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Abstract

This paper considers time-inconsistent stopping problems in which the inconsistency

arises from a class of non-exponential discount functions called the weighted discount func-

tions. We show that the smooth pasting principle, the main approach that is used to con-

struct explicit solutions for the classical time-consistent optimal stopping problems, may

fail under time-inconsistency. Specifically, we prove that the smooth pasting solves a time-

inconsistent problem, within the intra-personal game theoretic framework with a general

nonlinear cost functional and a geometric Brownian motion, if and only if certain inequal-

ities on the model primitives are satisfied. In the special case of a real option problem,

we show that the violation of these inequalities can happen even for very simple non-

exponential discount functions. Moreover, we show that the real option problem actually

does not admit any equilibrium whenever the smooth pasting approach fails. The negative

results in this paper caution blindly extending the classical approach for time-consistent

stopping problems to their time-inconsistent counterparts.
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1 Introduction

A crucial assumption imposed on classical optimal stopping models is that an agent has a con-

stant time preference rate and hence discounts her future payoff exponentially. When this as-

sumption is violated, an optimal stopping problem becomes generally time-inconsistent in that

any optimal stopping rule obtained today may no longer be optimal from the perspective of

a future date. The problem then becomes largely descriptive rather than normative because

there is generally no dynamically optimal solution that can be used to guide the agent’s deci-

sions. Different agents may react differently to a same time-inconsistent problem, and a goal

of the study is to describe the different behaviors. Strotz (1955) is the first to observe that

non-constant time preference rates result in time-inconsistency, and to categorize three types of

agents when facing such time-inconsistency. One of the types is called a “non-committed, sophis-

ticated agent” who, at any given time, optimizes the underlying objective taking as constraints

the stopping decisions chosen by her future selves. Such a problem has been formulated within

an intra-personal game theoretic framework and the corresponding equilibria are used to de-

scribe the behaviors of this type of agents; see, for example, Phelps and Pollak (1968); Laibson

(1997); O’Donoghue and Rabin (2001); Krussell and Smith (2003) and Luttmer and Mariotti

(2003). An extended dynamic programming equation for continuous-time deterministic equi-

librium controls is derived in Ekeland and Lazrak (2006), followed by a stochastic version in

Bjork and Murgoci (2010) and application to a mean–variance portfolio model in Björk et al.

(2014).

This paper studies a time-inconsistent stopping problem in continuous time within the intra-

personal game framework, in which the source of time-inconsistency is the so-called weighted

discount function (WDF), a very general class of non-exponential discount functions.1 We make

two main contributions. First, we demonstrate that the smooth pasting (SP) principle, which

is almost the exclusive approach in solving classical optimal stopping problems, may fail when

1The WDF, proposed in Ebert et al. (2016), is a weighted average of a set of exponential discount functions.
It has been shown in Ebert et al. (2016) that it can be used to model the time preference of a group of individuals
as well as that of behavioral agents, and that most commonly used non-exponential discount functions are WDFs.
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time-consistency is lost. Second, for a stopping model whose time-consistent counterpart is the

well-studied real option problem, we establish a condition under which no equilibrium stopping

rule exists. These results are constructive and they caution blindly extending the SP principle

to time-inconsistent stopping problems.

Let us now elaborate on the first contribution. Recall that the SP is used to derive (often

explicit) solutions to conventional, time-consistent optimal stopping problems. It conjectures

a candidate solution to the underlying Bellman equation (or variational inequalities), which is

a free boundary PDE, based on the C1 smooth pasting around the free boundary, and then

checks that it solves the PDE under some standard regularity/convexity conditions on the model

primitives. Finally it verifies that the first hitting time of the free boundary indeed solves the op-

timal stopping problem using the standard verification technique. Recently, Grenadier and Wang

(2007) and Hsiaw (2013), among others, extend the application of the SP principle to solving

time-inconsistent stopping problems. While the SP happened to work in the specific settings of

these papers, it is more an exception than a rule. Indeed, in the present paper we show that,

for a geometric Brownian motion with a nonlinear cost functional, while the SP always yields

a candidate solution, the latter actually gives rise to an equilibrium stopping rule if and only if

certainty inequalities on the model primitives are satisfied. These inequalities hold trivially for

the time-consistent exponential discount case, but does not in general for its time-inconsistent

non-exponential counterpart, even if all the other parameters and assumptions (state dynam-

ics, running cost, etc.) are identical. Indeed, the violation of such inequalities is not rare even

in very simple cases. For example, we show that in the special case of a real option problem

with some WDFs including the pseudo-exponential discount function (Ekeland and Lazrak 2006;

Karp 2007; Harris and Laibson 2013), the inequalities do not hold for plausible sets of parameter

values of the chosen discount functions. The bottom line is that one cannot blindly apply the

SP to any stopping model when time-inconsistency is present, even if the SP does work for its

time-consistent counterpart.

The second contribution is on the nonexistence of an intra-personal equilibrium. For a time-
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consistent stopping problem, optimal stopping rules exist when the cost functional and the

underlying process satisfy some mild regularity conditions (see, e.g., Peskir and Shiryaev 2006).

However, this is no longer the case for the time-inconsistent counterpart. To demonstrate this,

we again take the real option problem with a WDF. For such a problem, we prove that there

simply does not exist any equilibrium stopping rule whenever the aforementioned inequalities are

violated and hence the SP principle fails. Our result therefore reveals that equilibrium stopping

rules within the intra-personal game theoretic framework may not exist no matter what regularity

conditions are imposed on the underlying models.

There are studies in the literature on time-inconsistent stopping including nonexistence re-

sults, albeit in considerably different settings especially in terms of the source of time-inconsistency

and the definition of an equilibrium. Bayraktar et al. (2018) consider a stopping problem with a

discrete-time Markov chain, whereas the time-inconsistency comes from the mean-variance objec-

tive functional. The Markov chain takes value in a set of finite numbers, which allows them to dis-

cuss the nonexistence of equilibrium stopping rules by enumeration. Christensen and Lindensjö

(2018a) and Christensen and Lindensjö (2018b) study continuous-time stopping problems where

the time-inconsistency follows from the types of payoff functions (mean-variance or endogenous

habit formation). In particular, Christensen and Lindensjö (2018a) show that the candidate so-

lution derived from the SP may not lead to an equilibrium stopping for some range of parameters.

