-monotone BNs with local functions given as propositional
formulas. We show a polynomial-time encoding of any DNF as a BN such that the
TAUTOLOGY problem reduces to MINTRAP and IN-MINTRAP problems. The
proofs are given in Theorem 3.9 and 3.10, respectively. Let us consider any Boolean
function ¢ : B — B represented in DNF as a list of k conjunctive clauses. For
J € [1,k], we use ¢;(y) to denote the j-th clause of ¢ evaluated with y € B". Whenever
k =0, ¢ is considered to be false. Whenever a clause is empty it is equivalent to be
true. We can assume that each clause ¢;(y) does not contain a contradiction caused
by the same component (e.g., y; A —y;). Therefore, all clauses are unate.

LEMMA 3.8. Let us consider n,k € Z™ and a Boolean function ¢ : B" — B given
as a DNF with k conjunctive clauses; i.e., ¢(y) := \/;?:1 ¢;(y). Boolean formula
Vyo(y) is true if and only if BN f : B"tF+2 — B+k+2 with the local functions
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defined by (3.5)~(3.8) has the unique minimal trap space *"+F+2.

(3.5) Vie[l,n], fi(x)=(Xi A "Xntht1) V Xntht2

(3.6) Vi€ Lk, fari(x) = (cj(Xp,n) A "Xntkt1) V Xnikt2
(3.7) frrkr1(x) = ( i1 Xn+g) Xp k2

(3.8) Srrk42(X) = Xnpps1 A Xnphpo

Proof. If Yy ¢(y) is true, any hypercube h € {O,l,*}"Jrk'|r2 satisfies T'(h) =
#"+tE+2 by the Case (i) and Case (ii).
Case (i) : When hy, 4541 =0,
Eq. (3.6) can be simplified to ¢;(X[1,n]) V Xpyrt2. For an arbitrary element
z € v(h), we can find j* € [1,k] such that c;-(xp ) = 1 since Vy ¢(y) is
true. Consequently,

T(h) DT (hyy pgjs—11 g 41 ngk42]) - Xntj- can be evaluated to be 1
;)T(h[l,’nrf»j*fl]1h[n+j*+1,n+k]*2) Remm‘k 33
QT(*HHHQ) . Remark 3.4
_ *n+k+2 )

Case (ii) : When h,, 11 € {1, %},
Eq. (3.8) simplifies to =X, 4x+2. Consequently,

T(h) DT (h{y 54 p411%) " Remark 3.2
QT(h[Ln]lkthrkH *) " Xptkto can be evaluated to be 1
QT(h[Ln]lk*Q) " Remark 3.3
DT (x"FH2) " Remark 3.4
— Gntk+2

Therefore, *"#+2 is the unique minimal trap space if Yy ¢(y) is true. On the other
hand, if 3y ~¢(y) is true, then *"*#+2 is not a minimal trap space because there is a
smaller trap space h’ = y0**2. Hence the lemma holds. ad

THEOREM 3.9. Given hypercube h and locally-monotone BN f with local functions
represented as propositional formulas, MINTRAP(f, h) is coNP-hard.

Proof. Given n € Z* and a Boolean function ¢ : B® — B in a DNF with k
conjunctive clauses; i.e., ¢(y) := \/;?:1 ¢;(y), consider the associated TAUTOLOGY
problem Vy ¢(y), which is coNP-complete. By Lemma 3.8, the TAUTOLOGY prob-
lem is true if and only if MINTRAP(f " *t*+2) is true for f defined by (3.5)(3.8).

Since all local functions are unate, the theorem holds. ad

THEOREM 3.10. Given configuration x and locally-monotone BN f with local
functions represented as propositional formulas, IN-MINTRAP(f,x) is coNP-hard.

Proof. Suppose n € Z* and a Boolean function ¢ : B® — B in a DNF with k
conjunctive clauses are given (i.e., ¢(y) := V§:1 ¢;(y)). Consider the associated TAU-
TOLOGY problem Vy ¢(y), which is coNP-complete. We prove the theorem by show-
ing that the TAUTOLOGY problem is true if and only if IN-MINTRAP(f,17+++2)
is true for f defined by (3.5)—(3.8).
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If Yy ¢(y) is true, then *"+¥+2 is the unique trap space by Lemma 3.8 and thus
1"+#+2 belongs to a minimal trap space. For the remaining case where Jy —¢(y) is
true,

T(1"HEF2) DT (17 Hr4?) Xk =1
DT (x"+k+2) " Remark 3.4
_ >|<11-1—/@—1—2 i

However, «"t#+2 is not a minimal trap space because there is a smaller trap space
h’/ = y0**2. This completes the proof. 0

3.3. With local functions represented as truth tables, BDDs, and dou-
ble DNFs. We now consider any BN whose local functions are represented either
as truth tables, BDDs, or double DNFs. In Theorem 3.13, we prove the lower bound
results to the computational complexity of MINTRAP and IN-MINTRAP problems
by reduction of TAUTOLOGY to 3DNF. Combined with the upper bound results
presented in Sec. 2.3, the completeness is shown.

