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MAJORIZATION BOUNDS FOR RITZ VALUES

OF SELF-ADJOINT MATRICES ∗

PEDRO MASSEY† , DEMETRIO STOJANOFF† , AND SEBASTIÁN ZÁRATE†

Abstract. A priori, a posteriori, and mixed type upper bounds for the absolute change in Ritz
values of self-adjoint matrices in terms of submajorization relations are obtained. Some of our results
prove recent conjectures by Knyazev, Argentati, and Zhu, which extend several known results for
one dimensional subspaces to arbitrary subspaces. In addition, we improve Nakatsukasa’s version
of the tanΘ theorem of Davis and Kahan. As a consequence, we obtain new quadratic a posteriori
bounds for the absolute change in Ritz values.
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1. Introduction. The study of sensitivity of Ritz values of Rayleigh quotients
of self-adjoint matrices (i.e. the changes in the eigenvalues of compressions of a self-
adjoint matrix) is a well established and active research field in applied mathematics
[1, 3, 8, 9, 10, 11, 13, 15, 18, 19, 20, 21]. Explicitly, given a d× d complex self-adjoint
matrix A and isometries X, Y of size d× k, with ranges X and Y respectively, we are
interested in computing upper and lower bounds for

|λ(ρ(X))− λ(ρ(Y ))| = ( |λi(ρ(X))− λi(ρ(Y ))| )i∈Ik
∈ R

k
≥0

where ρ(X) = X∗AX, ρ(Y ) = Y ∗AY are k× k complex self-adjoint matrices known
as Rayleigh quotients (RQ) of A, and λ(ρ(X)), λ(ρ(Y )) ∈ Rk are the eigenvalues
(counting multiplicities and arranged in non-increasing order) also known as Ritz
values.

Typically, the bounds for the absolute change in the Ritz values are obtained in terms
of the residuals RX = AX − X ρ(X) and RY = AY − Y ρ(Y ) or in terms of the
principal angles between subspaces (PABS) denoted by Θ(X ,Y) ∈ [0, π/2]k. Upper
bounds are classified according to which parameters are used to bound the change
in Ritz values (see [19]). Indeed, the a priori bounds are those obtained in terms
of PABS; the a posteriori bounds are those obtained in terms of (singular values
of) residuals while the mixed type bounds are obtained in terms of both PABS and
residuals. It is worth pointing out that PABS appearing in a priori bounds may not
be readily available in practice. On the other hand, a posteriori bounds are based on
computable singular values of residual matrices. Moreover, bounds based on residuals
(i.e. both a posteriori and mixed type) are particularly convenient in case one of the
spaces, say X , is A-invariant (as in this case RX = 0), as opposed to (autonomous) a
priori bounds.

The abstract matrix analysis formulation of the sensitivity problem stated above
makes it possible to apply this theory in a variety of different research areas such
as: graph matching [9] in terms of spectral analysis of the graphs; signal distinction
in signal processing, where Ritz values serve as harmonic signature to differentiate
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subspaces; finite element methods (FEM) [8], for approximation of subspaces cor-
responding to fundamental modes; of course, matrix analysis, e.g. for bounds for
eigenvalues after matrix additive perturbations. Also, bounds for changes in Ritz val-
ues play a central role in the analysis of algorithms for simultaneous approximation of
eigenvalues based on Rayleigh-Ritz methods (see [16, 17] and the references therein).
By now, the role of submajorization in obtaining bounds for the change of Ritz values
(recognized in the seminal paper [9]) is well known; this partial pre-order relation is
a powerful tool in this context, as bounds in terms of submajorization imply a whole
family of inequalities with respect to unitarily invariant norms and with respect to
the class of non-decreasing convex functions ([12]).

In this work we obtain a priori, a posteriori and mixed type upper bounds for the
absolute change in Ritz values of self-adjoint matrices in terms of submajorization.
Some of our results prove recent conjectures from [8, 19, 20] which extend several
known results for one dimensional subspaces to arbitrary subspaces. In addition, we
improve Nakatsukasa’s version of the tanΘ theorem [14] of Davis and Kahan [4]. We
have included some (rather simple) examples to establish comparisons with previous
work (for a detailed exposition of the context, previous work, our results and some
applications, see Section 3). We will consider further applications of the results herein
elsewhere.

The paper is organized as follows. In Section 2 we introduce preliminary results in
majorization theory and principal angles between subspaces. In Section 3 we develop
our main results; our approach to obtain these results is based on methods from
abstract matrix analysis, so we delay the proofs of some technical results until an
appendix section. Section 3 is divided in three subsections: in Section 3.1 we prove
a mixed type upper bound for the change of the Ritz values that is conjectured in
[20] and show that this bound is sharp. We have also included some comments with
a comparison of our results with previous works and with future applications of the
results of this subsection. In Section 3.2 we establish a link between the results
from Section 3.1 and an a priori upper bound for Ritz values conjectured from [8].
Although the results in this section are not sharp, they can be applied in quite general
situations and they capture the order of approximation conjectured in [8]. In Section
3.3 we revisit Nakatsukasa’s version of the tanΘ theorem of Davis and Kahan and
obtain an improved version of this result; we include an example that shows that this
new version of the tanΘ theorem is sharp in cases in which the classical result is not.
As an application, we obtain improved quadratic a posteriori error bounds for Ritz
values. The paper ends with an Appendix (Section 4) in which we include a detailed
background on majorization theory and present the proofs of some technical results
needed in Section 3.

2. Preliminaries. Throughout our work we use the following

Notation and terminology. We let Md,k(C) be the space of complex d×k matrices
and write Md,d(C) = Md(C) for the algebra of d×d complex matrices. We denote by
H(d) ⊂ Md(C) the set of self-adjoint matrices and by Md(C)

+, the cone of positive
semi-definite matrices. Also, Gl(d) ⊂ Md(C) and U(d) denote the groups of invertible
and unitary matrices respectively, and Gl(d)+ = Gl(d)∩Md(C)

+. On the other hand,
given a subspace Z ⊂ C

d, we let L(Z) denote the space of linear operators acting on
Z.

For d ∈ N, let Id = {1, . . . , d}. Given a vector x ∈ Cd we denote by Dx the diagonal
matrix in Md(C) whose main diagonal is x. Given x = (xi)i∈Id

∈ Rd we denote by

2



x↓ = (x↓
i )i∈Id

the vector obtained by rearranging the entries of x in non-increasing
order. We also use the notation (Rd)↓ = {x ∈ Rd : x = x↓}, R≥0 = {x ∈ R : x ≥ 0}
and (Rd

≥0)
↓ = {x ∈ Rd

≥0 : x = x↓}. For r ∈ N, we let 1r = (1, . . . , 1) ∈ Rr.

Given a matrix A ∈ H(d) we denote by λ(A) = (λi(A))i∈Id
∈ (Rd)↓ the eigenvalues

of A counting multiplicities and arranged in non-increasing order. For B ∈ Md(C)
we let s(B) = λ(|B|) denote the singular values of B, i.e. the eigenvalues of |B| =
(B∗B)1/2 ∈ Md(C)

+. We use the abbreviation ONB for “orthonormal basis”.

Arithmetic operations with vectors are performed entry-wise i.e., in case x = (xi)i∈Ik

and y = (yi)i∈Ik
∈ Ck then x+ y = (xi+ yi)i and, following the notational convention

of the principal references on these matters,

x y = (xi yi)i and (assuming that yi 6= 0, for i ∈ Ik)
x

y
= (xi/yi)i ,

where these vectors all lie in Ck. Moreover, if we assume further that x, y ∈ Rk then
we write x ≤ y whenever xi ≤ yi, for i ∈ Ik. △
Next we recall the notion of majorization between vectors, that will play a central
role throughout our work.