However, the definition of equilibria in these papers is entirely different from the one based on

the “first-order” spike variation; the latter seems to be widely adopted by many papers (see, e.g.,

O’Donoghue and Rabin 2001; Bjork and Murgoci 2010; Ekeland et al. 2012; and Björk et al.

2014) including the present one.2 Huang and Nguyen-Huu (2018) investigate a continuous-time

stopping problem with non-exponential discount functions. They define an equilibrium via a fixed

point of a mapping, which is essentially based on a zeroth-order condition and hence is different

from our definition. Under their setting, immediately stopping is always a (trivial) equilibrium

2Christensen and Lindensjö (2018a) also consider mixed strategies as opposed to the pure strategies studied
in our paper and many other papers. Time-inconsistent problems using mixed strategies are interesting, and it is
possible that no equilibrium may be found in the class of mixed strategies either. However, the main point of this
paper is to show that a change of discounting factor from exponential to non-exponential may cause a stopping
problem that has an equilibrium to one that does not, even though both are using pure strategies.
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(so there is no issue of nonexistence), which is not the case according to our definition.

The remainder of the paper is organized as follows. In Section 2, we recall the definition and

some important properties of the WDF introduced by Ebert et al. (2016), formulate a general

time-inconsistent stopping problem within the intra-personal game theoretic framework, and

characterize the equilibrium stopping rules by a Bellman system and provide the verification

theorem. In Section 3 we consider the case when the state process is a geometric Brownian

motion, apply the SP principle to derive a candidate solution and establish certain equivalent

conditions for the derived candidate solution to actually solve the Bellman system. Then we

present a real option problem, in which the aforementioned equivalent conditions reduce to a

single inequality, failing which there is simply no equilibrium at all. Finally, Section 4 concludes

the paper. Appendix A contains proofs of some results.

2 The Model

2.1 Time preferences

Throughout this paper we consider weighted discount functions defined as follows.

Definition 1 (Ebert et al. 2016) Let h : [0, ∞) → (0, 1] be strictly decreasing with h(0) = 1. We

call h a weighted discount function (WDF) if there exists a distribution function F concentrated

on [0, ∞) such that

h(t) =

∫ ∞

0
e−rtdF (r). (1)

Moreover, we call F the weighting distribution of h.

Many commonly used discount functions can be represented in weighted form. For example,

exponential function h(t) = e−rt, r > 0 (Samuelson 1937) and pseudo-exponential function h(t) =

δe−rt +(1−δ)e−(r+λ)t, 0 < δ < 1, r > 0, λ > 0 (Ekeland and Lazrak 2006; Karp 2007) are WDFs with

degenerate and binary distributions respectively. A more complicated example is the generalized
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hyperbolic discount function (Loewenstein and Prelec 1992) with parameters γ > 0, β > 0, which

can be represented as

h(t) =
1

(1 + γt)
β

γ

≡
∫ ∞

0
e−rtf

(

r;
β

γ
, γ

)

dr (2)

where f(r; k, θ) = rk−1e
−

r
θ

θkΓ(k)
is the density function of the Gamma distribution with parameters k

and θ, and Γ(k) =
∫∞

0 xk−1e−xdx the Gamma function evaluated at k. See Ebert et al. (2016) for

more examples and discussions about the types of discount functions that are of weighted form.

The following result is a restatement of the well-known Bernstein’s theorem in terms of WDFs,

which actually provides a characterization of the latter.

Theorem 1 (Bernstein 1928) A discount function h is a WDF if and only if it is continuous

on [0, ∞), infinitely differentiable on (0, ∞), and satisfies (−1)nh(n)(t) ≥ 0, for all non-negative

integers n and for all t > 0.

Bernstein’s theorem can be used to examine if a given function is a WDF without necessarily

representing it in the form of (1). For example, it follows from this theorem that the constant

sensitivity discount function h(t) = e−atk

, a, k > 0, and the constant absolute decreasing impatience

discount function h(t) = ee−ct−1, c > 0, are both WDFs.

2.2 Stopping rules and equilibria

On a complete filtered probability space (Ω, F ,F = {Ft}t≥0, P ) there lives a one dimensional

Brownian motion W , and a family of Markov diffusion processes X = Xx parameterized by the

initial state X0 = x ∈ R and governed by the following stochastic differential equation (SDE)

dXt = b(Xt)dt + σ(Xt)Wt, X0 = x, (3)
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where b, σ are Lipschitz continuous functions, i.e., there exists an L > 0 such that for any x 6= y

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ L|x − y|. (4)

We assume that F is the P -augmentation of the natural filtration generated by X. To avoid an

uninteresting case we also assume that |σ(x)| ≥ c > 0 ∀x ∈ R so that X is non-degenerate.3

For any fixed x ∈ R, an agent monitors the process X = Xx and aims to minimize the following

cost functional

J(x; τ) = E

[
∫ τ

0
h(s)f(Xs)ds + h(τ)g(Xτ )

∣

∣

∣X0 = x

]

(5)

by choosing τ ∈ T , the set of all F-stopping times. Here h is a WDF with a weighting distribution

F , g is continuous and bounded, and f is continuous with polynomial growth, i.e., there exists

m ≥ 1 and C > 0 such that

|f(x)| ≤ C(|x|m + 1). (6)

Moreover, we assume that there exists n ≥ 1, C(r) > 0 satisfying
∫∞

0 C(r)dF (r) +
∫∞

0 rC(r)dF (r) <

∞ such that

sup
τ∈T

E

[
∫ τ

0
e−rs|f(Xs)|ds + e−rτ |g(Xτ )|

∣

∣

∣X0 = x

]

≤ C(r)(|x|n + 1), ∀r ∈ supp(F ). (7)

This is a (weak) assumption to ensure that the optimal value of the stopping problem is finite,

and hence the problem is well-posed.

