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Abstract. We propose an approach for the synthesis of robust and optimal feedback controllers
for nonlinear PDEs. Our approach considers the approximation of infinite-dimensional control sys-
tems by a pseudospectral collocation method, leading to high-dimensional nonlinear dynamics. For
the reduced-order model, we construct a robust feedback control based on the H∞ control method,
which requires the solution of an associated high-dimensional Hamilton-Jacobi-Isaacs nonlinear PDE.
The dimensionality of the Isaacs PDE is tackled by means of a separable representation of the control
system, and a polynomial approximation ansatz for the corresponding value function. Our method
proves to be effective for the robust stabilization of nonlinear dynamics up to dimension d ≈ 12.
We assess the robustness and optimality features of our design over a class of nonlinear parabolic
PDEs, including nonlinear advection and reaction terms. The proposed design yields a feedback
controller achieving optimal stabilization and disturbance rejection properties, along with providing
a modelling framework for the robust control of PDEs under parametric uncertainties.
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1. Introduction. Robustness is a feature of paramount importance in control
systems design. That is, given a dynamical system onto which we act through an
external control signal, we expect this signal to achieve asymptotic stabilization and
to simultaneously compensate the effects of the different disturbances arising in the
control loop. Perturbations may appear in the form of noisy measurements, exoge-
nous disturbances, as well as parametric and structural uncertainties. A first step
towards robustness in the control action is the synthesis of feedback laws, i.e. a con-
trol expressed as a mapping from the current state of the system to the space of
possible control actions. Feedback controls, in contrast to open-loop controls which
are expressed solely as a function of time, exhibit enhanced stability properties. The
design of feedback maps is a central topic in control theory, and has been thoroughly
studied in its many facets, spanning ad-hoc and optimization-based approaches for
linear as well and nonlinear dynamics (we refer the reader to [9] for a comprehensive
overview).

In this paper we are particularly concerned with the design of optimal feedback
controllers for nonlinear dynamics with enhanced robustness properties. The natu-
ral course of action is the use of Dynamic Programming techniques which establish
a functional relation to be satisfied by the value function of the underlying control
problem. In this context, once the value function associated to the control has been
solved, an optimal feedback map is trivially obtained as a generalized gradient of the
value function. This approach leads to a characterization of the value function as a
viscosity solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-
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Isaacs (HJI) type Partial Differential Equations (PDEs), depending on whether addi-
tional robustness properties are required. In the control engineering literature these
approaches are known as the H2 control synthesis whenever an optimal feedback is
sought through the solution of a HJB equation, and as H∞ control design when an
optimal robust feedback is computed upon the HJI equation or a related variation.
The interplay between Hamilton-Jacobi-Bellman and Isaacs’ PDEs and H2 and H∞
optimal control theory have been thoroughly discussed in [24, 42, 5, 46]. We specif-
ically point the reader to [44, 45] for a study of the link between Isaacs’ equation,
differential game theory, and the computation of robust feedback controls via non-
linear H∞ synthesis. We recall that in the case of linear dynamical systems with no
constraints on the control action and a quadratic cost, the Dynamic Programming
approach reduces to the computation of Algebraic Riccati Equations, a topic which
has been extensively discussed in the mathematical and engineering literature, see
for instance [10]. Here, our focus is on nonlinear dynamical systems, and therefore
our discussion will be centered around the numerical approximation of HJB and HJI
equations (HJ PDEs in short).

The numerical approximation of HJ PDEs is a topic dating back to the seminal
work by Crandall and Lions [18], including a wide range of discretization strategies
such as finite differences [21], finite element methods [31], level-set methods [37],
domain decomposition algorithms [19, 28], filtered schemes [13] and most notably,
semi-Lagrangian schemes [2, 26]. In particular, the numerical approximation of the
Hamilton-Jacobi-Isaacs equation has been studied in [7, 6, 15, 25, 20]. For a compre-
hensive overview of the different approximation techniques available for HJ PDEs we
refer the reader to [27]. The aforementioned methods have proven to overcome the
difficulties associated to the nonlinear character of the HJ PDEs. However, since they
are grid-based discretization schemes they suffer from the curse of dimensionality and
become overwhelmingly expensive for problems with dimension higher than 5. This is
particularly challenging in the context of nonlinear optimal control, as the dimension
of the associated HJ PDE is determined by the dimension of the state space of the
control problem. A partial remedy to this problem is the coupling of model reduc-
tion techniques for the dynamics with a grid-based discretization of the HJ equation,
an alternative which has been applied in [1, 4, 33, 35]. Another alternative is the
use of approximate dynamic programming techniques in the context of reinforcement
learning, see e.g. [8]. However, the design of numerical methods for the solution of
high-dimensional HJ PDEs remains a daunting task. Along this direction, some en-
couraging results have been obtained over the last years in connection with the use
of sparse grids [11, 29], causality-free methods [34, 22, 48], machine learning tech-
niques [40, 39], tensor calculus [47], graph-tree structures [3], Taylor series expansions
[17], and polynomial approximation [32]. In this latter work, we develop a numerical
scheme based on a high-dimensional polynomial ansatz for the value function coupled
with a Newton-type (policy iteration) method for the solution of the Galerkin residual
equation associated to the HJB equation. This method allows to solve HJB PDEs
up to dimension 14, becoming an effective tool for the control of dynamical systems
arising from the spectral semi-discretization of nonlinear parabolic PDEs.

In this paper, our focus is on the construction of feedback laws for nonlinear
parabolic PDEs which are robust with respect uncertainties and structural pertur-
bations. These feedback laws are obtained on the basis of approximations to the
Isaacs equation. We are also particularly interested in differences between the HJB
and HJI based feedback controls. As a first step towards this goal, we consider a
semi-discretization in space of the infinite-dimensional control system by means of a
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pseudospectral collocation method [38, 36]. While this approach dramatically reduces
the dimensionality of the resulting state space, we are still left with a nonlinear dynam-
ical system of prohibitively large for grid-based schemes. Therefore, a fundamental
step in our work is the construction of a numerical scheme for the approximation of
the high-dimensional Isaacs equation. For this, we extend our previous work [32] to
the HJI PDE by considering a high-dimensional polynomial approximation for the
value function, together with the use of a bilevel policy iteration algorithm for the
nonlinear Galerkin residual equation. The final outcome of our method is an optimal
feedback map, constructed by the solution of the HJI equation, with enhanced ro-
bustness properties with respect to additive disturbances in the control loop and/or
parametric uncertainties in the dynamics. The method is successfully applied to the
control of nonlinear parabolic equations such as the viscous Burgers’ equation and
the Newell-Whithead equation under different uncertainty scenarios. To our knowl-
edge, this is the first attempt to design optimal robust feedback controls for nonlinear
PDEs by directly approximating the high-dimensional HJI equation rather than rely-
ing on the application of the classical linear H∞ method applied over the linearized
dynamics.

The rest of the paper is structured as follows. In Section 2 we state the robust op-
timal feedback control problem for nonlinear dynamics and the associated Hamilton-
Jacobi-Isaacs equation. In Section 3 we introduce an approximation scheme for the
HJI PDE, and Section 4 is devoted to specific aspects of its implementation for high-
dimensional dynamics. Section 5 concludes our work with a thorough computational
assessment of the proposed methodology over a class of nonlinear parabolic PDEs.

2. Preliminaries. In the following, we discuss the synthesis of optimal feed-
back controllers for nonlinear dynamics based on the dynamic programming principle
and more precisely, on the solution of static Hamilton-Jacobi-Bellman and Hamilton-
Jacobi-Isaacs equations. In the control literature these methods are referred to as the
H2/H∞ control syntheses, and we briefly revisit them.