Definition 2.1. Let x, y ∈ Rk. We say that x is submajorized by y, and write
x ≺w y, if

j
∑

i=1

x↓
i ≤

j
∑

i=1

y↓i for j ∈ Ik .

If x ≺w y and tr x
def

=
k
∑

i=1

xi = tr y, then we say that x is majorized by y, and write

x ≺ y. △

There are many fundamental results in matrix theory that are stated in terms of
submajorization relations. In what follows, we mention some elementary properties
of submajorization that we will need in Section 3 (for detailed expositions on ma-
jorization theory, including proofs of the results mentioned below, see [2, 6, 12]). We
will consider some further properties and results on majorization theory in Section 4.
Given f : [a , b] → R, where [a , b] ⊂ R is an interval, and z = (zi)i∈Ik

∈ [a , b]k we
denote f(z) = (f(zi))i∈Ik

∈ Rk.

Remark 2.2. Let [a , b] ⊂ R be an interval and let f : [a , b] → R be a convex
function. Then,

1. if x, y ∈ [a , b]k satisfy x ≺ y then f(x) ≺w f(y).
2. If x, y ∈ [a , b]k only satisfy x ≺w y but f is further non-decreasing in [a , b],

then f(x) ≺w f(y).
△

Definition 2.3. A norm N in Md(C) is unitarily invariant (briefly u.i.n.) if
N(UAV ) = N(A), for every A ∈ Md(C) and U, V ∈ U(d). △

Well known examples of u.i.n. are the spectral norm ‖ · ‖sp and the Schatten p-norms
‖ · ‖p, for p ≥ 1.

Remark 2.4. It is well known that (sub)majorization relations between singular
values of matrices are intimately related with inequalities with respect to u.i.n’s.
Indeed, given A, B ∈ Md(C) the following statements are equivalent:

3



1. For every u.i.n. N in Md(C) we have that N(A) ≤ N(B).
2. s(A) ≺w s(B). △

Principal Angles Between Subspaces. Let X , Y ⊂ Cd denote subspaces, with
dimX = h and dimY = k. Let X ∈ Md,h and Y ∈ Md,k be such that their columns
form orthonormal bases of X and Y respectively. Then, the principal angles between
X and Y, denoted π/2 ≥ Θ1(X ,Y) ≥ . . . ≥ Θm(X ,Y) ≥ 0 where m = min{h, k} - are
determined by

cos(Θm−i+1(X ,Y)) = si(X
∗Y ) for i ∈ Im .

We further write Θ(X ,Y) = (Θi(X ,Y))i∈Im
∈ (Rm)↓ for the vector of principal angles

between X and Y. Principal angles are a useful tool in describing the relative position
and several geometric and metric aspects related with the subspaces X and Y in Cd

(see [4, 5] and the references therein).

3. Main results. In this section we develop our main results. The section is
divided in three parts; first we prove [20, Conjecture 2.1] which establishes a mixed
type bound for the error in the (absolute) change of the Ritz values. In the second
part, we establish connections between the mixed type bounds of the first section and
some a priori bounds for the change of Ritz values conjectured in [8, 10]. Finally we
take a closer look at Nakatsukasa’s tanΘ theorem under relaxed conditions from [14]
and obtain an improved version of this result. As a consequence we obtain quadratic a
posteriori error bounds for the change of the Ritz values that improve several known
bounds. Our approach to obtain these results is based on methods from abstract
matrix analysis, so we delay the proofs of some technical results until Section 4,
where we have also included several classical results of this area that we will refer to
in this section.

We begin by introducing the following

Setting 3.1. Throughout this section we consider the following notation and
terminology:

1. X , Y ⊂ Cd denote two subspaces of dimension k. We fix X, Y ∈ Md,k(C)
such that their columns form orthonormal bases of X and Y, respectively.

2. Θ(X , Y) ∈ (Rk
≥0)

↓ denotes the vector of principal angles between the sub-
spaces X and Y; in this case,

cos(Θ↑(X , Y)) = s(X∗Y ) = (s1(X
∗Y ), . . . , sk(X

∗Y )) ∈ (Rk
≥0)

↓.

3. For a (fixed) self-adjoint A ∈ H(d) we set ρ(X) = X∗AX ∈ Mk(C), RX =
AX −Xρ(X) ∈ Md,k(C) and similarly ρ(Y ) and RY for Y . Notice that

RX = AX −XX∗AX = AX − PXAX = PX⊥AX ∈ Md,k(C) ,

where PX ∈ Md(C) denotes the orthogonal projection onto X and X⊥ de-
notes the orthogonal complement of X . We consider similar notation and
identities for Y.

4. Let X⊥ ∈ Md , d−k(C) be such that its columns form an ONB of X⊥. Then,
the matrix (X,X⊥) ∈ U(d) and we get

Ã = (X,X⊥) A (X,X⊥)
∗
=

(

ρ(X) R∗
X X⊥

X∗
⊥ RX ρ(X⊥)

)

.
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Note that, since RX = (I − PX )RX , then s(RX) = s(X∗
⊥ RX), so that we

can think of RX (up to an isometric factor) as the (2, 1)-block of Ã, in the
block matrix representation of (the unitary conjugate of A) Ã as above. △

3.1. Rayleigh-Ritz majorization error bounds of the mixed type. We
adopt Setting 3.1; moreover, in this subsection we further assume that X and Y are
such that Θ1(X , Y) < π

2 that is, that X∗Y ∈ Gl(k) is invertible.
Our first result concerns a submajorization error bound for the distance of eigenvalue
lists of self-adjoint matrices:

Theorem 3.2. Let C, D ∈ H(k) and let T ∈ Gl(k). Then,

(3.1) |λ(C) − λ(D)| ≺w s(T−1) s(CT − TD).

Proof. See the Appendix (Section 4).

The following result is [20, Conjecture 2.1] (see also Corollary 3.4 below).

Theorem 3.3. Under Setting 3.1, if Θ1(X , Y) < π
2 then

(3.2) |λ(ρ(X)) − λ(ρ(Y ))| ≺w
s(PY RX) + s(PX RY )

cos(Θ(X , Y)) and

(3.3) |λ(ρ(X))− λ(ρ(Y ))| ≺w [s(PX+Y RX) + s(PX+Y RY )] tan(Θ(X , Y)) .

Proof. Set T = X∗Y and notice that, since Θ1(X ,Y) < π
2 , T ∈ Mk(C) is invert-

ible. Using Theorem 3.2 we get that

|λ(ρ(X)) − λ(ρ(Y ))| ≺w s(T−1) s(ρ(X)T − Tρ(Y )) ,(3.4)

where ρ(X) = X∗AX, ρ(Y ) = Y ∗AY ∈ H(k). By construction we have that

(3.5) s(T−1) =
1

cos(Θ(X ,Y)) ∈ (Rk
>0)

↓ .

Arguing as in [20, Thm 4.1] we notice that

ρ(X)T − Tρ(Y ) = X∗AXX∗Y −X∗Y Y ∗AY = X∗APXY −X∗PYAY

= X∗A (I − PX⊥)Y −X∗(I − PY⊥)AY

= X∗AY −X∗APX⊥Y −X∗AY +X∗PY⊥AY = −X∗APX⊥Y +X∗PY⊥AY .

