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Abstract. The treatment of two-dimensional random walks in the quarter plane leads to Markov processes
which involve semi-infinite matrices having Toeplitz or block Toeplitz structure plus a low-rank correction. We
propose an extension of the framework introduced in [Math. Comp., 87(314):2811–2830, 2018] which allows to deal
with more general situations such as processes involving restart events. This is motivated by the need for modeling
processes that can incur in unexpected failures like computer system reboots. We present a theoretical analysis of
an enriched Banach algebra that, combined with appropriate algorithms, enables the numerical treatment of these
problems. The results are applied to the solution of bidimensional Quasi-Birth-Death processes with infinitely many
phases which model random walks in the quarter plane, relying on the matrix analytic approach. The reliability of
our approach is confirmed by extensive numerical experimentation on several case studies.

1. Introduction. The treatment of the infinite data structures arising from Markov processes
usually relies on the assumption that jumps between states become unlikely when their mutual
distance increases. For instance, this is natural when considering random walks on lattices where
the particle is forced to move to nearby positions at each step. However, there are models that
incorporate a global communication with a certain subset of states. A rich source of case studies
comes from random walks with restart. This topic has been analyzed under different perspectives
[15, 28, 32, 33]. Including resetting events is required in various applications such as modeling
computer system reboots [32], intermittent searches involved in relocation phases of foraging animals
[12, 15, 27] and computing network indices [2, 23]. Another example arises in computing return
probabilities in certain double Quasi-Birth-Death (QBD) processes: as shown in [6, Section 5.2],
it can happen that the probability of going back to a certain state, in finite time, is positive
independently of the starting position. An analogous situation is encountered in [43] in the case of
an M/T-SPH/1 queue system.

In many queueing models, transition probabilities only depend on the mutual distances between
the states. In this case it is possible to handle systems with infinite state space by means of a finite
number of parameters. Moreover, this feature translates in considering semi-infinite matrices which
have a Toeplitz structure, i.e., matrices T (a) = (ti,j)i,j∈Z+ such that ti,j = aj−i for some given
sequence a = {ak}k∈Z, where Z+ is the set of positive integers. Indeed, Toeplitz matrices, finite
or infinite, are almost ubiquitous in mathematical models where shift invariance properties are
satisfied by some function.

Computing the invariant probability measure π of random walks in the quarter plane is a non
trivial task due to the infinite-dimensional nature of the model. In [13] and [18], the problem is faced
by looking for representation of π given in terms of countably infinite sums of geometric terms. This
strategy restricts the applicability of this technique to a limited number of problems which exclude
certain transitions. On the other hand, the Matrix Analytic Method of M. Neuts [35] provides a
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§Dipartimento di Matematica, Università di Pisa, Italy, partially supported by GNCS of INdAM

leonardo.robol@unipi.it

1

ar
X

iv
:1

90
9.

11
37

2v
2 

 [
m

at
h.

N
A

] 
 1

1 
A

pr
 2

02
0

mailto:dario.bini@unipi.it
mailto:stefano.massei@epfl.ch
mailto:beatrice.meini@unipi.it
mailto:beatrice.meini@unipi.it
mailto:leonardo.robol@unipi.it


2 DARIO A. BINI, STEFANO MASSEI, BEATRICE MEINI, AND LEONARDO ROBOL

more general representation of π given in terms of the minimal nonnegative solution of a suitable
quadratic matrix equation under no restriction on the allowed transitions. In [5], [6], a framework
has been introduced to handle such problems in the case where the coefficients in the equation are
matrices of infinite size, making it possible to compute an arbitrary number of components of π
in a finite number of arithmetic operations. However, this approach does not allow to deal with
models where some restart condition is involved. In fact, in [5] the authors introduce the class QT
of semi-infinite matrices which can be approximated by the sum of a semi-infinite Toeplitz matrix
and a correction with finite support, i.e., with a finite number of nonzero entries. But this class
cannot deal with models involving long-distance jumps, like the one occurring in restarts, as well as
in double QBDs in the cases where the probability of going back to a certain state, in finite time,
is positive as in the example of [6, Section 5.2], or as in the case of an M/T-SPH/1 queue system
of [43].

In this paper, we propose a generalization of the class QT which includes corrections defining
bounded linear operators in `∞ with possibly unbounded support. The only restriction is that the
values of the entries stabilize when moving along each column. We show that this is a suitable
framework for studying models with restarts and allows to weaken some assumptions made in [5],
simplifying the underlying theory. Then, we present an application to the analysis of QBD processes
modeling random walks in the quarter plane.

More specifically, we introduce the classes QT d∞ and EQT , which are sets of semi-infinite
matrices with bounded infinity norm. The former is made by matrices representable as a sum of
a Toeplitz matrix and a correction, which represents a compact operator, with columns having
entries which decay to zero. The latter is formed by matrices in QT d∞ plus a further correction
of the kind evT for eT = (1, 1, . . .) and v = (vi)i∈Z+ such that

∑∞
i=1 |vi| < ∞. We prove that

QT d∞ and EQT are Banach algebras, i.e., they are Banach spaces with the infinity norm, closed
under matrix multiplication. Moreover, matrices in both classes can be approximated up to any
precision by a finite number of parameters. This allows to handle these classes computationally
and to apply numerical algorithms valid for finite matrices to the case of infinite matrices. We also
show the way of modifying the Matlab Toolbox cqt-toolbox of [7] in order to include and operate
with these extended classes. As a result, we may effectively extend the Matrix Analytic Method
of M. Neuts [35] to the case of infinitely many states still keeping the nice numerical features valid
for the finite case. In this way we can overcome the difficulty of the Neuts approach, pointed out
by Miyazawa in [31, Sect. 4.3.1] where he writes “it is also well known that it (the matrix analytic
method) can be used for countably many background states, although it generally looses the nice
feature for numerical computations”.

The introduction of the new classes QT d∞ and EQT allows to handle cases which were not
treatable with the available classes, typically when restart is implicitly or explicitly involved in
the model as in the cases of [6, Section 5.2] and [43]. Relying on the above classes we derive
some properties of the minimal nonnegative solution G of the matrix equation A1X

2 + A0X +
A−1 = X, associated with double QBDs [25] describing random walks in the quarter plane, where
the coefficients Ai are nonnegative matrices in QT d∞ whose Toeplitz component is tridiagonal.
This class of problems covers a wide variety of two-queue models with various service policies as
non-preemptive priority, K-limited service, server vacation and server setup [36]. Models of this
kind concern, for instance, bi-lingual call centers [39], generalized two-node Jackson networks [37],
two-demand models [17], two-stage inventory queues [19], and more. Computing the minimal
nonnegative solution G of this matrix equation is a fundamental step to solve the QBD by means
of the matrix analytic approach of [35]. We refer the reader to the books [3], [25] for more details
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in this regard. In particular, we provide general conditions on the transition probabilities of the
random walk in order that G ∈ QT d∞ or G ∈ EQT .

Finally, we perform an extensive numerical experimentation to show the effectiveness of our
framework. We apply our approach for computing the steady state distribution of a 1-dimensional
random walk with reset, for solving a quadratic matrix equation arising in a two-node Jackson
network with possible breakdown and in a 2-dimensional random walk with reset.

The paper is organized as follows. In Section 2 we introduce and analyze the classes QT d∞ and
EQT . In Section 3 we study double QBDs which model random walks in the quarter plane where
the matrices Ai, for i = −1, 0, 1, are tridiagonal quasi-Toeplitz. Relying on the classes QT d∞ and
EQT , we prove that the matrix G can be written as G = T (g) +Eg where Eg has bounded infinity
norm and T (g) is the Toeplitz matrix associated with the function g(z) which solves a suitable
scalar quadratic equation. We give sufficient conditions under which the solution G belongs to
QT d∞ or to EQT . Therefore, one can plug known available algorithms — valid for finite matrices
— into our proposed computational framework, to approximate G. Finally, in Section 4 we test
the computational framework on some representative problems, and in Section 5 we draw the
conclusions.

2. QT matrices. We denote by `p, with 1 ≤ p ≤ ∞, the usual Banach space of p-summable

sequences x = (xj)j∈Z+ , with the norms ‖x‖p := (
∑∞
j=1 |xj |p)

1
p for 1 ≤ p <∞, ‖x‖∞ := supj |xj |,

and by B(`p) the set of bounded linear operators from `p into itself with the operator norm ‖A‖p =
sup‖x‖p=1 ‖Ax‖p. A sequence x will be also referred to as a semi-infinite vector, or simply a
vector. Moreover, we denote by K(`p) ⊂ B(`p) the subset formed by compact operators, and by
e = (1, 1, . . .)T ∈ `∞ the vector of all ones. Throughout this work, we will only consider operators
that can be represented as matrices with respect to the standard basis {ei}i∈N. This restricts the
focus on operators that act on (and whose image is contained in) the closure of such set, which is
smaller than the entire space when p =∞, since `∞ is not separable.

The Wiener class W is the set of Laurent series a(z) =
∑
i∈Z aiz

i such that ‖a‖W :=
∑
i∈Z |ai|

is finite. This set, which contains complex valued functions defined on the unit circle, is a Banach
algebra [11] with the norm ‖·‖W . The map that associates a function a(z) ∈ W, called symbol,
with the semi-infinite Toeplitz matrix T (a) = (ti,j)i,j∈Z+ , ti,j = aj−i, is a bijection between W and
the set of bounded Toeplitz operators on B(`p) for p = 1,∞.

In [5], a new class of semi-infinite matrices is introduced, denoted by QT , and is defined as
the set of matrices that can be written as the sum of a (semi-infinite) Toeplitz matrix T (a) such
that a′(z) =

∑
i∈Z iaiz

i ∈ W and a correction E = (Ei,j)i,j∈Z+ such that
∑
i,j∈Z+ |Ei,j | is finite.

The class QT is endowed with an appropriate norm, which makes it a Banach algebra. This
norm is denoted by ‖·‖QT and is defined as follows: ‖T (a) + E‖QT = ‖a‖W + ‖a′‖W + ‖E‖F ,
‖E‖F :=

∑
i,j∈Z+ |Eij |. Observe that this norm is well-defined since both a(z) and a′(z) belong to

W.
This framework has shown to be very effective in the development of numerical algorithms

that treat the infinite dimensional case “directly”, without the need of truncating matrices to
finite size. It provides a practical tool for solving computational problems like computing matrix
functions and solving matrix equations where the input is given by QT matrices. We refer the
reader to [4, 6–9, 38] for some examples where this arithmetic has been used numerically to solve
various kinds of tasks. However, several aspects of the theory are not yet completely satisfactory.
For instance, the requirement that the symbol a′(z) lives in W is stronger than simply requiring
a(z) ∈ W, and seems artificial. Moreover, there are cases in the setting of Markov chains that fit
very naturally in the set of low-rank perturbations of semi-infinite Toeplitz matrices, but cannot be
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described under this framework because the correction E does not have finite norm when considering
‖·‖F . A couple of examples are given in Section 4.