2.1. Nonlinear H2 control and the Hamilton-Jacobi-Bellman equation.
We consider the following infinite horizon optimal control problem:

min
u(·)∈U

J (u(·);x) :=
∞∫
0

(
`(y(t)) + ‖u(t)‖2R

)
dt

subject to the nonlinear dynamical constraint

(2.1) ẏ(t) = f(y(t)) + g(y)u(t) , y(0) = x,

where we denote the state y(t) = (y1(t), . . . , yd(t))
t ∈ Rd, the control u(·) ∈ U , with

U = {u(t) : R+ → U ⊂ Rm}, the state running cost `(y) > 0, and the quadratic
control penalization term ‖u‖2R = utRu with R ∈ Rm×m, R > 0. Furthermore, we
assume the running cost l(y), the system dynamics f(y) : Rd → Rd, and g(y) : Rd →
Rd×m to be C1(Rd), f(0) = 0 and `(0) = 0. Our focus is therefore on asymptotic
stabilization to the origin. By the application of the Dynamic Programming Principle,
it is well-known that the optimal value function

V (x) = inf
u(·)∈U

J(u(·);x)
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characterizing the solution of this infinite horizon control problem is the unique vis-
cosity solution of the Hamilton-Jacobi-Bellman equation

(2.2) min
u∈U

{DV (x)t(f(x) + g(x)u) + `(x) + ‖u‖2R} = 0 , V (0) = 0 ,

with DV (x) = (∂x1
V, . . . , ∂xd

V )t. We restrict our analysis to the unconstrained case
U ≡ Rm where the minimizer u∗ of (2.2) is given explicitly by

(2.3) u∗(x) = argmin
u∈U

{DV (x)t(f(x) + gu) + `(x) + ‖u‖2R} = −1

2
R−1g(x)tDV (x) .

By inserting (2.3) into (2.2), we obtain the HJB equation

(2.4) DV (x)tf(x)− 1

4
DV (x)tg(x)R−1g(x)tDV (x) + `(x) = 0 ,

to be understood in the classical sense.
Remark 1. Under the ansatz `(x) = xtQx, f(x) = Ax and V (x) = xtΠx with

with Q,A, and Π ∈ Rd×d, equation (2.4) becomes the Algebraic Riccati Equation
associated to infinite horizon linear-quadratic control. The motivation behind our
work is to depart from this framework by considering a nonlinear representation of
f(x) and a high-order polynomial expansion for V (x), in order to reduce the curse
of dimensionality which arises when attempting to solve (2.4) over high-dimensional
spaces.
It is always worth to stress that by solving the HJB equation (2.4), the optimal
feedback map u∗(x) is obtained as a by-product via (2.3). For a real-time realization
of the optimal control signal u∗(t) in (2.1), the optimal feedback map is stored and
evaluated online at the current state of the dynamics y(t).

2.2. Nonlinear H∞ control and the Hamilton-Jacobi-Isaacs equation. A
variation of the H2 control synthesis is generated by considering the system dynamics

(2.5) ẏ(t) = f(y(t)) + g(y)u(t) + h(y)w(t) , y(0) = x,

where an additional disturbance signal w(·) ∈ W, with W = {w(t) : R+ → W ⊂
Rp} enters the system through h(y) : Rd → Rd×p. We assume that y = 0 is an
equilibrium of the system for u = w = 0. In this case, the H∞ control goal is to achieve
both internal stability of the closed-loop dynamics and disturbance attenuation. This
translates into considering the design of a feedback law u = u(y) such that for given
γ > 0, and for all T ≥ 0 and w ∈ L2(0, T )

(2.6)
T∫

0

(
`(y(t)) + ‖u(t)‖2R

)
dt ≤ γ2

T∫
0

‖w(t)‖2P dt,

where ‖w(t)‖2P = wtPw with P ∈ Rp×p, P > 0 and y is the solution to (2.5) with
x = 0.

We say that system (2.5) has L2-gain smaller or equal than γ, if (2.6) holds.
Subsequently we are interested in finding a minimum value γ∗, such that for all γ ≥ γ∗

it is possible to find an asymptotically stabilizing feedback law. The calculation of
γ∗, the so-called H∞-norm of the system, is a challenging problem in its own right.
Here we shall obtain an estimate by means of a bisection algorithm [16].
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Proceeding analogously as in the H2 control synthesis, we follow the application
of the Dynamic Programming Principle. For a given γ ≥ γ∗, the H∞ synthesis is
based on the solution of the Hamilton-Jacobi-Isaacs equation

(2.7) min
u∈U

max
w∈W

{DV (x)t(f(x) + g(x)u+ h(x)w) + `(x) + ‖u‖2R − γ2‖w‖2P } = 0 .

Similarly as in the Hamilton-Jacobi equation (2.2), given an unconstrained distur-
bance w ∈ W = Rp we synthesize a stabilizing feedback law uγ and its associated
disturbance wγ by setting

uγ(x) = −1

2
R−1g(x)tDVγ(x) ,(2.8)

wγ(x) =
1

2γ2
P−1h(x)tDVγ(x) ,(2.9)

where Vγ(x) solves the Hamilton-Jacobi-Isaacs equation

DVγ(x)
tf(x) +

1

4
DVγ(x)

tQ(x)DVγ(x) + l(x) = 0 ,(2.10)

with

Q(x) =
1

γ2
h(x)P−1h(x)t − g(x)R−1g(x)t,

and Vγ(0) = 0. For an initial condition which is not a steady state we have

T∫
0

(
`(y(t)) + ‖u(t)‖2R

)
dt ≤ γ2

T∫
0

‖w(t)‖2P dt+ Vγ(x),

see e.g. [41, Theorem 16]. When there is no confusion, we denote Vγ(x) by V . Note
that if the disturbance attenuation is neglected by taking γ → ∞, (2.10) becomes the
HJB equation related to H2 control.

2.3. Separability assumptions and the control of semidiscretized PDEs.
In the following sections, we will discuss the approximation of the aforedescribed HJB
and HJI equations linked to H2 and H∞ nonlinear control synthesis, respectively.
In particular, we will focus on the approximate solution of such PDEs when the
dimension of the state space of the dynamics to be controlled is large (d > 10). As it
will become clear later, our numerical scheme is based on the use of globally defined
polynomials for approximating the value function V (x) along with a Galerkin residual
equation, and we will be faced against the computation of high-dimensional integrals.
In order to mitigate the computational difficulties associated with the calculation
of high-dimensional integrals, the following assumption will be fundamental in the
construction of our control algorithm.

Assumption 1. The free dynamics f(x) : Rd → Rd, f(x) := (f1(x), . . . , fd(x))
t

are separable in every coordinate fi(x)

(2.11) fi(x) =

nf∑
j=1

d∏
k=1

F(i,j,k)(xk) ,

where F(x) : Rd → Rd×nf×d is a tensor-valued function. We shall also assume a
similar separable structure for g(x), h(x), and `(x).
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Let us note that while this assumption includes a large class of nonlinear optimal
control problems arising from discretized nonlinear partial differential equations [35,
32, 23], it does not cover dynamics such as those arising in particle systems with
interactions governed by distances between agents, e.g. f(x) = f(‖xi − xj‖) (see [14]
and references therein for control-related examples).