Using that s(C) = s(C∗) for C ∈ Mk(C), we see that

s(X∗APX⊥Y ) = s(Y ∗PX⊥AX) = s(PYPX⊥AX) = s(PYRX) ∈ (Rk
≥0)

↓ .

Analogously s(X∗PY⊥AY ) = s(PXRY ). The previous facts together with the sub-
additivity property of taking singular values (item 1 in Theorem 4.1) imply that

(3.6) s(ρ(X)T −Tρ(Y )) = s(−X∗APX⊥Y +X∗PY⊥AY ) ≺w s(PXRY )+s(PYRX) .

Now, if we apply (3.5) and (3.6) to (3.4), together with item 4 in Lemma 4.3, we get
(3.2).
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In order to show (3.3) we point out that by [20, Lemma 4.1] we get that

(3.7) s(PXRY ) ≺w s(PX+Y RY ) sin(Θ(X ,Y)) .

Since the entries of these vectors are ordered downwards, by Lemma 4.3 we deduce
that

(3.8) s(PXRY ) + s(PYRX) ≺w

(

s(PX+Y RY ) + s(PX+Y RX)
)

sin(Θ(X ,Y)) .

Hence, using (3.2) and (3.8) together with Lemma 4.3 we see that (3.3) holds.

The fact that (3.2) implies (3.3) was already observed in [20]; we have included the
proof of this fact for the benefit of the reader.

Corollary 3.4. Consider Setting 3.1 and assume that Θ1(X , Y) < π
2 . If we

further assume that X is A-invariant then

(3.9) |λ(ρ(X))− λ(ρ(Y ))| ≺w
s(PX RY )

cos(Θ(X , Y)) and

(3.10) |λ(ρ(X))− λ(ρ(Y ))| ≺w s(PX+Y RY ) tan(Θ(X , Y)) .

Proof. In case X is A-invariant notice that RX = 0. The result now follows from
Theorem 3.3.

It is natural to wonder whether we can improve the bounds in the previous results.
As shown in the following example, the submajorization bounds in Theorem 3.3 and
Corollary 3.4 are sharp.

Example 3.5. Let λ = (a, b, c, d) ∈ R4, where a < b < c < d, and consider
A ∈ H(4) given by A = Dλ, i.e. A is the diagonal matrix with main diagonal λ.

Let X be the A-invariant subspace X = span{e1, e2} spanned by the first two elements
of the canonical basis of C4. For θ ∈ (0, π/2) let fθ = cos θ e2 + sin θ e3 and set
Yθ = span{e1, fθ}. Then, the principal angles are given by Θ(X ,Yθ) = (θ, 0). Let

X =









1 0
0 1
0 0
0 0









, X⊥ =









0 0
0 0
1 0
0 1









and Yθ =









1 0
0 cos θ
0 sin θ
0 0









.

It is straightforward to check that λ(X∗AX) = (b, a) and that λ(Y ∗
θ AYθ) = (b cos2 θ+

c sin2(θ), a). Again, simple computations show that

RYθ
=









0 0
0 (b− c) cos θ sin2 θ
0 (c− b) cos2 θ sin θ
0 0









, PX RYθ
=









0 0
0 (b− c) cos θ sin2 θ
0 0
0 0









.

Hence, s(PX RYθ
) = ((c− b) cos θ sin2 θ, 0). Now,

(3.11) |λ(X∗AX)− λ((Yθ)
∗AYθ)| = ((c− b) sin2 θ, 0) ,

(3.12)
s(PX RYθ

)

cos(Θ(X , Yθ))
= ((c− b) sin2 θ, 0) .
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That is, (3.9) in Corollary 3.4 becomes an equality in this case. This also shows that
(3.2) is sharp, since (3.9) above is a particular case (when X is A-invariant). Notice
that X + Yθ = span{e1, e2, e3}. Therefore, since PX+Yθ

RYθ
= RYθ

and s(RYθ
) =

((c− b) cos θ sin θ, 0),

(3.13) s(PX+Yθ
RYθ

) tan(Θ(X , Yθ)) = ((c− b) sin2 θ, 0) .

By (3.11) and (3.13) we now see that (3.10) in Corollary 3.4 becomes an equality in
this case. This also shows that (3.3) is sharp, since (3.10) above is a particular case
(when X is A-invariant). △

Remark 3.6 (Relations between our work and previous results). In the vector
case, that is when X and Y are one dimensional spaces, Theorem 3.3 implies the
upper bounds in [19, Theorem 3.7], which is one of the main results of that work (see
also Corollary 3.24 and Remark 3.25).

In [20] Knyazev and Zhu obtained several bounds for the absolute change of the Ritz
values. Using Setting 3.1, the authors show (see [20, Theorem 4.2 and Corollary 4.4])
that

(3.14) |λ(ρ(X)) − λ(ρ(Y ))|2 ≺w
{s(PY RX) + s(PX RY )}2

cos2(Θ(X , Y)) and

(3.15) |λ(ρ(X)) − λ(ρ(Y ))|2 ≺w {s(PX+Y RX) + s(PX+Y RY )}2 tan2(Θ(X , Y)) .

Using the fact that f : R≥0 → R≥0 given by f(x) = x2 is an increasing and convex
function, Remark 2.2 shows that (3.14) and (3.15) follow from (3.2) and (3.3) from
Theorem 3.3. Similarly, using that cosΘ1(X ,Y) = cosΘmax(X ,Y) ≤ cosΘi(X ,Y),
for i ∈ Ik, we get that Theorem 3.3 implies [20, Theorems 4.1, 4.3].

In [20] the authors show that their results can be applied in several situations such
as: first order and quadratic a posteriori majorization bounds; bounds for eigenvalues
after matrix additive perturbations. The previous remarks show that our bounds
can also be applied in these settings. Moreover, Theorem 3.3 allows to formalize the
arguments related with bounds for eigenvalues after matrix additive perturbations,
and in particular with bounds for eigenvalues after discarding off-diagonal blocks from
[20, Section 5] (see the detailed discussion there). △

The bounds in Theorem 3.3 can be used to perform a detailed analysis and obtain bet-
ter convergence rates for iterative algorithms related with the Rayleigh-Ritz method
(see [16, 17, 21]). We will consider such applications elsewhere.

3.2. Applications: a priori majorization error bounds for Ritz values.

In this section we establish a link between the majorization error bounds of the mixed
type obtained in the previous section and some a priori majorization error bounds
considered in [8, 10].

Definition 3.7. Let A ∈ H(d) and let Z ⊂ Cd be a subspace with dimZ = p.
We define the (spectral) spread of A relative to Z, denoted Spr(A , Z), given by

Spr(A,Z) = λ(AZ )− λ↑(AZ) = (λi(AZ)− λp−i+1(AZ))i∈Ip
∈ (Rp)↓ ,

where AZ = PZ A|Z ∈ L(Z) is a self-adjoint operator (defined in the obvious way).
In case Z = Cd, we write Spr(A,Cd) = Spr(A). △
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Remark 3.8. Let A ∈ H(d) and let X ,Y ⊂ Cd with dim(X ) = dim(Y) = k.
Denote by p = dimX + Y. In what follows we consider the vector

Spr(A,X + Y) sin(Θ(X ,Y)) = ( (λi(AX+Y)− λp−i+1(AX+Y)) sin(Θi(X ,Y) ) )i∈Ik
.