The aim of this section is introducing a superset of QT that allows to treat such cases
maintaining the features needed to establish a computational framework. Let us first introduce
some notation. Given a(z) ∈ W define a+(z) =

∑
i∈Z+ aiz

i, a−(z) =
∑
i∈Z+ a−iz

i so that
a(z) = a0 + a−(z−1) + a+(z), and associate with a±(z) the following semi-infinite Hankel matrices
H(a+) = (ai+j−1)i,j∈Z+ , H(a−) = (a−i−j+1)i,j∈Z+ . The following result from [11, Proposition 1.3]
links semi-infinite Toeplitz and Hankel matrices.

Theorem 2.1 (Gohberg-Feldman). If a(z) ∈ W, then ‖T (a)‖p ≤ ‖a‖W , ‖H(a−)‖p ≤ ‖a‖W ,
‖H(a+)‖p ≤ ‖a‖W . If c(z) = a(z)b(z) where a(z), b(z) ∈ W, then T (a)T (b) = T (c)−H(a−)H(b+).

The Hankel matrices H(a−) and H(b+) are compact operators in B(`p) for every 1 ≤ p ≤ ∞ [11,
Proposition 1.2].

2.1. The class of QT p matrices. A more general approach for defining the set of quasi-
Toeplitz matrices is avoiding the norm ‖ · ‖QT and keeping the induced operator norm ‖ · ‖p.

Definition 2.2. Given an integer p, 1 ≤ p ≤ ∞, we say that the semi-infinite matrix A is
p-Quasi-Toeplitz if it can be written in the form A = T (a) + E, where a(z) ∈ W, and E defines a
compact operator in B(`p). We refer to T (a) as the Toeplitz part of A, and to E as the correction.
We denote the set of p-Quasi-Toeplitz matrices as QT p.

The set QT p is closed under product. In fact, denoting A = T (a) +Ea, B = T (b) +Eb in QT p one
has C = AB = T (a)T (b) + T (a)Eb +EaT (b) +EaEb. Moreover, denoting c(z) = a(z)b(z), since in
view of Theorem 2.1 we have T (a)T (b) = T (c)−H(a−)H(b+), then it follows that

C = T (c) + Ec,

Ec = −H(a−)H(b+) + T (a)Eb + EaT (b) + EaEb.

The matrix Ec is compact in B(`p) since each addend is the product of two operators, at least one
of the two being compact in B(`p). This proves that QT p is closed under matrix multiplication,
and being a subspace of B(`p), we have the following.

Theorem 2.3. The class QT p for any integer p, 1 ≤ p ≤ ∞ is an algebra in B(`p).

Remark 2.4. The setQT p is not necessarily topologically closed for 1 < p <∞; for instance, for
p = 2 it is known that ‖T (a)‖2 = ‖a‖∞ [11], where ‖a‖∞ is intended as the sup-norm of continuous
function defined for |z| = 1. By the Du Bois-Reymond theorem [14] there exists a continuous
function a whose Fourier series is not summable. The latter could be approximated uniformly with
polynomials in view of Weierstrass’ theorem, and this produces a sequence of operators T (an) →
T (a) in the 2-norm — but whose limit has symbol outside the Wiener class. In Section 2.3 we show
that for the case p =∞, which is the one of interest for our applications, the set QT ∞ is a (closed)
Banach algebra.

The following result ensures that the set QT p extends QT .

Lemma 2.5. For any integer 1 ≤ p ≤ ∞, it holds QT ⊂ QT p.

Proof. Let A = T (a) +E ∈ QT . It is sufficient to prove that ‖E‖F ≥ ‖E‖p for any p ∈ [1,∞].
Without loss of generality we can consider the case ‖E‖F = 1 so that |Eij | ≤ 1 ∀i, j. In fact,
if ‖E‖F = θ 6= 1, the condition ‖E‖F ≤ ‖E‖p is equivalent to ‖θ−1E‖F ≤ ‖θ−1E‖p, that is,

‖Ẽ‖F ≤ ‖Ẽ‖p where Ẽ = θ−1E is such that ‖Ẽ‖F = 1. Let x be such that ‖x‖p = 1, y = Ex so
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that ‖y‖p ≤ ‖E‖p. Observe that |xi| ≤ 1 for any i so that |yi| ≤
∑
j≥1 |Eijxj | ≤

∑
j≥1 |Eij | ≤ 1.

Since p ≥ 1, then

|yi|p ≤ |yi| ≤
∑
j≥1

|Eij | ⇒ ‖y‖p ≤ ‖E‖F 1/p = ‖E‖F ,

where the last equality holds since ‖E‖F = 1. This way, ‖E‖p = sup‖x‖p=1‖Ex‖p ≤ ‖E‖F .

It can be shown that the inclusion is strict.
Matrices in the QT p class, for p 6= 1,∞, can be approximated to any arbitrary precision by

using a finite number of parameters, in the following sense.

Lemma 2.6. Let A = T (a) + E ∈ QT p for some integer p ∈ (1,∞), then, for any ε > 0 there

exist Ẽ ∈ K(`p) with finite support and a Laurent polynomial ã(z) such that ‖A − Ã‖p ≤ ε where

Ã = T (ã) + Ẽ.

Proof. Since a(z) ∈ W, there exists a Laurent polynomial ã(z) such that ‖a − ã‖W ≤ ε
2 , and

therefore, ‖T (a)− T (ã)‖p ≤ ‖a− ã‖W ≤ ε
2 . Since E is compact and since `p for 1 ≤ p <∞ admits

a Schauder basis, finite rank operators are dense in K(`p), see [29, Theorem 4.1.33]. Therefore,

we can find Ê of finite rank k such that ‖E − Ê‖p ≤ ε
4 . Thus, we can write Ê =

∑k
j=1 ujv

T
j ,

with uj ∈ `p and vj ∈ `q, with 1
p + 1

q = 1, and p, q > 1. This implies that each uj , vj can be

approximated arbitrarily well with vectors of finite support ũj , ṽj such that ‖ujvTj − ũj ṽTj ‖ ≤ ε
4k .

Setting Ẽ :=
∑k
j=1 ũj ṽ

T
j , which has finite support, concludes the proof.

2.2. The class QT d∞. Observe that Lemma 2.6 does not hold for p = 1 and for p = ∞.
In fact, for any random vector with components in modulus less than 1 we have veT1 ∈ QT ∞ and
e1v

T ∈ QT 1. On the other hand, v cannot be approximated to any precision with a finite number of
parameters. This limitation is a serious drawback from the computational point of view especially
for p =∞ since the `∞ environment is the natural setting for Markov chains.

For this reason, we introduce a slightly different definition for the case p = ∞; the case p = 1
can be treated by considering the transpose matrix1 of elements in QT ∞.

Definition 2.7. A matrix E ∈ B(`∞) has the decay property if the vector w := |E|e, w =
(wi)i∈Z+ , is such that limi→∞ wi = 0, where |E| := (|Ei,j |)i,j∈Z+ .

Definition 2.8. We define QT d∞ the class of all the matrices which can be written in the form
A = T (a)+E, where a(z) ∈ W and E ∈ B(`∞) has the decay property. The superscript “d” denotes
“decay”.

The decay property allows to state an approximability result in the same spirit of Lemma 2.6
for matrices in B(`∞).

Lemma 2.9. Let E ∈ B(`∞), and let E(k) be the matrix that coincides with E in the leading
principal k × k submatrix and is zero elsewhere. Then, the following are equivalent:

(i) E has the decay property;
(ii) limk→∞‖E − E(k)‖∞ = 0.

In particular, if E has the decay property,then it represents a compact operator in B(`∞).

1Note that, even if `1 is much smaller of the dual of `∞, the additional constrain of considering operators
representable as matrices over the canonical basis, implies QT 1 = (QT∞)?.
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Proof. We first prove (i) =⇒ (ii). Since w = |E|e is such that limi wi = 0, then for any
ε > 0 there exists m such that wi ≤ ε for any i > m. Therefore, the matrix E(m) is such
that the vector v = |E − E(m)|e has components vi ≤ ε for i > m. On the other hand, since
|E| ∈ B(`∞), then each row r(i) = eTi |E| has sum of its entries finite, therefore, there exists ni such

that
∑∞
j=ni+1 r

(i)
j ≤ ε. Setting n = max{m,n1, n2, . . . , nm} yields ‖E −E(k)‖∞ ≤ ε for any k ≥ n.

Concerning (ii) =⇒ (i), we consider v(k) = |E−E(k)|e, and w = |E|e. Observe that, since E
(k)
i,j = 0

for i > k or for j > k, then v
(k)
i = wi for i > k. Moreover, since ‖v(k)‖∞ = ‖E − E(k)‖∞, then

limk‖v(k)‖∞ = limk‖E − E(k)‖∞ = 0 so that for any ε > 0 there exists k0 such that ‖v(k)‖∞ ≤ ε

for any k ≥ k0, whence v
(k)
i ≤ ε for any i. In particular, v

(k0)
i ≤ ε for any i. Thus, since wi = v

(k0)
i

for any i > k0, then wi ≤ ε for any i > k0. Finally, since E is the limit of compact operators it is
compact.

An immediate consequence of Lemma 2.9 is that any A ∈ QT d∞ can be approximated by a
finitely representable matrix in QT d∞ as stated in the following corollary.

Corollary 2.10. Let A = T (a) + E ∈ QT d∞. Then, for every ε > 0 there exists a Laurent
polynomial ã(z) and an integer k such that ‖A− T (ã)− E(k)‖∞ ≤ ε.

The class of matrices having the decay property is closed as specified by the following

Theorem 2.11. Let Ek ∈ B(`∞), for k ∈ Z+, have the decay property. Assume that there
exists E ∈ B(`∞) such that limk‖Ek − E‖∞ = 0. Then E has the decay property as well.

Proof. It is enough to prove that limi vi = 0 for v = |E|e. Denote v(k) = |Ek|e. From
|Ek−E| ≥ ||Ek|− |E|| we deduce that |Ek−E|e ≥ ||Ek|− |E||e ≥ |v(k)−v|. Whence ‖Ek−E‖∞ =

‖|Ek − E|e‖∞ ≥ ‖v(k) − v‖∞. This implies that limk supi |v
(k)
i − vi| = 0. We now deduce that

limi vi = 0. From the condition limk supi |v
(k)
i − vi| = 0 we find that for any ε > 0 there exists

k0 such that supi |v
(k)
i − vi| ≤ ε for any k ≥ k0, that is |v(k)i − vi| ≤ ε for any i and for k ≥ k0.