We now define stopping rules which are essentially binary feedback controls. These stopping

rules induce Markovian stopping times for any given Markov process.

Definition 2 (Stopping rule) A stopping rule is a measurable function u : R → {0, 1} where

3Here we assume that the Brownian motion is one dimensional just for notational simplicity. There is no
essential difficulty with a multi-dimensional Brownian motion.
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0 indicates “continue” and 1 indicates “stop”. For any given Markov process X = {Xt}t≥0, a

stopping rule u defines a Markovian stopping time

τu = inf{t ≥ 0, u(Xt) = 1}. (8)

Given a stopping rule u, we can define the stopping region Su = {x ∈ (0, ∞) : u(x) = 1}. For

any x ∈ S̄u, since the underlying process X is non-degenerate, a standard result (e.g., Chapter

3 of Ito and McKean Jr 1965) yields that P(τu = 0|X0 = x) = 1, and hence J(x; τu) = g(x). This

means that the agent stops immediately once the process reaches at any point in S̄u. As a result,

in the setting of this paper, the continuation region is Cu = S̄u
c
.

As discussed earlier the non-exponential discount function h in the cost functional (5) renders

the underlying optimal stopping problem generally time-inconsistent. In this paper we consider

a sophisticated and non-committed agent who is aware of the time-inconsistency but unable to

control her future actions. In this case, she seeks to find the so-called equilibrium strategies

within the intra-personal game theoretic framework, in which the individual is represented by

different players at different dates.4

We now give the precise definition of an equilibrium stopping rule û, which essentially entails

a solution to a game in which no self at any time (or, equivalently in the current setting, at any

state) is willing to deviate from û.

Definition 3 (Equilibrium stopping rule) The stopping rule û is an equilibrium stopping

rule if

lim sup
ǫ→0+

J(x; τû) − J(x; τ ǫ,a)

ǫ
≤ 0, ∀x ∈ R, ∀a ∈ {0, 1}, (9)

4Given the infiniteness of the time horizon, the stationarity of the process X as well the time-homogeneity of
the running objective function f , each self at any given time t faces exactly the same decision problem as the
others, which only depends on the current state Xt = x, but not on time t directly. We can thus identify self t by
the current state Xt = x. That is why we need to consider only stationary stopping rules u, which are functions
of the state variable x only. For details on this convention, see, e.g. Grenadier and Wang (2007); Ekeland et al.
(2012); Harris and Laibson (2013) and, in particular, Section 3.2 of Ebert et al. (2016).
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where

τ ǫ,a =















inf{t ≥ ǫ, û(Xt) = 1} if a = 0,

0 if a = 1

(10)

with {Xt}t≥0 being the solution to (3).

This definition of an equilibrium is consistent with the majority of definition for time-

inconsistent control problems in the literature (see, e.g., Bjork and Murgoci 2010; Ekeland et al.

2012; and Björk et al. 2014) when a stopping rule is interpreted as a binary control. Indeed,

τ ǫ,a is a stopping time that might be different from τû only in the very small initial time interval

[0, ǫ); hence it is a “pertubation” of the latter.

2.3 Equilibrium characterization

The following result, Theorem 2, formally establishes the Bellman system and provides the

verification theorem for verifying equilibrium stoppings.

Theorem 2 (Equilibrium characterization) Consider the cost functional (22) with WDF

h(t) =

∫ ∞

0
e−rtdF (r), a stopping rule û, an underlying process X defined by (3), functions w(x; r) =

E

[
∫ τû

0
e−rtf(Xt)dt + e−rτûg(Xτû

)
∣

∣

∣X0 = x

]

and V (x) =

∫ ∞

0
w(x; r)dF (r). Suppose that w is contin-

uous in x and V is continuously differentiable with its first-order derivative being absolutely

continuous. If (V, w, û) solves

min

{

1

2
σ2(x)Vxx(x) + b(x)Vx(x) + f(x) −

∫ ∞

0
rw(x; r)dF (r), g(x) − V (x)

}

= 0, x ∈ R, (11)

û(x) =















1 if V (x) = g(x),

0 otherwise,

x ∈ R, (12)

then û is an equilibrium stopping rule and V is the value function of the problem, i.e., V (x) =

J(x; τû) ∀x ∈ R.

A proof to the above proposition is relegated to the appendix.5

5A proof of this result in a different setting was provided in Ebert et al. (2016). Here we supply a proof for
reader’s convenience.
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3 Failure of SP and Nonexistence of Equilibrium

In the classical literature on (time-consistent) stopping, optimal solutions are often obtained by

the SP, because the candidate solution obtained from the SP must solve the Bellman system

(and hence the optimal stopping problem) under some mild conditions, such as the smoothness

and convexity/concavity of the cost functions. In economics terms, the SP principle amounts

to the matching of the marginal cost at the stopped state; hence some economists apply the

SP principle without even explicitly introducing the Bellman system. However, as we will show

in this section, the SP approach in the presence of time-inconsistency may not yield a solution

to the Bellman system (and therefore not to the stopping problem within the game theoretic

framework), no matter how smooth and convex/concave the cost functions might be.

3.1 A time-consistent benchmark

Let us start with a time-consistent optimal stopping problem which we use as a benchmark for

comparison purpose and outline the way to use the SP principle in constructing explicit solutions.