We point out that this vector has non-negative entries, which are arranged in non-
increasing order (in particular, sin(Θi(X ,Y)) = 0 whenever λi(AX+Y)−λp−i+1(AX+Y)
< 0, for i ∈ Ik); hence, Spr(A,X + Y) sin(Θ(X ,Y)) ∈ (Rk

≥0)
↓ (see [20]). This fact

becomes relevant for the conjectures posed in (3.16) and (3.17) below. △
Remark 3.9 (A priori error bounds for changes of Ritz values: conjectures and

previous work). Let A ∈ H(d) and let X ,Y ⊂ Cd with dim(X ) = dim(Y) = k. In [8]
the authors conjectured that, in general, the following submajorization bound for the
Ritz values holds:

(3.16) |λ(ρ(X))− λ(ρ(Y ))| ≺w Spr(A,X + Y) sin(Θ(X ,Y)) .

Moreover, in case X is A-invariant, the authors conjectured that

(3.17) |λ(ρ(X))− λ(ρ(Y ))| ≺w Spr(A,X + Y) sin(Θ(X ,Y))2 .

These conjectures are natural extensions of results from [10] (that were obtained for
k = 1). Although [8, Conjecture 2.1.] claims the validity of (3.16) and (3.17) for
arbitrary subspaces X and Y such that dimX = dimY, such bounds would become
relevant in the particular case when the subspace Y is a (small) perturbation of the
subspace X . In this case, the validity of (3.16) and (3.17) would reveal the different
orders of approximation of ρ(X) by ρ(Y ) in terms of PABS as well as in terms of
the spectral spread of A (i.e. when considering A as well as X and Y as variables).
Notice that these results would have immediate applications in the study of numerical
stability and convergence of iterative methods related with the Rayleigh-Ritz type
algorithms.

In [8, Theorem 2.1.] the authors showed that, in general,

(3.18) |λ(ρ(X)) − λ(ρ(Y ))| ≺w (λmax(AX+Y)− λmin(AX+Y)) sin(Θ(X ,Y)) ,

while, in case X is A-invariant,

(3.19) |λ(ρ(X))− λ(ρ(Y ))| ≺w (λmax(AX+Y)− λmin(AX+Y)) sin(Θ(X ,Y))2 ,

where AX+Y = PX+Y A|X+Y ∈ L(X + Y); moreover, in [8, Theorem 2.2.] they
showed that in the particular case in which X is the A-invariant subspace correspond-
ing to the k largest eigenvalues of A, then

(3.20) 0 ≤ λ(ρ(X))− λ(ρ(Y )) ≺w (λi(AX+Y)− λmin(AX+Y))i∈Ik
sin(Θ(X ,Y))2 .

Notice that, (3.20) is a stronger bound than that in (3.19); yet, it is weaker than the
bound conjectured in (3.17), since Spri(A,X + Y) ≤ λi(AX+Y) − λmin(AX+Y), for
i ∈ Ik. △

In what follows we apply Theorem 3.3 and obtain some results related with the con-
jectures from [8] described in (3.16) and (3.17). In order to obtain these results, we
take a closer look at the quantity s(PX RY ) for arbitrary X and Y, as well as in the
case where X is A-invariant.
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Proposition 3.10. Let A ∈ H(d) and let X ,Y ⊂ Cd with dim(X ) = dim(Y) = k.
Then

(3.21) s(PX RY ) ≺w Spr(A,X + Y) sin(Θ(X ,Y)) .

Proof. See the Appendix (Section 4).

Theorem 3.11. Let A ∈ H(d), X ,Y ⊂ Cd subspaces, dim(X ) = dim(Y) = k. If
Θ1(X ,Y) < π

2 , then

|λ(ρ(X))− λ(ρ(Y ))| ≺w
2 Spr(A,X + Y) sin(Θ(X ,Y))

cos(Θ(X , Y)) .(3.22)

Proof. Theorem 3.3 establishes that

|λ(ρ(X))− λ(ρ(Y ))| ≺w
s(PXRY ) + s(PYRX)

cos(Θ(X ,Y)) .

Proposition (3.10) together with Lemma 4.3 imply that

s(PXRY ) + s(PYRX)

cos(Θ(X ,Y)) ≺w
2 Spr(A,X + Y) sin(Θ(X ,Y))

cos(Θ(X , Y)) .

The result follows from combining these last two inequalities.

The next result illustrates the quadratic dependance of s(PXRY ) from sin(Θ(X ,Y))
in case X is A-invariant.

Proposition 3.12. Let A ∈ H(d),X ,Y ⊂ Cd subspaces with dim(X ) = dim(Y) =
k. Assume that X is A-invariant. Then,

(3.23) s(PXRY ) ≺w 2 (λi(AX+Y)− λmin(AX+Y))i∈Ik
sin2(Θ(X ,Y)) .

Proof. See the Appendix (Section 4).

Theorem 3.13. Let A ∈ H(d), X ,Y ⊂ Cd subspaces, dim(X ) = dim(Y) = k,
and assume that X is A-invariant. If Θ1(X ,Y) < π

2 , then

(3.24) |λ(ρ(X)) − λ(ρ(Y ))| ≺w
2 (λi(AX+Y)− λmin(AX+Y))i∈Ik

sin2(Θ(X ,Y))
cos(Θ(X , Y)) .

Proof. The result follows from Corollary 3.4 and Proposition 3.12 with an argu-
ment similar to that in the proof of Theorem 3.11 above.

Corollary 3.14. Let A ∈ H(d), X ,Y ⊂ Cd subspaces, dim(X ) = dim(Y) = k.
If Θ1(X ,Y) < π

2 , then

|λ(ρ(X))− λ(ρ(Y ))| ≺w
2

cos(Θ1(X ,Y)) Spr(A,X + Y) sin(Θ(X ,Y)) .

If we assume further that X is A-invariant, then

|λ(ρ(X))−λ(ρ(Y ))| ≺w
2

cos(Θ1(X ,Y)) (λi(AX+Y)−λmin(AX+Y))i∈Ik
sin2(Θ(X ,Y)) .

9



We end this section with some remarks concerning the relations among Theorems 3.11
and 3.13, Corollary 3.14 and the conjectured bounds in (3.16) and (3.17). As already
mentioned in Remark 3.9, the bounds in (3.16) and (3.17) would be particularly
relevant in case Y is a (small) perturbation of X or, in other terms, in case that X
and Y are close subspaces (e.g. Θ1(X ,Y) is small). In order to simplify the discussion,
let us assume that Θ1(X ,Y) ≤ π/4. We point out that this assumption holds in a
number of significant situations (see for example [20, Section 5.2.]). In this case, if
A ∈ H(d) then Corollary 3.14 implies that

(3.25) |λ(ρ(X))− λ(ρ(Y ))| ≺w (2
√
2) Spr(A,X + Y) sin(Θ(X ,Y)) .

Hence, under the present assumptions (Θ1(X ,Y) ≤ π/4), the upper bound in (3.25)
has the conjectured order of approximation (when considering A as well as the sub-
spaces X and Y as variables), up to the constant factor 2

√
2.

If we further assume that X is A-invariant then by the same result we get that

(3.26) |λ(ρ(X))−λ(ρ(Y ))| ≺w (2
√
2) (λi(AX+Y)−λmin(AX+Y))i∈Ik

sin2(Θ(X ,Y)) .

Again, the upper bound in (3.26) has the conjectured order of approximation (when
considering A as well as the subspaces X and Y as variables), up to the constant factor
2
√
2. Moreover, notice that this bound holds for an arbitrary A-invariant subspace

X (as opposed the bound in (3.20) from [8] that is shown to hold for special choices
of A-invariant subspaces X ).