Consider the encoding of the clauses ¢ as the BN f defined by (3.5)—(3.8). Remark
that all local functions but f,yr+1 in (3.7) depend on at most 5 variables, and thus
each of them can be encoded in constant space and time as a truth table, a BDD,
or double DNFs. However, the local function f,1x+1 in (3.7) depends on k + 1
variables, where k is the number of clauses in the DNFs. Therefore, converting this
local function may require an exponential time and space. We resolve this issue by
appending a small number of auxiliary variables that correspond to local functions
having a constant size. Note that (3.7) is true whenever at least one of the clauses
can be evaluated to be true and the component x,, 442 is false. This definition can
be incorporated by appending k additional components with at most two literals to
the BN so that the j-th element of the new components is evaluated to be true if
either ¢; or the (j — 1)-th element of the new components can be true for j € [1, k].
As a consequence, the k-th of the additional components is true whenever at least
one clause of ¢ can be evaluated to be true. We adapt this idea by expanding locally
monotone BN (3.5)—(3.8) to (3.9)—(3.14), which can be encoded in constant space and
time as truth table, BDD, or double DNFs. We employ Remark 3.11 and Lemma
3.12 to prove Theorem 3.13.

(3.9) Vie[l,n] fi(x)=(xi A Xptkt1) V Xntk+2

(3.10) Vi€ Lk fari(x) = (¢;(X,n) A "Xngk1) V Xniktz
(3.11) frak+1(X) = Xpt1

(3.12) Vi €2,k frirtsi (%) = Xnpj V Xnpptjio

(3.13) Frt2k+1(X) = Xnyor A "Xntok+2

(3.14) Frt2k+2(X) = Xngok+1 A "Xnt2k+2

Remark 3.11. Consider a BN f given as (3.9)—(3.14). If T(h); = =* for all
i € [n+ 1,n+ k], we can sequentially show that T(h),x+; = * by increasing j from
1 to k. This is because T(h),; and T(h),51;—1 are both * and thus Eq.(3.12) can
be evaluated to be both 0 and 1.

LEMMA 3.12. Consider n € Z% and a Boolean function ¢ : B® — B given as
a SDNF with k conjunctive clauses that contain at most three literals, i.e., ¢(y) :=
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\/?:1 cj(y). Boolean formula Vyd(y) is true if and only if BN f : Br2k+2 — Bnt2h+2

with the local functions defined by (3.9)~(3.14) has the unique minimal trap space
*n+2k+2'

Proof. If Vy ¢(y) is true, any hypercube h € {0,1,*}"+2k+2 satisfies T(h) =
#"+2k+2 by the Case (i) and Case (ii).
Case (i) : When hy, 2541 =0,
Eq. (3.10) can be simplified to ¢;(X[1,n]) VXn 2k 12 because every configuration
satisfies X, +2r+1 = 0. For an arbitrary element z € v(h), we can find j* €
[1, k] such that cj«(x[1,,)) = 1 since Yy ¢(y) is true. Therefore, T'(h), ;- €
{1, x} and subsequently,

T(h) QT(h[l,nJrkJrj*71]1h[n+k+j*+1,n+2k+2]) " Xptk44+ can be evaluated to be 1
QT(h[l,nJrkJrj*71]1(k_j*+1)h[n+2k+l,n+2k+2]) . Increasing j from (j* + 1) to k, Xp4x+4;
can be sequentially evaluated to be 1
QT(h[l)n+k+j*_1]1(k_j*+1)*2) . Remark 3.3
DT+ hp g g1 mensje 1% D53 " Remark 3.4
DT (x"+2k+2) " Remark 3.11
_ *n+2k+2 )

Case (ii) : When hy,4or+1 € {1, %},
Eq. (3.14) simplifies to =X, t2x+2. Consequently,

T(h) DT (hyy 4 0k41]%) " Remark 3.2
QT(h[lﬁn]1kh[n+k+17n+2k+1]*) " Xp42k+2 can be evaluated to be 1
QT(h[Ln}lzkhnHkH*) Vi € [1, k], Xn+kt; can be evaluated to be 1 by x,,4; =1
QT(h[l)n]l%*Q) " Remark 3.3
DT (x"FF17%2) " Remark 3.4
DT (x"H2h12) " Remark 3.11
n+2k+2

Therefore, *"+2k%2 is the unique minimal trap space. On the other hand, if Iy —¢(y)
is true, *"T2**2 is not a minimal trap space because there is a smaller trap space
h’ = y0%*2. Hence the lemma holds. O

THEOREM 3.13. MINTRAP and IN-MINTRAP are coNP-hard for BNs with local
functions represented with truth tables, binary decision diagrams, and double DNFs.