Here, we are interested in the application of nonlinear optimal control methods
for the robust stabilization of nonlinear parabolic PDEs of the form

(2.12) ∂tX(ξ, t) = LX(ξ, t) +N (X(ξ, t),∇X(ξ, t)) + G(ξ,X)u(t) +H(ξ,X)w(t) ,

where L is a linear elliptic operator, N is a nonlinearity, while G and H are control and
disturbance operators, respectively. At this point two natural questions arise: how
can we apply finite-dimensional control techniques to infinite-dimensional dynamics,
and whether it is plausible to assume the separability of the dynamics. The answer
to both questions rely on the semi-discretization of the dynamics in space and the use
of the so-called method of lines [43]. In fact, under the Galerkin ansatz

(2.13) X(ξ, t) ≈
d∑

i=1

Xi(t)Ψi(ξ)

with {Ψi}∞i=1 a suitable set of basis functions in space such as local spline approx-
imants, spectral elements or global orthogonal polynomials, the infinite-dimensional
dynamics are approximated by a d-dimensional dynamical system of the form

(2.14) Ẋ(t) = AX(t) +N(X(t)) +G(X)u(t) +H(X)w(t) ,

for X(t) = (X1(t), . . . , Xd(t)) and where every term is corresponds to a separable
expression. The linear operator A is naturally written in separable form, and for
instance, in the case of a polynomial nonlinearity N (X) = p(x) the use of collocation
points in space leads to a finite-dimensional realization of the nonlinearity consisting
on fully decoupled pointwise evaluations of the polynomial at each collocation point.
While the use of finite elements/splines also leads to separable representations, in
this work we opt for the use of spectral/pseudospectral collocation methods as the
dimension d of the finite-dimensional dynamics must be kept moderate. Once a suit-
able separable finite-dimensional state space representation of the system has been
obtained, both H2 and H∞ control synthesis methods can be applied, amounting to
the solution of HJB/HJI equations over a d-dimensional domain. In the following
sections we shall focus on the construction of high-dimensional HJI equations arising
in H∞ control. The details concerning the construction of an analogous method for
HJB equation in H2 control can be found in [32].

3. Iterative solution of the Hamilton-Jacobi-Isaacs equation. This sec-
tion addresses the construction of a numerical scheme for the solution of the HJI
equation

DVγ(x)
tf(x) +

1

4
DVγ(x)

t

(
1

γ2
h(x)P−1h(x)t − g(x)R−1g(x)t

)
DVγ(x) + `(x) = 0 ,

(3.1)

which corresponds to the unconstrained version U = Rm,W = Rp of the Isaacs’
equation

(3.2) min
u∈U

max
w∈W

{DV (x)t(f(x) + g(x)u+ h(x)w) + `(x) + ‖u‖2R − γ2‖w‖2P } = 0 .
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Both versions of the HJI equation share the same computational difficulties: they
correspond to nonlinear PDEs which need to be solved over a high-dimensional space.
At first glance, a natural idea to address the quadratic nonlinearity on DV arising in
(3.1) is to utilize a Newton iteration over the continuous PDE or its discretization.
In fact, in the context of the Hamilton-Jacobi-Bellman equation

DV (x)tf(x)− 1

4
DV (x)tg(x)R−1g(x)tDV (x) + `(x) = 0 ,(3.3)

the application of Newton’s method is equivalent to the well-known policy iteration
or Howards’ algorithm [12] for

(3.4) min
u∈U

{DV (x)t(f(x) + g(x)u) + `(x) + ‖u‖2R} = 0 ,

which we recall in Algorithm 3.1. This algorithm takes as an input an asymptotically

Algorithm 3.1 Howards’ Algorithm/Continuous Policy Iteration
Input: u(0) be an asymptotically stabilizing control law for the unperturbed dy-
namics (2.1), a tolerance ε.
While ‖u(i+1) − u(i)‖ ≥ ε,
Solve for V (i)(x) (policy evaluation step):

DV (i)(x)t
(
f + g(x)u(i)(x)

)
+ `(x) + ‖u(i)(x)‖2R = 0 ,

Update the control (policy update step):

u(i+1)(x) = −1

2
R−1g(x)tDV (i)(x) .

End

stabilizing controller for the nonlinear dynamics (2.1), and iterates in two steps: a pol-
icy evaluation step in which the current feedback u(i)(x) is inserted in the HJB equa-
tion (3.4) to solve for V (i)(x) avoiding the nonlinearity associated to the minimization,
and a policy update step in which the formula u(i+1)(x) = − 1

2R
−1g(x)tDV (i)(x) up-

dates the control. Under the assumption that the initial controller u0(x) is an asymp-
totically stabilizing feedback, it has been proven in [7] that Algorithm 3.1 generates a
sequence converging to the optimal feedback control u(∞)(x), and its associated value
function V (∞)(x) which solves (3.4). This iterative procedure can be extended in a
straightforward manner to HJI equations of the form (3.2) by nesting inside every
policy evaluation step, an inner iterative loop to find the optimal adversarial pertur-
bation w(i,∞) associated to u(i). A version of the policy iteration procedure for HJI
equations is presented in Algorithm 3.2 below.

The convergence of policy iteration-type algorithms for differential games has
been discussed in [6] and [7] , among many others. Under the same assumption on
the asymptotic stability of the initial guess u

(0)
γ (x) for w = 0, the algorithm has been

shown to converge towards an optimal stabilizing feedback u
(∞)
γ (x) with an associated

perturbation w
(∞,∞)
γ , and a value function V

(∞,∞)
γ , which is the unique stabilizing

solution of the HJI equation (3.1).
Remark 2. Both Algorithm 3.1 and Algorithm 3.2 assume the existence of a

globally stabilizing controller for initialization. It is often the case that only a locally
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Algorithm 3.2 Continuous Policy Iteration for Hamilton-Jacobi-Isaacs equations
Input: u

(0)
γ (x) be an asymptotically stabilizing control law for the dynamics (2.1)

with w = 0, a tolerance ε, and γ ≥ γ∗.
While ‖u(i+1)

γ − u
(i)
γ ‖ ≥ ε,

Set w
(i,0)
γ (x) ≡ 0, j = 0

While ‖w(i,j+1)
γ − w

(i,j)
γ ‖ ≥ ε,

Solve for V
(i,j)
γ (x) (policy evaluation):

DV (i,j)
γ (x)t

(
f + gu(i)

γ + hw(i,j)
γ

)
+ `(x) + ‖u(i)

γ ‖2R − γ2‖w(i,j)
γ ‖2P = 0 ,(3.5)

Update the disturbance:

w(i,j+1)
γ (x) =

1

2γ2
P−1h(x)tDV (i,j)

γ (x) ,

End
Update the control:

u(i+1)
γ (x) = −1

2
R−1g(x)tDV (i,∞)

γ (x) .

End

stabilizing controller is available, i.e. there exists a bounded domain Ω ⊂ Rd where
the initial conditions are stabilized with this feedback law. In that case the convergence
of the algorithms is only valid inside Ω, and this must be taken into account when
defining a domain of interest for deriving a numerical approximation.

Remark 3. Algorithm 3.2 is valid for γ ≥ γ∗. In order to estimate γ∗ for a
given nonlinear problem, we proceed similarly as in the linear H∞ problem [16]. We
perform a bisection method over γ until finding the smallest value for γ for which
Algorithm 3.2 converges to a stabilizing feedback law.

Given an asymptotically stabilizing initialization of Algorithm 3.2, and having
fixed u(x) and w(x) at a policy evaluation step (3.5), we must solve the linear PDE
for V (x)

DV (x)t
(
f(x) + g(x)u(x) + h(x)w(x)

)
+ `(x) + ‖u(x)‖2R − γ2‖w(x)‖2P = 0 .

In the following section, we discuss the construction of a numerical scheme for
the solution of this equation over high-dimensional domains by means of a Galerkin
formulation with global polynomial basis functions.

4. Solving the linear equations. In the previous section we described how the
solution to (2.7) can be approximated iteratively by solving at each iteration level a
high-dimensional linear equation of the form

(4.1)
G(Vγ , DVγ ;u,w) = 0, Vγ(0) = 0, where
G(q, p;u,w): = pt(f + gu+ hw) + `+ ‖u‖2R − γ2‖w‖2P

for the unknown Vγ = Vγ(x), given u,w, f, g and ` all functions of x.
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4.1. Galerkin Approximation. To derive a Galerkin approximation to (4.1)
let {φj}∞j=1 ∈ C∞(Ω,R) be a complete set of basis functions in L2(Ω,R) so that

V (x) =

∞∑
j=1

cjφj(x), with φj(0) = 0 ∀j,

and introduce Vn(x) as the approximation of Vγ , of the form

Vn(x) =

n∑
j=1

cjφj(x) ≡ Φnc,

where Φn := (φ1(x), . . . , φn(x)) and c = (c1, . . . , cn)
t. The coefficients cj are obtained

by imposing the Galerkin residual system

(4.2) 〈G(Vn, DVn, u;w), φi〉L2(Ω) = 0 , ∀φi ∈ Φn .