3.3. The tanΘ theorem revisited: improved quadratic a posteriori er-

ror bounds. In this section we revisit Nakatsukasa’s extension of Davis-Kahan’s
tan(θ) theorem. Our motivation is the study of an improved version of this result
conjectured in [20] (see Corollary 3.22 below). We first recall the separation hypoth-
esis for Nakatsukasa’s result. As before, in this section we adopt Setting 3.1.

Definition 3.15. Let A ∈ H(d) and let X , Y ⊂ Cd be subspaces with dimX =
dimY = k, such that X is A-invariant. Let [X,X⊥], [Y, Y⊥] ∈ U(d) be unitary
matrices such that the columns of (the d × k matrices) X and Y form ONB’s of X
and Y respectively. Given δ > 0 we say that (A , X , Y , δ) satisfies the Davis-Kahan-
Nakatsukasa (DKN) separation property if there exist a ≤ b such that

1. λi(X
∗
⊥AX⊥) = λi(PX⊥ APX⊥) ∈ [a, b], for i ∈ Id−k;

2. λi(Y
∗AY ) = λi(PY APY) ∈ (∞, a− δ] ∪ [b+ δ,∞), for i ∈ Ik. △

Next we state Nakatsukasa’s tanΘ theorem under relaxed conditions.

Theorem 3.16 ([14]). Let A ∈ H(d), X , Y ⊂ Cd and let δ > 0 be such that
(A , X , Y , δ) satisfies the DKN separation property. Then, Θ1(X ,Y) < π/2 and

δ ‖ tan(Θ(X , Y))‖ ≤ ‖RY ‖ ,

for every unitarily invariant norm ‖ · ‖. Equivalently, δ tan(Θ(X , Y)) ≺w s(RY ).

Remark 3.17. Theorem 3.16 requires the knowledge of the full matrix A in order
to bound the (norm of the) vector tan(Θ(X ,Y)) from above. Instead, it would be
interesting to bound the vector tan(Θ(X ,Y)) from above (only) in terms of the self-
adjoint operator AX+Y = PX+YA|X+Y ∈ L(X + Y) (defined in the obvious way). In
the next result we show that the tanΘ theorem mentioned above allow to obtain such
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a result. Moreover, we will also see that it is possible to describe separation hypoth-
esis for (AX+Y , X , Y), that are more general than the DKN separation hypothesis
for (A, X , Y), for which the tanΘ theorem holds; arguing in terms of interlacing
inequalities, we can show that these separation hypotheses on AX+Y provide better
separation constants than the DKN separation hypotheses on the matrix A. △

We formalize the content of the previous remark - with a small variation on the
notation - in the following result. First, we recall some facts related with the relative
position of two subspaces.

Remark 3.18. Let X , Y ⊂ Cd be two subspaces with dimX = dimY = k.
Consider the mutually orthogonal subspaces

H00 = X⊥ ∩ Y⊥ , H10 = X ∩ Y⊥ , H01 = X⊥ ∩ Y , H11 = X ∩ Y ,

and Hg = Cd ⊖ (H00 ⊕ H10 ⊕ H01 ⊕ H11) which is called the generic part of the
pair (X ,Y). Each of these five (possible zero) subspaces reduces each projection PX

and PY . Moreover, the subspaces Xg = X ∩ Hg and Yg = Y ∩ Hg are in generic
position so that Hg = Xg + Yg. For details of this well known construction and
several fundamental results see [5]. △

Theorem 3.19. Let A ∈ H(d), and let X , Y ⊂ Cd be such that dimX = dimY =
k. Let AX+Y = S∗AS ∈ H(p), where S ∈ Md,p(C) is such that its columns form an
ONB for X + Y. Then,

1. If δ > 0 is such that (A , X , Y , δ) satisfies the DKN separation property
then there exists δ ′ ≥ δ such that (AX+Y , S∗X , S∗Y , δ ′) satisfies the DKN
separation property.

2. If δ ′ > 0 is such that (AX+Y , S∗X , S∗Y , δ′) satisfies the DKN separation
property, then

(3.27) δ ′ ‖ tan(Θ(X , Y))‖ ≤ ‖AX+Y YS −YS (Y ∗
SAX+Y YS)‖ = ‖PX+Y RY ‖

for every unitarily invariant norm ‖ · ‖, where YS = S∗Y ∈ Mp,k(C).

Proof. We first show item 1 Let X, Y ∈ Md,k(C) be such that their columns form
orthonormal bases of X and Y, respectively. By hypothesis, there exist a ≤ b such
that: for i ∈ Id−k and j ∈ Ik we have that

λi(X
∗
⊥AX⊥) ∈ [a, b] and λj(Y

∗AY ) ∈ (∞, a− δ] ∪ [b+ δ,∞) ,

where X⊥ ∈ Md,d−k(C) is such that its columns for an ONB for X⊥. Let Z = X +Y
and notice that S ∈ Md,p(C) is an isometry from C

p onto Z. Moreover, the matrix
S∗AS ∈ H(p). Similarly, XS = S∗X, YS = S∗Y ∈ Mp,k are isometries from Ck onto
S∗X , S∗Y ⊆ Cp, respectively. Consider the mutually orthogonal subspaces

H11 = X ∩ Y , Xg = Hg ∩ X and Xg⊥ = Hg ⊖Xg ,

where Hg is the subspace of Cd corresponding to the generic part of the pair (X , Y)
(see Remark 3.18). By Theorem 3.16 we have that Θ1(X ,Y) < π/2 so then, X⊥∩Y =
{0} = X ∩ Y⊥. Thus,

X = H11 ⊕Xg , Z = H11 ⊕Xg ⊕Xg⊥ and Xg⊥ = Z ⊖ X .

Let X ′ ∈ Md,(p−k)(C) be such that its columns form an orthonormal basis of Xg⊥ ⊂
X⊥. Then, X ′

S = S∗ X ′ ∈ Mp,(p−k)(C) is an isometry from Cp−k onto S∗Xg⊥ =
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(S∗X )⊥ ⊆ Cp. To check the DKN separation property for (AX+Y , S∗X , S∗Y) we
consider the eigenvalues of

(X ′
S)

∗(S∗AS)X ′
S = (X ′)∗ S S∗ AS S∗ X ′ = (X ′)∗ AX ′ ∈ H(p− k) ,

since SS∗ = PZ ∈ Md(C), PZ X ′ = X ′ and (X ′)∗ PZ = (X ′)∗. Hence, we now see
that

λi((X
′
S)

∗(S∗AS)X ′
S) = λi(PX

g⊥
APX

g⊥
) for i ∈ Ip−k .

Since Xg⊥ ⊂ X⊥ we have that PX
g⊥

APX
g⊥

is a compression of PX⊥APX⊥ . Using

the interlacing inequalities for compressions of self-adjoint matrices (see [2]), we get
that if λi((PX⊥APX⊥)) ∈ [a, b], for i ∈ Id−k, then

(3.28) λi(PX
g⊥

APX
g⊥

) ∈ [a, b] for i ∈ Ip−k .

On the other hand, notice that

Y ∗
S (S∗AS)YS = Y ∗PZAPZ Y = Y ∗AY

since, as before, SS∗ = PZ , PZY = Y and Y ∗PZ = Y ∗. Therefore, we get that

(3.29) λi(Y
∗
S (S∗AS)YS) = λi(Y

∗AY ) ∈ (∞, a− δ] ∪ [b+ δ,∞) for i ∈ Ik .