Proof. The local functions defined by (3.9)—(3.14) can be encoded in a polynomial
time as truth tables, BDDs, or double DNF's. Therefore, the theorem holds by Lemma
3.12. d

3.4. Functional graphs of BNs . Now consider the case when the BN f :
B™ — B" is represented by its functional digraph G = (V, E) with V = B"™ and
E ={(x,f(x)) | x € B"}. Given a vertex x € V, we write out(x) = {y | (x,y) € E}.
Note that in the case of the functional graph, out(x) = {f(x)}, which is a singleton
set. Given a set of vertices V' C V', we can consider a subgraph Gy = (V’, {(u,w) €
ElueV iweV'}).
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For a given sub-hypercube h € {0, 1, *}" to be a trap space, each x € v(h) must
verify that out(x) C v(h). Therefore, TRAPSPACE can be solved in time linear to
the size of G (number of vertices plus edges, |V |+ |E|).

Our algorithm for the decision of MINTRAP uses two auxiliary functions SUB-HYPERCUBE
and SATURATE. Function SUB-HYPERCUBE returns the smallest enclosing sub-hypercube
for a given a non-empty sublist of vertices W C V. Function SATURATE computes
T (SUB-HYPERCUBE(W)) for a given non-empty sublist of vertices W C V. In other
words, SATURATE computes the smallest sub-hypercube that encloses W and is closed
by f.
SUB-HYPERCUBE(W := (W71,...)):
1 h =W
> for each x € W:

for i € [1,n]:

1 if h; € B and h; # x;:
5 h; = *
6 return h

SATURATE(W):

1 h:= SUB-HYPERCUBE (W)

> repeat

3 h':=h

4 W :=wv(h)U Uueu(h) out(u)
5 h := SUB-HYPERCUBE (W)

6 until h=h’

7 return h

Remark that SATURATE runs in a polynomial time to the size of G as the the loop in
line 2-6 is performed at most n times.

One can decide whether the sub-hypercube h is a minimal trap space by com-
puting the terminal strongly connected components of G which are enclosed in h
and verify that their smallest enclosing trap space is h. Indeed, consider that h is a
trap space. By definition, the saturation of any set of its vertices gives a trap spaces
which is either equal to or smaller than h. Then, remark that any trap space within
h contains at least one terminal strongly connected component of G, ). Therefore,
it is sufficient to verify that the saturation of all these terminal strongly connected
components are not strictly smaller than h to determine that h is minimal.

We call the algorithm computing the terminal strongly connected components
terminal-SCCs and it can be done in a polynomial time to the size of G (e.g., with
Tarjan’s algorithm [30]).

IS_MINTRAP(G, h):

1 if not TRAPSPACE(G, h):
2 return False
5 tSCCs := terminal-SCCs(Gy(n))
i for each W in tSCCs:
if SATURATE(W) # h:
6 return False
7 return True

This algorithm runs in a polynomial time to the size of G. Finally, remark that IN-
MINTRAP(f, x) can be decided using IS MINTRAP(G, SATURATE({x})), which also
runs in a polynomial time to the size of G.

THEOREM 3.14. TRAPSPACE, MINTRAP, and IN-MINTRAP are in P for BNs

given as their functional graph.
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The functional graph of f corresponds to the so-called state transition graph with
the synchronous (parallel) update mode: each edge corresponds to a synchronous
transition. One can remark that the above algorithms give equivalent results with the
fully asynchronous state transition graph where out’(x) = {y € B" | 3i € [1,n],y; =
fi(x),¥j € [1,n],j #i,%x; = y;}. Indeed, SUB-HYPERCUBE({x, f(x)}) is always equal
to SUB-HYPERCUBE({x} U out’(x)); remark that, for any i € [1,n], fi(x) # x; if and
only if there exists y € out’(x) such that y; # x;.

4. Conclusion. In this paper, we characterized the computational complexity
of three important decision problems related to trap spaces in Boolean networks con-
sidering various representations and the locally monotone case. We demonstrated
that, in general, determining minimal trap space properties and the membership of
configurations to minimal trap spaces are equivalent to solving the satisfiability of
Boolean formulas with two alternating quantifiers V and 3. Hence, our results show
that they are II5-complete. However, whenever restricting to the cases whenever BN
is locally monotone, or whenever its local functions are encoded as truth tables, binary
decision diagrams, or double DNFs (such as Petri nets encodings of BNs), the com-
plexity drops by one level in the polynomial hierarchy and becomes equivalent to the
decision of the tautology property of propositional formulas. Finally, whenever the
BN is given by its functional graph (corresponding to its synchronous state transition
graph), minimal trap space properties can be decided by deterministic algorithms in
a polynomial time.

In practice, solving coNP problems can be tackled with SAT solvers, whereas
solving I} necessitates more elaborated approaches, such as Answer-Set Program-
ming [9] or by decomposing the problem into two parts and alternately solving them,
as demonstrated by a recent study on the control of fixed points [17].

Future direction may consider studying the computational complexity of problems
related to the set of minimal trap spaces of a BN, such as deciding whether all the
minimal trap spaces satisfy a given property. This will give insight into the complexity
for control problems related to minimal trap spaces in BNs, as tackled in [20, 27].
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