We now compute the different terms involved in the approximation of (4.2) once we
apply the Galerkin ansatz to V

(i,j)
γ appearing in (3.5). The value function V

(i,j)
γ is

approximated with the expansion

V (i,j)
n (x) =

n∑
j=1

c
(i,j)
j φj(x).(4.3)

For each iteration the values of w(i,j) and u(i) are determined according to

w(i,j)(x) =
1

2γ2
P−1htDV (i,j−1)

n (x), u(i)(x) = −1

2
R−1gtDV (i−1,∞)

n (x),(4.4)

where V (i−1,∞)
n denotes the value function obtained in the last policy evaluation step of

the previous i−iteration. We next specify the additive terms of the Galerkin residual
equation corresponding to (3.5) with V

(i,j)
γ replaced by V

(i,j)
n , or alternatively (4.2)

with u = u(i) and w = w(i,j). These expressions are in part already available in [32],
but for the sake of coherence we provide all of them here. Below we shall write c(i,j)

for (c
(i,j)
1 , . . . , c

(i,j)
n )t (i, j = 0, . . . ,∞). Also note, that superscripts i, j refer to the

iterations in the loops of Algorithm 3.2, whereas subscripts i, j represent running
indices of the Galerkin discretization:

1) 〈DV t
nf, φi〉L2(Ω)〈DV t
nf, φi〉L2(Ω)〈DV t
nf, φi〉L2(Ω): The expansion Vn leads to DV t

nf =
∑n

j=1 cjDφt
jf, and

hence

〈DV t
nf, φi〉L2(Ω) = F(i,•)c , F ∈ Rn×n , F(i,j) := 〈Dφt

jf, φi〉L2(Ω) .

2) 〈DV t
nhw, φi〉L2(Ω)〈DV t
nhw, φi〉L2(Ω)〈DV t
nhw, φi〉L2(Ω): We use relation (4.4) to obtain

DV t
nhw = DV t

n

(
1

2γ2
P−1hhtDV (i,j−1)

n

)

=
1

2γ2
P−1

n∑
k=1

ckDφt
k

(
hht

n∑
r=1

c(i,j−1)
r Dφr

)t

,
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such that

〈DV t
nhw, φi〉L2(Ω) = H(i,•)c , H ∈ Rn×n ,

H(i,j) :=
1

2γ2
P−1

n∑
r=1

c(i,j−1)
r 〈htDφrDφt

kh, φi〉L2(Ω) .

3) 〈DV t
ngu, φi〉L2(Ω)〈DV t
ngu, φi〉L2(Ω)〈DV t
ngu, φi〉L2(Ω): By inserting the expansion (4.4), we arrive at

DV t
ngu = DV t

n

(
−1

2
R−1ggtDV (i−1,∞)

n

)

= −1

2
R−1

n∑
k=1

ckDφt
k

(
ggt

n∑
r=1

c(i−1,∞)
r Dφr

)t

,

such that

〈DV t
ngu, φi〉L2(Ω) = G(i,•)c , G ∈ Rn×n ,

G(i,j) := −1

2
R−1

n∑
r=1

c(i−1,∞)
r 〈gtDφrDφt

kg, φi〉L2(Ω) .

4) 〈`, φi〉L2(Ω)〈`, φi〉L2(Ω)〈`, φi〉L2(Ω): Assuming `(x) = xtQx, leads to

〈`(x), φi〉L2(Ω) = 〈xtQx, φi〉L2(Ω) , Q > 0 ∈ Rd×d .

5) 〈γ2 ‖w‖2P , φi〉L2(Ω)〈γ2 ‖w‖2P , φi〉L2(Ω)〈γ2 ‖w‖2P , φi〉L2(Ω) : Note that γ2 ‖w‖2P = P−1

4γ2 DV
(i,j−1)t
n hhtDV

(i,j−1)
n , hence

〈γ2 ‖w‖2P , φi〉L2(Ω) = (c(i,j−1))tW(i,•)c
(i,j−1), where W ∈ Rn×n×n is given

by
W(i,j,k) := 〈(htDφj)(Dφkh), φi〉L2(Ω) .

6) 〈‖u‖2R , φi〉L2(Ω)〈‖u‖2R , φi〉L2(Ω)〈‖u‖2R , φi〉L2(Ω) : Since ‖u‖2R ≡ utRu = 1
4R

−1DV
(i−1,∞)t
n ggtDV

(i−1,∞)
n , this

leads to 〈‖u‖2R , φi〉L2(Ω) = (c(i−1,∞))tU(i,•)c
(i−1,∞), where U ∈ Rn×n×n is

given by
U(i,j,k) := 〈(gtDφj)(Dφkg), φi〉L2(Ω) .

After discretization, the discretized generalized Hamilton Jacobi Isaacs equation (4.2)
reduces to the linear system for c(

F+H(c(i,j−1)) +G(c(i−1,∞))
)
c = b(U,W, c(i−1,∞), c(i,j−1)) ,

where b is given by the expansion of −
(
`+ ‖u‖2R − γ2 ‖w‖2P

)
( terms 4 , 5 and 6 in

the list above).

4.2. Separable approximation. In order to tackle the computational difficul-
ties associated to the curse of dimensionality and the calculation of high-dimensional
integrals, we resort to Assumption 1 concerning the separability of the different
terms appearing in the control system. The multi-dimensional basis functions Φn :=
(φ1(x), . . . , φn(x)) used in the expansion of Vn are generated by products of one-
dimensional elements chosen from a polynomial basis ϕM : R → RM . Here we choose
the monomial basis ϕM = (1, x, . . . , xM )T with M ∈ N the degree of the polynomial,
however it is also possible to use orthogonal polynomials. The multidimensional basis
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is then generated as a subset of the d-dimensional tensor product of one-dimensional
bases such that the maximum total degree is fixed,

Φn ≡

{
φ ∈

d⊗
i=1

ϕM (xi) , and deg(φ) ≤ M

}
.

A canonical basis element φi in Φn is then given by φi =
∏d

j=1 x
νj

j , with
∑d

j=1 νj ≤
M . The cardinality of the set of monomials in d dimensions with a total degree not
greater than M is given by

(4.5) n =

M∑
m=1

(
d+m− 1

m

)
,

which partially mitigates the curse of dimensionality affecting mesh-based discretiza-
tions where the dependence of the total number of degrees of freedom is exponential
with respect to d. Table 4.1 shows the cardinality of Φn for different values of interest
for M and d. Having generated a set of separable multidimensional basis function, we

Total degree basis
d\M 2 4 6 8

6 27 209 923 3002
8 44 494 3002 12869
10 65 1000 8007 43757
12 90 1819 18563 125969
14 119 3059 38759 319769

Table 4.1: Cardinality of the set of d- dimensional monomials with total degree
smaller or equal to M . The dependence on d is combinatorial, mitigating the curse
of dimensionality for low-degree polynomials.

proceed as in the previous section, obtaining the summands in (4.2) . The integration
is carried out over the hyperrectangle Ω = Ω1 × . . .× Ωd. In [32], some of the terms
are given in details. For completeness, we repeat them here.