Therefore, vi ∈ [v
(k)
i − ε, v

(k)
i + ε] for any i and for any k ≥ k0. On the other hand from the

condition limi v
(k)
i = 0 for any k we deduce that for any ε > 0 and for any k there exists ik such

that |v(k)i | ≤ ε for any i ≥ ik. Combining the two properties yields vi ∈ [−2ε, 2ε] for any i ≥ ik0 .
That is limi vi = 0.

We consider the quotient space of B(`∞) under the equivalence relation: A
.
= B if and only if

A−B has the decay property. If A is representable with a finite number of parameters then, in light
of Lemma 2.9, every B such that A

.
= B is also representable using a finite number of parameters.

Matrices with the decay property form a right ideal.

Lemma 2.12. Let A,B ∈ B(`∞) such that A
.
= 0. Then

(i) if B
.
= 0,then A+B

.
= 0,

(ii) AB
.
= 0,

(iii) if B = T (b) with b ∈ W, then BA
.
= 0.

Proof. Claim (i) easily follows applying the definition. Concerning (ii), we notice that |AB|e ≤
|A||B|e ≤ ‖B‖∞|A|e which is an infinitesimal vector. Let w = |A|e with entries wi such that
limi→∞ wi = 0. In order to prove (iii), let us start by considering B = T (b) where the symbol b
has finite support, more precisely bj = 0 whenever |j| > k, for some k ∈ N. Then we have |BA|e ≤
|B|w = g whose entries gi verify gi =

∑i+k
j=i−k |bj−i||wj | for i > k. Therefore, gi → 0. If b has not

finite support we consider bk the Laurent polynomial obtained by truncating b with coefficients in
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the exponent range [−k, k]; clearly ‖T (b)− T (bk)‖∞ → 0 which implies ‖T (b)A− T (bk)A‖∞ → 0.
Hence, the claim follows applying Theorem 2.11.

Note that, A
.
= 0 6=⇒ BA

.
= 0; indeed consider A = e1e

T
1 and B = eeT1 as a counterexample.

We shall now prove that the Hankel matrices arising in Theorem 2.1 have the decay property.

Lemma 2.13. Let a(z) ∈ W, then H(a−)
.
= 0 and H(a+)

.
= 0.

Proof. Consider the vector w = |H(a−)|e; it holds that wi =
∑∞
j=i |a−j |, whence limi wi = 0,

i.e., H(a−)
.
= 0. The same holds for H(a+).

This, combined with Lemma 2.12, yields the following Corollary.

Corollary 2.14. Let a, b ∈ W, then

(2.1)
T (a)T (b)

.
= T (ab)

.
= T (b)T (a),

T (a)T (a−1)
.
= I, if a(z) 6= 0 for |z| = 1.

The next result will be crucial for proving the closedness of QT d∞.

Lemma 2.15. If A ∈ QT d∞, A = T (a) + E, then ‖A‖∞ ≥ ‖a‖W .

Proof. We prove that for any ε > 0 there exists i0 such that for any i ≥ i0 we have eTi |A|e ≥
‖a‖

W
−2ε. Since ‖A‖∞ = supi e

T
i |A|e, then from the latter inequality it follows that ‖A‖∞ ≥ ‖a‖W .

In order to prove the claim, we observe that since |A| ≥ |T (a)| − |E| we have eTi |A|e ≥ eTi |T (a)|e−
eTi |E|e. From the decay property of E we have that there exists h0 such that for any i ≥ h0 we

have ei|E|e ≤ ε. On the other hand, since eTi |T (a)| =
∑∞
j=−i |aj | = ‖a‖W −

∑−i−1
j=−∞ |aj |, and since

a(z) ∈ W, then there exists k0 such that eTi |T (a)| = ‖a‖W − εi, where |εi| ≤ ε for any i ≥ k0. Thus
for any i ≥ i0 = max{h0, k0} we have eTi |A|e ≥ ‖a‖W − |εi| − ε ≥ ‖a‖W − 2ε.

Theorem 2.16. The class QT d∞ is a Banach algebra with the infinity norm.

Proof. For the property of algebra it is enough to show that if A = T (a) +Ea, B = T (b) +Eb
are in QT d∞, then also A+B, αA and AB are in QT d∞. For the first two matrices the property is
trivial since αEa and Ea + Eb have the decay property. For the third condition, Lemma 2.12 and
Corollary 2.14 imply AB

.
= T (ab). It remains to prove that QT d∞ is complete. If Xk = T (xk)+Ek ∈

QT d∞, k ≥ 0, is a Cauchy sequence with the infinity norm, then, since B(`∞) is a Banach space
there exists X ∈ B(`∞) such that limk‖Xk − X‖∞ = 0. We have to prove that X ∈ QT d∞, i.e.,
X = T (x) + E for some x(z) ∈ W and E ∈ B(`∞) with the decay property. From Lemma 2.15 we
have ‖Xk −Xh‖∞ ≥ ‖xk − xh‖W therefore, since {Xk}k is Cauchy, then also {xk(z)}k is Cauchy
with the Wiener norm. Thus, since W is a Banach space, then there exists x(z) ∈ W such that
limk‖xk(z) − x(z)‖W = 0. Now consider Ek − Eh. Since Ek − Eh = Xk − Xh + T (xk − xh) we
have ‖Ek − Eh‖∞ ≤ ‖Xk − Xh‖∞ + ‖xk − xh‖W , whence {Ek}k is Cauchy in B(`∞) therefore,
there exists E ∈ B(`∞) such that limk‖Ek − E‖∞ = 0. It remains to prove that E has the decay
property. This follows from Theorem 2.11.

2.3. The class EQT . The matrices modeling stochastic processes with restarts do not belong
to QT d∞. Indeed, they belong to QT d∞ up to a correction part whose columns do not decay to
0, but instead converge to a nonzero limit. In particular, the correction does not have the decay
property but it is still (approximately) representable by a finite set of parameters. In this section
we introduce an appropriate extension of QT d∞.
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Definition 2.17. We say that the semi-infinite matrix A is extended-quasi-Toeplitz if it can
be written in the form

(2.2) A = T (a) + E + evT ,

where a(z) ∈ W, E
.
= 0 and v ∈ `1. We denote the set of extended-quasi-Toeplitz matrices with the

symbol EQT .

Clearly, QT d∞ ⊂ EQT ⊂ B(`∞), and in view of Corollary 2.10 the matrices in these classes are
representable with a finite number of parameters within a given error bound ε. Indeed, the term
evT in (2.2) can be approximated — in the ∞-norm — by truncating v ∈ `1 to a vector of finite
support. Similarly to QT d∞, the set EQT is a Banach algebra. It is immediate to check that
A,B ∈ EQT =⇒ A+B ∈ EQT . Multiplication requires some explicit computations.

Lemma 2.18. Let A = T (a) + Ea + evTa and B = T (b) + Eb + evTb be matrices in EQT . Then

C = AB ∈ EQT and C = T (c) + Ec + evTc where c = ab, vc =
(∑

j∈Z aj

)
vb +BT va and

Ec = T (a)Eb + EaT (b)−H(a−)H(b+) + EaEb + (Ea −H(a−))evTb .

Proof. The result follows via a direct computation using the relation T (a)e =
(∑

j aj

)
e −

H(a−)e. Note that, Ec
.
= 0 in view of Lemma 2.12.

In order to state the main result of this section, we need the following generalization of Lemma 2.15.

Lemma 2.19. If A ∈ EQT , A = T (a) + E + evT , then ‖A‖∞ ≥ ‖a‖W + ‖v‖1.

Proof. We prove that for any ε > 0 there exists k such that ‖eTkA‖1 ≥ ‖a‖W + ‖v‖1 − 5ε so
that the claim follows from the inequality ‖A‖∞ ≥ ‖eTkA‖1 and by the arbitrarity of ε. To this
end, given ε, it is sufficient to choose k = 2p + 1 where p is large enough so that

∑∞
i=p+1 |vi| ≤ ε,∑−p−1

i=−∞ |ai| ≤ ε and wk ≤ ε where w = |E|e. This way the kth row of A is rk = eTkA = vT +uT +sT

where uT = [a−2p, a−2p+1, . . .], s
T = eTkE. Observe that ‖s‖1 = wk ≤ ε so that

(2.3) ‖rk‖1 ≥ ‖v + u‖1 − ε.

In order to estimate ‖v + u‖1, decompose v as v = ṽ + v̂ where ṽ = [v1, . . . , vp, 0, . . .]
T , v̂ =

[0, . . . , 0, vp+1, . . .]
T . Do the same with u = ũ + û. Since ṽ and v̂ have disjoint supports, then

‖ṽ + û‖1 = ‖ṽ‖1 + ‖û‖1, moreover, thanks to the choice of p, we have ‖v̂ + ũ‖1 ≤ 2ε. Thus, we
deduce that

(2.4) ‖v + u‖1 ≥ ‖ṽ + û‖1 − ‖v̂ + ũ‖1 ≥ ‖ṽ‖1 + ‖û‖1 − 2ε.

Finally, since ṽ = v− v̂ we deduce that ‖ṽ‖1 ≥ ‖v‖1− ε, and similarly, ‖û‖1 ≥ ‖u‖1− ε. Combining
the latter two inequalities with (2.3) and (2.4), yields ‖rk‖1 ≥ ‖v + u‖1 − ε ≥ ‖ṽ + û‖1 − 5ε which
completes the proof.

Remark 2.20. Lemma 2.19 allows to easily show the uniqueness of the decomposition of an
element in EQT . Indeed, suppose there exist two different representations of the same matrix
A = T (a) + Ea + evTa = T (a′) + Ea′ + evTa′ . Then

0 = ‖A−A‖∞ ≥ ‖a− a′‖W + ‖va − va′‖1 =⇒ a ≡ a′, va = va′ .

By difference, we finally get Ea = Ea′ .
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Theorem 2.21. The class EQT is a Banach algebra with the infinity norm.

Proof. The class is clearly closed under addition and multiplication by a scalar. Moreover, it
is closed under multiplication in view of Lemma 2.18. In order to prove that it is a Banach space,
it is sufficient to follow the same argument used in the proof of Theorem 2.16 relying on Lemma
2.19.

2.4. Extended cqt-toolbox. Here, we describe how the computational framework for EQT
has been implemented on top of cqt-toolbox [7]. The latest release of the software includes this
tool.