Item 1 now follows from (3.28) and (3.29) and the fact that S∗X ⊆ Cp is, by con-
struction, an AX+Y-invariant subspace.

In order to show item 2, we fix a unitarily invariant norm ‖ · ‖. Using that X , Y ⊂
Z and the fact that S∗ is an isometry from Z onto Cp, we see that Θ(X ,Y) =
Θ(S∗X , S∗Y). Then, an application of Nakatsukasa’s tanΘ theorem (Theorem 3.16)
to the self-adjoint matrix S∗AS ∈ H(p) and subspaces S∗X , S∗Y ⊆ C

p shows that

δ ′ ‖ tan(Θ(X , Y))‖ ≤ ‖AX+Y YS − YS (Y ∗
SAX+Y YS) ‖ ,

where YS = S∗Y ∈ Mp,k is an isometry from Ck onto S∗Y. We notice that

AX+Y YS − YS (Y ∗
SAX+Y YS) = S∗AS S∗Y − S∗Y (Y ∗S(S∗AS)S∗Y )

= S∗ (AY − Y (Y ∗AY )) ,

where we have used that SS∗ = PZ , PZ Y = Y and Y ∗ PZ = Y ∗. Hence, it follows
that

‖AX+Y YS − YS (Y ∗
SAX+Y YS)‖ = ‖PZ (AY − Y (Y ∗AY ))‖ = ‖PX+Y RY ‖ .

�

Remark 3.20. With the notation of Theorem 3.19 and using Remark 2.4, (3.27)
is equivalent to the majorization relation

δ ′ tan(Θ(X , Y) ≺w s(AX+Y YS − YS (Y ∗
SAX+Y YS)) = s(PX+Y RY )

in terms of the separation constant δ′ for AX+Y = S∗AS, S∗X and S∗Y. △
12



Consider the notation in Theorem 3.19. Let δ > 0 be such that (A , X , Y , δ) satisfies
the DKN separation property. Given a unitarily invariant norm ‖ · ‖, Theorem 3.16
allows to bound ‖ tanΘ(X ,Y)‖ from above by

(3.30) ‖ tanΘ(X ,Y)‖ ≤ ‖RY ‖
δ

.

On the other hand, by item 2 in Theorem 3.19 there exists δ′ ≥ δ > 0 such that
(AX+Y , S∗X , S∗Y , δ′) satisfies the DKN separation property, so that we get the
upper bound

(3.31) ‖ tanΘ(X ,Y)‖ ≤ ‖PX+Y RY ‖
δ ′

.

Since ‖PX+Y RY ‖ ≤ ‖RY ‖ and δ ≤ δ ′, we immediately see that the upper bound in
(3.31) improves the classical bound in (3.30). In order to compare these two bounds
in some more detail, let us consider the following

Example 3.21. Let λ̃ = (a, b, d, c) ∈ R4, where a < b < c < d, and let Ã ∈ H(4)
be given by Ã = Dλ̃. For the purposes of this example, we consider the real parameter
c ∈ (b, d) as variable (while a, b, d are fixed).

Let X , Yθ ⊂ C
4 be as in Example 3.5 i.e. X = span{e1, e2} and Yθ = span{e1, fθ}.

Recall that Θ(X ,Yθ) = (θ, 0). In particular, tanΘ(X ,Yθ) = (tan θ, 0) in this case.

It is clear that X + Yθ = span{e1, e2, e3}. Let

X =









1 0
0 1
0 0
0 0









, X⊥ =









0 0
0 0
1 0
0 1









and Yθ =









1 0
0 cos θ
0 sin θ
0 0









.

Then, we have that λ(Y ∗
θ ÃYθ) = (b cos2 θ + d sin2(θ), a), while λ(X∗

⊥ÃX⊥) = (d, c).

Therefore, if we let θ0(c) = θ0 = arcsin
(√

c−b
d−b

)

and set

δθ = c− (b cos2 θ + d sin2 θ) > 0 for 0 < θ < θ0 ,

then (Ã,X ,Yθ, δθ) satisfies the DKN separation property, and δθ is the optimal
(largest) separation constant and the separation property holds only for 0 < θ < θ0
in this case. Again, simple computations show that s(RYθ

) = ((d − b) cos θ sin θ, 0).

Now, (3.30) obtained from Theorem 3.16 becomes

(3.32) tan θ ≤ (d− b) cos θ sin θ

c− (b cos2 θ + d sin2 θ)
for 0 < θ < θ0 .

Notice that limc→b+ θ0 = 0 i.e., the range of θ for which we can apply the bound in
(3.32) tend to become small. In the limit case in which b = c (i.e. multiple eigenvalues)
we can not apply the bound (3.32) (the separation constant in this case is δ0 = 0).
Finally, if we consider the limit case in which θ becomes small, then the upper bound
is comparable with the upper bound (d−b

c−b ) tan θ (> tan θ).

On the other hand, X + Yθ ⊖ X = C e3, the subspace spanned by e3. In this case,
if we let X ′ = (0, 0, 1, 0)t, it is clear that λ((X ′

S)
∗ÃX ′

S) = d. Therefore, if we let
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δ′θ = d − (b cos2 θ + d sin2 θ) = (d − b) cos2 θ > 0, for θ ∈ (0, π/2), we get that

(ÃX+Yθ
, S∗X , S∗Yθ, δ

′
θ) satisfies the DKN separation property, where S ∈ M4,3(C) is

the matrix whose columns are the first three elements in the canonical basis. In this
case we have that

s1(PX+Yθ
RYθ

)

δ′θ
=

(d− b) cos θ sin θ

(d− b) cos2 θ
= tan θ ,

and hence, the upper bound in (3.31) coincides with tan θ (where tanΘ(X ,Yθ) =
(tan θ, 0)) i.e. the upper bound is sharp. Notice that the bound is applicable for
every θ ∈ (0, π/2). △

The following result was conjectured in [20].

Corollary 3.22. Let A ∈ H(d), X , Y ⊂ Cd and δ > 0 be such that (A ,X ,Y , δ)
satisfies the DKN separation property. Then,

δ ‖ tan(Θ(X , Y))‖ ≤ ‖PX+Y RY ‖ .

for every unitarily invariant norm ‖ · ‖.
Proof. Let S ∈ Md,p(C) be such that its columns form an ONB for X + Y. By

item 1 in Theorem 3.19, there exists δ ′ ≥ δ such that (S∗AS , S∗X , S∗Y , δ ′) satisfies
the DKN separation property. By item 2 of the same result, we have that

δ ‖ tan(Θ(X , Y))‖ ≤ δ ′ ‖ tan(Θ(X , Y))‖ ≤ ‖PX+Y RY ‖ .

Finally, we get the following quadratic a posteriori error bound for the simultane-
ous approximation of eigenvalues of A by the Ritz values corresponding to Rayleigh
quotients for which a DKN separation property holds.

Theorem 3.23. Let A ∈ H(d), X , Y ⊂ Cd and δ > 0 be such that (A , X , Y , δ)
satisfies the DKN separation property. Then, for every unitarily invariant norm ‖ · ‖
we have that

‖λ(ρ(X))− λ(ρ(Y ))‖ ≤ ‖PX+Y RY ‖2
δ

.

Proof. This is a consequence of Corollary 3.4 and Theorem 3.19.

Theorem 3.23 allows to obtain the following extension of [19, Theorem 5.3] (see Re-
mark 3.25 below) which is a quadratic a posteriori majorization error bound for si-
multaneous approximation of consecutive eigenvalues.