1) 〈DV t
nf, φi〉L2(Ω)〈DV t
nf, φi〉L2(Ω)〈DV t
nf, φi〉L2(Ω): In this case, using the expansion of Vn, we require the com-

putation of

〈Dφt
jf, φi〉L2(Ω) =

d∑
p=1

〈fp∂xp
φj , φi〉L2(Ω) ,

which is expanded by using the separable structure of the free dynamics

〈fp∂xpφj , φi〉L2(Ω) =

nf∑
l=1

〈

(
d∏

m=1

F(p, l,m)

)
∂xpφj , φi〉L2(Ω) ,
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where

〈

(
d∏

m=1

F(p, l,m)

)
∂xp

φj , φi〉L2(Ω)

=

 d∏
m=1
m 6=p

∫
Ωm

F(p, l,m)φm
i φm

j (xm) dxm


∫
Ωp

F(p, l, p)φp
i ∂xp

φp
j (xp) dxp

 .

2) 〈DV t
nhw, φi〉L2(Ω)〈DV t
nhw, φi〉L2(Ω)〈DV t
nhw, φi〉L2(Ω): This term demands to calculate 〈htDφkDφt

jh, φi〉L2(Ω).

Using the separable expansion, we can write hi(x) =
∑nh

j=1

∏d
k=1 H(i,j,k)(xk),

where H(x) : Rd → Rd×nh×d is a tensor valued function. Hence

〈htDφkDφt
jh, φi〉L2(Ω) =

d∑
l,m=1

〈hl∂xl
φk∂xm

φjhm, φi〉L2(Ω) =: hsep,

with

hl =

nh∑
r=1

d∏
p=1

H(l,r,p)(xp), hm =

nh∑
q=1

d∏
p=1

H(m,q,p)(xp).

Therefore, we obtain

hsep =

d∑
l,m=1

d∑
r,q=1

〈
d∏

p=1

H(l, r, p)∂xl
φk∂xm

φj

d∏
p=1

H(m, q, p), φi

〉

=

d∑
l,m=1

d∑
r,q=1

(
d∏

p=1
p 6=l
p 6=m

∫
Ωp

H(l, r, p)(xp)φ
p
k(xp)φ

p
j (xp)H(m, q, p)(xp)φ

p
i (xp)dxp

)

(∫
Ωl

H(l, r, l)(xl)∂xl
φl
k(xl)φ

l
j(xl)H(m, q, l)(xl)φ

l
i(xl)dxl

)
(∫

Ωm

H(l, r,m)(xm)∂xmφm
j (xm)φm

k (xm)H(m, q,m)(xm)φm
i (xm)dxm

)
.

3) 〈DV t
ngu, φi〉L2(Ω)〈DV t
ngu, φi〉L2(Ω)〈DV t
ngu, φi〉L2(Ω): Similar to 2).

4) 〈`(x), φi〉L2(Ω)〈`(x), φi〉L2(Ω)〈`(x), φi〉L2(Ω): Here, the expression involves

〈`, φi〉L2(Ω) =

d∑
j,k=1

Q(j,k)〈xjxk, φi〉L2(Ω) ,

where 〈xjxk, φi〉L2(Ω) can be expanded as

〈xjxk, φi〉L2(Ω) =


d∏

p=1
p6=j
p6=k

∫
Ωp

φp
i (xp) dxp


∫
Ωj

φj
i (xj)xj dxj


∫
Ωk

φk
i (xk)xk dxk

 .
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5) 〈‖w‖2P , φi〉L2(Ω)〈‖w‖2P , φi〉L2(Ω)〈‖w‖2P , φi〉L2(Ω) : This term requires the computation of the inner product

〈(htDφj)P (Dφkh), φi〉L2(Ω),

which is expanded with the help of 〈DV t
nhw, φi〉L2(Ω)〈DV t
nhw, φi〉L2(Ω)〈DV t
nhw, φi〉L2(Ω) as

〈(htDφj)P (Dφkh), φi〉L2(Ω) = Phsep.

6) 〈‖u‖2R , φi〉L2(Ω)〈‖u‖2R , φi〉L2(Ω)〈‖u‖2R , φi〉L2(Ω): This term is similar to 5).

5. Numerical experiments. In this section we present numerical experiments
illustrating that a combination of spectral techniques for the semi-discretization of a
PDE control system, together with a polynomial approximation for the value function
solving the associated HJI equation can mitigate the curse of dimensionality. We apply
this methodology for the robust feedback design for nonlinear parabolic PDEs.

5.1. Convergence of the polynomial approximation. We begin by assessing
the convergence of the polynomial approximation for the HJI equation in a 1D test,
setting

f(x) = 0 , g = 1 , h = 0.1 , l(x) =
q

4

(
x2 ex + 2x ex + 4x3

)2
, q =

g2

R
− h2

γ2P
,

with R = P = 1, and γ = 2
√
2. In this case the exact solution of the HJI equation is

given by
V (x) = x4 + x2ex .

We initialize Algorithm 3.2 with u0 = −0.01x and a threshold value ε = 1×10−6. The
relative error for an n−degree approximation of V (x), denoted by Vn(x), is defined as

error Vn :=
‖Vn(x)− V (x)‖L2(Ω)

‖V (x)‖L2(Ω)
,

with Ω = [−1, 1]. The total number of iterations and errors for different polynomial
degree approximations are shown in Table 5.1 and Figure 5.1. We observe a consistent
error decay as the approximation degree is increased, while the number of iterations
of the policy iteration algorithm remains independent. The use of a monomial basis
for approximating the value function yields similar results as using a set of orthogonal
Legendre polynomials.

5.2. Robust control of nonlinear parabolic PDEs. In the following tests,
we study the design of robust feedback controllers for a class of nonlinear parabolic
PDEs including nonlinear advection and reaction terms such as the Burgers or Newell-
Whitehead/Allen-Cahn equations. In order to embed the infinite-dimensional PDE
dynamics into our finite-dimensional robust control framework, we semi-discretize
the dynamics in space by means of a pseudospectral collocation method, leading to
nonlinear dynamical systems with as many dimensions as degrees of freedom in the
semi-discretization.

Test 1: a viscous Burgers’ equation with forcing term. We study the
robust optimal feedback stabilization of a control system related to a Burgers’ equation
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Monomial basis Legendre basis

n error Vn error un iterations error Vn error un iterations

2 1.4128 0.5919 71 1.4035 0.5846 71
4 0.3643 0.1468 79 0.8184 0.3172 71
6 0.0202 9.80×10−4 75 0.0224 0.0101 75
8 6.39×10−4 3.39×10−4 75 6.97×10−4 3.55×10−4 75
10 1.43×10−5 8.01×10−6 76 1.45×10−5 8.23×10−6 77

Table 5.1: 1D polynomial approximation for the HJI equation with nonquadratic
running cost. The number n denotes the polynomial degree of the approximated
value function with a monomial and Legendre basis elements. Errors are shown for
the value function Vn(x) and for the optimal feedback un(x). The number of iterations
includes the total number of subiterations related to the disturbance update.

Fig. 5.1: 1D polynomial approximation of the HJI equation with nonquadratic running
cost. Approximation with monomial basis. The number n denotes the total number
of basis functions.

with a nonlinear reaction term. The control problem is stated as

min
u(·)∈U

max
w(·)∈W

J (u,w;X0) :=

∞∫
0

(
‖X(·, t)‖2L2(I) + ‖u(t)‖2R − γ2‖w(t)‖2P

)
dt

subject to

(Σ∞)



∂tX(ξ, t) = σ∂ξξX(ξ, t)−X(ξ, t)∂ξX(ξ, t) + 1.5X(ξ, t)e−0.1X(ξ,t)

. . .+ χω1
(ξ)w(t) + χω2

(ξ)u(t) ,

X(ξl, t) = X(ξr, t) = 0 , t ∈ R+,

X(ξ, 0) = X0(ξ) , ξ ∈ I ,
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where (ξ, t) ∈ I ×R+ with I = (−1, 1) and U = W = L2([0,+∞)). Here χω1
and χω2

are indicator functions for the action of the disturbance and the control supported
over subsets ω1 and ω2, respectively. The additional source term 1.5X(ξ, t)e−0.1X(ξ,t)

prevents the origin to be asymptotically stable in the uncontrolled/unperturbed case
u = w = 0. In our numerical tests the viscosity parameter is set σ = 0.2.