A matrix A ∈ EQT is represented relying on the unique decomposition (see Remark 2.20)
A = T (a) + E + evT . The terms T (a) and E are represented using the same data structures as
the QT ∞ class. This is possible because the entries of E

.
= 0 allows to truncate it to its top-left

corner. The format is extended by storing a truncation ṽ of the vector v ∈ `1. This is performed
by requiring ‖v− ṽ‖1 ≤ ε‖A‖∞. As illustrative example, we report the Matlab code that define the
matrix A0 of the Jackson network with reset introduced in Section 4.2.

1 >> E = γ * µ1 + γ - 1;

2 >> pos = [0 λ1];
3 >> neg = [0 γ * (1 - p) * µ1];

4 >> v = 1 - γ;
5 >> A0 = cqt(’extended ’, neg , pos , E, v);

The arithmetic operations in the class EQT can be performed by using the standard Matlab arith-
metic operators +,-,*,/,\ and the operator inv.

We conclude the section by summarizing the relations that link the parameters defining the
input of a matrix operation to those of its outcome. Some of them have been already presented in
Section 2.3, the others can be verified via a direct computation. In what follows we consider two
EQT matrices A = T (a) + Ea + evTa and B = T (b) + Eb + evTb .
Addition If C = A+B, then C = T (a+ b) + Ec + e(va + vb)

T , Ec = Ea + Eb.
Multiplication If C = AB, then

C = T (ab) + Ec + e(savb +BT va)T , sa =
∑
j∈Z

aj

Ec = T (a)Eb + EaT (b)−H(a−)H(b+) + EaEb + (Ea −H(a−))evTb .

Inversion The inversion formula is obtained by means of the Woodbury identity, considering an
EQT matrix as a rank one correction of a QT d∞ matrix. If C = A−1,then

C = (T (a) + Ea)−1 − (T (a) + Ea)−1evTa (T (a) + Ea)−1/(1 + vTa (T (a) + Ea)−1e).

In this equation, although the terms are not separated as in the other expressions, all the operations
involved are performed with the addition and multiplication formulas for the QT d∞ class.

It is interesting to point out that the arithmetic introduced in the Toolbox cqt-toolbox,
includes also the case of finite QT-matrices where the correction to the Toeplitz part involves the
top leftmost and the bottom rightmost corners. This allows to deal effectively with finite matrices
of large size. We refer the reader to [7, Section 3.5] for further details.

3. Double QBDs and related random walks in the quarter plane. The use of the
Matrix Analytic Method of Neuts [35] allows to recast the computation of the invariant probability
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Fig. 3.1. Pictorial description of a random walk in the quarter plane, the points of the grid which have integer
coordinates (r, s), correspond to the states of the Markov chain. The particle can move in the grid of only one step
inside the quarter plane with assigned probabilities.

vector of a QBD process into determining the minimal nonnegative solutionG of the matrix equation

(3.1) X = A−1 +A0X +A1X
2.

A solution G = (gi,j)i,j∈Z+ of a matrix equation is said to be minimal nonnegative if gi,j ≥ 0, and
for any other solution X = (xi,j)i,j∈Z+ such that xi,j ≥ 0 it follows gi,j ≤ xi,j for any i, j. In

this section we consider the case where the equation has infinite coefficients A−1, A0, A1 ∈ QT d∞
that originate from a random walk in the quarter plane governed by a discrete time Markov chain.
In this case, the minimal nonnegative solution G exists, and we provide conditions under which
G belongs to QT d∞ or to EQT . The Markov chain describes the dynamics of a particle p which
can occupy the points of a grid in the quarter plane of integer coordinates (r, s), for r, s ≥ 0. If p
occupies an inner position, i.e., if r, s > 0, then at each instant of time it can move to (r + j, s+ i)
with given probabilities ai,j for i, j = −1, 0, 1. If the particle is along the y axis, i.e., if r = 0 and
s > 0, then it can move to (j, s+ i) with given probability yi,j for i = −1, 0, 1, j = 0, 1. Similarly, if
the particle is along the x axis, i.e., if r > 0 and s = 0, then it can move to (r+j, i) with probability
xi,j for i = 0, 1, j = −1, 0, 1. Finally, if p is in the origin, it can move to the position (j, i) with
probability oi,j for i, j = 0, 1. Figure 3.1 pictorially describes an example of random walk in the
quarter plane.

The Markov chain which describes this model is defined by the double infinite set of states
(r, s), r, s ≥ 0, and by the transition probability matrix P whose entry with row index (r, s)
and column index (r′, s′) provides the probability of transition from state (r, s) to state (r′, s′)
in one time unit. Due to the double indices, the matrix P has a multilevel structure and can
take a different form according to the kind of lexicographical order which is used to sort the pairs
(r, s). Denote qtoep(b0, b1; a−1, a0, a1) the quasi Toeplitz matrix with symbol a−1z

−1 + a0 + a1z
and with correction E = e1(b0 − a0, b1 − a1, 0, . . .). Similarly, denote the block quasi Toeplitz
matrix qtoep(B0, B1; A−1, A0, A1). Ordering the states column-wise as (r, s), s = 0, 1, . . . , r =
0, 1, . . ., yields P = qtoep(B0, B1; A−1, A0, A1), with Ai = qtoep(yi,0, yi,1; ai,−1, ai,0, ai,1), Bi =
qtoep(oi,0, oi,1; xi,−1, xi,0, xi,1). More specifically we have

(3.2) P =

 B0 B1

A−1 A0 A1

. . .
. . .

. . .

 .
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Ordering the states row-wise for r = 0, 1, . . . , s = 0, 1, . . ., yields P̂ = qtoep(B̂0, B̂1; Â−1, Â0, Â1),

with Âj = qtoep(x0,j , x1,j ; a−1,j , a0,j , a1,j), B̂j = qtoep(o0,j , o1,j ; y−1,j , y0,j , y1,j). The matrix (3.2)
defines a double QBD process (DQBD) [30], [25], which leads to the matrix equation (3.1). We
have a similar equation if the row-wise ordering of the states is adopted. We refer to the row-wise
representation as the flipped version which is obtained by exchanging the roles of the axes.

It is useful to denote

xi,:(z) = xi,−1z
−1 + xi,0 + xi,1z, i = 0, 1, x:,j(w) = x0,j + x1,jw, j = −1, 0, 1,

yi,:(z) = yi,0 + yi,1z, i = −1, 0, 1, y:,j(w) = y−1,jw
−1 + y0,j + y1,jw, j = 0, 1,

ai,:(z) = ai,−1z
−1 + ai,0 + ai,1z, a:,j(w) = a−1,jw

−1 + a0,j + a1,jw, i, j = −1, 0, 1.

For the sake of notational simplicity, if not differently specified, we write ai(z) in place of ai,:(z).
Since ai,j are probabilities we have ai,j ≥ 0,

∑
i,j ai,j = 1, that is, a−1(1) + a0(1) + a1(1) = 1.

Similarly for xi,j , yi,j and oi,j . Moreover, we introduce the following notation

d1 = a1,:(1)− a−1,:(1), d2 = a:,1(1)− a:,−1(1),

s1 = y1,:(1)− y−1,:(1), s2 = x:,1(1)− x:,−1(1),

r1 = d2x1,:(1)− d1s2, r2 = d1y:,1(1)− d2s1.

The following result of [16, Theorem 1.2.1] and [31, Lemma 6.4] provides a necessary and
sufficient condition for the positive recurrence of the random walk in terms of the values of the
probabilities ai,j , xi,j , yi,j .

Lemma 3.1. Assume that (d1, d2) 6= (0, 0). The DQBD process is positive recurrent if and only
if one of the following conditions holds:

1. d1 < 0, d2 < 0, r1 < 0, r2 < 0;
2. d1 ≥ 0, d2 < 0, r2 < 0, and s2 < 0 for x1,:(1) = 0;
3. d1 < 0, d2 ≥ 0, r1 < 0 and s1 < 0 for y:,1(1) = 0.

In the following, we will consider the inequalities A−1e > A1e or A−1e ≥ A1e > 0. For the
structure of the matrices A1 and A−1, this set of infinitely many inequalities reduces just to a pair
of inequalities. For instance, the condition A−1e > A1e is equivalent to a−1(1) > a1(1), y−1(1) >
y1(1), while A−1e ≥ A1e > 0 is equivalent to a−1(1) ≥ a1(1) > 0, y−1(1) ≥ y1(1) > 0. From the
probabilistic point of view, the above inequalities say that the overall probability that the particle
moves down is greater than the overall probability that the particle moves up. We observe that,
according to Lemma 3.1 if A−1e > A1e and Â−1e > Â1e, then condition 1 holds. Moreover, if the
DQBD is positive recurrent, then at least one of the conditions a:,−1(1) > a:,1(1), a−1,:(1) > a1,:(1)
is satisfied.

Now, we are ready to prove the following result which gives sufficient conditions for the stochas-
ticity of G.

Theorem 3.2. If A−1e > A1e the minimal nonnegative solution G of the matrix equation (3.1)
is stochastic, i.e., Ge = e.

Proof. Observe that G is independent of the values xi,j defining B0 and B1. Therefore, it is
sufficient to choose the probabilities xi,j , i = 0, 1, j = −1, 0, 1 in such a way that the DQBD (3.2)
defined by the matrices A−1, A0, A1 and by the boundary conditions B0, B1 is positive recurrent.
In light of Theorem 7.1.1 of [25], this implies that Ge = e. To this end, consider the DQBD (3.2)
defined by the matrices A−1, A0, A1 and by the boundary conditions B0, B1 to be suitably chosen.
The assumption A−1e > A1e implies that d1 < 0. If d2 ≥ 0, then we choose xi,j such that r1 < 0.
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This way, in view of part 3 of Lemma 3.1, the DQBD is positive recurrent. On the other hand if
d2 < 0, since s1 < 0, then r2 < 0. Concerning r1, we choose xi,j such that r1 < 0, so that, in view
of part 1 of Lemma 3.1, the DQBD is positive recurrent.

Consider the sequence {Gk}k defined by

(3.3)
G0 = 0

Gk+1 = A1G
2
k +A0Gk +A−1, k = 0, 1, . . . .

Since A−1, A0, A1, G0 ∈ QT d∞ and since QT d∞ is an algebra, then all the matrices Gk belong to
QT d∞ so that they can be written as Gk = T (gk) + Ek. Moreover, from (3.3) it follows that
gk(z) ∈ W is a Laurent polynomial and Ek has a finite support. Observe also that, by construction,
the symbols gk(z) are such that

(3.4) gk+1(z) = a−1(z) + a0(z)gk(z) + a1(z)gk(z)2, g0(z) = 0.