Consider the following classical optimal stopping problem

inf
τ∈T

E

[
∫ τ

0
e−rsf(Xs)ds + e−rτ K

∣

∣

∣X0 = x

]

, (13)

where the underlying process X is a geometric Brownian motion

dXt = bXtdt + σXtdWt, x > 0, (14)

and T is the set of all stopping times with respect to F.6

In what follows we assume that the running cost f is continuously differentiable, increasing

and concave. Moreover, to rule out the “trivial cases” where either immediately stopping or

never stopping is optimal for this time consistent benchmark, we assume that f(0) < rK, b < r,

6In this formulation the final cost is assumed to be a constant lump sum K without loss of generality. In fact,
by properly modifying the running cost, we are able to reduce the stopping problem with a final cost function g

to one with a final cost being any given constant K > 0. To see this, applying Ito’s formula to e−rt(g(Xt) − K),

9



and limx→∞ fx(x)x = ∞.

Define L(x; r) = E[
∫∞

0 e−rsf(Xs)ds|X0 = x]. Noting that X is a geometric Brownian motion, we

have after straightforward manipulations

L(x; r) =

∫ ∞

0

∫ ∞

0
f(yx)e−rsG(y, s)dyds, (15)

where G(y, s) = 1√
2π

1
σy

√
s
e− (ln y−(b−

1
2

σ2)s)2

2σ2s . To ensure L and Lx are well defined, we further assume

that f has linear growth and fx(0+) < ∞.

We now characterize the optimal stopping rule as follows.

Proposition 1 There exists xB > 0 such that the stopping rule uB(x) = 1x≥xB
(x) solves optimal

stopping problem (13). Moreover, xB is the unique solution of the following algebraic equation

in y:

α(r)[K − L(y; r)] + Lx(y; r)y = 0 (16)

where

α(r) =
−(b − 1

2σ2) +
√

(b − 1
2σ2)2 + 2σ2r

σ2
. (17)

The key to proving this theorem is to make us of the SP; see Appendix A.2.

we get

E

[
∫ τ

0

e−rsf(Xs)ds + e−rτ g(Xτ )
∣

∣

∣
X0 = x

]

=E

[
∫

τ

0

e−rsf(Xs)ds + e−rτ K + e−rτ(g(Xτ ) − K)
∣

∣

∣
X0 = x

]

=E

{
∫ τ

0

e−rsf(Xs)ds + e−rτK +

∫ τ

0

e−rs

[

1

2
σ2x2gxx(Xs) + bxgx(Xs) − r(g(Xs) − K)

]

ds

∣

∣

∣
X0 = x

}

.

Letting f̃(x) := f(x) + 1
2 σ2x2gxx(x) + bxgx(x) − r(g(x) − K), the cost functional now becomes the one in problem

(13) with running cost f̃ .
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3.2 Equivalent conditions under time-inconsistency

We now consider exactly the same stopping problem as the above time-consistent benchmark

except that the exponential discount function is replaced by a WDF, namely, the cost functional

is changed to

J(x; τ) = E

[
∫ τ

0
h(s)f(Xs)ds + h(τ)K

∣

∣

∣X0 = x

]

, (18)

where h is a WDF with a weighting distribution F .

As in the case of exponential discounting, we need to impose the following regularity condi-

tions on the parameters of the problem:

b < r, ∀r ∈ supp(F ); and max

{
∫ ∞

0

1

r − b
dF (r),

∫ ∞

0

1

r
dF (r),

∫ ∞

0
rdF (r)

}

< ∞.

These conditions either hold automatically or reduce to the respective counterparts when the

discount function degenerates into the exponential one. On the other hand, they hold valid with

many genuine WDFs, including the generalized hyperbolic discount function (2) when γ < β and

the pseudo-exponential discount function.

We now attempt to use the SP principle to solve the Bellman system in Theorem 2 with the

cost functional (18). We start by conjecturing that the equilibrium stopping region is [x∗, ∞) for

some x∗ > 0. (As in the time-consistent case, x∗ is called the triggering boundary or the stopping

threshold.)

It follows from the Feynman–Kac formula that w in the Bellman system is given by

w(x; r) =















(K − L(x∗; r))
(

x
x∗

)α(r)
+ L(x; r), x < x∗,

K, x ≥ x∗,

11



where L(x; r) is defined by (15) and α(r) by (17). Recall we have defined V and û by

V (x) =

∫ ∞

0
w(x; r)dF (r) =















∫∞
0 ((K − L(x∗; r))( x

x∗

)α(r) + L(x; r))dF (r), x < x∗,

K, x ≥ x∗

and

û(x) =















0 x < x∗,

1 otherwise.

The SP applied to V (not to w) yields Vx(x∗) = 0, implying that x∗ is the solution to the following

algebraic equation in y

∫ ∞

0
[α(r)(K − L(y; r)) + Lx(y; r)y] dF (r) = 0. (19)

Clearly, this equation is a generalization of its time-consistent counterpart, (16). The following

proposition stipulates that it has a unique solution.

Proposition 2 Equation (19) admits a unique solution in (0, ∞).

Proof. Following the same lines of proof of Proposition 1 (Appendix A.2), we have that

Q(x) :=
∫∞

0 (α(r)(K − L(x; r)) + Lx(x; r)x)dF (r) is strictly decreasing in x > 0, with Q(0) > 0 and

Q(∞) < 0. This completes the proof.

Proposition 2 indicates that following the conventional SP line of argument does indeed give

rise to a candidate solution to the Bellman system, even under time inconsistency. We may be

tempted to claim, as taken for granted in the time-consistent case, that this candidate solution

solves the Bellman system in Theorem 2 and hence the corresponding stopping rule û solves

the equilibrium stoppping problem. Unfortunately, this is not always the case, as shown in the

following result.

Theorem 3 Assume that α(r)[α(r) − 1][K − L(x∗; r)] is increasing in r ∈ supp(F ), and let x∗ be

the unique solution to (19). Then the triplet (V, w, û) solves the Bellman system in Theorem 2

12



and in particular û is an equilibrium stopping rule if and only if

f(x∗) ≥
∫ ∞

0
rdF (r)K, (20)

and

∫ ∞

0
α(r)[α(r) − 1][K − L(x∗; r)]dF (r) +

∫ ∞

0
x2

∗Lxx(x∗; r)dF (r) ≤ 0. (21)

As a proof is lengthy, we defer it to Appendix A.3.