In order to reduce the infinite dimensional state equation Σ∞ to a finite dimen-
sional dynamical system, we apply a pseudospectral collocation method in space based
on Chebyshev polynomials (see e.g. [38, Chapter 4] and [36]) which leads to a state
space representation of the form

Ẋ(t) = AX(t)− (X(t)) ◦ (DX(t)) + 1.5X(t) ◦ e−0.1X(t) + Cw(t) +Bu(t),(5.1)

where the discrete state X(t) = (X0(t), . . . , Xd(t))
t ∈ Rd+1 corresponds to the approx-

imation of X(ξ, t) at d collocation points, Xi(t) = X(ξi, t) with ξi = −cos(πi/(d+1)),
i = 1, . . . , d, while X(t) ◦ DX(t) and X ◦ e−0.1X denote coordinatewise operations.
The matrices A ∈ Md×d, D ∈ Md×d, B ∈ Rd and C ∈ Rd are finite dimensional
approximations of the Laplacian, gradient, control and disturbance operators, respec-
tively. The L2 norm of the state penalization of the running cost is approximated
accordingly. Additional details of the pseudospectral approximation algorithm are
provided in the Appendix. Note that such a state-space representation is consistent
with Assumption 1, as for each i = 1, . . . , d the state equation reduces to

Ẋi(t) = Ai,1X1(t) + . . .+Ai,dXd(t)−Xi(t)Di,1X1(t)− . . .−Xi(t)Di,dXd(t)(5.2)
+ (1.5Xi)e

−0.1Xi + Ciw(t) +Biu(t),(5.3)

where Ai,· denotes the i-th row of the matrix A. In this case, the approximate
dynamics are expanded in nf = 2d+ 1 terms. We shall solve the HJI equation

DVγ(x)
tf(x) +

1

4
DVγ(x)

t

(
1

γ2
h(x)P−1h(x)t − g(x)R−1g(x)t

)
DVγ(x) + `(x) = 0 ,

(5.4)

with f(x), h(x), g(x) and `(x) generated with the aforedescribed semi-discretization
(5.1). The value function V (x) is approximated with d = 12 over Ω = (−2, 2)12 with
a monomial basis of total degree up to 4.

In the following numerical tests we will study the effect of the location of domains
ω1 and ω2 on the solution of the HJI problem and in particular on the resulting γ∗.
We further investigate numerically the behaviour of the HJI control in the case γ is
chosen differently from the optimal γ∗, and we compare the HJB and HJI controllers
in terms of their robustness against additive noise in the state equation.
Effect of ω1 and ω2. Here we are interested in the effect of the control and distur-
bance supports on the solution of the HJI equation. In particular, we concentrate on
the consequences in terms of the H∞-norm γ∗, the smallest value for which the HJI
equation leads to an asymptotically stabilizing feedback control law. This value is
computed by a bisection algorithm discarding values of γ where Algorithm 3.2 fails
to converge. For this test, we consider the dynamics (5.1) without the exponential
source term. Table 5.2 reports three cases varying ω1 and ω2. For the largest ratio
of size of control to size of disturbance, we obtain the smallest γ∗, see case 1. Case 3
arises from case 1 by increasing the support of the disturbance while decreasing the
support of the control, leading to a significant increase of γ∗. In case 2 we decrease
the disturbance support compared to case 3, in such a way that w1 ∩ w2 = ∅, which
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results in decrease of γ∗. The three cases are consistent with the expectation that
as the ratio |ω2|/|ω1| increases, stabilization and noise cancellation capabilities are
improved resulting in a smaller γ∗ value.

support of disturbance (ω1) support of control (ω2) γ∗

case 1 (0.5, 0.8) (−1, 1) 0.3937
case 2 (−1,−0.5) (0.5, 0.8) 0.8087
case 3 (−1, 1) (0.5, 0.8) 3.1281

Table 5.2: Disturbance support ω1, control support ω2, and γ∗ for R = 0.1 and P = 1.

Effect of choosing γ. For the following test, ω1 and ω2 are chosen as in case 1,
above, and the initial condition is chosen to be X(ξ, 0) = −sign(ξ). Qualitatively
similar results were obtained in the other cases described in Table 5.2. We begin by
setting the disturbance weight equal to its threshold value γ = γ∗. The corresponding
results for u and w given by the feedback formulas

uγ(x) = −1

2
R−1g(x)tDVγ(x) , wγ(x) =

1

2γ2
P−1h(x)tDVγ(x) ,(5.5)

are shown in Figure 5.2(a). We note that the corresponding optimal control and
disturbance tend to 0 as t → ∞, as expected. The results in Figure 5.2(b) are
obtained by solving the HJI equation for an increasing sequence of values for γ. We
observe that the corresponding norms of the trajectories ‖X(ξ, t)‖2L2(I) converge as
γ increases to the graph for ‖X(ξ, t)‖2L2(I) which corresponds to the HJB synthesis,
equivalent to γ = +∞. We report that for γ∗ the graph of ‖X(ξ, t)‖2L2(I) also tends
to 0 as t → ∞, but at a much smaller rate. Finally we are interested in the effect of
choosing γ in (2.10) only marginally smaller than γ∗. For this purpose we attempt
to solve (2.10) by Algorithm 3.2 for γ(= 0.39) < γ∗(= 0.3937). The corresponding
disturbance starts to oscillate, there is no sufficiently cheap control which can reject
this disturbance and the state is unstable, as documented in Figure 5.2(c).
Comparison between HJI and HJB feedback laws in the presence of noise.
We compare the behaviour of the (5.1) in the case that the control is computed by
means of the HJI equation with optimal γ∗, and the HJB feedback law corresponding
γ = +∞. Different types of noise signals w are tested. Here we include the exponential
source term in the Burgers’ equation, we set R = 0.01 as the weight in the running
cost for the control, and ω1 = ω2 = (−0.8, 0.5).

With the additional source term, the uncontrolled-unperturbed system is unsta-
ble. This is highlighted in Figure 5.3 (a), where the norm of the state of the uncon-
trolled system with initial condition X(ξ, 0) = −sign(ξ) is compared against the state
norms produced by the HJB and HJI feedback laws with w = 0. We note that both
feedback laws generate an asymptotically stable closed loop system.

Next we compare the HJI/HJB synthesis capabilities to reject additive noise.
We compute Vγ∗ and V∞ to generate the associated feedback control laws, which are
evaluated for different choices of the perturbation signal w(t). For a sinusoidal noise of
the form w = η sin(ωt), the total state contributions ‖X‖2 =

∫∞
0

‖X(t)‖2 dt as well as
the total costs for HJI and HJB closed loops, J (uγ , w = 0;X0) and J (u∞, w = 0;X0)
respectively, are presented in Table 5.3 for X(ξ, 0) = −sign(ξ).