Equation (3.4) can be viewed as a functional relation between Laurent polynomials in the variable
z, and also as a point-wise equation valid for any complex value ζ of the variable of z such that
|ζ| = 1. It is well known [25] that {Gk}k is an increasing sequence which converges point-wise to
the minimal nonnegative solution G of the matrix equation (3.1). Our aim is to provide sufficient
conditions under which the sequence {Gk}k converges in the infinity norm and the limit G can
be written in the form G = T (g) + Eg. We split this analysis into two parts: the analysis of the
sequence gk(z) and that of the correction Ek.

3.1. A scalar equation. In this section we prove that the sequence {gk(z)}k of Laurent
polynomials defined in (3.4) converges in the Wiener norm to a fixed point g(z) ∈ W of (3.4), we
show that g(z) has nonnegative coefficients, is such that g(1) ≤ 1 and for any z ∈ C of modulus 1,
g(z) is the solution of minimum modulus of the scalar equation a1(z)λ2 +(a0(z)−1)λ+a−1(z) = 0.

We need the following notation. Given two functions a(z) =
∑
i∈Z aiz

i, b(z) =
∑
i∈Z biz

i,
a(z), b(z) ∈ W we write a(z) ≤cw b(z) if the inequality holds coefficient-wise, i.e., if ai ≤ bi for
i ∈ Z. We have the following result.

Theorem 3.3. Under the assumption ai,j ≥ 0,
∑1
i,j=−1 ai,j = 1, there exists g(z) ∈ W such

that limk‖g − gk‖W = 0, where gk(z) is defined in (3.4). Moreover g(1) ≤ 1, 0 ≤cw gk(z) ≤cw
gk+1(z) ≤cw g(z) for k = 0, 1, . . ., and for any ζ such that |ζ| = 1, g(ζ) solves the equation in λ

(3.5) a1(z)λ2 + (a0(z)− 1)λ+ a−1(z) = 0,

for z = ζ, and |g(ζ)| ≤ 1. Moreover, g(1) = 1 if and only if a−1(1) ≥ a1(1); if a−1(1) < a1(1), then
g(1) = a−1(1)/a1(1).

Proof. Let us prove by induction on k that 0 ≤cw gk(z) ≤cw gk+1(z) and that gk(1) ≤ gk+1(1) ≤
1. For k = 0 we have g0(z) = 0 and g1(z) = a−1(z) so that 0 ≤cw g0(z) ≤cw g1(z), moreover g0(1) =
0 ≤ g1(1) = a−1(1) ≤ 1. For the inductive step, assume 0 ≤cw gk−1(z) ≤cw gk(z), gk−1(1) ≤
gk(1) ≤ 1 and prove that 0 ≤cw gk(z) ≤cw gk+1(z) and gk(1) ≤ gk+1(1) ≤ 1. Since ai(z) ≥cw 0,
by the inductive assumption we have gk+1(z) = a−1(z) + a0(z)gk(z) + a1(z)gk(z)2 ≥cw a−1(z) +
a0(z)gk−1(z) + a1(z)gk−1(z)2 = gk(z) ≥cw 0 and gk+1(1) = a−1(1) + a0(1)gk(1) + a1(1)gk(1)2 ≤
a−1(1) + a0(1) + a1(1) = 1, moreover gk+1(1) = a−1(1) + a0(1)gk(1) + a1(1)gk(1)2 ≥ a−1(1) +
a0(1)gk−1(1) + a1(1)gk−1(1)2 = gk(1). Now we prove that the sequence {gk(z)}k is a Cauchy
sequence in the norm ‖·‖

W
. For k > h, since gk(z) ≥cw gh(z) ≥cw 0 we have

(3.6) ‖gk − gh‖W = gk(1)− gh(1).
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Since the sequence {gk(1)}k is nondecreasing and bounded from above, then it converges, thus it is
a Cauchy sequence so that, in view of (3.6) also {gk(z)}k is a Cauchy sequence in the norm ‖·‖

W
.

Since W is a Banach algebra, then {gk(z)}k converges in norm to g(z) ∈ W and g(1) ≤ 1. Finally,
for any given ζ such that |ζ| = 1, we have g(ζ) = limk gk(ζ) so that, by a continuity argument
and in view of (3.4), g(ζ) solves equation (3.5). Moreover, since g(z) ≥cw 0,then |g(z)| ≤ g(1) ≤ 1
for |z| = 1. If ζ = 1, the solutions of equation (3.5) are 1 and a−1(1)/a1(1) (if a1(1) 6= 0).
Since g(1) ≤ 1, then g(1) = 1 if and only if a−1(1) ≥ a1(1). Moreover, if a−1(1) < a1(1), then
g(1) = a−1(1)/a1(1).

We prove that for any ζ of modulus 1, the value g(ζ) is the solution of minimum modulus of the
equation (3.5) where g(z) is the function of Theorem 3.3. This can be shown by using the following
result and Lemma 3.6, which weaken the assumptions of [5, Theorem 5.1].

Lemma 3.4. Assume that there exists i ∈ {−1, 0, 1} such that |ai(z)| < ai(1) for any z 6= 1
with |z| = 1. Then for any ζ 6= 1 with |ζ| = 1, equation (3.5) has a solution of modulus less than 1
and a solution of modulus greater than 1.

Proof. Let us prove that for any ζ 6= 1 such that |ζ| = 1 there are no solutions λ of (3.5) of
modulus 1. By contradiction, if |λ| = 1 then 1 = |λ| = |a−1(ζ) + a0(ζ)λ + a1(ζ)λ2| ≤ |a−1(ζ)| +
|a0(ζ)| + |a1(ζ)| < |a−1(1)| + |a0(1)| + |a1(1)| = 1 which is a contradiction. Now, define f(x) =
x(1− a0(ζ)) and g(x) = x2a1(ζ) + a−1(ζ) and observe that for |x| = 1

|f(x)| = |1− a0(ζ)| ≥ 1− |a0(ζ)| ≥ 1− a0(1) = a−1(1) + a1(1),

|g(x)| ≤ |a1(ζ)|+ |a−1(ζ)| ≤ a1(1) + a−1(1).

Therefore, |f(x)| ≥ |g(x)|, moreover, the inequality is strict in view of the assumption |ai(z)| < ai(1)
for at least an index i. By applying Rouché theorem [21, Theorem 4.10b] , it follows that f(x) and
f(x) + g(x) = x2a1(ζ) + (a0(ζ) − 1)x + a−1(ζ) have the same number of roots in the open unit
circle. On the other hand the function f(x) has the only root x = 0 since 1 − a0(ζ) 6= 0 for any
ζ 6= 1, |ζ| = 1.

Remark 3.5. Observe that the condition |ai(z)| < ai(1) can be equivalently rewritten as ai,j = 0
for at most one value of j so that the cases not covered by the above theorem are the ones where
ai(z) = αiz

ki for ki ∈ {−1, 0, 1} and α−1, α0, α1 ≥ 0, α−1 + α0 + α1 = 1. For instance, if αi = 1/3
and ki = i, i = −1, 0, 1, then the quadratic equation has the double solution λ = ζ−1 of modulus 1.

The following result characterizes the case where equation (3.5) has two solutions with the same
modulus.

Lemma 3.6. Assume that ai,j ≥ 0,
∑1
i,j=−1 ai,j = 1, and a1(z) 6≡ 0. If for a given ζ, |ζ| = 1,

equation (3.5) has two solutions λ1, λ2 such that |λ1| = |λ2|, then there exists k ∈ {−1, 0, 1} such
that λ1 = λ2 = ζk.

Proof. We use a continuity argument. Since a1(z) 6≡ 0, we assume for simplicity that a1,1 6= 0.
Choose 0 < ε < a1,1 replace a1,1 with a1,1 − ε and replace a1,−1 with a1,−1 + ε. The new values
of ai,j satisfy the assumption of Lemma 3.4. Therefore, there exist two solutions λ1(ε), λ2(ε) such
that |λ1(ε)| < 1 < |λ2(ε)| By letting ε → 0 and setting λi := limε→0 λi(ε), then by continuity
|λ1| ≤ 1 ≤ |λ2|, so that λ1 is still a, possibly non-unique, solution of minimum modulus of (3.5).
On the other hand if |λ1| = |λ2|, then necessarily |λ1| = |λ2| = 1. If the assumption of Lemma
3.4 are satisfied, then ζ = 1 and λ1 = 1 = λ2. If not, in view of Remark 3.5, there exist αi ≥ 0,
ki ∈ {−1, 0, 1}, i = −1, 0, 1, such that α−1 + α0 + α1 = 1 and ai(z) = αiz

ki , i = −1, 0, 1. On
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the other hand since |λ1| = |λ2| = 1, and λ1λ2 = (α−1ζ
k−1)/(α1ζ

k1), then α−1 = α1 so that
α0 = 1 − 2α1, α1 ≤ 1/2. Thus, λ1, λ2 solve the equation ζk1λ2 + (α0ζ

k0 − 1)/α1λ + ζk−1 = 0.
Since |λ1| = |λ2| = 1,then |(α0ζ

k0 − 1)/α1| = |λ1 + λ2| ≤ 2, that is, |α0ζ
k0 − 1| ≤ 1 − α0. Setting

ζk0 = cos θ+i sin θ the latter inequality turns into α0 ≤ α0 cos θ. This is possible if and only if θ = 0
or α0 = 0. In the former case we have either ζ = 1 or k0 = 0. If ζ = 1, then λ1 = λ2 = 1. If k0 = 0,
then λ1 and λ2 solve the equation ζk1λ2 + (α0 − 1)/α1λ+ ζk−1 = 0 that is ζk1λ2 − 2λ+ ζk−1 = 0.
The sum of the solutions is λ1 + λ2 = 2/ζk1 so that |λ1 + λ2| = 2. Thus, necessarily we have
λ1 = λ2 = ζ−k1 . In the remaining case α0 = 0, we deduce that α1 = α−1 = 1/2, so that the
quadratic equation is ζk1λ2 − 2λ+ ζk−1 = 0 and the same analysis applies.

We may conclude with the following

Theorem 3.7. If ai,j ≥ 0 for i, j = −1, 0, 1, and
∑1
i,j=−1 ai,j = 1, then for any ζ such that

|ζ| = 1, the value θ = limk gk(ζ) is the solution of minimum modulus of (3.5). Moreover, θ = g(ζ)
where g is the function defined in Theorem 3.3.

Proof. In the case where a1(z) ≡ 0 the equation has only one solution which is the one of
minimum modulus. If a1(z) 6≡ 0 Lemma 3.6 guarantees the existence of the minimal solution of
(3.5). The claim follows from Theorem 3.3. Since gk(z) converges in the Wiener norm to g(z), then
limk gk(ζ) = g(ζ).