The above theorem presents characterizing conditions (on the model primitives) for the SP

to work for stopping problems with general WDFs. These conditions are satisfied automatically

in the classical time-consistent case, but not in the time-inconsistent case in general. We will

demonstrate this with a classical real option problem in the next subsection.

3.3 A real option problem: failure of SP and nonexistence of equi-

librium

In this subsection we consider a special case of the model studied in the previous subsection,

which is a time-inconsistent counterpart of the well-studied (time-consistent) problem of real

options. Such a problem can be used to model, among others, when to start a new project or

to abandon an ongoing project; see Dixit (1993) for a systematic account on the classical real

options theory.

The problem is to minimize

E

[
∫ τ

0
h(s)Xsds + h(τ)K

∣

∣

∣X0 = x

]

(22)

by choosing τ ∈ T , where X = {Xt}t≥0 is governed by7

7Here we assume that the geometric Brownian motion is driftless without loss of generality.
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dXt = σXtdWt. (23)

We now apply Theorem 3 to this problem, and see what the equivalent conditions (20) and

(21) boil down to.

First of all,

L(x; r) = E[

∫ ∞

0
e−rtXtdt

∣

∣

∣X0 = x] =
x

r
.

Hence

w(x; r) =















(

K − x∗

r

)

(

x
x∗

)α(r)
+ x

r
, x < x∗,

K, x ≥ x∗,

V (x) =















∫∞
0

(

K − x∗

r

)

(

x
x∗

)α(r)
dF (r) +

∫∞
0

x
r
dF (r), x < x∗,

K, x ≥ x∗,

and

û(x) =















0 x < x∗,

1 otherwise,

where

α(r) =

1
2
σ2 +

√

1
4
σ4 + 2σ2r

σ2
. (24)

Moreover, it follows from (19) that x∗ is the solution to the following equation in y:

∫ ∞

0

(

K − y

r

)

α(r)dF (r) +

∫ ∞

0

y

r
dF (r) = 0.

14



Thus

x∗ =

∫ ∞

0
α(r)dF (r)

∫ ∞

0

α(r) − 1

r
dF (r)

K. (25)

Next, it is easy to verify that α(r)[α(r)−1][K −L(x∗; r)] = 2
σ2 (Kr−x∗); hence it is an increasing

function in r ≥ 0. Moreover, substituting the explicit representation of x∗ in (25) into (20) and

(21) we find that the latter two inequalities are both identical to the following single inequality

∫ ∞

0
α(r)dF (r) ≥

∫ ∞

0
rdF (r)

∫ ∞

0

α(r) − 1

r
dF (r). (26)

We have proved the following

Proposition 3 The triplet (V, w, û) solves the Bellman system of the real option problem if and

only if (26) holds.

Inequality (26) is a critical condition on the model primitives we must verify before we can

be sure that the solution constructed through the SP is indeed an equilibrium solution to the

time-inconsistent real option problem. It is immediate to see that the strict inequality of (26) is

satisfied trivially when the distribution function F is degenerate corresponding to the classical

time-consistent case with an exponential discount function. In this case, x∗ defined by (25)

coincides with the stopping threshold derived in Subsection 3.1. This reconciles with the time-

consistent setting.

The condition (26) may hold for some non-exponential discount functions. Consider a gener-

alized hyperbolic discount function

h(t) =
1

(1 + γt)
β

γ

≡
∫ ∞

0
e−rt r

β

γ
−1

e
− r

γ

γ
β

γ Γ(β
γ
)

dr, γ > 0, β > 0.

We assume that γ < β ≤ σ2

2
. Noting that α(r) − 1 = −1

2
+

√
1
4

σ4+2σ2r

σ2 is a concave function in r, we

15



have

α(r) − 1 ≤ (α(r) − 1)′|r=0r + α(0) − 1 =
2

σ2
r.

Moreover, it is easy to see that

∫ ∞

0
rdF (r) = β and α(r) ≥ 1.

Therefore,

∫ ∞

0

α(r) − 1

r
dF (r)

∫ ∞

0
rdF (r) ≤ β

2

σ2
≤ 1 ≤

∫ ∞

0
α(r)dF (r)

which is (26). So, in this case the SP works and the stopping threshold x∗ is given by

x∗ =

∫ ∞

0
α(r)

r
β

γ
−1

e
− r

γ

γ
β

γ Γ(β
γ
)

dr

∫ ∞

0

α(r) − 1

r

r
β

γ
−1

e
− r

γ

γ
β

γ Γ(β
γ
)

dr

K.

However, it is also possible that (26) fails, which is the case even with the simplest class

of non-exponential WDFs – the pseudo-exponential discount functions. To see this, let h(t) =

δe−rt + (1 − δ)e−(r+λ)t, 0 < δ < 1, r > 0, λ > 0. It is straightforward to obtain that

∫ ∞

0
α(r)dF (r) = δα(r) + (1 − δ)α(r + λ)

and

∫ ∞

0
rdF (r)

∫ ∞

0

α(r) − 1

r
dF (r) > (1 − δ)(r + λ)δ

(

α(r) − 1

r

)

.

Since (1 − δ)(r + λ)δ(α(r)−1
r

) grows faster than δα(r) + (1 − δ)α(r + λ) when λ becomes large, we

conclude that (26) is violated when r, δ are fixed and λ is sufficiently large.
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What we have discussed so far shows that the solution constructed through the SP does not

solve the time-inconsistent real option problem whenever inequality (26) fails. A natural question

in this case is whether there might exist equilibrium solutions that cannot be obtained by the

SP or even by the Bellman system. The answer is resoundingly negative.

Proposition 4 For the real option problem (22)–(23), if (26) does not hold, then no equilibrium

stopping rule exists.