Corollary 3.24. Let A ∈ H(d) and let Y ⊂ Cd be such that:
1. λ1(Y

∗AY ) < λj(A), where j ∈ Id−k is the smallest such index;
2. λi(Y

∗AY ) ≥ λi+j(A), for i ∈ Ik.
Let U be the A-invariant space spanned by the eigenvectors associated with λi(A), for
1 ≤ i ≤ j, and set X = (I − PU )Y. If η = λj(A)− λ1(Y

∗AY ) > 0 then

‖(λi+j(A))i∈Ik
− λ(ρ(Y ))‖ ≤ ‖PX+Y RY ‖2

η
,

for every unitarily invariant norm ‖ · ‖.
14



Proof. Let V = U+Y and notice that U ∩Y = {0}; hence, p = dimV = dimU+k
i.e. j = dimU = p − k. Moreover, V ⊖ U = (I − PU )Y = X ; then, in particular,
dimX = dimY and V ⊖ X = U . Also notice that Θ1(X ,Y) < π/2 or otherwise, we
would have that U ∩ Y 6= {0}, since V ⊖ X = U .
Let V ∈ Md,p(C) be such that its columns form an ONB of V and set AV = V ∗AV ∈
H(p). Similarly, let X, Y ∈ Md,k(C), U ∈ Md,p−k(C) be such that their columns
form ONB’s of X , Y and U respectively; set XV = V ∗X, YV = V ∗Y ∈ Mp,k(C) and
UV = V ∗U ∈ Mp,p−k(C). Then, the columns of UV span UV ⊂ Cp an A-invariant
space of AV . In particular, the columns of XV span XV ⊂ Cp which is also an
A-invariant space of AV . In this case X⊥

V = UV and Θ1(XV ,YV ) = Θ1(X ,Y) <
π/2, where YV ⊂ Cp is the space spanned by the columns of YV . Notice that, by
construction λi(Y

∗
V AV YV ) = λi(Y

∗AY ), for i ∈ Ik. Since X ⊂ U⊥ by the interlacing
inequalities for compressions of self-adjoint matrices and item 2 above, we get that
for i ∈ Ik,

(3.33) λi(X
∗
V AV XV ) = λi(X

∗AX) ≤ λi(AU⊥
) = λj+i(A) ≤ λi(Y

∗
V AV YV ) ,

where U⊥ ∈ Md,d−j(C) is such that its columns for an ONB for U⊥. On the other
hand, by hypothesis (AV ,XV ,YV , η) satisfies the DKN separation property (recall
that X⊥

V = UV ). Hence, by Theorem 3.23 we conclude that

(3.34) ‖λ(X∗
V AV XV )− λ(Y ∗

V AV YV )‖ ≤ ‖PXV +YV
(AV YV − YV (Y ∗

V AV YV )) ‖2
η

.

By (3.33) we get that

|(λi+j(A))i∈Ik
− λ(Y ∗

V AV YV )| ≺w |λ(X∗
V AV XV )− λ(Y ∗

V AV YV )| .

On the other hand, arguing as in the proof of Theorem 3.19 we see that

‖PXV +YV
(AV YV − YV (Y ∗

V AV YV )) ‖ = ‖PX+Y RY ‖ .

The result follows from these last facts together with (3.34) and Remark 2.4.

Remark 3.25. We mention that the hypothesis in item 1 in Corollary 3.24 is that
there exists an eigenvalue β of A such that λ1(Y

∗AY ) < β. Indeed, in this case we
can apply the interlacing inequalities and get that λi(Y

∗AY ) ≥ λd−k+i(A), for i ∈ Ik.
Therefore, β = λj(A) for some 1 ≤ j ≤ d− k.

The hypothesis in item 2 is rather restrictive and difficult to check in general. Never-
theless, we mention two cases in which the hypotheses in Corollary 3.24 can be easily
checked:

1. In case the hypothesis in item 1 holds for j = d − k, by the interlacing
inequalities we have

λi(Y
∗AY ) ≥ λi+d−k(A) for i ∈ Ik ,

so the hypothesis in item 2 automatically hold.
2. In case k = 1 that is, if Y = C y for a unit norm vector y ∈ C

d, the hypotheses
become the existence of j ∈ Id−1 such that λj+1(A) ≤ 〈Ay, y〉 < λj(A); then,
Corollary 3.24 implies that

0 ≤ 〈Ay, y〉 − λj+1(A) ≤
‖PX+Y(Ay − 〈Ay, y〉 y)‖

λj(A)− 〈Ay, y〉 ,
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where X = Cx, for x = (I − PU )y ∈ Cd; this is [19, Theorem 5.3]. As
explained in [19], Corollary 3.24 encodes several known bounds related with
eigenvalue estimation even when k = 1. △

4. Appendix. Here we collect several and well known results about majoriza-
tion, used throughout our work. The first result deals with submajorization relations
between singular values of arbitrary matrices in Md(C). For detailed proofs of these
results and general references in majorization theory see [2, 6, 12]. For A ∈ Md(C)
we denote by re(A) = A+A∗

2 ∈ H(d).

Theorem 4.1. Let C, D ∈ Md(C). Then,
1. s(C +D) ≺w s(C) + s(D); (Lidskii’s additive property)
2. s(re(C)) ≺w s(C);
3. s(CD) ≺w s(C) s(D); (Lidskii’s multiplicative property)
4. If we assume that CD ∈ H(d) then s(CD) ≺w s(re(DC)).

For hermitian matrices we have the following majorization relations

Theorem 4.2. Let C, D ∈ H(d). Then,
1. λ(C) − λ(D) ≺ λ(C −D) ≺ λ(C) − λ↑(D);
2. |λ(C) − λ(D)| ≺w s(C −D);
3. Let P = {Pj}rj=1 be a system of projections (i.e. they are mutually orthogonal

projections on Cd such that
∑r

i=1 Pi = I). If CP (C) =
∑r

i=1 PiCPi, then
λ(CP (C)) ≺ λ(C).

In the next result we describe elementary but useful properties of (sub)majorization
between real vectors.

Lemma 4.3. Let x, y, z ∈ Rk. Then,
1. x↓ + y↑ ≺ x+ y ≺ x↓ + y↓;
2. If x ≺w y and y, z ∈ (Rk)↓ then x+ z ≺w y + z;

If we assume further that x, y, z ∈ Rk
≥0 then,

3. x↓ y↑ ≺w x y ≺w x↓ y↓;
4. If x ≺w y and y, z ∈ (Rk

≥0)
↓ then x z ≺w y z.

Proposition 4.4. Let 1 ≤ k < d and let E ∈ Mk,(d−k)(C). Then

Ê =

(

0 E
E∗ 0

)

∈ H(d) and λ(Ê) = (s(E),−s(E∗)↓) ∈ (Rd)↓ .

Theorem 4.5 ([8]). Let X , Y ⊂ C
d be such that dim(X ) = dim(Y) = k. Then

λ(PXPY⊥PX ) = s(PXPY⊥PX ) = s2(PYPX⊥) = s2(PX⊥PY) = (sin2(Θ(X ,Y)), 0d−k).

Notice that item 2 below is Theorem 3.2 from Section 3.

Theorem 4.6. Let C, D ∈ H(k). Then,
1. if T ∈ Gl(k)+, then s(C −D) ≺w s(T−1) s(CT − TD) .
2. if T ∈ Gl(k), then |λ(C) − λ(D)| ≺w s(T−1) s(CT − TD).