We will refer to the function g(z) as to the minimal solution of (3.5).

3.2. Conditions for the compactness of Eg. In view of the results of the previous section,

under the only assumption ai,j ≥ 0 for i, j = −1, 0, 1 and
∑1
i,j=−1 ai,j = 1, we may write

(3.7) G = T (g) + Eg

where Eg := G−T (g), and ‖Eg‖∞ ≤ ‖G‖∞+‖T (g)‖∞ ≤ 1+g(1) ≤ 2 so that Eg ∈ B(`∞), moreover
we have |Eg|e ≤ Ge + T (g)e ≤ 2e. If G ∈ B(`p), then ‖Eg‖p ≤ ‖T (g)‖p + ‖G‖p ≤ ‖g‖W + ‖G‖p.
We may synthesize this property in the following.

Theorem 3.8. The minimal nonnegative solution G of the matrix equation in (3.1) can be
written as G = T (g) + Eg where g(z) ∈ W is such that g(1) ≤ 1 and g(z) is the solution of
minimum modulus of equation (3.5). Moreover, Eg ∈ B(`∞) is such that ‖Eg‖∞ ≤ 1 + g(1) and
|Eg|e ≤ 2e. Finally, if G ∈ B(`p), then Eg ∈ B(`p).

Now, we are ready to provide conditions under which G belongs to QT d∞ or to EQT .
In [25] it is proven that the sequence Gk generated by (3.3) converges monotonically and point-

wise to G. In general, monotonic point-wise convergence does not imply convergence in norm, as

shown in the following example. Let v(k) := (v
(k)
i )i∈Z+ , where v

(k)
i = 1

(k+1)i for k ≥ 1. It holds

v(k) ∈ `1, limk v
(k)
i = 0 monotonically but ‖v(k)‖1 = k

k−1 so limk‖v(k)‖1 = 1. The example can be

adjusted to the p norm and extended to the case of matrices. In fact, the sequence Ak = v(k)eT is
a sequence of compact operators in B(`1) such that limk Ak = 0 where convergence is point-wise
and monotonic, but limk‖Ak‖1 = 1.

Under the assumption A−1e > A1e, it is shown in [9, Theorem 4.2] that the sequence {Gk}k
generated by (3.3) converges in the infinity norm to G. The following result slightly weakens the
assumptions and is the basis to prove that in this case G ∈ QT d∞.

Theorem 3.9. If A−1e > A1e, or if A−1e ≥ A1e > 0, then for the sequence Gk generated by
(3.3) we have limk‖Gk −G‖∞ = 0.
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Proof. Subtracting the equation Gk+1 = A−1 + A0Gk + A1G
2
k from the equation G = A−1 +

A0G + A1G
2 and setting Ek = G − Gk, we get Ek+1 = A0Ek + A1(EkG + GkEk). By proceeding

similarly to the proof of Theorem 4.2 of [9], we may show that Ek ≥ 0, so that ‖Ek‖∞ = ‖vk‖∞
where vk = Eke. Thus, vk+1 = A0vk + A1(EkGe + Gkvk) ≤ (A0 + A1 + A1Gk)vk, where we have
used the property Ge ≤ e. Whence we get ‖vk+1‖∞ ≤ ‖vk‖∞γk, for γk = ‖A0 + A1 + A1Gk‖∞.
On the other hand, since 0 ≤ (A0 + A1 + A1Gk)e = (I − (A−1 − A1Gk))e, where we used the
identity e = (A−1 +A0 +A1)e, and since ‖A0 +A1 +A1Gk‖∞ = ‖(A0 +A1 +A1Gk)e‖∞, we have
γk = ‖(I − (A−1 − A1Gk))e‖∞. Therefore, γk < 1 if and only if the vector wk := (A−1 − A1Gk)e
has positive components which do not decay to zero. Since Gk has finite support, the vector A1Gke
has finite support so that the condition a−1(1) 6= 0 implies that the components of wk do not
decay to zero. Thus, it is enough to prove that wk > 0. Since G ≥ Gk, then Ge ≥ Gke so that
(A−1 − A1Gk)e ≥ (A−1 − A1)e. Whence the condition (A−1 − A1)e > 0 implies that the vector
wk has positive components. In the case where (A−1 − A1)e ≥ 0 and A1e > 0, we may prove by
induction that Gke < e. In fact, for k = 0 the property holds since G0 = 0. For the implication
k → k+1 we have Gk+1e = (A−1+A0Gk+A1G

2
k)e ≤ (A−1+A0+A1Gk)e < (A−1+A0+A1)e = e,

where we used the fact that A1Gke < A1e since Gke < e and A1 has at least a nonzero entry in
each row since by assumption A1e > 0. From the property Gke < e we get A1Gke < A1e so that
wk = (A−1 −A1Gk)e > (A−1 −A1)e ≥ 0.

Remark 3.10. Recall that the condition A−1e > A1e implies that a−1(1) > a1(1) while the
condition A−1e ≥ A1e implies that a−1(1) ≥ a1(1). In both cases the quadratic equation a1(1)λ2 +
(a0(1) − 1)λ + a−1(1) = 0 has two real solutions λ1 = 1 and λ2 = a−1(1)/a1(1). Moreover λ1 = 1
is the minimal solution. In particular, in view of Theorem 3.3, we have g(1) = 1. Conversely, if
g(1) = 1 is the minimal solution of the above quadratic equation,then, for Theorem 3.3, a−1(1) ≥
a1(1).

The convergence properties of the sequence {Gk}k stated by Theorem 3.9 allow to provide
sufficient conditions under which G ∈ QT d∞.

Theorem 3.11. If limk ‖Gk−G‖∞ = 0, then the minimal nonnegative solution G of the matrix
equation (3.1) can be written as G = T (g) + Eg where g(z) ∈ W is the minimal solution of (3.5),
and Eg ∈ B(`∞) has the decay property.

Proof. Consider the sequence Gk = T (gk) + Ek ∈ QT d∞ generated by (3.3), where gk(z) ∈ W
and Ek has finite support. Concerning the first part, we observe that ‖Ek − Eg‖∞ ≤ ‖Gk −
G‖∞ + ‖T (gk) − T (g)‖∞. Thus, since ‖T (gk) − T (g)‖∞ = ‖T (g − gk)‖∞ = ‖g − gk‖W , in view
of Theorem 3.3 we have limk‖T (gk) − T (g)‖∞ = 0. Since limk‖Gk − G‖∞ = 0, we conclude that
limk‖Ek − Eg‖∞ = 0. Since Ek has finite support, then it has the decay property so that, for
Theorem 2.11, Eg has the decay property as well.

From Theorem 3.9 the condition A−1e > A1e, which is equivalent to a−1(1) > a1(1) and
y−1(1) > y1(1), implies limk ‖Gk − G‖∞ = 0. We will weaken the assumptions of Theorem 3.9
by removing the boundary condition y−1(1) > y1(1). To this aim, consider the correction Eg =
G−T (g) ∈ B(`∞), where G is the minimal nonnegative solution to the equation (3.1) and g(z) is the
solution of minimum modulus to the equation (3.5) which exists under the assumptions of Theorem
3.7. Observe that if Eg has not the decay property, then w = |Eg|e is such that ‖w‖∞ < ∞ but
limi wi, if it exists, is not zero.

The following lemma is needed to prove the main result of this section. The only assumption
needed is that a1(1) +a−1(1) > 0. This condition is very mild since it excludes only the case where
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ai,j = 0 for i = 1,−1 and for any j.

Lemma 3.12. Assume that a1(1) + a−1(1) > 0 and define ψ(z) = a1(z)
1−a0(z)−a1(z)g(z) , for |z| = 1.

Then ψ(z) ∈ W, ψ(z) ≥cw 0, ‖ψ‖W = ψ(1) and for G = T (g) + Eg we have

(3.8) Eg
.
= T (ψk)EgG

k, k = 0, 1, 2, . . . .

Proof. We show that the function ϕ(z) = 1 − γ(z), γ(z) = a0(z) + a1(z)g(z), is such that
ϕ(z) 6= 0 for |z| = 1. Since γ(z) ≥cw 0, then |γ(z)| ≤ γ(1), so that it is sufficient to prove that
γ(1) < 1. We have γ(1) = a0(1) +a1(1)g(1) ≤ a0(1) +a1(1) = 1−a−1(1). Therefore, if a−1(1) > 0,
then γ(1) < 1. On the other hand, if a−1(1) = 0, then g(1) = 0 and a1(1) > 0 since, by assumption,
a1(1) + a−1(1) > 0, so that γ(1) = a0(1) = 1 − a1(1) < 1. This way, ψ(z) = a1(z)/ϕ(z) ∈ W.
Moreover, since

∑∞
k=0 γ(1)k = 1/(1 − γ(1)) < ∞, and γ(z) ≥cw 0, then

∑∞
k=0 γ(z)k ∈ W and

coincides with 1/ϕ(z). Moreover, since γ(z) ≥cw 0, then 1/ϕ(z) ≥cw 0 and ψ(z) ≥cw 0. From the
condition A1G

2 + (A0 − I)G+A−1 = 0, relying on Lemma 2.12 and Corollary 2.14, we obtain

(3.9) T (a1)EgG
.
= T (1− a0 − a1g)Eg.

By multiplying to the left both sides of (3.9) by T (1/ϕ(z)), in view of (2.1), we get

T (ψ)EgG
.
= Eg, ψ(z) =

a1(z)

1− a0(z)− a1(z)g(z)
.

Finally, by multiplying the above equation to the left by T (ψ) and to the right by G, by means of
the induction argument, we get (3.8).

It is interesting to point out that if a−1(1) 6= 0, then the function ψ(z) can be written in a

simpler form as ψ(z) = g(z) a1(z)
a−1(z)

.

We are ready to prove the main theorem of this section which provides conditions under which
G ∈ QT d∞ or G ∈ EQT .

Theorem 3.13. Assume that a−1(1)+a1(1) > 0. Let G be the minimal nonnegative solution of
(3.1) decomposed as G = T (g)+Eg, where g(z) is the minimal solution of (3.5) and Eg := G−T (g).
Then the following properties hold:

1. If a−1(1) > a1(1), then Eg has the decay property.
2. If a−1(1) < a1(1) and limk‖Gk‖∞ = 0, then Eg has the decay property.
3. If a−1(1) < a1(1), G is stochastic and strongly ergodic, that is limk ‖Gk − eπTg ‖∞ = 0, and

πTg G = πTg , πTg e = 1, then Eg = (1− g(1))eπTg + Sg, where Sg has the decay property.
4. If G is stochastic and Eg has the decay property, then a−1(1) ≥ a1(1) and g(1) = 1.