Proof. We prove by contradiction. Suppose û is an equilibrium stopping rule. We first note

that Cû ≡ {x > 0 : û(x) = 0} 6= (0, ∞); otherwise û ≡ 0, leading to J(x; τû) =
∫∞

0 L(x; r)dF (r) =

∫∞
0

x
r
dF (r), and hence J(x; τû) → ∞ as x → ∞ contradicting Lemma 2 in Appendix A.2.

Define x∗ = inf{x : x ∈ S̄û}. It follows from Lemma 3 in Appendix A.2 that x∗ ∈ (0, ∞). A

standard argument then leads to

J(x; τû) =

∫ ∞

0

(

K − x∗
r

)(

x

x∗

)α(r)

dF (r) +

∫ ∞

0

x

r
dF (r), x ∈ (0, x∗].

Because J(x; τû) ≤ K and J(x∗; τû) = K, we have Jx(x∗−; τû) ≥ 0, i.e.,

∫ ∞

0

(

K − x∗
r

)

α(r)
1

x∗
dF (r) +

∫ ∞

0

1

r
dF (r) ≥ 0,

which in turn gives

x∗ ≤
∫∞

0 α(r)dF (r)
∫∞

0
α(r)−1

r
dF (r)

K.

Combining with the failure of condition (26), we derive

x∗ <

∫ ∞

0
rdF (r),

which contradicts Lemma 3. This completes the proof.

The above is a stronger result. It suggests that for the problem to have any equilibrium
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stopping rule at all (not necessarily the one obtainable by the SP principle), condition (26)

must hold. So, when it comes to a time-inconsistent stopping problem with non-exponential

discounting, it is highly likely that no equilibrium stopping rule exists, even if the SP principle

does generate a “solution”, or even if the time-consistent counterpart (in which everything else is

identical except the discount function) is indeed solvable by the SP. Applying these conclusions to

the pseudo-exponential discount functions discussed above, we deduce that there is no equilibrium

stopping when λ is sufficiently large.

Having said this, a logical conclusion from Propositions 3 and 4 is that when equilibria

do exist, one of them must be a solution generated by the SP. In general if there exists an

equilibrium then there may be multiple ones; see, for example, Krussell and Smith (2003) and

Ekeland and Pirvu (2008) for multiple equilibria in time-inconsistent control problems. In this

case, the SP can only generate one of them, but not necessarily all of them. (This statement is

true even for a classical time-consistent stopping problem.) So, after all, the SP is still a useful,

proper method for time-inconsistent problems; we can simply apply it to generate a candidate

solution. If the solution is an equilibrium (which we must verify), then we have found one (but

not necessarily other equilibria); if it is not an equilibrium, then we know there is no equilibrium

at all.

4 Conclusions

While the SP principle has been widely used to study time-inconsistent stopping problems, our

results indicate the risk of using this principle on such problems. We have shown that the SP

principle solves the time-inconsistent problem if and only if certain inequalities are satisfied.

By a simple model of the classical real option problem, we have found that these inequalities

may be violated even for simple and commonly used non-exponential discount functions. When

the SP principle fails, we have shown the intra-personal equilibrium does not exist. The nonex-

istence result and the failure of the SP principle suggest that it is imperative that the techniques

for conventional optimal stopping problems be used more carefully when extended to solving
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time-inconsistent stopping problems.

A Appendix: Proofs

A.1 Proof of Theorem 2

For the stopping time τ ǫ,a, if a = 1, then J(x; τ ǫ,a) = g(x). The Bellman equation (11) implies

that g(x) ≥ V (x) ≡ J(x; τû). This yields (9).

If a = 0, then

J(x; τ ǫ,a) = E

[
∫ ǫ

0
h(s)f(Xs)ds

∣

∣

∣X0 = x

]

+ E

[
∫ τǫ,a

ǫ

(h(s) − h(s − ǫ))f(Xs)ds
∣

∣

∣X0 = x

]

+ E[(h(τ ǫ,a) − h(τ ǫ,a − ǫ))g(Xτǫ,a)|Xt = x] + E[V (Xǫ)|X0 = x]

= E

[
∫ ǫ

0
h(s)f(Xs)ds

∣

∣

∣X0 = x

]

+ E

[
∫ τǫ,a

ǫ

∫ ∞

0
e−r(s−ǫ)(e−ǫr − 1)dF (r)f(Xs)ds

∣

∣

∣X0 = x

]

+ E

[
∫ ∞

0
e−r(τǫ,a−ǫ)(e−ǫr − 1)dF (r)g(Xτǫ,a )

∣

∣

∣X0 = x

]

+ E[V (Xǫ)|X0 = x]

= E

[
∫ ǫ

0
h(s)f(Xs)ds

∣

∣

∣X0 = x

]

+ E

[
∫ ∞

0
(e−ǫr − 1)w(Xǫ; r)dF (r)

∣

∣

∣X0 = x

]

+ E[V (Xǫ)|X0 = x]. (27)

Define τn = inf{s ≥ 0 : σ(Xs)Vx(Xs) > n} ∧ ǫ. Then it follows from Ito’s formula that

E [V (Xτn
)|X0 = x] = E

[
∫ τn

0
(
1

2
σ2(Xs)Vxx(Xs) + b(Xs)Vx(Xs))ds

∣

∣

∣X0 = x

]

+ V (x).

By (11), we conclude

E [V (Xτn
)|X0 = x] = E

[
∫ τn

0
(
1

2
σ2(Xs)Vxx(Xs) + b(Xs)Vx(Xs))ds

∣

∣

∣X0 = x

]

+ V (x)

≥ E

[
∫ τn

0
(−f(Xs) +

∫ ∞

0
rw(Xs; r)dF (r))ds

∣

∣

∣X0 = x

]

+ V (x).