We note that the state cost given by the HJI synthesis is consistently smaller than



HAMILTON-JACOBI-ISAACS ROBUST CONTROL OF NONLINEAR PDES 17

(a) (b)

(c)

Fig. 5.2: Test 1 (viscous Burgers’ equation without exponential source term), influence
of γ. Parameters R = 0.1 and P = 1, initial condition: X(ξ, 0) = −sign(ξ). (a)
Disturbance wγ∗ and control uγ∗ for HJI. (b) Behaviour of ‖X(ξ, t)‖2L2(I) as γ increases
(c) ‖X(ξ, t)‖2L2(I) with γ < γ∗.

w(t) ‖X‖2 with uγ ‖X‖2 with u∞ J (uγ , 0;X0) J (u∞, 0;X0)

0.1sin(10t) 2.371 2.666 2.377 2.669
10sin(10t) 3.891 4.278 4.184 4.605
0.1sin(40t) 2.361 2.659 2.369 2.661
10sin(40t) 2.676 3.022 2.837 3.149

Table 5.3: HJI and HJB feedback laws under sinusoidal disturbances, Burgers’ equa-
tion with exponential source term, J (u,w = 0;X0) =

∫∞
0

(‖X(t)‖2 + ‖u‖2R) dt.

associated to the HJB feedback control law. This can also be confirmed in Figure 5.3
(b). We proceed with other choices of the perturbation signals given by:

• w1(t) = κwγ + ηsin(ωt)
• w2(t) = κuγ + ηsin(ωt)
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(a) (b)

Fig. 5.3: Test 1 (viscous Burgers’ equation with exponential source term), R =
0.01, P = 1, γ∗ = 0.125. X(ξ, 0) = −sign(ξ), and sinusoidal disturbance. (a) Evolu-
tion of the running cost ‖X(ξ, t)‖2L2(I)+‖u(t)‖2R−γ∗2 ‖w(t)‖2P with optimal feedback
and disturbance. (b) Evolution of the state penalization ‖X(ξ, t)‖2L2(I) for HJB and
HJI feedback laws under different sinusoidal disturbances.

• w3(t) = κu∞ + ηsin(ωt),
where κ and η are parameters, and wγ , uγ and u∞ are the HJI disturbance, the HJI
control, and the HJB control signals respectively, the latter two are obtained by
simulating first the unperturbed dynamics.

The results (a)-(b) in the first row of Figure 5.4, are obtained for w1, for the values
of κ and η indicated in the figures. Unlike the results with sinusoidal perturbation
only shown in Table 5.3, where there is no significant difference between the HJI and
the HJB closed loops, here the HJI synthesis asymptotically stabilizes the dynamics
to the origin, whereas the HJB feedback law fails. Also, from Figure 5.4 (c) and (d)
we observe that in the presence of the perturbation w2(t), the HJI feedback controls
achieve stabilization to the origin, while the HJB feedback fails in this respect. In
Figure 5.4 (e) and (f) we present results for the disturbance w3(t) with different values
of κ. For κ = −0.8 the HJB synthesis not only fails to stabilize but generates a finite
time blow up, while the HJI feedback is again successful. For κ = 0.8 both control
strategies reject the disturbance, with the HJI law having a more effective transient
behaviour.

Test 2: the Degenerate Zeldovich equation. In this second test we consider
the stabilization of the following diffusion-reaction model with Neumann boundary
conditions arising in combustion theory [30]

∂tX(ξ, t) = σ∂ξξX(ξ, t) +X(ξ, t)2 −X(ξ, t)3 + χω1
(ξ)w(t) + χω2

(ξ)u(t) ,

∂ξX(ξl, t) = ∂ξX(ξr, t) = 0 , t ∈ R+ ,

X(ξ, 0) = X0(ξ) , ξ ∈ I ,

with (ξ, t) in I ×R+, I = (−1, 1), σ = 0.5, ω1 = ω2 = (−0.8, 0.5). In this case X ≡ 0
is an unstable and X ≡ 1 is a stable steady state for the uncontrolled state equation.
The dynamics are semi-discretized in space with the same collocation method as in
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.4: Test 1(viscous Burgers’ equation with exponential source term) comparing
HJI and HJB feedback laws under different disturbances, R = 0.01, P = 1, X(ξ, 0) =
−sign(ξ), and γ∗ = 0.125.

Test 1. The reduced state space is chosen to be Ω = (−2, 2)12, and the basis functions
for the value function are monomials up to degree 4. We take R = 0.01, P = 1. Then
the H∞-norm is found to be γ∗ = 0.125. In Figure 5.5 (a), we depict the norm of
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(a) (b)

Fig. 5.5: Test 2: Degenerate Zeldovich equation, R = 0.01, P = 1, and X(ξ, 0) =

cos(2πξ)sin(πξ) + 1. (a) Evolution of ‖X(ξ, t)‖2L2(I) for uncontrolled, HJI and HJB
feedback laws. (b) Evolution of ‖X(ξ, t)‖2L2(I) with the piecewise constant disturbance
(5.6). Total HJB cost=10.98, total HJI cost=10.20.

the uncontrolled solution and compare it to the HJI and HJB controlled solutions.
We observe the two feedback laws generating a similar response in the absence of
noise. We also compared HJI and HJB with sinusoidal perturbations and found only
marginal differences between the two cases, with a tendency for HJI to be superior
in the case of small frequencies and vice versa for higher frequencies.

As in Test 1, we continue to compare HJI to HJB for non-sinusoidal disturbances,
and we first consider the piecewise constant signal given by

wc(t) =


30 0 ≤ t < 0.1

10 0.1 ≤ t ≤ 0.5

0.5 t > 0.5.

(5.6)

For this case we see from Figure 5.5 (ii) that in the transient phase the HJI synthesis
is superior to the HJB closed-loop.

Now we modify the disturbance term in the dynamics to observe the corresponding
effect close to the worst case scenario and choose w = 0.9wγ∗ + ηsin(ωt). We can see
from Figure 5.6 that the HJB feedback control is not able to attenuate this disturbance
level. The HJB feedback controller fails to steer the trajectories towards the unstable
equilibrium, and the closed-loop dynamics remain attracted to X = 1. In the presence
of the same disturbance, the HJI controller succeeds in directing the state to the
desired equilibrium steers the state to the origin. The choice of signals w2 and w3 as
in Test 1 leads to a similar type of behaviour.

Test 3: Stabilization under model uncertainty. We conclude by studying
the case of state-dependent perturbations. Alternatively, we can interpret this setting
as modelling parametric uncertainties in the dynamics as for instance, uncertainties
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(a) (b)

Fig. 5.6: Test 2: Degenerate Zeldovich equation, R = 0.01, P = 1, and X(ξ, 0) =
cos(2πξ)sin(πξ) + 1. Disturbance: w(t) = 0.9wHJI + ηsin(ωt), (a) Evolution of
‖X(ξ, t)‖2L2(I), (b) Control signals for u(t) in (a).

in the diffusion and/or reaction coefficients. We first investigate the dynamics

∂tX(ξ, t) = σ∂ξξX(ξ, t)−X(ξ, t)3 +X(ξ, t)w(t) + χω2
(ξ)u(t) ,

∂ξX(ξl, t) = ∂ξX(ξr, t) = 0 , t ∈ R+ ,

X(ξ, 0) = κ(ξ − 1)2(ξ + 1)2 , ξ ∈ I ,

with (ξ, t) in I × R+, I = (−1, 1), ω2 = (−0.8, 0.5) and κ to be specified below. As
in the previous tests, the computational domain is Ω = (−2, 2)12.

We compare between the HJB and HJI synthesis for trajectories generated by
choosing the constant perturbation w = 1 in the above model. Note that for w = 1
the above reaction-diffusion model corresponds to the Newell-Whitehead /Allen-Cahn
equations

∂tX(ξ, t) = σ∂ξξX(ξ, t)−X(ξ, t)3 +X(ξ, t) + χω2
(ξ)u(t)

The HJB synthesis does not incorporate the destabilizing term X(ξ, t) . We study
the behaviour of the closed loop under additional perturbations of the type ηsin(ωt).

In Figure 5.7 we close the loop with HJI and HJB based control, where in the three
consecutive rows we increase the magnitude of the initial condition by considering the
cases κ = 0.1, κ = 0.5, and κ = 1, respectively.