Proof. The proof of properties 1–3 relies on equation (3.8) and on the limit for k → ∞ of its
right-hand side. This limit depends on the value of ‖ψ‖

W
= ψ(1), where ψ(z) is defined in Lemma

3.12. Therefore, we show that either ψ(1) = 1 or ψ(1) < 1 and we deduce the properties of Eg
accordingly. Observe that if a−1(z) = 0, then a0(1) + a1(1) = 1 and g(1) = 0 so that ψ(1) = 1.
If a−1(z) 6= 0, for Theorem 3.3 we may distinguish two cases: the case where a−1(1)/a1(1) > 1
and the case a−1(1)/a1(1) < 1. In the first case g(1) = 1 so that ψ(1) = a1(1)/a−1(1) < 1. In
the second case g(1) = a−1(1)/a1(1) so that ψ(1) = 1. Consider the case a−1(1) > a1(1). Since
g(1) = 1, then ψ(1) = a1(1)/a−1(1) < 1. Moreover, since ψ(z) ≥cw 0, then ‖ψk‖

W
= ψ(1)k, whence

limk‖ψk‖W = limk ψ(1)k = 0. Therefore, limk‖T (ψk)‖∞ = 0. On the other hand, since Ge ≤ e
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and G ≥ 0, then ‖Gk‖∞ ≤ 1. Whence, since Eg ∈ B(`∞), then from equation (3.8) in Lemma 3.12
we have limk‖T (ψk)EgG

k‖∞ ≤ limk‖T (ψk)‖∞‖Eg‖∞‖Gk‖∞ = 0. That is, the sequence {Fk}k,
Fk = Eg − T (ψk)EgG

k, is such that Fk
.
= 0 and limk ‖Eg − Fk‖∞ = 0. In view of Theorem 2.11,

applied to the sequence {Fk}k, we conclude that Eg
.
= 0 so that Eg fulfills the decay property.

Now, consider the case a−1(1) < a1(1). Observe that since ψ(1) = 1, then ‖ψ‖
W

= ψ(1) = 1 and

‖ψk‖
W

= ψ(1)k = 1, therefore, ‖T (ψk)‖∞ = ψ(1)k = 1. If limk‖Gk‖∞ = 0 then, taking the limit
in (3.8), in view of Theorem 2.11 applied to the sequence {Fk}k we deduce that Eg has the decay
property. On the other hand, if the Markov chain associated with the matrix G is strongly ergodic,
that is, limk‖Gk − eπTg ‖∞ = 0, we have Gk = eπTg +Rk where limk‖Rk‖∞ = 0. Therefore,

Eg − T (ψk)Egeπ
T
g
.
= Êk, Êk = T (ψk)EgRk.

Since ‖Êk‖∞ ≤ ‖T (ψk)‖∞‖Eg‖∞‖Rk‖∞ = ‖Eg‖∞‖Rk‖∞, then limk‖Êk‖∞ = 0. Now, define

A = Eg − (1− g(1))eπTg and Ak = A− Êk. Since Ege = Ge− T (g)e
.
= (1− g(1))e and T (ψk)e

.
= e,

then (1− g(1))e
.
= T (ψk)Ege whence

Ak = Eg − (1− g(1))eπTg − Êk
.
= Eg − T (ψk)Egeπ

T
g − T (ψk)EgRk

= Eg − T (ψk)Eg(eπ
T
g +Rk) = Eg − T (ψk)EgG

k .
= 0

in view of (3.8), thus Ak
.
= 0. Since limk‖A−Ak‖∞ = 0 we may apply Theorem 2.11 and conclude

that A
.
= 0, that is Eg

.
= (1− g(1))eπTg , in other words Eg = (1− g(1))eπTg + Sg where Sg has the

decay property. Concerning the last property, consider w := |Eg|e = |G− T (g)|e ≥ |Ge− T (g)e| =
|e − T (g)e|. Since by assumption, limi wi = 0, then limi(T (g)e)i = 1. On the other hand, since
g(z) ∈ W has nonnegative coefficients, then limi(T (g)e)i = g(1), so that g(1) = 1. Since g(1) = 1
is the minimal nonnegative solution of the scalar equation a1(1)λ2 + (a0(1)− 1)λ+ a−1(1) = 0, in
view of Theorem 3.3, it follows that a−1(1) ≥ a1(1).

4. Applications and numerical results. This section is devoted to validate the computa-
tional framework on some applications of 1-D and 2-D random walks, which require the extended
algebras QT d∞ and EQT . The experiments are carried out on a PC with a Xeon E5-2650 CPU
running at 2.20 GHz, restricted to 8 cores and 10 GB of RAM. The implementation relies on the
cqt-toolbox [7], and the package SMCSolver of [10], tested under MATLAB2019a. We have used
the tolerance 10−14 for truncation and compression in the cqt-toolbox.

4.1. 1D random walk with reset. Here, we consider a discrete time Markov chain on the
set of states N, whose probabilities of left/right jumps are independent of the current state, with
the only exception of the boundary condition. In this setting the transition probability matrix P
takes the form

P =


b0 a1 a2 a3 . . .

b−1 a0 a1 a2
. . .

b−2 a−1 a0 a1
. . .

...
...

. . .
. . .

. . .

 ,
where the entries are nonnegative and such that b−i = 1−

∑∞
j=−i+1 aj , for i = 0, 1, 2, . . .. Observe

that, if
∑
j∈Z aj = γ < 1, then limi→∞ b−i = 1− γ, hence P ∈ EQT .

Recently some interest has been raised by models that incorporate exogenous drastic events.
Examples might include catastrophes, rebooting of a computer or a strike causing a shutdown in the
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Fig. 4.1. 1-D Random walk with maximum skip length m and reset with probability 1−γ. CPU time in seconds
(top line) and residual errors (bottom line) in the computation of the vector π for two values of γ and for three
different algorithms: Solving a QT linear system, performing repeated squarings, applying Cyclic Reduction.

transportation system. This is modeled by a random walk on N whose transitions allow to reach an
initial state from every state. Indeed, if aj = 0 for j < −m, where m ≥ 1, and if

∑∞
j=−m aj = γ < 1,

then from any state k ≥ m the process can reach state 0 with probability 1 − γ. In other words,
when the process is in any state k ≥ m, it is reset with probability 1− γ.

The transition matrix P generalizes the well studied Markov processes of M/G/1 and G/M/1-
type, having an upper and lower Hessenberg structure, respectively [3], [35]. These Markov processes
are used to model a wide variety of queueing problems [1], [20]. In particular, the case of models
with reset has been analyzed in [22], [40], [41] and [42]. Assume that the matrix P is irreducible. If
γ 6= 0, then the Markov chain is positive recurrent [3, Theorem 5.3] so that there exists the steady
state vector π such that πTP = πT , πT e = 1. If aj = 0 for |j| > m, where m ≥ 1, the matrix P
can be partitioned into m×m dimensional blocks, thus obtaining a matrix of the form

P =



W0 V1 0
W−1 V0 V1
W−2 V−1 V0 V1

W−3 V−1 V0
. . .

... 0
. . .

. . .

 .

The vector π, partitioned into m-dimensional vectors πi, i = 0, 1, . . ., can be computed by means
of the recursion πTi+1 = πTi R, i = 0, 1, . . . where π0 solves the equation πT0 (I −

∑∞
i=0R

iW−i) = 0,
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πT0 (I−R)−1e = 1 and R is the minimal nonnegative solution of the equation X = X2V−1+XV0+V1
(see [3, Theorem 5.4], [35]). This strategy for computing π is known as Matrix Analytic Method [35].

In our case, we can decompose P = T + evT , where T ∈ QT d∞ is semi-infinite quasi-Toeplitz
and vT = (1− γ, 0, . . .), and get the relation

πT = πTP = πTT + (πT e)vT = πTT + vT .

This yields πT (I − T ) = vT that enables to retrieve πT by solving a linear system with the matrix
I − T in QT d∞. Note that, in this case, the class QT d∞ is used both in the formulation of the
problem and in the algorithmic procedure which is simply reduced to the application of the Matlab
backslash command available in the extended cqt-toolbox [7], see Section 2.4.

A different algorithmic approach, which exploits the computational properties of the class EQT ,
is to apply the power method implemented by means of the repeated squaring technique to generate
the sequence Pk+1 = P 2

k , k ≥ 0, starting with P0 = P , which converges quadratically to the limit
eπT . In this case, since EQT is an algebra, all the matrices Pk belong to EQT and can be computed
by means of the command P = P*P; available in the extended arithmetic of the cqt-toolbox, see
Section 2.4.

We assume the following configuration for the transition probabilities: aj =
θσj

j4 , for −m ≤ j ≤
m, where σj is a random number uniformly distributed in [1, 2], aj = 0 for |j| > m, and θ is chosen
in such a way that

∑
j aj = γ ∈ [0, 1]. The values bj are such that P is stochastic. Except for the

first column, the matrix P is a Toeplitz matrix with bandwidth 2m + 1. The experiments have
been run 100 times and the results for residuals and timings have been averaged.

We have compared the two algorithms above and the Matrix Analytic Method (MAM) where
we used the algorithm of cyclic reduction (CR) from the package SMCSolver for solving the matrix
equation. It is worth saying that CR is one of the fastest algorithms customarily used to solve this
kind of problems for finite matrices. Figure 4.1 reports CPU time and the residual error ‖πT−πTP‖1
in computing the vector π for two different values of γ = 0.9, 0.99 and for m taking values in the
range [26, 213]. We may observe that the algorithms based on our approach perform faster than
the algorithm based on the combination of CR and the reblocking technique. For instance, for
m = 213 independently of the value of γ, the method based on the combination of CR and the
reblocking technique takes 350 seconds while the method based on the “backslash” command takes
120 seconds and the method based on repeated squarings takes just 46 seconds and 62 seconds for
γ = 0.9 and γ = 0.99, respectively, that is, it is about 8 times faster. Concerning the accuracy, all
the algorithms have a good performance, with the one based on CR performing slightly better. The
approaches using cqt-toolbox achieve an accuracy within the magnitude of the chosen truncation
threshold, which is set to 10−14.