Note that conditions (6) and (7) ensure that −f(x) +
∫∞

0 rw(x; r)dF (r) has polynomial growth,
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i.e., there exist C > 0, m ≥ 1 such that

∣

∣

∣− f(x) +

∫ ∞

0
rw(x; r)dF (r)

∣

∣

∣ ≤ C(|x|m + 1),

which leads to

sup
0≤t≤ǫ

∣

∣

∣− f(Xs) +

∫ ∞

0
rw(Xs; r)dF (r)

∣

∣

∣ ≤ C( sup
0≤t≤ǫ

|Xt|m + 1).

Moreover, under condition (4), it follows from standard SDE theory (see, for example, Chapter

1 of Yong and Zhou (1999)) that equation (3) admits a unique strong solution X satisfying

E[ sup
0≤t≤ǫ

|Xt|m|X0 = x] ≤ Kǫ(|x|m + 1)

with Kǫ > 0.

Then letting n → ∞, we conclude by the dominated convergence theorem that

E [V (Xǫ)|X0 = x] ≥ E

[
∫ ǫ

0
(−f(Xs) +

∫ ∞

0
rw(Xs; r)dF (r))ds

∣

∣

∣X0 = x

]

+ V (x).

Consequently,

lim inf
ǫ→0+

J(x; τ ǫ,a) − J(x; τû)

ǫ

≥ lim inf
ǫ→0+

E

[
∫ ǫ

0
h(s)f(Xs)ds

∣

∣

∣X0 = x

]

+ E

[
∫ ∞

0
(e−ǫr − 1)w(Xǫ; r)dF (r)

∣

∣

∣X0 = x

]

+ lim inf
ǫ→0+

1

ǫ
E

[
∫ ǫ

0

∫ ∞

0
(rw(Xt; r)dF (r) − f(Xt))dt

∣

∣

∣X0 = x

]

.

The continuity of f and w along with the polynomial growth conditions (6) and (7) allow the

use of the dominated convergence theorem, which yields

lim inf
ǫ→0+

J(x; τ ǫ,a) − J(x; τû)

ǫ
≥ 0.
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This completes the proof.

A.2 Proof of Proposition 1

Let V B be the value function of the optimal stopping problem. It follows from the standard

argument (see, for example, Chapter 6 of Krylov 2008) that V B is continuously differentiable

and its first-order derivative is absolutely continuous. Moreover, V B solves the following Bellman

equation

min

{

1

2
σ2x2V B

xx(x) + bxV B
x (x) + f(x) − rV B(x), K − V B(x)

}

= 0. (28)

Define the continuation region CB = {x > 0 : V B(x) < K} and the stopping region SB = {x > 0 :

V B(x) = K}.

We claim that SB 6= (0, ∞). If not, then V B ≡ K. Thus 1
2σ2x2V B

xx(x)+bxV B
x (x)+f(x)−rV B(x) < 0

whenever x ∈ {x > 0 : f(x) − rK < 0}. However, since f(0) < rK, the continuity of f implies

{x > 0 : f(x) − rK < 0} 6= ∅. This contradicts the Bellman equation (28).

We now show that Cb 6= (0, ∞). If it is false, then we have V B(x) = L(x; r), with L defined by

(15). Since f is increasing and bounded from below by 0, we have

V B(∞) ≡ lim
x→∞

V B(x) =

∫ ∞

0

∫ ∞

0
lim

x→∞
f(yx)e−rsG(y, s)dyds.

The concavity of f yields f(x) ≥ xfx(x) + f(0). It then follows from limx→∞ xfx(x) = ∞ that

limx→∞ f(x) = ∞, which yields that V B(∞) = ∞. This contradicts the fact that V B(x) ≤ K.

Next, since X is a geometric Brownian motion and f is increasing, it is clear that V is

increasing too. Now, we derive the value of the triggering boundary, xB, via the SP principle.

Specifically, it follows from (28) that

V b(x) = (K − L(xB; r))(
x

xB

)α(r) + L(x; r), x < xB

V b(x) = K, x ≥ xB ,
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where α(r) is defined by (17). Then the SP implies that V B
x (xB) = 0 which after some calculations

yields that xB is the solution of the equation (16).

To prove the unique existence of the solution of (16), define Q(x) := α(r)(K−L(x; r))+Lx(x; r)x.

Then Qx(x) = (−α(r)+1)Lx(x; r)+Lxx(x; r)x. As L is strictly increasing and concave and α(r) > 1,

we deduce that Q is strictly decreasing. It remains to show Q(0) > 0 and Q(∞) < 0. It is easy to

see that Q(0) = α(r)(K − L(0; r)) = α(r)(K − f(0)
r

) > 0 and Q(x) = α(r)(K − L(0; r) − ∫ x
0 Lx(s; r)ds) +

Lx(x; r)x. Since L is concave, we have
∫ x

0 Lx(s; r)ds ≥ xLx(x; r). Thus Q(x) ≤ α(r)(K − L(0; r)) +

(−α(r) + 1)xLx(x; r). Recalling that limx→∞ xLx(x; r) = ∞ and α(r) > 1, we have Q(∞) = −∞.

This completes the proof.

A.3 Proof of Theorem 3

We need to present a series of lemmas before giving a proof of Theorem 3.

Lemma 1 Given a stopping rule u and a discount rate r > 0, the function E(x; τu, r) := E[
∫ τu

0 e−rtf(Xt)dt+

e−rτuK|X0 = x] is continuous in x ∈ (0, ∞).

Proof. We prove the right continuity of E(·; τu, r) at a given x0 > 0; the left continuity can be

discussed in the same way.

If there exists δ > 0 such that (x0, x0 + δ) ∈ Su, then the right continuity of E(·; τu, r) at x0 is

obtained immediately. If there exists δ > 0 such that (x0, x0 + δ) ∈ Cu, then it follows from the

Feynman-Kac formula that E(·; τu, r) is the solution to the differential equation 1
2
σ2x2Exx +bxEx −

rE +f = 0 on (x0, x0 +δ). This in particular implies that E(·; τu, r) ∈ C2((x0, x0 +δ))∩C([x0, x0 +δ])

due to the regularity of f and the coefficients of the differential equations; hence the right

continuity of E(·; τu, r) at x0.