Proof. We first show item 1 Since T is positive and invertible, using Theorem 4.2
(item 3) we get that

s(C −D) = s(CT
1
2 T−1

2 − T− 1
2 T

1
2D)) = s(T− 1

2 (T
1
2CT

1
2 − T

1
2DT

1
2 )T− 1

2 )

≺w s(T− 1
2 )2 s(T

1
2CT

1
2 − T

1
2DT

1
2 ) = s(T−1) s(T

1
2 (C −D)T

1
2 ) .
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By Theorem 4.1 (items 2 and 4) and the fact that re(DT ) = re(TD) we obtain that

(4.1) s(T
1
2 (C −D)T

1
2 ) ≺w s(re[(C −D)T ]) = s(re[CT − TD]) ≺w s(CT − TD),

By the previous inequalities and Lemma 4.3 we see that

(4.2) s(C −D) ≺w s(T−1) s(CT − TD) .

In order to show item 2, consider a representation of T given by T = UΣV ∗, where

U, V ∈ U(k) are unitary matrices and Σ ∈ Mk(C) is the diagonal matrix with
main diagonal s(T ) ∈ Rk

≥0 (notice that such representation follows from the SVD
decomposition of T ); note that Σ is definite positive and invertible. Using item 2 in
Theorem 4.2 and (the already proved) item 1 of the statement we get

|λ(C) − λ(D)| = |λ(U∗CU)− λ(V ∗DV )| ≺w s(U∗CU − V ∗DV )

≺w s(Σ−1) s(U∗CUΣ− ΣV ∗DV ) = s(T−1) s(U∗(CT − TD)V )

= s(T−1) s(CT − TD) .

In what follows we re-state and prove two propositions of Section 3.2.

Proposition 3.10. Let A ∈ H(d) and let X ,Y ⊂ Cd with dim(X ) = dim(Y) = k.
Then

(4.3) s(PX RY ) ≺w Spr(A,X + Y) sin(Θ(X ,Y)) .

Proof. We begin with a simple reduction argument. In order to describe this re-
duction it will be convenient to consider matrices in terms of the linear operators that
they induce. Hence, given A ∈ Md(C), we consider A ∈ L(Cd) (defined in the obvi-
ous way). The advantage in considering A ∈ L(Cd) is that we can get different block
matrix representations of A (considered as an operator) with respect to orthogonal
decompositions Cd = V ⊕ V⊥ for a (proper) subspace V ⊂ Cd, in the usual manner.
We now proceed as follows: Let Z = X +Y with dimZ = p, and consider the matrix
representations with respect to the decomposition Cd = Z ⊕ Z⊥:

PX =

(

PX 0
0 0

)

, PY =

(

PY 0
0 0

)

and A =

(

AZ ∗
∗ ∗

)

,

where PX , PY , AZ = PZA|Z ∈ L(Z) are self-adjoint operators. In this case we have

PX (APY − PY APY) =

(

PX (AZ PY − PY AZ PY) 0
0 0

)

.

On the other hand, a simple calculation show that

(s(PXRY ), 0d−k) = s(PX (APY − PY APY)) ∈ (Rd
≥0)

↓ .

Hence, (s(PXRY ), 0p−k) = s(PX (AZ PY − PY AZ PY)) = s(PX (IZ − PY)AZ PY).
Thus, we can assume further that Cd = Z = X + Y and show that

(4.4) (s(PX RY ), 0d−k) = s(PX (PY⊥APY)) ≺w (Spr(A) sin(Θ(X ,Y)), 0d−k) .

Now using item 3 of Theorem 4.1 (Lidskii’s multiplicative property),

(4.5) s(PXPY⊥APY) = s(PXPY⊥PY⊥APY) ≺w s(PXPY⊥) s(PY⊥APY).
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First noticing that by Theorem 4.5, we have that s(PXPY⊥) = (sin(Θ(X ,Y)), 0d−k).
On the other hand, consider the matrix representation induced by the decomposition
Cd = Y ⊕ Y⊥:

(4.6) A =

(

A11 A∗
21

A21 A22

)

and set A1 :=

(

A11 0
0 A22

)

, A2 :=

(

0 A∗
21

A21 0

)

.

Then, we have that A = A1 + A2. Now, A1 is a pinching of A (associated with the
system of projections {PY , PY⊥}) so λ(A1) ≺ λ(A) so then

(4.7) − λ↑(A1) ≺ −λ↑(A) .

Using Lidskii’s additive property for A2 = A−A1 (see item 1 in Theorem 4.2)

(4.8) λ(A2) ≺ λ(A) − λ↑(A1) .

Combining (4.7) and (4.8), we obtain

(4.9) λ(A2) ≺ λ(A) − λ↑(A) = Spr(A) ∈ R
d .

By Proposition 4.4, we get that λ(A2) = (s(A21),−s(A∗
21))

↓; in particular, s(A21) =
(λi(A2))i∈Ik

. Now, s(PY⊥APY) = (s(A21), 0d−k); thus, we see that
(4.10)

s(PY⊥APY) = (s(A21), 0d−k) = ((λi(A2))i∈Ik
, 0d−k) ≺w ((Spri(A))i∈Ik

, 0d−k) ,

where Spr(A) = (Spri(A))i∈Id
. Using (4.5) and (4.10) together with Lemma 4.3 we

finally get that

s(PXPY⊥APY) ≺w (Spr(A) sin(Θ(X ,Y)), 0d−k) ∈ (Rd
≥0)

↓ .

Now the result follows from the last submajorization relation, by considering the first
k entries of both vectors.

Proposition 3.12. Let A ∈ H(d), X ,Y ⊂ Cd subspaces with dim(X ) = dim(Y) = k.
Assume that X is A-invariant. Then,

(4.11) s(PXRY ) ≺w 2 (λi(AX+Y)− λmin(AX+Y))i∈Ik
sin2(Θ(X ,Y)).

Proof. Arguing as in the proof of Proposition 3.10, we can assume further that
C

d = X + Y. With this assumption, we consider first the case where A ∈ Md(C)
+

and show that

(4.12) s(PXRY ) ≺w 2 (λi(A))i∈Ik
sin2(Θ(X ,Y)) .

Indeed, the A-invariance of X , allows us to write A = PXAPX + PX⊥APX⊥ . With
this decomposition in mind using the fact that (s(PXRY ), 0d−k) = s(PXPY⊥APY),
we have that

s(PXPY⊥APY) = s(PXPY⊥PXAPXPY + PXPY⊥PX⊥APX⊥PY)

≺w s(PXPY⊥PXAPXPY) + s(PXPY⊥APX⊥PY)
def

= M .
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Using item 3 of Theorem 4.1 (Lidskii’s multiplicative property), the fact that 0d ≤
s(PX PY) ≤ 1d and Theorem 4.5, we get

M ≺w s(PXPY⊥PX ) s(A) + s(PXPY⊥) s(A) s(PX⊥PY)

≺w 2λ(A) (sin2(Θ(X ,Y)), 0d−k) ∈ (Rd
≥0)

↓ ,

since A ∈ Md(C)
+ is positive semi-definite. The result now follows from the previous

facts.

In general, for A ∈ H(d) consider the auxiliary matrix Ã = A− λmin(A) I ∈ Md(C)
+.

Notice that

RY (Ã) = Ã Y − Y (Y ∗Ã Y ) = AY − Y (Y ∗AY ) = RY ,

and λ(Ã) = λ(A) − λmin(A) 1d. The result now follows from these facts and from

(4.12) applied to Ã.
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