4.2. Two-node Jackson network with reset. Here, we consider the Two-node Jackson
network of [34] modified by allowing a reset. This model, represented by a continuous time Markov
chain, is described in Figure 4.2 and consists of two queues Q1 and Q2 with buffers of infinite
capacity. Customers arrive at Q1 and Q2 according to two independent Poisson processes with
rates λ1, λ2. Customers are served at Q1 and Q2 with independent service times exponentially
distributed with rates µ1 and µ2, respectively. On leaving Q1, two events may occur: either there
is a reset of the queue where all the customers waiting to be served in Q1 leave the system, this
happens with probability 1− γ for 0 < γ < 1; or, with probability γ, one customer exits from Q1.
The latter enters Q2 with probability p or leaves the system with probability 1−p, where 0 < p < 1.
After completing service at Q2, the customer may enter again Q1 with probability q or may leave
the system with probability 1− q, where 0 < q < 1.
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λ1 µ1

(1− p)γ
pγ
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1− γ
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Fig. 4.2. Pictorial description of the transitions for the two node Jackson network with reset. The queue Q1 is
on the left, the queue Q2 is on the right. The square denoted by R indicates the reset event which is triggered with
probability 1− γ after service at the queue Q1.

The probability matrix, obtained after uniformization from the generator matrix encoding the
transition rates [25], is given by P = qtoep(B0, B1; A−1, A0, A1) where

(4.1)

A−1 =
1

θ
qtoep((1− q)µ2, qµ2; 0, (1− q)µ2, qµ2),

A0 =
1

θ
qtoep(γµ1, λ1; γ(1− p)µ1, 0, λ1) +

1− γ
θ

eeT1 ,

A1 =
1

θ
qtoep(λ2, 0; γpµ1, λ2, 0),

B0 = A0 +
µ2

θ
I, B1 = A1,

and θ = 1− γ + γµ1 + µ2 + λ1 + λ2. In this example we have A1, A−1 ∈ QT d∞ and A0 ∈ EQT . In
this case G ∈ EQT , so that it can be written as G = T (g) + Eg + evT , where g is the solution of
(3.5), Eg has the decay property and v ∈ `1.

Several generalizations of this model are possible. For instance, we may allow different reset
levels or we may allow reset also in the second queue Q2. In that case we would obtain a GI/M/1
Markov chain with semi-infinite blocks as those analyzed in [24].

The parameters are set as follows: λ1 = 2, µ1 = 3, λ2 = 1, µ2 = 2, p = 0.3, q = 0.2, with two
different values of γ, namely, γ = 0.95 and γ = 0.99. The symbol g is computed once for all by
means of the evaluation-interpolation algorithm of [9]. We solve equation (3.1), with coefficients
defined as in (4.1), by means of the iteration Xk+1 = (I −A0−A1Xk)−1A−1, analyzed in [9], with
X0 = T (g)+(I−T (g))eeT1 ∈ EQT , for different values of the required output accuracy, obtained by
modifying the parameter threshold in the cqt-toolbox. The residual errors of the approximated
solutions obtained this way and the CPU times are computed.

In certain cases it is possible to express explicitly the vector π in product form. In view of the
results in [13], in our case it is not possible to provide this explicit representation of π.

We compared this approach (QT-based method) with a truncation based algorithm (truncation
method). This method, inspired by [26], is based on a heuristic for recovering the solution G by the
finite dimensional solution Gk of the equation obtained by truncating to a finite size k the infinite
coefficients A−1, A0, A1. More specifically, we expect that the (k/2) × (k/2) leading principal
submatrix Gk,1/2 of Gk is a good approximation of the leading principal (k/2)× (k/2) submatrix of
G, for sufficiently large values of k. Therefore, by defining Tm the m×m leading principal submatrix
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Fig. 4.3. Two-node Jackson network with reset. Time versus accuracy of the QT-based method and of the
truncation method relying on the SMCSolver toolbox. For a small reset probability 1−γ, the timings of the QT-based
approach are much lower than the corresponding ones obtained upon truncation of the size combined with SMCSolver.

of T (g), for the decay properties of Eg, the last row vk of Gk,1/2 − Tk/2 provides an approximation
of the first k/2 components of v. The matrix Gk,1/2 is written as Gk,1/2 = Tk/2 + evTk + Ck, so

that Ck = Gk,1/2 − Tk/2 − evTk . The approximated solution Ĝ is defined as Ĝ = T (g) + Êg + ev̂T

where Êg is the infinite matrix obtained by filling with zeros the matrix Ck and v̂ is the infinite
vector obtained by filling with zeros the vector vk. The finite dimensional minimal nonnegative
solution Gk is computed by means of the function QBD CR of SMCSolver [10]. The residual error

of Ĝ are plotted against the CPU time needed for its computation, for increasing values of k. It
is not easy to determine a priori the value of k required to reach a certain accuracy, so we have
chosen the values of k a posteriori to attain residuals in the interval [10−12, 10−2]. In the considered
experiment, this means a maximum size of k = 1000 for γ = 0.95, and k = 5000 for γ = 0.99.

In Figure 4.3 we plot the pairs (CPU time, residual errors) for the two different approaches
and for two different values of the reset probability 1 − γ. The residual errors are computed as
R(G) := ‖A−1+A0G+A1G

2−G‖∞. We may see that for values of γ close to 1, in order to reach an
approximation error closer to the machine precision, the QT-based approach is much faster than the
method obtained by truncating the matrix to finite size. In particular, for γ = 0.99, the truncation
method requires about 20 minutes to get the same accuracy that the QT-based technique obtains
in about 10 seconds. On the other hand, for γ = 0.95, the QT-based method is slightly slower,
but overall the two methods perform comparably. In most models, the reset events have small
probabilities, and this suggests that the QT-based method might be more suitable in this scenario.

The case of finite but large queuing capacity networks can be treated with the same technique
by relying on the QT-arithmetic for finite QT-matrices of the cqt-toolbox of [7].

4.3. A Quasi-Birth-and-Death problem. Consider a discrete-time Markov chain with
state space N2 which models a random walk in the quarter plane, as described in Section 3. In [43]
a continuous time model is analyzed, defined by the parameters a, b, λ > 0, θ = (a+ b+λ)−1, which
leads to the matrices A−1 = bθe1e

T
1 , A0 = bθZ + aθZT , Z = qtoep(0, 0; 1, 0, 0), A1 = λθI. In this

case, the minimal nonnegative solution of (3.1) is G = eeT1 , which belongs to EQT \ QT d∞.
Here we treat a more general case, where the coefficients of (3.1) belong to QT d∞ but G does
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coefficients n− n+ m n r `
(4.2) 617 46 859 52 9 29
(4.3) 1991 27 2874 31 12 52

Table 4.1
Numerical features of the symbol g(z) =

∑n+
i=−n−

giz
i, the correction Eg ∈ Rm×n with rank r and of the vector

v ∈ R` for the solution G = T (g) + Eg + evT for the QBD problems (4.2) and (4.3).

Fig. 4.4. Log-plot of the 200× 200 submatrix of the solution G for the coefficients (4.2).

not and it is not explicitly known. More specifically, we consider the two cases defined by:

A−1 =
1

9
qtoep(3, 3; 2, 0, 1), A0 =

1

9
qtoep(1, 1; 1, 0, 1), A1 =

1

19
qtoep(0, 1; 2, 1, 1),(4.2)

A−1 =
1

16
qtoep(5, 5; 2, 0, 1), A0 =

1

16
qtoep(2, 2; 7, 0, 2), A1 =

1

16
qtoep(1, 1; 2, 1, 1).(4.3)

Since a−1(1) < a1(1), the minimal nonnegative solution G of (3.1) belongs to EQT \ QT d∞. In

particular, any approximation Ĝ of G in QT d∞ will be affected by an error ‖Ĝ−G‖∞ ≥ 1.
We have computed an approximation of the minimal nonnegative solution G by applying the

functional iteration Xk+1 = (I −A0)−1(A−1 +A1X
2
k) analyzed in [9], with starting approximation

X0 = T (g)+(I−T (g))eeT1 . In Table 4.1 we report the features of the solution G = T (g)+Eg+evT

in the two cases. More specifically, we report the integers n− and n+ such that gi < ε for i < −n−
or i > n+, for ε = 2−53 being the machine precision; the values m,n such that |ci,j | < ε for i > m
or for j > n, where Eg = (ci,j)i,j∈Z+ and the rank r of the m × n leading submatrix of Eg; the
value k such that |vi| < ε for i > k. In Figure 4.4 we report a plot of the 200 × 200 submatrix of
the solution G for the coefficients (4.2). We may note the Toeplitz part T (g) and the decay of the
entries of the vector v.

We have compared our approach (QT-based) with the approximation obtained by truncating
A−1, A0 and A1 to finite size, as described in Section 4.2. In Figure 4.5 we plot the pairs (CPU
time, residual errors) for the two different approaches. It is interesting to observe that the method
based on truncation cannot reach a sufficiently accurate approximation. For the first problem, the
CPU time required by the method based on truncation for reaching the best accuracy 9.0e-12

is about 122 seconds, while the time taken by our approach to reach the same precision is 5.22
seconds for a speed-up of 23.4. Moreover, our method reaches the best accuracy 1.3e-13 in 8.58
seconds. For the second problem the differences are even more evident. The method based on
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Fig. 4.5. A QBD example where G ∈ EQT . Time versus accuracy of the QT-based method and of the truncation
method relying on the SMCSolver toolbox. On the left, the QBD defined by coefficients (4.2); on the right, the case
defined by (4.3).

truncation takes 945.3 seconds to reach the accuracy 2.3e-9 while our method takes 5.48 seconds
to approximate the solution with the same accuracy. The speed-up in this case is 172.5. Moreover,
our method reaches the highest precision of 1.0e-13 in 27.86 seconds. Also in this problem, all the
residuals are measured as ‖A−1 +A0G+A1G

2 −G‖∞.

5. Conclusions. We have introduced a computational framework for handling classes of struc-
tured semi-infinite matrices encountered in the analysis of random walks in the quarter plane which
include rare events as reset and catastrophes. This framework consists of two matrix classes QT d∞
and EQT which extend the quasi Toeplitz matrices introduced in [5] and [6]. We proved that both
classes are Banach algebras, that matrices in these classes can be approximated to any arbitrary
precision in the infinite norm with a finite number of parameters and that a finite arithmetic can
be designed and implemented by extending the cqt-toolbox of [7]. In particular the computation
of the invariant probability measure, performed by means of the matrix analytic approach of [35]
can be achieved by solving a quadratic matrix equation with coefficients in the classes QT d∞ or
EQT . We have given conditions on the probabilities of the random walk under which the minimal
nonnegative solution G of such quadratic matrix equations belongs either to QT d∞ or to EQT .
Examples of algorithms for computing G are given. Numerical experiments, applied to significant
problems, show the effectiveness of our approach.

Some issues are still left to investigate. Namely, the analysis of the more general case where the
coefficients Ai = T (ai) +Ei have a banded structure, that is ai(z) is a general Laurent polynomial;
the study of the specific features of the solution G when a−1(1) = a1(1); and the challenging case
of multidimensional random walks with more than two coordinates where the matrix coefficients
Ai have a multilevel structure.
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