For all the three cases the HJI controller stabilizes the system towards the origin
and the three corresponding controls tend to 0 as time increases. The HJB feed-
back law, which does not anticipate the modelling error in the reaction term, fails to
stabilize this system to 0.

Finally, we consider a model uncertainty for a cubic reaction term in

∂tX(ξ, t) = σ∂ξξX(ξ, t) +X(ξ, t)3w(t) + χω2
(ξ)u(t) , in I × R+ ,

∂ξX(ξl, t) = ∂ξX(ξr, t) = 0 , t ∈ R+ .

In this case a robust control design is critical, as the cubic reaction term can generate
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.7: Test 3, state-dependent disturbance in the Newell-Whitehead equation, R =
0.5, P = 1, σ = 0.5, ω2 = (−0.3, 0.5), γ∗ = 1.63 and X(ξ, 0) = κ(ξ−1)2(ξ+1)2. State
cost evolution and control signals for: (a)-(b) κ = .1, (c)-(d) κ = .5, (d)-(e) κ = 1.

a finite time blow-up of the dynamics. We observe that for the case w = 1, the HJB
control fails to stabilize the dynamics whilst the HJI closed-loop is asymptotically
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(a) (b) (c)

Fig. 5.8: Test 3, X3 state-dependent disturbance in the Newell-Whitehead equation,
R = 0.01, P = 1, σ = 0.5, ω2 = (−0.8, 0.5), γ∗ = 8.22 and X(ξ, 0) = 3(ξ − 1)2(ξ +

1)2. (a) Evolution of ‖X(ξ, t)‖2L2(I) with HJI feedback law, (b) Optimal HJI control
signal for (a) and, (c) Evolution of ‖X(ξ, t)‖2L2(I) with HJB feedback (the closed-loop
becomes unstable).

stable. This is documented in Figure 5.8

Remarks on CPU times. Table 5.4 provides CPU-assembly and CPU-iterative
times for solving the HJI equation related to Tests 1 and 2. Tests were run on a multi-
core architecture 8x Intel Xeon E7-4870 with 2.4 Ghz, 1 TB of RAM. MATLAB
pseudoparallelization distributes the tasks among 12 workers.

Test Source term CPU-assembly CPU-iterative

1 (Without source term) 1.161× 104[s] 3.5078× 104[s]
1 (With source term) 2.1508× 104[s] 1.1808× 105[s]
2 3.0262× 103[s] 4.8975× 104[s]

Table 5.4: CPU-assembly corresponds to the amount of time spent in offline assembly
of the different terms of the Galerkin residual equation (4.2). CPU-iterative refers to
the amount of time spent inside Algorithm 3.2.

Concluding remarks. We have proposed a numerical scheme for the design
of robust optimal stabilizing feedback controllers, and assessed its capabilities in the
context of stabilization of nonlinear parabolic PDEs. The overall technique consists
of two main steps: i) the projection of the infinite-dimensional nonlinear parabolic
dynamics onto a finite-dimensional relevant subspace by means of a pseudospectral
collocation method and ii) the synthesis of a robust control by solving a Hamilton-
Jacobi-Isaacs equation, for which we have resorted to a Galerkin-type method using
a global polynomial ansatz for the value function, together with iterative techniques
for the solution of the nonlinear HJI. Overall, the proposed methodology proves to
be successful in achieving the fundamental features of the H∞ control design, that
is, to generate an optimal stabilization of the closed-loop with enhanced disturbance
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mitigation properties. We have numerically assessed that our synthesis scheme offers
a more robust control law than the classical HJB/H2 feedback. Furthermore, the pro-
posed scheme mitigates the curse of dimensionality, allowing to approximate the H∞
synthesis for nonlinear dynamics of high dimensions. The developed framework also
opens the door to the study of nonlinear feedback control of PDEs under uncertainty.
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Appendix. We provide further details concerning the pseudospectral approxi-
mation algorithm that generates the nonlinear dynamics which serve the basis of the
numerical tests in Section 5.2., e.g. (5.2). We follow closely the derivations presented
in (see e.g. [38, Chapter 4] and [36]), applied to the Burgers type PDE in Test 1

(Σ∞)



∂tX(ξ, t) = σ∂ξξX(ξ, t)−X(ξ, t)∂ξX(ξ, t) + 1.5X(ξ, t)e−0.1X(ξ,t)

. . .+ χω1
(ξ)w(t) + χω2

(ξ)u(t) ,

X(−1, t) = X(1, t) = 0 , t ∈ R+,

X(ξ, 0) = X0(ξ) , ξ ∈ [−1, 1] .

For the sake of simplicity, the spatial coordinate is restricted to [−1, 1] but this can
be readily modified to include any other interval. In this interval, given N > 0 we
consider the set of N + 1 collocation points given by

ξk = − cos

(
πk

N

)
, k = 0, . . . , N ,

and the first N + 1 Chebyshev polynomials of the first kind Tk(ξ) given by

T0(ξ) = 1 ,

T1(ξ) = ξ ,

T2(ξ) = 2ξ2 − 1 ,

T3(ξ) = 4ξ3 − 3ξ ,

...
TN = 2ξTN−1(ξ)− TN−2(ξ) .

We now approximate the solution to (Σ∞) through the semi-discretization

X(ξ, t) ≈ XN (ξ, t) :=

N∑
j=0

Xj(t)Ij(ξ) ,(5.7)

where Xj(t) = X(ξj , t) and

Ij(ξ) =
2

Nνj

N∑
k=0

νkTk(ξj)Tk(ξ) ,(5.8)

with ν0 = νN = 1/2 and νk = 1 for any other index k. Under these definitions, it can
be readily verified that XN (ξi, t) = Xi(t) for every collocation point ξi, i = 0, . . . , N .
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Furthermore, it is possible to compute the action of a differential operator over
XN (ξ, t) and Ij(ξ). For example,

∂ξξX
N (ξ, t) =

N∑
j=0

Xj(t)∂ξξIj(ξ) =

N∑
j=0

Xj(t)
2

Nνj

N∑
k=0

νkTk(ξj)∂ξξTk(ξ) .(5.9)

Finally, to obtain a finite-dimensional approximation of (Σ∞) we insert XN (ξ, t) and
impose the equation to be satisfied at the N + 1 collocation points, leading to the
system

dX(t)

dt
= ANX(t) + FN (X(t)) +GNu(t) +HNw(t) ,(5.10)

where X(t) = (X0(t), . . . , XN (t))t ∈ RN+1, AN ∈ RN+1×N+1, FN (X) : RN+1 →
RN+1, GN ,HN ∈ RN+1, and

Ai,j = σ
d2Ii(ξ)

dξ2
|ξ=ξj Gi = χω2

(ξi) , Hi = χω1
(ξi) , i, j = 0, . . . , N .(5.11)

The discretized operator associated to the nonlinearity is obtained in a similar way
yielding

F(X(t)) = −X(t) ◦ (DNX(t)) + 1.5X(t) ◦ e−0.1X(t) ,(5.12)

where DN ∈ RN+1×N+1 with

Di,j = σ
dIi(ξ)

dξ
|ξ=ξj ,(5.13)

the symbol ◦ corresponding to the componentwise Hadamard product, and the expo-
nential being evaluated componentwise, too. In the numerical tests where the dynam-
ics include the presence of a nonlinear polynomial source, the discrete nonlinearity
is also obtained by its pointwise evaluation at the collocation points, for instance

X(ξ, t)2 −X(ξ, t)3 ≈ X(t) ◦X(t)−X(t) ◦X(t) ◦X(t) .

The resulting dynamical system consists of N + 1 equations, however the collocation
points at the boundary nodes ξ0 and ξN must satisfy the Neumann boundary condi-
tions, which imposed over XN (ξ, t), yield two algebraic relations which reduce the
system to the set of N−1 equations corresponding to the internal nodes ξ1, . . . , ξN−1.
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