Otherwise, we first assume that f(x0) ≥ rK and consider the set Cu ∩ (x0, ∞). Since it is an

open set, we have Cu ∩ (x0, ∞) = ∪n≥1(an, bn), where an, bn ∈ S̄u, ∀n ≥ 1. It is then easy to see that

x0 is an accumulation point of {an}n≥1 and hence x0 ∈ S̄u.

Define I(x) := E(x; τu, r) − K for x ∈ (an, bn). It is easy to see that I solves the following
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differential equation

1

2
σ2x2Ixx(x) + bxIx(x) − rI(x) + f(x) − rK = 0. (29)

with the boundary conditions

I(an) = I(bn) = 0.

Consider an auxiliary function H that solves the following differential equation

1

2
σ2x2Hxx(x) + bxHx(x) − rH(x) + f(x) − rK = 0,

with the boundary conditions

H(x0) = H(b1) = 0.

Since f(x) > rK on (x0, ∞), the comparison principle shows that H(x) ≥ 0, ∀x ∈ [x0, b1]. Applying

the comparison principle again on any (an, bn) ∩ (x0, b1), ∀n ∈ N
+, we have 0 ≤ I(x) ≤ H(x). Noting

that H(x) → H(x0) = 0 as x → x0+, we conclude that I(·) is right continuous at x0 and so is

E(·; τu, r).

For the case f(x0) < rK, a similar argument applies. Indeed, consider an auxiliary func-

tion H1 satisfying the differential equation (29) on (x0, f−1(rK)) with the boundary condi-

tion H1(x0) = H1(f−1(rK)) = 0. The comparison principle yields that H1(x) ≤ I(x) ≤ 0 on

(an, bn) ∩ (x0, f−1(rK)), ∀n ∈ N
+. The right continuity of I(·) and E(·; τu, r) then follows immedi-

ately.

Lemma 2 If û is an equilibrium stopping rule, then J(x; τû) ≤ K ∀x ∈ (0, ∞).
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Proof. If there exists x0 ∈ (0, ∞) such that J(x0; τû) > K, then we have

lim sup
ǫ→0

J(x0; τû) − J(x0; τ ǫ,1)

ǫ
= ∞,

where ûǫ,1 is given by (10). This contradicts the definition of an equilibrium stopping rule.

Lemma 3 If û is an equilibrium stopping rule, then {x > 0 : f(x) <
∫∞

0 rdF (r)K} ⊂ Cû.

Proof. Suppose that there exists x ∈ {x > 0 : f(x) <
∫∞

0 rdF (r)K} ∩ S̄û, then it follows from

Lemma 2 that E[J(Xt; τû)|X0 = x] ≤ K. Consider the stopping time τ ǫ,0. Equation (27) and the

fact that J(x; τû) = K give

J(x; τ ǫ,0) − J(x; τû)

ǫ
≤ 1

ǫ
E

[
∫ ǫ

0
h(s)f(Xs)ds

∣

∣

∣X0 = x

]

+ E

[

∫ ∞

0

(

e−ǫr − 1

ǫ

)

w(Xǫ; r)dF (r)
∣

∣

∣X0 = x

]

.

As w(·, r) is continuous (Lemma 1) and w(x; r) = K, we have

lim inf
ǫ→0

J(x; τ ǫ,0) − J(x; τû)

ǫ
≤ f(x) −

∫ ∞

0
rKdF (r) < 0.

This contradicts the definition of an equilibrium stopping rule.

We now turn to the proof of Theorem 3. We begin with the sufficiency. To this end it suffices

to show that V (x) ≤ K, x ∈ (0, x∗) and f(x) − ∫∞
0 rdF (r)K ≥ 0, x ∈ (x∗, ∞).

We first show that Vxx ≤ 0, x ∈ (0, x∗). By simple algebra, we have

Vxx(x) =

∫ ∞

0
α(r)(α(r) − 1)(K − L(x; r))(

x

x∗
)α(r) 1

x2
dF (r) +

∫ ∞

0
Lxx(x; r)dF (r).

As L is concave, we only need to prove
∫∞

0 α(r)(α(r) − 1)(K − L(x; r))( x
x∗

)α(r)dF (r) ≤ 0. It is easy

to see that ( x
x∗

)α(r) is decreasing in r given that α(r) is increasing in r and x < x∗. Then the
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rearrangement inequality (e.g., Chapter 10 of Hardy et al. 1952; Lehmann et al. 1966) yields8

∫ ∞

0
α(r)(α(r) − 1)(K − L(x; r))(

x

x∗
)α(r)dF (r)

≤
∫ ∞

0
α(r)(α(r) − 1)(K − L(x; r))dF (r)

∫ ∞

0
(

x

x∗
)α(r)dF (r). (30)

Therefore it follows from (21) that Vxx(x) ≤ 0, x ∈ (0, x∗). Now, Vx(x∗) = 0. Thus Vx(x) ≥ 0 and

consequently V (x) ≤ K ∀x ∈ (0, x∗), due to V (x∗) = K.

Next, the inequality f(x) − ∫∞
0 rdF (r)K ∀x ∈ (x∗, ∞) follows from f being increasing along

with inequality (20). This completes the proof of the sufficiency.

We now turn to the necessity part. As (20) is an immediate corollary of Lemma 3, we only

need to prove (21). Suppose (21) does not hold. Then by a simple calculation, we have

Vxx(x∗−) =

∫ ∞

0
α(r)(α(r) − 1)(K − L(x∗; r))

1

x2
∗
dF (r) +

∫ ∞

0
Lxx(x∗; r)dF (r) > 0.

However, Vx(x∗) = 0, implying that there exists x1 ∈ (0, x∗) such that Vx(x) < 0 on x ∈ (x1, x∗).

Then it follows from V (x∗) = K that V (x) > K when x ∈ (x1, x∗), which contradicts Lemma 2.
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